1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/types.h> 25 #include <linux/sched/task.h> 26 #include <linux/dynamic_debug.h> 27 #include <drm/ttm/ttm_tt.h> 28 #include <drm/drm_exec.h> 29 30 #include "amdgpu_sync.h" 31 #include "amdgpu_object.h" 32 #include "amdgpu_vm.h" 33 #include "amdgpu_hmm.h" 34 #include "amdgpu.h" 35 #include "amdgpu_xgmi.h" 36 #include "kfd_priv.h" 37 #include "kfd_svm.h" 38 #include "kfd_migrate.h" 39 #include "kfd_smi_events.h" 40 41 #ifdef dev_fmt 42 #undef dev_fmt 43 #endif 44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__ 45 46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1 47 48 /* Long enough to ensure no retry fault comes after svm range is restored and 49 * page table is updated. 50 */ 51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC) 52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) 53 #define dynamic_svm_range_dump(svms) \ 54 _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms) 55 #else 56 #define dynamic_svm_range_dump(svms) \ 57 do { if (0) svm_range_debug_dump(svms); } while (0) 58 #endif 59 60 /* Giant svm range split into smaller ranges based on this, it is decided using 61 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to 62 * power of 2MB. 63 */ 64 static uint64_t max_svm_range_pages; 65 66 struct criu_svm_metadata { 67 struct list_head list; 68 struct kfd_criu_svm_range_priv_data data; 69 }; 70 71 static void svm_range_evict_svm_bo_worker(struct work_struct *work); 72 static bool 73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, 74 const struct mmu_notifier_range *range, 75 unsigned long cur_seq); 76 static int 77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, 78 uint64_t *bo_s, uint64_t *bo_l); 79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = { 80 .invalidate = svm_range_cpu_invalidate_pagetables, 81 }; 82 83 /** 84 * svm_range_unlink - unlink svm_range from lists and interval tree 85 * @prange: svm range structure to be removed 86 * 87 * Remove the svm_range from the svms and svm_bo lists and the svms 88 * interval tree. 89 * 90 * Context: The caller must hold svms->lock 91 */ 92 static void svm_range_unlink(struct svm_range *prange) 93 { 94 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 95 prange, prange->start, prange->last); 96 97 if (prange->svm_bo) { 98 spin_lock(&prange->svm_bo->list_lock); 99 list_del(&prange->svm_bo_list); 100 spin_unlock(&prange->svm_bo->list_lock); 101 } 102 103 list_del(&prange->list); 104 if (prange->it_node.start != 0 && prange->it_node.last != 0) 105 interval_tree_remove(&prange->it_node, &prange->svms->objects); 106 } 107 108 static void 109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange) 110 { 111 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 112 prange, prange->start, prange->last); 113 114 mmu_interval_notifier_insert_locked(&prange->notifier, mm, 115 prange->start << PAGE_SHIFT, 116 prange->npages << PAGE_SHIFT, 117 &svm_range_mn_ops); 118 } 119 120 /** 121 * svm_range_add_to_svms - add svm range to svms 122 * @prange: svm range structure to be added 123 * 124 * Add the svm range to svms interval tree and link list 125 * 126 * Context: The caller must hold svms->lock 127 */ 128 static void svm_range_add_to_svms(struct svm_range *prange) 129 { 130 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 131 prange, prange->start, prange->last); 132 133 list_move_tail(&prange->list, &prange->svms->list); 134 prange->it_node.start = prange->start; 135 prange->it_node.last = prange->last; 136 interval_tree_insert(&prange->it_node, &prange->svms->objects); 137 } 138 139 static void svm_range_remove_notifier(struct svm_range *prange) 140 { 141 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", 142 prange->svms, prange, 143 prange->notifier.interval_tree.start >> PAGE_SHIFT, 144 prange->notifier.interval_tree.last >> PAGE_SHIFT); 145 146 if (prange->notifier.interval_tree.start != 0 && 147 prange->notifier.interval_tree.last != 0) 148 mmu_interval_notifier_remove(&prange->notifier); 149 } 150 151 static bool 152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr) 153 { 154 return dma_addr && !dma_mapping_error(dev, dma_addr) && 155 !(dma_addr & SVM_RANGE_VRAM_DOMAIN); 156 } 157 158 static int 159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange, 160 unsigned long offset, unsigned long npages, 161 unsigned long *hmm_pfns, uint32_t gpuidx) 162 { 163 enum dma_data_direction dir = DMA_BIDIRECTIONAL; 164 dma_addr_t *addr = prange->dma_addr[gpuidx]; 165 struct device *dev = adev->dev; 166 struct page *page; 167 int i, r; 168 169 if (!addr) { 170 addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL); 171 if (!addr) 172 return -ENOMEM; 173 prange->dma_addr[gpuidx] = addr; 174 } 175 176 addr += offset; 177 for (i = 0; i < npages; i++) { 178 if (svm_is_valid_dma_mapping_addr(dev, addr[i])) 179 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir); 180 181 page = hmm_pfn_to_page(hmm_pfns[i]); 182 if (is_zone_device_page(page)) { 183 struct amdgpu_device *bo_adev = prange->svm_bo->node->adev; 184 185 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) + 186 bo_adev->vm_manager.vram_base_offset - 187 bo_adev->kfd.pgmap.range.start; 188 addr[i] |= SVM_RANGE_VRAM_DOMAIN; 189 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]); 190 continue; 191 } 192 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir); 193 r = dma_mapping_error(dev, addr[i]); 194 if (r) { 195 dev_err(dev, "failed %d dma_map_page\n", r); 196 return r; 197 } 198 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n", 199 addr[i] >> PAGE_SHIFT, page_to_pfn(page)); 200 } 201 return 0; 202 } 203 204 static int 205 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap, 206 unsigned long offset, unsigned long npages, 207 unsigned long *hmm_pfns) 208 { 209 struct kfd_process *p; 210 uint32_t gpuidx; 211 int r; 212 213 p = container_of(prange->svms, struct kfd_process, svms); 214 215 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 216 struct kfd_process_device *pdd; 217 218 pr_debug("mapping to gpu idx 0x%x\n", gpuidx); 219 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 220 if (!pdd) { 221 pr_debug("failed to find device idx %d\n", gpuidx); 222 return -EINVAL; 223 } 224 225 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages, 226 hmm_pfns, gpuidx); 227 if (r) 228 break; 229 } 230 231 return r; 232 } 233 234 void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr, 235 unsigned long offset, unsigned long npages) 236 { 237 enum dma_data_direction dir = DMA_BIDIRECTIONAL; 238 int i; 239 240 if (!dma_addr) 241 return; 242 243 for (i = offset; i < offset + npages; i++) { 244 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i])) 245 continue; 246 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT); 247 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir); 248 dma_addr[i] = 0; 249 } 250 } 251 252 void svm_range_free_dma_mappings(struct svm_range *prange, bool unmap_dma) 253 { 254 struct kfd_process_device *pdd; 255 dma_addr_t *dma_addr; 256 struct device *dev; 257 struct kfd_process *p; 258 uint32_t gpuidx; 259 260 p = container_of(prange->svms, struct kfd_process, svms); 261 262 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) { 263 dma_addr = prange->dma_addr[gpuidx]; 264 if (!dma_addr) 265 continue; 266 267 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 268 if (!pdd) { 269 pr_debug("failed to find device idx %d\n", gpuidx); 270 continue; 271 } 272 dev = &pdd->dev->adev->pdev->dev; 273 if (unmap_dma) 274 svm_range_dma_unmap(dev, dma_addr, 0, prange->npages); 275 kvfree(dma_addr); 276 prange->dma_addr[gpuidx] = NULL; 277 } 278 } 279 280 static void svm_range_free(struct svm_range *prange, bool do_unmap) 281 { 282 uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT; 283 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 284 285 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, 286 prange->start, prange->last); 287 288 svm_range_vram_node_free(prange); 289 svm_range_free_dma_mappings(prange, do_unmap); 290 291 if (do_unmap && !p->xnack_enabled) { 292 pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size); 293 amdgpu_amdkfd_unreserve_mem_limit(NULL, size, 294 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 295 } 296 mutex_destroy(&prange->lock); 297 mutex_destroy(&prange->migrate_mutex); 298 kfree(prange); 299 } 300 301 static void 302 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc, 303 uint8_t *granularity, uint32_t *flags) 304 { 305 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 306 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 307 *granularity = 9; 308 *flags = 309 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT; 310 } 311 312 static struct 313 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start, 314 uint64_t last, bool update_mem_usage) 315 { 316 uint64_t size = last - start + 1; 317 struct svm_range *prange; 318 struct kfd_process *p; 319 320 prange = kzalloc(sizeof(*prange), GFP_KERNEL); 321 if (!prange) 322 return NULL; 323 324 p = container_of(svms, struct kfd_process, svms); 325 if (!p->xnack_enabled && update_mem_usage && 326 amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT, 327 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) { 328 pr_info("SVM mapping failed, exceeds resident system memory limit\n"); 329 kfree(prange); 330 return NULL; 331 } 332 prange->npages = size; 333 prange->svms = svms; 334 prange->start = start; 335 prange->last = last; 336 INIT_LIST_HEAD(&prange->list); 337 INIT_LIST_HEAD(&prange->update_list); 338 INIT_LIST_HEAD(&prange->svm_bo_list); 339 INIT_LIST_HEAD(&prange->deferred_list); 340 INIT_LIST_HEAD(&prange->child_list); 341 atomic_set(&prange->invalid, 0); 342 prange->validate_timestamp = 0; 343 mutex_init(&prange->migrate_mutex); 344 mutex_init(&prange->lock); 345 346 if (p->xnack_enabled) 347 bitmap_copy(prange->bitmap_access, svms->bitmap_supported, 348 MAX_GPU_INSTANCE); 349 350 svm_range_set_default_attributes(&prange->preferred_loc, 351 &prange->prefetch_loc, 352 &prange->granularity, &prange->flags); 353 354 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last); 355 356 return prange; 357 } 358 359 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo) 360 { 361 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref)) 362 return false; 363 364 return true; 365 } 366 367 static void svm_range_bo_release(struct kref *kref) 368 { 369 struct svm_range_bo *svm_bo; 370 371 svm_bo = container_of(kref, struct svm_range_bo, kref); 372 pr_debug("svm_bo 0x%p\n", svm_bo); 373 374 spin_lock(&svm_bo->list_lock); 375 while (!list_empty(&svm_bo->range_list)) { 376 struct svm_range *prange = 377 list_first_entry(&svm_bo->range_list, 378 struct svm_range, svm_bo_list); 379 /* list_del_init tells a concurrent svm_range_vram_node_new when 380 * it's safe to reuse the svm_bo pointer and svm_bo_list head. 381 */ 382 list_del_init(&prange->svm_bo_list); 383 spin_unlock(&svm_bo->list_lock); 384 385 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, 386 prange->start, prange->last); 387 mutex_lock(&prange->lock); 388 prange->svm_bo = NULL; 389 mutex_unlock(&prange->lock); 390 391 spin_lock(&svm_bo->list_lock); 392 } 393 spin_unlock(&svm_bo->list_lock); 394 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) { 395 /* We're not in the eviction worker. 396 * Signal the fence and synchronize with any 397 * pending eviction work. 398 */ 399 dma_fence_signal(&svm_bo->eviction_fence->base); 400 cancel_work_sync(&svm_bo->eviction_work); 401 } 402 dma_fence_put(&svm_bo->eviction_fence->base); 403 amdgpu_bo_unref(&svm_bo->bo); 404 kfree(svm_bo); 405 } 406 407 static void svm_range_bo_wq_release(struct work_struct *work) 408 { 409 struct svm_range_bo *svm_bo; 410 411 svm_bo = container_of(work, struct svm_range_bo, release_work); 412 svm_range_bo_release(&svm_bo->kref); 413 } 414 415 static void svm_range_bo_release_async(struct kref *kref) 416 { 417 struct svm_range_bo *svm_bo; 418 419 svm_bo = container_of(kref, struct svm_range_bo, kref); 420 pr_debug("svm_bo 0x%p\n", svm_bo); 421 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release); 422 schedule_work(&svm_bo->release_work); 423 } 424 425 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo) 426 { 427 kref_put(&svm_bo->kref, svm_range_bo_release_async); 428 } 429 430 static void svm_range_bo_unref(struct svm_range_bo *svm_bo) 431 { 432 if (svm_bo) 433 kref_put(&svm_bo->kref, svm_range_bo_release); 434 } 435 436 static bool 437 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange) 438 { 439 mutex_lock(&prange->lock); 440 if (!prange->svm_bo) { 441 mutex_unlock(&prange->lock); 442 return false; 443 } 444 if (prange->ttm_res) { 445 /* We still have a reference, all is well */ 446 mutex_unlock(&prange->lock); 447 return true; 448 } 449 if (svm_bo_ref_unless_zero(prange->svm_bo)) { 450 /* 451 * Migrate from GPU to GPU, remove range from source svm_bo->node 452 * range list, and return false to allocate svm_bo from destination 453 * node. 454 */ 455 if (prange->svm_bo->node != node) { 456 mutex_unlock(&prange->lock); 457 458 spin_lock(&prange->svm_bo->list_lock); 459 list_del_init(&prange->svm_bo_list); 460 spin_unlock(&prange->svm_bo->list_lock); 461 462 svm_range_bo_unref(prange->svm_bo); 463 return false; 464 } 465 if (READ_ONCE(prange->svm_bo->evicting)) { 466 struct dma_fence *f; 467 struct svm_range_bo *svm_bo; 468 /* The BO is getting evicted, 469 * we need to get a new one 470 */ 471 mutex_unlock(&prange->lock); 472 svm_bo = prange->svm_bo; 473 f = dma_fence_get(&svm_bo->eviction_fence->base); 474 svm_range_bo_unref(prange->svm_bo); 475 /* wait for the fence to avoid long spin-loop 476 * at list_empty_careful 477 */ 478 dma_fence_wait(f, false); 479 dma_fence_put(f); 480 } else { 481 /* The BO was still around and we got 482 * a new reference to it 483 */ 484 mutex_unlock(&prange->lock); 485 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n", 486 prange->svms, prange->start, prange->last); 487 488 prange->ttm_res = prange->svm_bo->bo->tbo.resource; 489 return true; 490 } 491 492 } else { 493 mutex_unlock(&prange->lock); 494 } 495 496 /* We need a new svm_bo. Spin-loop to wait for concurrent 497 * svm_range_bo_release to finish removing this range from 498 * its range list and set prange->svm_bo to null. After this, 499 * it is safe to reuse the svm_bo pointer and svm_bo_list head. 500 */ 501 while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo) 502 cond_resched(); 503 504 return false; 505 } 506 507 static struct svm_range_bo *svm_range_bo_new(void) 508 { 509 struct svm_range_bo *svm_bo; 510 511 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL); 512 if (!svm_bo) 513 return NULL; 514 515 kref_init(&svm_bo->kref); 516 INIT_LIST_HEAD(&svm_bo->range_list); 517 spin_lock_init(&svm_bo->list_lock); 518 519 return svm_bo; 520 } 521 522 int 523 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange, 524 bool clear) 525 { 526 struct amdgpu_bo_param bp; 527 struct svm_range_bo *svm_bo; 528 struct amdgpu_bo_user *ubo; 529 struct amdgpu_bo *bo; 530 struct kfd_process *p; 531 struct mm_struct *mm; 532 int r; 533 534 p = container_of(prange->svms, struct kfd_process, svms); 535 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms, 536 prange->start, prange->last); 537 538 if (svm_range_validate_svm_bo(node, prange)) 539 return 0; 540 541 svm_bo = svm_range_bo_new(); 542 if (!svm_bo) { 543 pr_debug("failed to alloc svm bo\n"); 544 return -ENOMEM; 545 } 546 mm = get_task_mm(p->lead_thread); 547 if (!mm) { 548 pr_debug("failed to get mm\n"); 549 kfree(svm_bo); 550 return -ESRCH; 551 } 552 svm_bo->node = node; 553 svm_bo->eviction_fence = 554 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 555 mm, 556 svm_bo); 557 mmput(mm); 558 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker); 559 svm_bo->evicting = 0; 560 memset(&bp, 0, sizeof(bp)); 561 bp.size = prange->npages * PAGE_SIZE; 562 bp.byte_align = PAGE_SIZE; 563 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 564 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS; 565 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0; 566 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE; 567 bp.type = ttm_bo_type_device; 568 bp.resv = NULL; 569 if (node->xcp) 570 bp.xcp_id_plus1 = node->xcp->id + 1; 571 572 r = amdgpu_bo_create_user(node->adev, &bp, &ubo); 573 if (r) { 574 pr_debug("failed %d to create bo\n", r); 575 goto create_bo_failed; 576 } 577 bo = &ubo->bo; 578 579 pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n", 580 bo->tbo.resource->start << PAGE_SHIFT, bp.size, 581 bp.xcp_id_plus1 - 1); 582 583 r = amdgpu_bo_reserve(bo, true); 584 if (r) { 585 pr_debug("failed %d to reserve bo\n", r); 586 goto reserve_bo_failed; 587 } 588 589 if (clear) { 590 r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 591 if (r) { 592 pr_debug("failed %d to sync bo\n", r); 593 amdgpu_bo_unreserve(bo); 594 goto reserve_bo_failed; 595 } 596 } 597 598 r = dma_resv_reserve_fences(bo->tbo.base.resv, 1); 599 if (r) { 600 pr_debug("failed %d to reserve bo\n", r); 601 amdgpu_bo_unreserve(bo); 602 goto reserve_bo_failed; 603 } 604 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true); 605 606 amdgpu_bo_unreserve(bo); 607 608 svm_bo->bo = bo; 609 prange->svm_bo = svm_bo; 610 prange->ttm_res = bo->tbo.resource; 611 prange->offset = 0; 612 613 spin_lock(&svm_bo->list_lock); 614 list_add(&prange->svm_bo_list, &svm_bo->range_list); 615 spin_unlock(&svm_bo->list_lock); 616 617 return 0; 618 619 reserve_bo_failed: 620 amdgpu_bo_unref(&bo); 621 create_bo_failed: 622 dma_fence_put(&svm_bo->eviction_fence->base); 623 kfree(svm_bo); 624 prange->ttm_res = NULL; 625 626 return r; 627 } 628 629 void svm_range_vram_node_free(struct svm_range *prange) 630 { 631 svm_range_bo_unref(prange->svm_bo); 632 prange->ttm_res = NULL; 633 } 634 635 struct kfd_node * 636 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id) 637 { 638 struct kfd_process *p; 639 struct kfd_process_device *pdd; 640 641 p = container_of(prange->svms, struct kfd_process, svms); 642 pdd = kfd_process_device_data_by_id(p, gpu_id); 643 if (!pdd) { 644 pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id); 645 return NULL; 646 } 647 648 return pdd->dev; 649 } 650 651 struct kfd_process_device * 652 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node) 653 { 654 struct kfd_process *p; 655 656 p = container_of(prange->svms, struct kfd_process, svms); 657 658 return kfd_get_process_device_data(node, p); 659 } 660 661 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo) 662 { 663 struct ttm_operation_ctx ctx = { false, false }; 664 665 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM); 666 667 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 668 } 669 670 static int 671 svm_range_check_attr(struct kfd_process *p, 672 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) 673 { 674 uint32_t i; 675 676 for (i = 0; i < nattr; i++) { 677 uint32_t val = attrs[i].value; 678 int gpuidx = MAX_GPU_INSTANCE; 679 680 switch (attrs[i].type) { 681 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 682 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM && 683 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED) 684 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 685 break; 686 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 687 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM) 688 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 689 break; 690 case KFD_IOCTL_SVM_ATTR_ACCESS: 691 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 692 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 693 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 694 break; 695 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 696 break; 697 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 698 break; 699 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 700 break; 701 default: 702 pr_debug("unknown attr type 0x%x\n", attrs[i].type); 703 return -EINVAL; 704 } 705 706 if (gpuidx < 0) { 707 pr_debug("no GPU 0x%x found\n", val); 708 return -EINVAL; 709 } else if (gpuidx < MAX_GPU_INSTANCE && 710 !test_bit(gpuidx, p->svms.bitmap_supported)) { 711 pr_debug("GPU 0x%x not supported\n", val); 712 return -EINVAL; 713 } 714 } 715 716 return 0; 717 } 718 719 static void 720 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange, 721 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs, 722 bool *update_mapping) 723 { 724 uint32_t i; 725 int gpuidx; 726 727 for (i = 0; i < nattr; i++) { 728 switch (attrs[i].type) { 729 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 730 prange->preferred_loc = attrs[i].value; 731 break; 732 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 733 prange->prefetch_loc = attrs[i].value; 734 break; 735 case KFD_IOCTL_SVM_ATTR_ACCESS: 736 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 737 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 738 if (!p->xnack_enabled) 739 *update_mapping = true; 740 741 gpuidx = kfd_process_gpuidx_from_gpuid(p, 742 attrs[i].value); 743 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { 744 bitmap_clear(prange->bitmap_access, gpuidx, 1); 745 bitmap_clear(prange->bitmap_aip, gpuidx, 1); 746 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { 747 bitmap_set(prange->bitmap_access, gpuidx, 1); 748 bitmap_clear(prange->bitmap_aip, gpuidx, 1); 749 } else { 750 bitmap_clear(prange->bitmap_access, gpuidx, 1); 751 bitmap_set(prange->bitmap_aip, gpuidx, 1); 752 } 753 break; 754 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 755 *update_mapping = true; 756 prange->flags |= attrs[i].value; 757 break; 758 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 759 *update_mapping = true; 760 prange->flags &= ~attrs[i].value; 761 break; 762 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 763 prange->granularity = attrs[i].value; 764 break; 765 default: 766 WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); 767 } 768 } 769 } 770 771 static bool 772 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange, 773 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) 774 { 775 uint32_t i; 776 int gpuidx; 777 778 for (i = 0; i < nattr; i++) { 779 switch (attrs[i].type) { 780 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 781 if (prange->preferred_loc != attrs[i].value) 782 return false; 783 break; 784 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 785 /* Prefetch should always trigger a migration even 786 * if the value of the attribute didn't change. 787 */ 788 return false; 789 case KFD_IOCTL_SVM_ATTR_ACCESS: 790 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 791 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 792 gpuidx = kfd_process_gpuidx_from_gpuid(p, 793 attrs[i].value); 794 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { 795 if (test_bit(gpuidx, prange->bitmap_access) || 796 test_bit(gpuidx, prange->bitmap_aip)) 797 return false; 798 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { 799 if (!test_bit(gpuidx, prange->bitmap_access)) 800 return false; 801 } else { 802 if (!test_bit(gpuidx, prange->bitmap_aip)) 803 return false; 804 } 805 break; 806 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 807 if ((prange->flags & attrs[i].value) != attrs[i].value) 808 return false; 809 break; 810 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 811 if ((prange->flags & attrs[i].value) != 0) 812 return false; 813 break; 814 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 815 if (prange->granularity != attrs[i].value) 816 return false; 817 break; 818 default: 819 WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); 820 } 821 } 822 823 return true; 824 } 825 826 /** 827 * svm_range_debug_dump - print all range information from svms 828 * @svms: svm range list header 829 * 830 * debug output svm range start, end, prefetch location from svms 831 * interval tree and link list 832 * 833 * Context: The caller must hold svms->lock 834 */ 835 static void svm_range_debug_dump(struct svm_range_list *svms) 836 { 837 struct interval_tree_node *node; 838 struct svm_range *prange; 839 840 pr_debug("dump svms 0x%p list\n", svms); 841 pr_debug("range\tstart\tpage\tend\t\tlocation\n"); 842 843 list_for_each_entry(prange, &svms->list, list) { 844 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", 845 prange, prange->start, prange->npages, 846 prange->start + prange->npages - 1, 847 prange->actual_loc); 848 } 849 850 pr_debug("dump svms 0x%p interval tree\n", svms); 851 pr_debug("range\tstart\tpage\tend\t\tlocation\n"); 852 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL); 853 while (node) { 854 prange = container_of(node, struct svm_range, it_node); 855 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", 856 prange, prange->start, prange->npages, 857 prange->start + prange->npages - 1, 858 prange->actual_loc); 859 node = interval_tree_iter_next(node, 0, ~0ULL); 860 } 861 } 862 863 static void * 864 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements, 865 uint64_t offset) 866 { 867 unsigned char *dst; 868 869 dst = kvmalloc_array(num_elements, size, GFP_KERNEL); 870 if (!dst) 871 return NULL; 872 memcpy(dst, (unsigned char *)psrc + offset, num_elements * size); 873 874 return (void *)dst; 875 } 876 877 static int 878 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src) 879 { 880 int i; 881 882 for (i = 0; i < MAX_GPU_INSTANCE; i++) { 883 if (!src->dma_addr[i]) 884 continue; 885 dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i], 886 sizeof(*src->dma_addr[i]), src->npages, 0); 887 if (!dst->dma_addr[i]) 888 return -ENOMEM; 889 } 890 891 return 0; 892 } 893 894 static int 895 svm_range_split_array(void *ppnew, void *ppold, size_t size, 896 uint64_t old_start, uint64_t old_n, 897 uint64_t new_start, uint64_t new_n) 898 { 899 unsigned char *new, *old, *pold; 900 uint64_t d; 901 902 if (!ppold) 903 return 0; 904 pold = *(unsigned char **)ppold; 905 if (!pold) 906 return 0; 907 908 d = (new_start - old_start) * size; 909 new = svm_range_copy_array(pold, size, new_n, d); 910 if (!new) 911 return -ENOMEM; 912 d = (new_start == old_start) ? new_n * size : 0; 913 old = svm_range_copy_array(pold, size, old_n, d); 914 if (!old) { 915 kvfree(new); 916 return -ENOMEM; 917 } 918 kvfree(pold); 919 *(void **)ppold = old; 920 *(void **)ppnew = new; 921 922 return 0; 923 } 924 925 static int 926 svm_range_split_pages(struct svm_range *new, struct svm_range *old, 927 uint64_t start, uint64_t last) 928 { 929 uint64_t npages = last - start + 1; 930 int i, r; 931 932 for (i = 0; i < MAX_GPU_INSTANCE; i++) { 933 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i], 934 sizeof(*old->dma_addr[i]), old->start, 935 npages, new->start, new->npages); 936 if (r) 937 return r; 938 } 939 940 return 0; 941 } 942 943 static int 944 svm_range_split_nodes(struct svm_range *new, struct svm_range *old, 945 uint64_t start, uint64_t last) 946 { 947 uint64_t npages = last - start + 1; 948 949 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n", 950 new->svms, new, new->start, start, last); 951 952 if (new->start == old->start) { 953 new->offset = old->offset; 954 old->offset += new->npages; 955 } else { 956 new->offset = old->offset + npages; 957 } 958 959 new->svm_bo = svm_range_bo_ref(old->svm_bo); 960 new->ttm_res = old->ttm_res; 961 962 spin_lock(&new->svm_bo->list_lock); 963 list_add(&new->svm_bo_list, &new->svm_bo->range_list); 964 spin_unlock(&new->svm_bo->list_lock); 965 966 return 0; 967 } 968 969 /** 970 * svm_range_split_adjust - split range and adjust 971 * 972 * @new: new range 973 * @old: the old range 974 * @start: the old range adjust to start address in pages 975 * @last: the old range adjust to last address in pages 976 * 977 * Copy system memory dma_addr or vram ttm_res in old range to new 978 * range from new_start up to size new->npages, the remaining old range is from 979 * start to last 980 * 981 * Return: 982 * 0 - OK, -ENOMEM - out of memory 983 */ 984 static int 985 svm_range_split_adjust(struct svm_range *new, struct svm_range *old, 986 uint64_t start, uint64_t last) 987 { 988 int r; 989 990 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n", 991 new->svms, new->start, old->start, old->last, start, last); 992 993 if (new->start < old->start || 994 new->last > old->last) { 995 WARN_ONCE(1, "invalid new range start or last\n"); 996 return -EINVAL; 997 } 998 999 r = svm_range_split_pages(new, old, start, last); 1000 if (r) 1001 return r; 1002 1003 if (old->actual_loc && old->ttm_res) { 1004 r = svm_range_split_nodes(new, old, start, last); 1005 if (r) 1006 return r; 1007 } 1008 1009 old->npages = last - start + 1; 1010 old->start = start; 1011 old->last = last; 1012 new->flags = old->flags; 1013 new->preferred_loc = old->preferred_loc; 1014 new->prefetch_loc = old->prefetch_loc; 1015 new->actual_loc = old->actual_loc; 1016 new->granularity = old->granularity; 1017 new->mapped_to_gpu = old->mapped_to_gpu; 1018 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); 1019 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); 1020 1021 return 0; 1022 } 1023 1024 /** 1025 * svm_range_split - split a range in 2 ranges 1026 * 1027 * @prange: the svm range to split 1028 * @start: the remaining range start address in pages 1029 * @last: the remaining range last address in pages 1030 * @new: the result new range generated 1031 * 1032 * Two cases only: 1033 * case 1: if start == prange->start 1034 * prange ==> prange[start, last] 1035 * new range [last + 1, prange->last] 1036 * 1037 * case 2: if last == prange->last 1038 * prange ==> prange[start, last] 1039 * new range [prange->start, start - 1] 1040 * 1041 * Return: 1042 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last 1043 */ 1044 static int 1045 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last, 1046 struct svm_range **new) 1047 { 1048 uint64_t old_start = prange->start; 1049 uint64_t old_last = prange->last; 1050 struct svm_range_list *svms; 1051 int r = 0; 1052 1053 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms, 1054 old_start, old_last, start, last); 1055 1056 if (old_start != start && old_last != last) 1057 return -EINVAL; 1058 if (start < old_start || last > old_last) 1059 return -EINVAL; 1060 1061 svms = prange->svms; 1062 if (old_start == start) 1063 *new = svm_range_new(svms, last + 1, old_last, false); 1064 else 1065 *new = svm_range_new(svms, old_start, start - 1, false); 1066 if (!*new) 1067 return -ENOMEM; 1068 1069 r = svm_range_split_adjust(*new, prange, start, last); 1070 if (r) { 1071 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", 1072 r, old_start, old_last, start, last); 1073 svm_range_free(*new, false); 1074 *new = NULL; 1075 } 1076 1077 return r; 1078 } 1079 1080 static int 1081 svm_range_split_tail(struct svm_range *prange, 1082 uint64_t new_last, struct list_head *insert_list) 1083 { 1084 struct svm_range *tail; 1085 int r = svm_range_split(prange, prange->start, new_last, &tail); 1086 1087 if (!r) 1088 list_add(&tail->list, insert_list); 1089 return r; 1090 } 1091 1092 static int 1093 svm_range_split_head(struct svm_range *prange, 1094 uint64_t new_start, struct list_head *insert_list) 1095 { 1096 struct svm_range *head; 1097 int r = svm_range_split(prange, new_start, prange->last, &head); 1098 1099 if (!r) 1100 list_add(&head->list, insert_list); 1101 return r; 1102 } 1103 1104 static void 1105 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm, 1106 struct svm_range *pchild, enum svm_work_list_ops op) 1107 { 1108 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n", 1109 pchild, pchild->start, pchild->last, prange, op); 1110 1111 pchild->work_item.mm = mm; 1112 pchild->work_item.op = op; 1113 list_add_tail(&pchild->child_list, &prange->child_list); 1114 } 1115 1116 /** 1117 * svm_range_split_by_granularity - collect ranges within granularity boundary 1118 * 1119 * @p: the process with svms list 1120 * @mm: mm structure 1121 * @addr: the vm fault address in pages, to split the prange 1122 * @parent: parent range if prange is from child list 1123 * @prange: prange to split 1124 * 1125 * Trims @prange to be a single aligned block of prange->granularity if 1126 * possible. The head and tail are added to the child_list in @parent. 1127 * 1128 * Context: caller must hold mmap_read_lock and prange->lock 1129 * 1130 * Return: 1131 * 0 - OK, otherwise error code 1132 */ 1133 int 1134 svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm, 1135 unsigned long addr, struct svm_range *parent, 1136 struct svm_range *prange) 1137 { 1138 struct svm_range *head, *tail; 1139 unsigned long start, last, size; 1140 int r; 1141 1142 /* Align splited range start and size to granularity size, then a single 1143 * PTE will be used for whole range, this reduces the number of PTE 1144 * updated and the L1 TLB space used for translation. 1145 */ 1146 size = 1UL << prange->granularity; 1147 start = ALIGN_DOWN(addr, size); 1148 last = ALIGN(addr + 1, size) - 1; 1149 1150 pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n", 1151 prange->svms, prange->start, prange->last, start, last, size); 1152 1153 if (start > prange->start) { 1154 r = svm_range_split(prange, start, prange->last, &head); 1155 if (r) 1156 return r; 1157 svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE); 1158 } 1159 1160 if (last < prange->last) { 1161 r = svm_range_split(prange, prange->start, last, &tail); 1162 if (r) 1163 return r; 1164 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); 1165 } 1166 1167 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */ 1168 if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) { 1169 prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP; 1170 pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n", 1171 prange, prange->start, prange->last, 1172 SVM_OP_ADD_RANGE_AND_MAP); 1173 } 1174 return 0; 1175 } 1176 static bool 1177 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b) 1178 { 1179 return (node_a->adev == node_b->adev || 1180 amdgpu_xgmi_same_hive(node_a->adev, node_b->adev)); 1181 } 1182 1183 static uint64_t 1184 svm_range_get_pte_flags(struct kfd_node *node, 1185 struct svm_range *prange, int domain) 1186 { 1187 struct kfd_node *bo_node; 1188 uint32_t flags = prange->flags; 1189 uint32_t mapping_flags = 0; 1190 uint64_t pte_flags; 1191 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN); 1192 bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT; 1193 bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/ 1194 unsigned int mtype_local; 1195 1196 if (domain == SVM_RANGE_VRAM_DOMAIN) 1197 bo_node = prange->svm_bo->node; 1198 1199 switch (node->adev->ip_versions[GC_HWIP][0]) { 1200 case IP_VERSION(9, 4, 1): 1201 if (domain == SVM_RANGE_VRAM_DOMAIN) { 1202 if (bo_node == node) { 1203 mapping_flags |= coherent ? 1204 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; 1205 } else { 1206 mapping_flags |= coherent ? 1207 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1208 if (svm_nodes_in_same_hive(node, bo_node)) 1209 snoop = true; 1210 } 1211 } else { 1212 mapping_flags |= coherent ? 1213 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1214 } 1215 break; 1216 case IP_VERSION(9, 4, 2): 1217 if (domain == SVM_RANGE_VRAM_DOMAIN) { 1218 if (bo_node == node) { 1219 mapping_flags |= coherent ? 1220 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; 1221 if (node->adev->gmc.xgmi.connected_to_cpu) 1222 snoop = true; 1223 } else { 1224 mapping_flags |= coherent ? 1225 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1226 if (svm_nodes_in_same_hive(node, bo_node)) 1227 snoop = true; 1228 } 1229 } else { 1230 mapping_flags |= coherent ? 1231 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1232 } 1233 break; 1234 case IP_VERSION(9, 4, 3): 1235 mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC : 1236 (amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW); 1237 snoop = true; 1238 if (uncached) { 1239 mapping_flags |= AMDGPU_VM_MTYPE_UC; 1240 } else if (domain == SVM_RANGE_VRAM_DOMAIN) { 1241 /* local HBM region close to partition */ 1242 if (bo_node->adev == node->adev && 1243 (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id)) 1244 mapping_flags |= mtype_local; 1245 /* local HBM region far from partition or remote XGMI GPU */ 1246 else if (svm_nodes_in_same_hive(bo_node, node)) 1247 mapping_flags |= AMDGPU_VM_MTYPE_NC; 1248 /* PCIe P2P */ 1249 else 1250 mapping_flags |= AMDGPU_VM_MTYPE_UC; 1251 /* system memory accessed by the APU */ 1252 } else if (node->adev->flags & AMD_IS_APU) { 1253 /* On NUMA systems, locality is determined per-page 1254 * in amdgpu_gmc_override_vm_pte_flags 1255 */ 1256 if (num_possible_nodes() <= 1) 1257 mapping_flags |= mtype_local; 1258 else 1259 mapping_flags |= AMDGPU_VM_MTYPE_NC; 1260 /* system memory accessed by the dGPU */ 1261 } else { 1262 mapping_flags |= AMDGPU_VM_MTYPE_UC; 1263 } 1264 break; 1265 default: 1266 mapping_flags |= coherent ? 1267 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1268 } 1269 1270 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE; 1271 1272 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO) 1273 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE; 1274 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC) 1275 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 1276 1277 pte_flags = AMDGPU_PTE_VALID; 1278 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM; 1279 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0; 1280 1281 pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags); 1282 return pte_flags; 1283 } 1284 1285 static int 1286 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1287 uint64_t start, uint64_t last, 1288 struct dma_fence **fence) 1289 { 1290 uint64_t init_pte_value = 0; 1291 1292 pr_debug("[0x%llx 0x%llx]\n", start, last); 1293 1294 return amdgpu_vm_update_range(adev, vm, false, true, true, NULL, start, 1295 last, init_pte_value, 0, 0, NULL, NULL, 1296 fence); 1297 } 1298 1299 static int 1300 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start, 1301 unsigned long last, uint32_t trigger) 1302 { 1303 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 1304 struct kfd_process_device *pdd; 1305 struct dma_fence *fence = NULL; 1306 struct kfd_process *p; 1307 uint32_t gpuidx; 1308 int r = 0; 1309 1310 if (!prange->mapped_to_gpu) { 1311 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n", 1312 prange, prange->start, prange->last); 1313 return 0; 1314 } 1315 1316 if (prange->start == start && prange->last == last) { 1317 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange); 1318 prange->mapped_to_gpu = false; 1319 } 1320 1321 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, 1322 MAX_GPU_INSTANCE); 1323 p = container_of(prange->svms, struct kfd_process, svms); 1324 1325 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 1326 pr_debug("unmap from gpu idx 0x%x\n", gpuidx); 1327 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1328 if (!pdd) { 1329 pr_debug("failed to find device idx %d\n", gpuidx); 1330 return -EINVAL; 1331 } 1332 1333 kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid, 1334 start, last, trigger); 1335 1336 r = svm_range_unmap_from_gpu(pdd->dev->adev, 1337 drm_priv_to_vm(pdd->drm_priv), 1338 start, last, &fence); 1339 if (r) 1340 break; 1341 1342 if (fence) { 1343 r = dma_fence_wait(fence, false); 1344 dma_fence_put(fence); 1345 fence = NULL; 1346 if (r) 1347 break; 1348 } 1349 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT); 1350 } 1351 1352 return r; 1353 } 1354 1355 static int 1356 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange, 1357 unsigned long offset, unsigned long npages, bool readonly, 1358 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev, 1359 struct dma_fence **fence, bool flush_tlb) 1360 { 1361 struct amdgpu_device *adev = pdd->dev->adev; 1362 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv); 1363 uint64_t pte_flags; 1364 unsigned long last_start; 1365 int last_domain; 1366 int r = 0; 1367 int64_t i, j; 1368 1369 last_start = prange->start + offset; 1370 1371 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms, 1372 last_start, last_start + npages - 1, readonly); 1373 1374 for (i = offset; i < offset + npages; i++) { 1375 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN; 1376 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN; 1377 1378 /* Collect all pages in the same address range and memory domain 1379 * that can be mapped with a single call to update mapping. 1380 */ 1381 if (i < offset + npages - 1 && 1382 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN)) 1383 continue; 1384 1385 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n", 1386 last_start, prange->start + i, last_domain ? "GPU" : "CPU"); 1387 1388 pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain); 1389 if (readonly) 1390 pte_flags &= ~AMDGPU_PTE_WRITEABLE; 1391 1392 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n", 1393 prange->svms, last_start, prange->start + i, 1394 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0, 1395 pte_flags); 1396 1397 /* For dGPU mode, we use same vm_manager to allocate VRAM for 1398 * different memory partition based on fpfn/lpfn, we should use 1399 * same vm_manager.vram_base_offset regardless memory partition. 1400 */ 1401 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, NULL, 1402 last_start, prange->start + i, 1403 pte_flags, 1404 (last_start - prange->start) << PAGE_SHIFT, 1405 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0, 1406 NULL, dma_addr, &vm->last_update); 1407 1408 for (j = last_start - prange->start; j <= i; j++) 1409 dma_addr[j] |= last_domain; 1410 1411 if (r) { 1412 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start); 1413 goto out; 1414 } 1415 last_start = prange->start + i + 1; 1416 } 1417 1418 r = amdgpu_vm_update_pdes(adev, vm, false); 1419 if (r) { 1420 pr_debug("failed %d to update directories 0x%lx\n", r, 1421 prange->start); 1422 goto out; 1423 } 1424 1425 if (fence) 1426 *fence = dma_fence_get(vm->last_update); 1427 1428 out: 1429 return r; 1430 } 1431 1432 static int 1433 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset, 1434 unsigned long npages, bool readonly, 1435 unsigned long *bitmap, bool wait, bool flush_tlb) 1436 { 1437 struct kfd_process_device *pdd; 1438 struct amdgpu_device *bo_adev = NULL; 1439 struct kfd_process *p; 1440 struct dma_fence *fence = NULL; 1441 uint32_t gpuidx; 1442 int r = 0; 1443 1444 if (prange->svm_bo && prange->ttm_res) 1445 bo_adev = prange->svm_bo->node->adev; 1446 1447 p = container_of(prange->svms, struct kfd_process, svms); 1448 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 1449 pr_debug("mapping to gpu idx 0x%x\n", gpuidx); 1450 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1451 if (!pdd) { 1452 pr_debug("failed to find device idx %d\n", gpuidx); 1453 return -EINVAL; 1454 } 1455 1456 pdd = kfd_bind_process_to_device(pdd->dev, p); 1457 if (IS_ERR(pdd)) 1458 return -EINVAL; 1459 1460 if (bo_adev && pdd->dev->adev != bo_adev && 1461 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) { 1462 pr_debug("cannot map to device idx %d\n", gpuidx); 1463 continue; 1464 } 1465 1466 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly, 1467 prange->dma_addr[gpuidx], 1468 bo_adev, wait ? &fence : NULL, 1469 flush_tlb); 1470 if (r) 1471 break; 1472 1473 if (fence) { 1474 r = dma_fence_wait(fence, false); 1475 dma_fence_put(fence); 1476 fence = NULL; 1477 if (r) { 1478 pr_debug("failed %d to dma fence wait\n", r); 1479 break; 1480 } 1481 } 1482 1483 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); 1484 } 1485 1486 return r; 1487 } 1488 1489 struct svm_validate_context { 1490 struct kfd_process *process; 1491 struct svm_range *prange; 1492 bool intr; 1493 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 1494 struct drm_exec exec; 1495 }; 1496 1497 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr) 1498 { 1499 struct kfd_process_device *pdd; 1500 struct amdgpu_vm *vm; 1501 uint32_t gpuidx; 1502 int r; 1503 1504 drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0); 1505 drm_exec_until_all_locked(&ctx->exec) { 1506 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { 1507 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); 1508 if (!pdd) { 1509 pr_debug("failed to find device idx %d\n", gpuidx); 1510 r = -EINVAL; 1511 goto unreserve_out; 1512 } 1513 vm = drm_priv_to_vm(pdd->drm_priv); 1514 1515 r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1516 drm_exec_retry_on_contention(&ctx->exec); 1517 if (unlikely(r)) { 1518 pr_debug("failed %d to reserve bo\n", r); 1519 goto unreserve_out; 1520 } 1521 } 1522 } 1523 1524 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { 1525 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); 1526 if (!pdd) { 1527 pr_debug("failed to find device idx %d\n", gpuidx); 1528 r = -EINVAL; 1529 goto unreserve_out; 1530 } 1531 1532 r = amdgpu_vm_validate_pt_bos(pdd->dev->adev, 1533 drm_priv_to_vm(pdd->drm_priv), 1534 svm_range_bo_validate, NULL); 1535 if (r) { 1536 pr_debug("failed %d validate pt bos\n", r); 1537 goto unreserve_out; 1538 } 1539 } 1540 1541 return 0; 1542 1543 unreserve_out: 1544 drm_exec_fini(&ctx->exec); 1545 return r; 1546 } 1547 1548 static void svm_range_unreserve_bos(struct svm_validate_context *ctx) 1549 { 1550 drm_exec_fini(&ctx->exec); 1551 } 1552 1553 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx) 1554 { 1555 struct kfd_process_device *pdd; 1556 1557 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1558 if (!pdd) 1559 return NULL; 1560 1561 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev); 1562 } 1563 1564 /* 1565 * Validation+GPU mapping with concurrent invalidation (MMU notifiers) 1566 * 1567 * To prevent concurrent destruction or change of range attributes, the 1568 * svm_read_lock must be held. The caller must not hold the svm_write_lock 1569 * because that would block concurrent evictions and lead to deadlocks. To 1570 * serialize concurrent migrations or validations of the same range, the 1571 * prange->migrate_mutex must be held. 1572 * 1573 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its 1574 * eviction fence. 1575 * 1576 * The following sequence ensures race-free validation and GPU mapping: 1577 * 1578 * 1. Reserve page table (and SVM BO if range is in VRAM) 1579 * 2. hmm_range_fault to get page addresses (if system memory) 1580 * 3. DMA-map pages (if system memory) 1581 * 4-a. Take notifier lock 1582 * 4-b. Check that pages still valid (mmu_interval_read_retry) 1583 * 4-c. Check that the range was not split or otherwise invalidated 1584 * 4-d. Update GPU page table 1585 * 4.e. Release notifier lock 1586 * 5. Release page table (and SVM BO) reservation 1587 */ 1588 static int svm_range_validate_and_map(struct mm_struct *mm, 1589 struct svm_range *prange, int32_t gpuidx, 1590 bool intr, bool wait, bool flush_tlb) 1591 { 1592 struct svm_validate_context *ctx; 1593 unsigned long start, end, addr; 1594 struct kfd_process *p; 1595 void *owner; 1596 int32_t idx; 1597 int r = 0; 1598 1599 ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL); 1600 if (!ctx) 1601 return -ENOMEM; 1602 ctx->process = container_of(prange->svms, struct kfd_process, svms); 1603 ctx->prange = prange; 1604 ctx->intr = intr; 1605 1606 if (gpuidx < MAX_GPU_INSTANCE) { 1607 bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE); 1608 bitmap_set(ctx->bitmap, gpuidx, 1); 1609 } else if (ctx->process->xnack_enabled) { 1610 bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); 1611 1612 /* If prefetch range to GPU, or GPU retry fault migrate range to 1613 * GPU, which has ACCESS attribute to the range, create mapping 1614 * on that GPU. 1615 */ 1616 if (prange->actual_loc) { 1617 gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process, 1618 prange->actual_loc); 1619 if (gpuidx < 0) { 1620 WARN_ONCE(1, "failed get device by id 0x%x\n", 1621 prange->actual_loc); 1622 r = -EINVAL; 1623 goto free_ctx; 1624 } 1625 if (test_bit(gpuidx, prange->bitmap_access)) 1626 bitmap_set(ctx->bitmap, gpuidx, 1); 1627 } 1628 } else { 1629 bitmap_or(ctx->bitmap, prange->bitmap_access, 1630 prange->bitmap_aip, MAX_GPU_INSTANCE); 1631 } 1632 1633 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) { 1634 bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE); 1635 if (!prange->mapped_to_gpu || 1636 bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) { 1637 r = 0; 1638 goto free_ctx; 1639 } 1640 } 1641 1642 if (prange->actual_loc && !prange->ttm_res) { 1643 /* This should never happen. actual_loc gets set by 1644 * svm_migrate_ram_to_vram after allocating a BO. 1645 */ 1646 WARN_ONCE(1, "VRAM BO missing during validation\n"); 1647 r = -EINVAL; 1648 goto free_ctx; 1649 } 1650 1651 svm_range_reserve_bos(ctx, intr); 1652 1653 p = container_of(prange->svms, struct kfd_process, svms); 1654 owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap, 1655 MAX_GPU_INSTANCE)); 1656 for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) { 1657 if (kfd_svm_page_owner(p, idx) != owner) { 1658 owner = NULL; 1659 break; 1660 } 1661 } 1662 1663 start = prange->start << PAGE_SHIFT; 1664 end = (prange->last + 1) << PAGE_SHIFT; 1665 for (addr = start; !r && addr < end; ) { 1666 struct hmm_range *hmm_range; 1667 struct vm_area_struct *vma; 1668 unsigned long next = 0; 1669 unsigned long offset; 1670 unsigned long npages; 1671 bool readonly; 1672 1673 vma = vma_lookup(mm, addr); 1674 if (vma) { 1675 readonly = !(vma->vm_flags & VM_WRITE); 1676 1677 next = min(vma->vm_end, end); 1678 npages = (next - addr) >> PAGE_SHIFT; 1679 WRITE_ONCE(p->svms.faulting_task, current); 1680 r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages, 1681 readonly, owner, NULL, 1682 &hmm_range); 1683 WRITE_ONCE(p->svms.faulting_task, NULL); 1684 if (r) { 1685 pr_debug("failed %d to get svm range pages\n", r); 1686 if (r == -EBUSY) 1687 r = -EAGAIN; 1688 } 1689 } else { 1690 r = -EFAULT; 1691 } 1692 1693 if (!r) { 1694 offset = (addr - start) >> PAGE_SHIFT; 1695 r = svm_range_dma_map(prange, ctx->bitmap, offset, npages, 1696 hmm_range->hmm_pfns); 1697 if (r) 1698 pr_debug("failed %d to dma map range\n", r); 1699 } 1700 1701 svm_range_lock(prange); 1702 if (!r && amdgpu_hmm_range_get_pages_done(hmm_range)) { 1703 pr_debug("hmm update the range, need validate again\n"); 1704 r = -EAGAIN; 1705 } 1706 1707 if (!r && !list_empty(&prange->child_list)) { 1708 pr_debug("range split by unmap in parallel, validate again\n"); 1709 r = -EAGAIN; 1710 } 1711 1712 if (!r) 1713 r = svm_range_map_to_gpus(prange, offset, npages, readonly, 1714 ctx->bitmap, wait, flush_tlb); 1715 1716 if (!r && next == end) 1717 prange->mapped_to_gpu = true; 1718 1719 svm_range_unlock(prange); 1720 1721 addr = next; 1722 } 1723 1724 svm_range_unreserve_bos(ctx); 1725 if (!r) 1726 prange->validate_timestamp = ktime_get_boottime(); 1727 1728 free_ctx: 1729 kfree(ctx); 1730 1731 return r; 1732 } 1733 1734 /** 1735 * svm_range_list_lock_and_flush_work - flush pending deferred work 1736 * 1737 * @svms: the svm range list 1738 * @mm: the mm structure 1739 * 1740 * Context: Returns with mmap write lock held, pending deferred work flushed 1741 * 1742 */ 1743 void 1744 svm_range_list_lock_and_flush_work(struct svm_range_list *svms, 1745 struct mm_struct *mm) 1746 { 1747 retry_flush_work: 1748 flush_work(&svms->deferred_list_work); 1749 mmap_write_lock(mm); 1750 1751 if (list_empty(&svms->deferred_range_list)) 1752 return; 1753 mmap_write_unlock(mm); 1754 pr_debug("retry flush\n"); 1755 goto retry_flush_work; 1756 } 1757 1758 static void svm_range_restore_work(struct work_struct *work) 1759 { 1760 struct delayed_work *dwork = to_delayed_work(work); 1761 struct amdkfd_process_info *process_info; 1762 struct svm_range_list *svms; 1763 struct svm_range *prange; 1764 struct kfd_process *p; 1765 struct mm_struct *mm; 1766 int evicted_ranges; 1767 int invalid; 1768 int r; 1769 1770 svms = container_of(dwork, struct svm_range_list, restore_work); 1771 evicted_ranges = atomic_read(&svms->evicted_ranges); 1772 if (!evicted_ranges) 1773 return; 1774 1775 pr_debug("restore svm ranges\n"); 1776 1777 p = container_of(svms, struct kfd_process, svms); 1778 process_info = p->kgd_process_info; 1779 1780 /* Keep mm reference when svm_range_validate_and_map ranges */ 1781 mm = get_task_mm(p->lead_thread); 1782 if (!mm) { 1783 pr_debug("svms 0x%p process mm gone\n", svms); 1784 return; 1785 } 1786 1787 mutex_lock(&process_info->lock); 1788 svm_range_list_lock_and_flush_work(svms, mm); 1789 mutex_lock(&svms->lock); 1790 1791 evicted_ranges = atomic_read(&svms->evicted_ranges); 1792 1793 list_for_each_entry(prange, &svms->list, list) { 1794 invalid = atomic_read(&prange->invalid); 1795 if (!invalid) 1796 continue; 1797 1798 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n", 1799 prange->svms, prange, prange->start, prange->last, 1800 invalid); 1801 1802 /* 1803 * If range is migrating, wait for migration is done. 1804 */ 1805 mutex_lock(&prange->migrate_mutex); 1806 1807 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE, 1808 false, true, false); 1809 if (r) 1810 pr_debug("failed %d to map 0x%lx to gpus\n", r, 1811 prange->start); 1812 1813 mutex_unlock(&prange->migrate_mutex); 1814 if (r) 1815 goto out_reschedule; 1816 1817 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid) 1818 goto out_reschedule; 1819 } 1820 1821 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) != 1822 evicted_ranges) 1823 goto out_reschedule; 1824 1825 evicted_ranges = 0; 1826 1827 r = kgd2kfd_resume_mm(mm); 1828 if (r) { 1829 /* No recovery from this failure. Probably the CP is 1830 * hanging. No point trying again. 1831 */ 1832 pr_debug("failed %d to resume KFD\n", r); 1833 } 1834 1835 pr_debug("restore svm ranges successfully\n"); 1836 1837 out_reschedule: 1838 mutex_unlock(&svms->lock); 1839 mmap_write_unlock(mm); 1840 mutex_unlock(&process_info->lock); 1841 1842 /* If validation failed, reschedule another attempt */ 1843 if (evicted_ranges) { 1844 pr_debug("reschedule to restore svm range\n"); 1845 schedule_delayed_work(&svms->restore_work, 1846 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); 1847 1848 kfd_smi_event_queue_restore_rescheduled(mm); 1849 } 1850 mmput(mm); 1851 } 1852 1853 /** 1854 * svm_range_evict - evict svm range 1855 * @prange: svm range structure 1856 * @mm: current process mm_struct 1857 * @start: starting process queue number 1858 * @last: last process queue number 1859 * @event: mmu notifier event when range is evicted or migrated 1860 * 1861 * Stop all queues of the process to ensure GPU doesn't access the memory, then 1862 * return to let CPU evict the buffer and proceed CPU pagetable update. 1863 * 1864 * Don't need use lock to sync cpu pagetable invalidation with GPU execution. 1865 * If invalidation happens while restore work is running, restore work will 1866 * restart to ensure to get the latest CPU pages mapping to GPU, then start 1867 * the queues. 1868 */ 1869 static int 1870 svm_range_evict(struct svm_range *prange, struct mm_struct *mm, 1871 unsigned long start, unsigned long last, 1872 enum mmu_notifier_event event) 1873 { 1874 struct svm_range_list *svms = prange->svms; 1875 struct svm_range *pchild; 1876 struct kfd_process *p; 1877 int r = 0; 1878 1879 p = container_of(svms, struct kfd_process, svms); 1880 1881 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n", 1882 svms, prange->start, prange->last, start, last); 1883 1884 if (!p->xnack_enabled || 1885 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) { 1886 int evicted_ranges; 1887 bool mapped = prange->mapped_to_gpu; 1888 1889 list_for_each_entry(pchild, &prange->child_list, child_list) { 1890 if (!pchild->mapped_to_gpu) 1891 continue; 1892 mapped = true; 1893 mutex_lock_nested(&pchild->lock, 1); 1894 if (pchild->start <= last && pchild->last >= start) { 1895 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n", 1896 pchild->start, pchild->last); 1897 atomic_inc(&pchild->invalid); 1898 } 1899 mutex_unlock(&pchild->lock); 1900 } 1901 1902 if (!mapped) 1903 return r; 1904 1905 if (prange->start <= last && prange->last >= start) 1906 atomic_inc(&prange->invalid); 1907 1908 evicted_ranges = atomic_inc_return(&svms->evicted_ranges); 1909 if (evicted_ranges != 1) 1910 return r; 1911 1912 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n", 1913 prange->svms, prange->start, prange->last); 1914 1915 /* First eviction, stop the queues */ 1916 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM); 1917 if (r) 1918 pr_debug("failed to quiesce KFD\n"); 1919 1920 pr_debug("schedule to restore svm %p ranges\n", svms); 1921 schedule_delayed_work(&svms->restore_work, 1922 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); 1923 } else { 1924 unsigned long s, l; 1925 uint32_t trigger; 1926 1927 if (event == MMU_NOTIFY_MIGRATE) 1928 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE; 1929 else 1930 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY; 1931 1932 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n", 1933 prange->svms, start, last); 1934 list_for_each_entry(pchild, &prange->child_list, child_list) { 1935 mutex_lock_nested(&pchild->lock, 1); 1936 s = max(start, pchild->start); 1937 l = min(last, pchild->last); 1938 if (l >= s) 1939 svm_range_unmap_from_gpus(pchild, s, l, trigger); 1940 mutex_unlock(&pchild->lock); 1941 } 1942 s = max(start, prange->start); 1943 l = min(last, prange->last); 1944 if (l >= s) 1945 svm_range_unmap_from_gpus(prange, s, l, trigger); 1946 } 1947 1948 return r; 1949 } 1950 1951 static struct svm_range *svm_range_clone(struct svm_range *old) 1952 { 1953 struct svm_range *new; 1954 1955 new = svm_range_new(old->svms, old->start, old->last, false); 1956 if (!new) 1957 return NULL; 1958 if (svm_range_copy_dma_addrs(new, old)) { 1959 svm_range_free(new, false); 1960 return NULL; 1961 } 1962 if (old->svm_bo) { 1963 new->ttm_res = old->ttm_res; 1964 new->offset = old->offset; 1965 new->svm_bo = svm_range_bo_ref(old->svm_bo); 1966 spin_lock(&new->svm_bo->list_lock); 1967 list_add(&new->svm_bo_list, &new->svm_bo->range_list); 1968 spin_unlock(&new->svm_bo->list_lock); 1969 } 1970 new->flags = old->flags; 1971 new->preferred_loc = old->preferred_loc; 1972 new->prefetch_loc = old->prefetch_loc; 1973 new->actual_loc = old->actual_loc; 1974 new->granularity = old->granularity; 1975 new->mapped_to_gpu = old->mapped_to_gpu; 1976 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); 1977 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); 1978 1979 return new; 1980 } 1981 1982 void svm_range_set_max_pages(struct amdgpu_device *adev) 1983 { 1984 uint64_t max_pages; 1985 uint64_t pages, _pages; 1986 uint64_t min_pages = 0; 1987 int i, id; 1988 1989 for (i = 0; i < adev->kfd.dev->num_nodes; i++) { 1990 if (adev->kfd.dev->nodes[i]->xcp) 1991 id = adev->kfd.dev->nodes[i]->xcp->id; 1992 else 1993 id = -1; 1994 pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17; 1995 pages = clamp(pages, 1ULL << 9, 1ULL << 18); 1996 pages = rounddown_pow_of_two(pages); 1997 min_pages = min_not_zero(min_pages, pages); 1998 } 1999 2000 do { 2001 max_pages = READ_ONCE(max_svm_range_pages); 2002 _pages = min_not_zero(max_pages, min_pages); 2003 } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages); 2004 } 2005 2006 static int 2007 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last, 2008 uint64_t max_pages, struct list_head *insert_list, 2009 struct list_head *update_list) 2010 { 2011 struct svm_range *prange; 2012 uint64_t l; 2013 2014 pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n", 2015 max_pages, start, last); 2016 2017 while (last >= start) { 2018 l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1); 2019 2020 prange = svm_range_new(svms, start, l, true); 2021 if (!prange) 2022 return -ENOMEM; 2023 list_add(&prange->list, insert_list); 2024 list_add(&prange->update_list, update_list); 2025 2026 start = l + 1; 2027 } 2028 return 0; 2029 } 2030 2031 /** 2032 * svm_range_add - add svm range and handle overlap 2033 * @p: the range add to this process svms 2034 * @start: page size aligned 2035 * @size: page size aligned 2036 * @nattr: number of attributes 2037 * @attrs: array of attributes 2038 * @update_list: output, the ranges need validate and update GPU mapping 2039 * @insert_list: output, the ranges need insert to svms 2040 * @remove_list: output, the ranges are replaced and need remove from svms 2041 * 2042 * Check if the virtual address range has overlap with any existing ranges, 2043 * split partly overlapping ranges and add new ranges in the gaps. All changes 2044 * should be applied to the range_list and interval tree transactionally. If 2045 * any range split or allocation fails, the entire update fails. Therefore any 2046 * existing overlapping svm_ranges are cloned and the original svm_ranges left 2047 * unchanged. 2048 * 2049 * If the transaction succeeds, the caller can update and insert clones and 2050 * new ranges, then free the originals. 2051 * 2052 * Otherwise the caller can free the clones and new ranges, while the old 2053 * svm_ranges remain unchanged. 2054 * 2055 * Context: Process context, caller must hold svms->lock 2056 * 2057 * Return: 2058 * 0 - OK, otherwise error code 2059 */ 2060 static int 2061 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size, 2062 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs, 2063 struct list_head *update_list, struct list_head *insert_list, 2064 struct list_head *remove_list) 2065 { 2066 unsigned long last = start + size - 1UL; 2067 struct svm_range_list *svms = &p->svms; 2068 struct interval_tree_node *node; 2069 struct svm_range *prange; 2070 struct svm_range *tmp; 2071 struct list_head new_list; 2072 int r = 0; 2073 2074 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last); 2075 2076 INIT_LIST_HEAD(update_list); 2077 INIT_LIST_HEAD(insert_list); 2078 INIT_LIST_HEAD(remove_list); 2079 INIT_LIST_HEAD(&new_list); 2080 2081 node = interval_tree_iter_first(&svms->objects, start, last); 2082 while (node) { 2083 struct interval_tree_node *next; 2084 unsigned long next_start; 2085 2086 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start, 2087 node->last); 2088 2089 prange = container_of(node, struct svm_range, it_node); 2090 next = interval_tree_iter_next(node, start, last); 2091 next_start = min(node->last, last) + 1; 2092 2093 if (svm_range_is_same_attrs(p, prange, nattr, attrs) && 2094 prange->mapped_to_gpu) { 2095 /* nothing to do */ 2096 } else if (node->start < start || node->last > last) { 2097 /* node intersects the update range and its attributes 2098 * will change. Clone and split it, apply updates only 2099 * to the overlapping part 2100 */ 2101 struct svm_range *old = prange; 2102 2103 prange = svm_range_clone(old); 2104 if (!prange) { 2105 r = -ENOMEM; 2106 goto out; 2107 } 2108 2109 list_add(&old->update_list, remove_list); 2110 list_add(&prange->list, insert_list); 2111 list_add(&prange->update_list, update_list); 2112 2113 if (node->start < start) { 2114 pr_debug("change old range start\n"); 2115 r = svm_range_split_head(prange, start, 2116 insert_list); 2117 if (r) 2118 goto out; 2119 } 2120 if (node->last > last) { 2121 pr_debug("change old range last\n"); 2122 r = svm_range_split_tail(prange, last, 2123 insert_list); 2124 if (r) 2125 goto out; 2126 } 2127 } else { 2128 /* The node is contained within start..last, 2129 * just update it 2130 */ 2131 list_add(&prange->update_list, update_list); 2132 } 2133 2134 /* insert a new node if needed */ 2135 if (node->start > start) { 2136 r = svm_range_split_new(svms, start, node->start - 1, 2137 READ_ONCE(max_svm_range_pages), 2138 &new_list, update_list); 2139 if (r) 2140 goto out; 2141 } 2142 2143 node = next; 2144 start = next_start; 2145 } 2146 2147 /* add a final range at the end if needed */ 2148 if (start <= last) 2149 r = svm_range_split_new(svms, start, last, 2150 READ_ONCE(max_svm_range_pages), 2151 &new_list, update_list); 2152 2153 out: 2154 if (r) { 2155 list_for_each_entry_safe(prange, tmp, insert_list, list) 2156 svm_range_free(prange, false); 2157 list_for_each_entry_safe(prange, tmp, &new_list, list) 2158 svm_range_free(prange, true); 2159 } else { 2160 list_splice(&new_list, insert_list); 2161 } 2162 2163 return r; 2164 } 2165 2166 static void 2167 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm, 2168 struct svm_range *prange) 2169 { 2170 unsigned long start; 2171 unsigned long last; 2172 2173 start = prange->notifier.interval_tree.start >> PAGE_SHIFT; 2174 last = prange->notifier.interval_tree.last >> PAGE_SHIFT; 2175 2176 if (prange->start == start && prange->last == last) 2177 return; 2178 2179 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", 2180 prange->svms, prange, start, last, prange->start, 2181 prange->last); 2182 2183 if (start != 0 && last != 0) { 2184 interval_tree_remove(&prange->it_node, &prange->svms->objects); 2185 svm_range_remove_notifier(prange); 2186 } 2187 prange->it_node.start = prange->start; 2188 prange->it_node.last = prange->last; 2189 2190 interval_tree_insert(&prange->it_node, &prange->svms->objects); 2191 svm_range_add_notifier_locked(mm, prange); 2192 } 2193 2194 static void 2195 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange, 2196 struct mm_struct *mm) 2197 { 2198 switch (prange->work_item.op) { 2199 case SVM_OP_NULL: 2200 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2201 svms, prange, prange->start, prange->last); 2202 break; 2203 case SVM_OP_UNMAP_RANGE: 2204 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2205 svms, prange, prange->start, prange->last); 2206 svm_range_unlink(prange); 2207 svm_range_remove_notifier(prange); 2208 svm_range_free(prange, true); 2209 break; 2210 case SVM_OP_UPDATE_RANGE_NOTIFIER: 2211 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2212 svms, prange, prange->start, prange->last); 2213 svm_range_update_notifier_and_interval_tree(mm, prange); 2214 break; 2215 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP: 2216 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2217 svms, prange, prange->start, prange->last); 2218 svm_range_update_notifier_and_interval_tree(mm, prange); 2219 /* TODO: implement deferred validation and mapping */ 2220 break; 2221 case SVM_OP_ADD_RANGE: 2222 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, 2223 prange->start, prange->last); 2224 svm_range_add_to_svms(prange); 2225 svm_range_add_notifier_locked(mm, prange); 2226 break; 2227 case SVM_OP_ADD_RANGE_AND_MAP: 2228 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, 2229 prange, prange->start, prange->last); 2230 svm_range_add_to_svms(prange); 2231 svm_range_add_notifier_locked(mm, prange); 2232 /* TODO: implement deferred validation and mapping */ 2233 break; 2234 default: 2235 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange, 2236 prange->work_item.op); 2237 } 2238 } 2239 2240 static void svm_range_drain_retry_fault(struct svm_range_list *svms) 2241 { 2242 struct kfd_process_device *pdd; 2243 struct kfd_process *p; 2244 int drain; 2245 uint32_t i; 2246 2247 p = container_of(svms, struct kfd_process, svms); 2248 2249 restart: 2250 drain = atomic_read(&svms->drain_pagefaults); 2251 if (!drain) 2252 return; 2253 2254 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) { 2255 pdd = p->pdds[i]; 2256 if (!pdd) 2257 continue; 2258 2259 pr_debug("drain retry fault gpu %d svms %p\n", i, svms); 2260 2261 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev, 2262 pdd->dev->adev->irq.retry_cam_enabled ? 2263 &pdd->dev->adev->irq.ih : 2264 &pdd->dev->adev->irq.ih1); 2265 2266 if (pdd->dev->adev->irq.retry_cam_enabled) 2267 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev, 2268 &pdd->dev->adev->irq.ih_soft); 2269 2270 2271 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms); 2272 } 2273 if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain) 2274 goto restart; 2275 } 2276 2277 static void svm_range_deferred_list_work(struct work_struct *work) 2278 { 2279 struct svm_range_list *svms; 2280 struct svm_range *prange; 2281 struct mm_struct *mm; 2282 2283 svms = container_of(work, struct svm_range_list, deferred_list_work); 2284 pr_debug("enter svms 0x%p\n", svms); 2285 2286 spin_lock(&svms->deferred_list_lock); 2287 while (!list_empty(&svms->deferred_range_list)) { 2288 prange = list_first_entry(&svms->deferred_range_list, 2289 struct svm_range, deferred_list); 2290 spin_unlock(&svms->deferred_list_lock); 2291 2292 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange, 2293 prange->start, prange->last, prange->work_item.op); 2294 2295 mm = prange->work_item.mm; 2296 retry: 2297 mmap_write_lock(mm); 2298 2299 /* Checking for the need to drain retry faults must be inside 2300 * mmap write lock to serialize with munmap notifiers. 2301 */ 2302 if (unlikely(atomic_read(&svms->drain_pagefaults))) { 2303 mmap_write_unlock(mm); 2304 svm_range_drain_retry_fault(svms); 2305 goto retry; 2306 } 2307 2308 /* Remove from deferred_list must be inside mmap write lock, for 2309 * two race cases: 2310 * 1. unmap_from_cpu may change work_item.op and add the range 2311 * to deferred_list again, cause use after free bug. 2312 * 2. svm_range_list_lock_and_flush_work may hold mmap write 2313 * lock and continue because deferred_list is empty, but 2314 * deferred_list work is actually waiting for mmap lock. 2315 */ 2316 spin_lock(&svms->deferred_list_lock); 2317 list_del_init(&prange->deferred_list); 2318 spin_unlock(&svms->deferred_list_lock); 2319 2320 mutex_lock(&svms->lock); 2321 mutex_lock(&prange->migrate_mutex); 2322 while (!list_empty(&prange->child_list)) { 2323 struct svm_range *pchild; 2324 2325 pchild = list_first_entry(&prange->child_list, 2326 struct svm_range, child_list); 2327 pr_debug("child prange 0x%p op %d\n", pchild, 2328 pchild->work_item.op); 2329 list_del_init(&pchild->child_list); 2330 svm_range_handle_list_op(svms, pchild, mm); 2331 } 2332 mutex_unlock(&prange->migrate_mutex); 2333 2334 svm_range_handle_list_op(svms, prange, mm); 2335 mutex_unlock(&svms->lock); 2336 mmap_write_unlock(mm); 2337 2338 /* Pairs with mmget in svm_range_add_list_work */ 2339 mmput(mm); 2340 2341 spin_lock(&svms->deferred_list_lock); 2342 } 2343 spin_unlock(&svms->deferred_list_lock); 2344 pr_debug("exit svms 0x%p\n", svms); 2345 } 2346 2347 void 2348 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange, 2349 struct mm_struct *mm, enum svm_work_list_ops op) 2350 { 2351 spin_lock(&svms->deferred_list_lock); 2352 /* if prange is on the deferred list */ 2353 if (!list_empty(&prange->deferred_list)) { 2354 pr_debug("update exist prange 0x%p work op %d\n", prange, op); 2355 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n"); 2356 if (op != SVM_OP_NULL && 2357 prange->work_item.op != SVM_OP_UNMAP_RANGE) 2358 prange->work_item.op = op; 2359 } else { 2360 prange->work_item.op = op; 2361 2362 /* Pairs with mmput in deferred_list_work */ 2363 mmget(mm); 2364 prange->work_item.mm = mm; 2365 list_add_tail(&prange->deferred_list, 2366 &prange->svms->deferred_range_list); 2367 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n", 2368 prange, prange->start, prange->last, op); 2369 } 2370 spin_unlock(&svms->deferred_list_lock); 2371 } 2372 2373 void schedule_deferred_list_work(struct svm_range_list *svms) 2374 { 2375 spin_lock(&svms->deferred_list_lock); 2376 if (!list_empty(&svms->deferred_range_list)) 2377 schedule_work(&svms->deferred_list_work); 2378 spin_unlock(&svms->deferred_list_lock); 2379 } 2380 2381 static void 2382 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent, 2383 struct svm_range *prange, unsigned long start, 2384 unsigned long last) 2385 { 2386 struct svm_range *head; 2387 struct svm_range *tail; 2388 2389 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { 2390 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange, 2391 prange->start, prange->last); 2392 return; 2393 } 2394 if (start > prange->last || last < prange->start) 2395 return; 2396 2397 head = tail = prange; 2398 if (start > prange->start) 2399 svm_range_split(prange, prange->start, start - 1, &tail); 2400 if (last < tail->last) 2401 svm_range_split(tail, last + 1, tail->last, &head); 2402 2403 if (head != prange && tail != prange) { 2404 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); 2405 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); 2406 } else if (tail != prange) { 2407 svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE); 2408 } else if (head != prange) { 2409 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); 2410 } else if (parent != prange) { 2411 prange->work_item.op = SVM_OP_UNMAP_RANGE; 2412 } 2413 } 2414 2415 static void 2416 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange, 2417 unsigned long start, unsigned long last) 2418 { 2419 uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU; 2420 struct svm_range_list *svms; 2421 struct svm_range *pchild; 2422 struct kfd_process *p; 2423 unsigned long s, l; 2424 bool unmap_parent; 2425 2426 p = kfd_lookup_process_by_mm(mm); 2427 if (!p) 2428 return; 2429 svms = &p->svms; 2430 2431 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms, 2432 prange, prange->start, prange->last, start, last); 2433 2434 /* Make sure pending page faults are drained in the deferred worker 2435 * before the range is freed to avoid straggler interrupts on 2436 * unmapped memory causing "phantom faults". 2437 */ 2438 atomic_inc(&svms->drain_pagefaults); 2439 2440 unmap_parent = start <= prange->start && last >= prange->last; 2441 2442 list_for_each_entry(pchild, &prange->child_list, child_list) { 2443 mutex_lock_nested(&pchild->lock, 1); 2444 s = max(start, pchild->start); 2445 l = min(last, pchild->last); 2446 if (l >= s) 2447 svm_range_unmap_from_gpus(pchild, s, l, trigger); 2448 svm_range_unmap_split(mm, prange, pchild, start, last); 2449 mutex_unlock(&pchild->lock); 2450 } 2451 s = max(start, prange->start); 2452 l = min(last, prange->last); 2453 if (l >= s) 2454 svm_range_unmap_from_gpus(prange, s, l, trigger); 2455 svm_range_unmap_split(mm, prange, prange, start, last); 2456 2457 if (unmap_parent) 2458 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE); 2459 else 2460 svm_range_add_list_work(svms, prange, mm, 2461 SVM_OP_UPDATE_RANGE_NOTIFIER); 2462 schedule_deferred_list_work(svms); 2463 2464 kfd_unref_process(p); 2465 } 2466 2467 /** 2468 * svm_range_cpu_invalidate_pagetables - interval notifier callback 2469 * @mni: mmu_interval_notifier struct 2470 * @range: mmu_notifier_range struct 2471 * @cur_seq: value to pass to mmu_interval_set_seq() 2472 * 2473 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it 2474 * is from migration, or CPU page invalidation callback. 2475 * 2476 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed 2477 * work thread, and split prange if only part of prange is unmapped. 2478 * 2479 * For invalidation event, if GPU retry fault is not enabled, evict the queues, 2480 * then schedule svm_range_restore_work to update GPU mapping and resume queues. 2481 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will 2482 * update GPU mapping to recover. 2483 * 2484 * Context: mmap lock, notifier_invalidate_start lock are held 2485 * for invalidate event, prange lock is held if this is from migration 2486 */ 2487 static bool 2488 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, 2489 const struct mmu_notifier_range *range, 2490 unsigned long cur_seq) 2491 { 2492 struct svm_range *prange; 2493 unsigned long start; 2494 unsigned long last; 2495 2496 if (range->event == MMU_NOTIFY_RELEASE) 2497 return true; 2498 if (!mmget_not_zero(mni->mm)) 2499 return true; 2500 2501 start = mni->interval_tree.start; 2502 last = mni->interval_tree.last; 2503 start = max(start, range->start) >> PAGE_SHIFT; 2504 last = min(last, range->end - 1) >> PAGE_SHIFT; 2505 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n", 2506 start, last, range->start >> PAGE_SHIFT, 2507 (range->end - 1) >> PAGE_SHIFT, 2508 mni->interval_tree.start >> PAGE_SHIFT, 2509 mni->interval_tree.last >> PAGE_SHIFT, range->event); 2510 2511 prange = container_of(mni, struct svm_range, notifier); 2512 2513 svm_range_lock(prange); 2514 mmu_interval_set_seq(mni, cur_seq); 2515 2516 switch (range->event) { 2517 case MMU_NOTIFY_UNMAP: 2518 svm_range_unmap_from_cpu(mni->mm, prange, start, last); 2519 break; 2520 default: 2521 svm_range_evict(prange, mni->mm, start, last, range->event); 2522 break; 2523 } 2524 2525 svm_range_unlock(prange); 2526 mmput(mni->mm); 2527 2528 return true; 2529 } 2530 2531 /** 2532 * svm_range_from_addr - find svm range from fault address 2533 * @svms: svm range list header 2534 * @addr: address to search range interval tree, in pages 2535 * @parent: parent range if range is on child list 2536 * 2537 * Context: The caller must hold svms->lock 2538 * 2539 * Return: the svm_range found or NULL 2540 */ 2541 struct svm_range * 2542 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr, 2543 struct svm_range **parent) 2544 { 2545 struct interval_tree_node *node; 2546 struct svm_range *prange; 2547 struct svm_range *pchild; 2548 2549 node = interval_tree_iter_first(&svms->objects, addr, addr); 2550 if (!node) 2551 return NULL; 2552 2553 prange = container_of(node, struct svm_range, it_node); 2554 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n", 2555 addr, prange->start, prange->last, node->start, node->last); 2556 2557 if (addr >= prange->start && addr <= prange->last) { 2558 if (parent) 2559 *parent = prange; 2560 return prange; 2561 } 2562 list_for_each_entry(pchild, &prange->child_list, child_list) 2563 if (addr >= pchild->start && addr <= pchild->last) { 2564 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n", 2565 addr, pchild->start, pchild->last); 2566 if (parent) 2567 *parent = prange; 2568 return pchild; 2569 } 2570 2571 return NULL; 2572 } 2573 2574 /* svm_range_best_restore_location - decide the best fault restore location 2575 * @prange: svm range structure 2576 * @adev: the GPU on which vm fault happened 2577 * 2578 * This is only called when xnack is on, to decide the best location to restore 2579 * the range mapping after GPU vm fault. Caller uses the best location to do 2580 * migration if actual loc is not best location, then update GPU page table 2581 * mapping to the best location. 2582 * 2583 * If the preferred loc is accessible by faulting GPU, use preferred loc. 2584 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu 2585 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then 2586 * if range actual loc is cpu, best_loc is cpu 2587 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is 2588 * range actual loc. 2589 * Otherwise, GPU no access, best_loc is -1. 2590 * 2591 * Return: 2592 * -1 means vm fault GPU no access 2593 * 0 for CPU or GPU id 2594 */ 2595 static int32_t 2596 svm_range_best_restore_location(struct svm_range *prange, 2597 struct kfd_node *node, 2598 int32_t *gpuidx) 2599 { 2600 struct kfd_node *bo_node, *preferred_node; 2601 struct kfd_process *p; 2602 uint32_t gpuid; 2603 int r; 2604 2605 p = container_of(prange->svms, struct kfd_process, svms); 2606 2607 r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx); 2608 if (r < 0) { 2609 pr_debug("failed to get gpuid from kgd\n"); 2610 return -1; 2611 } 2612 2613 if (node->adev->gmc.is_app_apu) 2614 return 0; 2615 2616 if (prange->preferred_loc == gpuid || 2617 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) { 2618 return prange->preferred_loc; 2619 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) { 2620 preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc); 2621 if (preferred_node && svm_nodes_in_same_hive(node, preferred_node)) 2622 return prange->preferred_loc; 2623 /* fall through */ 2624 } 2625 2626 if (test_bit(*gpuidx, prange->bitmap_access)) 2627 return gpuid; 2628 2629 if (test_bit(*gpuidx, prange->bitmap_aip)) { 2630 if (!prange->actual_loc) 2631 return 0; 2632 2633 bo_node = svm_range_get_node_by_id(prange, prange->actual_loc); 2634 if (bo_node && svm_nodes_in_same_hive(node, bo_node)) 2635 return prange->actual_loc; 2636 else 2637 return 0; 2638 } 2639 2640 return -1; 2641 } 2642 2643 static int 2644 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr, 2645 unsigned long *start, unsigned long *last, 2646 bool *is_heap_stack) 2647 { 2648 struct vm_area_struct *vma; 2649 struct interval_tree_node *node; 2650 unsigned long start_limit, end_limit; 2651 2652 vma = vma_lookup(p->mm, addr << PAGE_SHIFT); 2653 if (!vma) { 2654 pr_debug("VMA does not exist in address [0x%llx]\n", addr); 2655 return -EFAULT; 2656 } 2657 2658 *is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma); 2659 2660 start_limit = max(vma->vm_start >> PAGE_SHIFT, 2661 (unsigned long)ALIGN_DOWN(addr, 2UL << 8)); 2662 end_limit = min(vma->vm_end >> PAGE_SHIFT, 2663 (unsigned long)ALIGN(addr + 1, 2UL << 8)); 2664 /* First range that starts after the fault address */ 2665 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX); 2666 if (node) { 2667 end_limit = min(end_limit, node->start); 2668 /* Last range that ends before the fault address */ 2669 node = container_of(rb_prev(&node->rb), 2670 struct interval_tree_node, rb); 2671 } else { 2672 /* Last range must end before addr because 2673 * there was no range after addr 2674 */ 2675 node = container_of(rb_last(&p->svms.objects.rb_root), 2676 struct interval_tree_node, rb); 2677 } 2678 if (node) { 2679 if (node->last >= addr) { 2680 WARN(1, "Overlap with prev node and page fault addr\n"); 2681 return -EFAULT; 2682 } 2683 start_limit = max(start_limit, node->last + 1); 2684 } 2685 2686 *start = start_limit; 2687 *last = end_limit - 1; 2688 2689 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n", 2690 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT, 2691 *start, *last, *is_heap_stack); 2692 2693 return 0; 2694 } 2695 2696 static int 2697 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last, 2698 uint64_t *bo_s, uint64_t *bo_l) 2699 { 2700 struct amdgpu_bo_va_mapping *mapping; 2701 struct interval_tree_node *node; 2702 struct amdgpu_bo *bo = NULL; 2703 unsigned long userptr; 2704 uint32_t i; 2705 int r; 2706 2707 for (i = 0; i < p->n_pdds; i++) { 2708 struct amdgpu_vm *vm; 2709 2710 if (!p->pdds[i]->drm_priv) 2711 continue; 2712 2713 vm = drm_priv_to_vm(p->pdds[i]->drm_priv); 2714 r = amdgpu_bo_reserve(vm->root.bo, false); 2715 if (r) 2716 return r; 2717 2718 /* Check userptr by searching entire vm->va interval tree */ 2719 node = interval_tree_iter_first(&vm->va, 0, ~0ULL); 2720 while (node) { 2721 mapping = container_of((struct rb_node *)node, 2722 struct amdgpu_bo_va_mapping, rb); 2723 bo = mapping->bo_va->base.bo; 2724 2725 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm, 2726 start << PAGE_SHIFT, 2727 last << PAGE_SHIFT, 2728 &userptr)) { 2729 node = interval_tree_iter_next(node, 0, ~0ULL); 2730 continue; 2731 } 2732 2733 pr_debug("[0x%llx 0x%llx] already userptr mapped\n", 2734 start, last); 2735 if (bo_s && bo_l) { 2736 *bo_s = userptr >> PAGE_SHIFT; 2737 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1; 2738 } 2739 amdgpu_bo_unreserve(vm->root.bo); 2740 return -EADDRINUSE; 2741 } 2742 amdgpu_bo_unreserve(vm->root.bo); 2743 } 2744 return 0; 2745 } 2746 2747 static struct 2748 svm_range *svm_range_create_unregistered_range(struct kfd_node *node, 2749 struct kfd_process *p, 2750 struct mm_struct *mm, 2751 int64_t addr) 2752 { 2753 struct svm_range *prange = NULL; 2754 unsigned long start, last; 2755 uint32_t gpuid, gpuidx; 2756 bool is_heap_stack; 2757 uint64_t bo_s = 0; 2758 uint64_t bo_l = 0; 2759 int r; 2760 2761 if (svm_range_get_range_boundaries(p, addr, &start, &last, 2762 &is_heap_stack)) 2763 return NULL; 2764 2765 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l); 2766 if (r != -EADDRINUSE) 2767 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l); 2768 2769 if (r == -EADDRINUSE) { 2770 if (addr >= bo_s && addr <= bo_l) 2771 return NULL; 2772 2773 /* Create one page svm range if 2MB range overlapping */ 2774 start = addr; 2775 last = addr; 2776 } 2777 2778 prange = svm_range_new(&p->svms, start, last, true); 2779 if (!prange) { 2780 pr_debug("Failed to create prange in address [0x%llx]\n", addr); 2781 return NULL; 2782 } 2783 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) { 2784 pr_debug("failed to get gpuid from kgd\n"); 2785 svm_range_free(prange, true); 2786 return NULL; 2787 } 2788 2789 if (is_heap_stack) 2790 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM; 2791 2792 svm_range_add_to_svms(prange); 2793 svm_range_add_notifier_locked(mm, prange); 2794 2795 return prange; 2796 } 2797 2798 /* svm_range_skip_recover - decide if prange can be recovered 2799 * @prange: svm range structure 2800 * 2801 * GPU vm retry fault handle skip recover the range for cases: 2802 * 1. prange is on deferred list to be removed after unmap, it is stale fault, 2803 * deferred list work will drain the stale fault before free the prange. 2804 * 2. prange is on deferred list to add interval notifier after split, or 2805 * 3. prange is child range, it is split from parent prange, recover later 2806 * after interval notifier is added. 2807 * 2808 * Return: true to skip recover, false to recover 2809 */ 2810 static bool svm_range_skip_recover(struct svm_range *prange) 2811 { 2812 struct svm_range_list *svms = prange->svms; 2813 2814 spin_lock(&svms->deferred_list_lock); 2815 if (list_empty(&prange->deferred_list) && 2816 list_empty(&prange->child_list)) { 2817 spin_unlock(&svms->deferred_list_lock); 2818 return false; 2819 } 2820 spin_unlock(&svms->deferred_list_lock); 2821 2822 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { 2823 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n", 2824 svms, prange, prange->start, prange->last); 2825 return true; 2826 } 2827 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP || 2828 prange->work_item.op == SVM_OP_ADD_RANGE) { 2829 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n", 2830 svms, prange, prange->start, prange->last); 2831 return true; 2832 } 2833 return false; 2834 } 2835 2836 static void 2837 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p, 2838 int32_t gpuidx) 2839 { 2840 struct kfd_process_device *pdd; 2841 2842 /* fault is on different page of same range 2843 * or fault is skipped to recover later 2844 * or fault is on invalid virtual address 2845 */ 2846 if (gpuidx == MAX_GPU_INSTANCE) { 2847 uint32_t gpuid; 2848 int r; 2849 2850 r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx); 2851 if (r < 0) 2852 return; 2853 } 2854 2855 /* fault is recovered 2856 * or fault cannot recover because GPU no access on the range 2857 */ 2858 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 2859 if (pdd) 2860 WRITE_ONCE(pdd->faults, pdd->faults + 1); 2861 } 2862 2863 static bool 2864 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault) 2865 { 2866 unsigned long requested = VM_READ; 2867 2868 if (write_fault) 2869 requested |= VM_WRITE; 2870 2871 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested, 2872 vma->vm_flags); 2873 return (vma->vm_flags & requested) == requested; 2874 } 2875 2876 int 2877 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid, 2878 uint32_t vmid, uint32_t node_id, 2879 uint64_t addr, bool write_fault) 2880 { 2881 struct mm_struct *mm = NULL; 2882 struct svm_range_list *svms; 2883 struct svm_range *prange; 2884 struct kfd_process *p; 2885 ktime_t timestamp = ktime_get_boottime(); 2886 struct kfd_node *node; 2887 int32_t best_loc; 2888 int32_t gpuidx = MAX_GPU_INSTANCE; 2889 bool write_locked = false; 2890 struct vm_area_struct *vma; 2891 bool migration = false; 2892 int r = 0; 2893 2894 if (!KFD_IS_SVM_API_SUPPORTED(adev)) { 2895 pr_debug("device does not support SVM\n"); 2896 return -EFAULT; 2897 } 2898 2899 p = kfd_lookup_process_by_pasid(pasid); 2900 if (!p) { 2901 pr_debug("kfd process not founded pasid 0x%x\n", pasid); 2902 return 0; 2903 } 2904 svms = &p->svms; 2905 2906 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr); 2907 2908 if (atomic_read(&svms->drain_pagefaults)) { 2909 pr_debug("draining retry fault, drop fault 0x%llx\n", addr); 2910 r = 0; 2911 goto out; 2912 } 2913 2914 if (!p->xnack_enabled) { 2915 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid); 2916 r = -EFAULT; 2917 goto out; 2918 } 2919 2920 /* p->lead_thread is available as kfd_process_wq_release flush the work 2921 * before releasing task ref. 2922 */ 2923 mm = get_task_mm(p->lead_thread); 2924 if (!mm) { 2925 pr_debug("svms 0x%p failed to get mm\n", svms); 2926 r = 0; 2927 goto out; 2928 } 2929 2930 node = kfd_node_by_irq_ids(adev, node_id, vmid); 2931 if (!node) { 2932 pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id, 2933 vmid); 2934 r = -EFAULT; 2935 goto out; 2936 } 2937 mmap_read_lock(mm); 2938 retry_write_locked: 2939 mutex_lock(&svms->lock); 2940 prange = svm_range_from_addr(svms, addr, NULL); 2941 if (!prange) { 2942 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n", 2943 svms, addr); 2944 if (!write_locked) { 2945 /* Need the write lock to create new range with MMU notifier. 2946 * Also flush pending deferred work to make sure the interval 2947 * tree is up to date before we add a new range 2948 */ 2949 mutex_unlock(&svms->lock); 2950 mmap_read_unlock(mm); 2951 mmap_write_lock(mm); 2952 write_locked = true; 2953 goto retry_write_locked; 2954 } 2955 prange = svm_range_create_unregistered_range(node, p, mm, addr); 2956 if (!prange) { 2957 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n", 2958 svms, addr); 2959 mmap_write_downgrade(mm); 2960 r = -EFAULT; 2961 goto out_unlock_svms; 2962 } 2963 } 2964 if (write_locked) 2965 mmap_write_downgrade(mm); 2966 2967 mutex_lock(&prange->migrate_mutex); 2968 2969 if (svm_range_skip_recover(prange)) { 2970 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid); 2971 r = 0; 2972 goto out_unlock_range; 2973 } 2974 2975 /* skip duplicate vm fault on different pages of same range */ 2976 if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp, 2977 AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) { 2978 pr_debug("svms 0x%p [0x%lx %lx] already restored\n", 2979 svms, prange->start, prange->last); 2980 r = 0; 2981 goto out_unlock_range; 2982 } 2983 2984 /* __do_munmap removed VMA, return success as we are handling stale 2985 * retry fault. 2986 */ 2987 vma = vma_lookup(mm, addr << PAGE_SHIFT); 2988 if (!vma) { 2989 pr_debug("address 0x%llx VMA is removed\n", addr); 2990 r = 0; 2991 goto out_unlock_range; 2992 } 2993 2994 if (!svm_fault_allowed(vma, write_fault)) { 2995 pr_debug("fault addr 0x%llx no %s permission\n", addr, 2996 write_fault ? "write" : "read"); 2997 r = -EPERM; 2998 goto out_unlock_range; 2999 } 3000 3001 best_loc = svm_range_best_restore_location(prange, node, &gpuidx); 3002 if (best_loc == -1) { 3003 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n", 3004 svms, prange->start, prange->last); 3005 r = -EACCES; 3006 goto out_unlock_range; 3007 } 3008 3009 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n", 3010 svms, prange->start, prange->last, best_loc, 3011 prange->actual_loc); 3012 3013 kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr, 3014 write_fault, timestamp); 3015 3016 if (prange->actual_loc != best_loc) { 3017 migration = true; 3018 if (best_loc) { 3019 r = svm_migrate_to_vram(prange, best_loc, mm, 3020 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU); 3021 if (r) { 3022 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n", 3023 r, addr); 3024 /* Fallback to system memory if migration to 3025 * VRAM failed 3026 */ 3027 if (prange->actual_loc) 3028 r = svm_migrate_vram_to_ram(prange, mm, 3029 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, 3030 NULL); 3031 else 3032 r = 0; 3033 } 3034 } else { 3035 r = svm_migrate_vram_to_ram(prange, mm, 3036 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, 3037 NULL); 3038 } 3039 if (r) { 3040 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n", 3041 r, svms, prange->start, prange->last); 3042 goto out_unlock_range; 3043 } 3044 } 3045 3046 r = svm_range_validate_and_map(mm, prange, gpuidx, false, false, false); 3047 if (r) 3048 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n", 3049 r, svms, prange->start, prange->last); 3050 3051 kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr, 3052 migration); 3053 3054 out_unlock_range: 3055 mutex_unlock(&prange->migrate_mutex); 3056 out_unlock_svms: 3057 mutex_unlock(&svms->lock); 3058 mmap_read_unlock(mm); 3059 3060 svm_range_count_fault(node, p, gpuidx); 3061 3062 mmput(mm); 3063 out: 3064 kfd_unref_process(p); 3065 3066 if (r == -EAGAIN) { 3067 pr_debug("recover vm fault later\n"); 3068 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid); 3069 r = 0; 3070 } 3071 return r; 3072 } 3073 3074 int 3075 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled) 3076 { 3077 struct svm_range *prange, *pchild; 3078 uint64_t reserved_size = 0; 3079 uint64_t size; 3080 int r = 0; 3081 3082 pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled); 3083 3084 mutex_lock(&p->svms.lock); 3085 3086 list_for_each_entry(prange, &p->svms.list, list) { 3087 svm_range_lock(prange); 3088 list_for_each_entry(pchild, &prange->child_list, child_list) { 3089 size = (pchild->last - pchild->start + 1) << PAGE_SHIFT; 3090 if (xnack_enabled) { 3091 amdgpu_amdkfd_unreserve_mem_limit(NULL, size, 3092 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 3093 } else { 3094 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size, 3095 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 3096 if (r) 3097 goto out_unlock; 3098 reserved_size += size; 3099 } 3100 } 3101 3102 size = (prange->last - prange->start + 1) << PAGE_SHIFT; 3103 if (xnack_enabled) { 3104 amdgpu_amdkfd_unreserve_mem_limit(NULL, size, 3105 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 3106 } else { 3107 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size, 3108 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 3109 if (r) 3110 goto out_unlock; 3111 reserved_size += size; 3112 } 3113 out_unlock: 3114 svm_range_unlock(prange); 3115 if (r) 3116 break; 3117 } 3118 3119 if (r) 3120 amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size, 3121 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 3122 else 3123 /* Change xnack mode must be inside svms lock, to avoid race with 3124 * svm_range_deferred_list_work unreserve memory in parallel. 3125 */ 3126 p->xnack_enabled = xnack_enabled; 3127 3128 mutex_unlock(&p->svms.lock); 3129 return r; 3130 } 3131 3132 void svm_range_list_fini(struct kfd_process *p) 3133 { 3134 struct svm_range *prange; 3135 struct svm_range *next; 3136 3137 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms); 3138 3139 cancel_delayed_work_sync(&p->svms.restore_work); 3140 3141 /* Ensure list work is finished before process is destroyed */ 3142 flush_work(&p->svms.deferred_list_work); 3143 3144 /* 3145 * Ensure no retry fault comes in afterwards, as page fault handler will 3146 * not find kfd process and take mm lock to recover fault. 3147 */ 3148 atomic_inc(&p->svms.drain_pagefaults); 3149 svm_range_drain_retry_fault(&p->svms); 3150 3151 list_for_each_entry_safe(prange, next, &p->svms.list, list) { 3152 svm_range_unlink(prange); 3153 svm_range_remove_notifier(prange); 3154 svm_range_free(prange, true); 3155 } 3156 3157 mutex_destroy(&p->svms.lock); 3158 3159 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms); 3160 } 3161 3162 int svm_range_list_init(struct kfd_process *p) 3163 { 3164 struct svm_range_list *svms = &p->svms; 3165 int i; 3166 3167 svms->objects = RB_ROOT_CACHED; 3168 mutex_init(&svms->lock); 3169 INIT_LIST_HEAD(&svms->list); 3170 atomic_set(&svms->evicted_ranges, 0); 3171 atomic_set(&svms->drain_pagefaults, 0); 3172 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work); 3173 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work); 3174 INIT_LIST_HEAD(&svms->deferred_range_list); 3175 INIT_LIST_HEAD(&svms->criu_svm_metadata_list); 3176 spin_lock_init(&svms->deferred_list_lock); 3177 3178 for (i = 0; i < p->n_pdds; i++) 3179 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev)) 3180 bitmap_set(svms->bitmap_supported, i, 1); 3181 3182 return 0; 3183 } 3184 3185 /** 3186 * svm_range_check_vm - check if virtual address range mapped already 3187 * @p: current kfd_process 3188 * @start: range start address, in pages 3189 * @last: range last address, in pages 3190 * @bo_s: mapping start address in pages if address range already mapped 3191 * @bo_l: mapping last address in pages if address range already mapped 3192 * 3193 * The purpose is to avoid virtual address ranges already allocated by 3194 * kfd_ioctl_alloc_memory_of_gpu ioctl. 3195 * It looks for each pdd in the kfd_process. 3196 * 3197 * Context: Process context 3198 * 3199 * Return 0 - OK, if the range is not mapped. 3200 * Otherwise error code: 3201 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu 3202 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by 3203 * a signal. Release all buffer reservations and return to user-space. 3204 */ 3205 static int 3206 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, 3207 uint64_t *bo_s, uint64_t *bo_l) 3208 { 3209 struct amdgpu_bo_va_mapping *mapping; 3210 struct interval_tree_node *node; 3211 uint32_t i; 3212 int r; 3213 3214 for (i = 0; i < p->n_pdds; i++) { 3215 struct amdgpu_vm *vm; 3216 3217 if (!p->pdds[i]->drm_priv) 3218 continue; 3219 3220 vm = drm_priv_to_vm(p->pdds[i]->drm_priv); 3221 r = amdgpu_bo_reserve(vm->root.bo, false); 3222 if (r) 3223 return r; 3224 3225 node = interval_tree_iter_first(&vm->va, start, last); 3226 if (node) { 3227 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n", 3228 start, last); 3229 mapping = container_of((struct rb_node *)node, 3230 struct amdgpu_bo_va_mapping, rb); 3231 if (bo_s && bo_l) { 3232 *bo_s = mapping->start; 3233 *bo_l = mapping->last; 3234 } 3235 amdgpu_bo_unreserve(vm->root.bo); 3236 return -EADDRINUSE; 3237 } 3238 amdgpu_bo_unreserve(vm->root.bo); 3239 } 3240 3241 return 0; 3242 } 3243 3244 /** 3245 * svm_range_is_valid - check if virtual address range is valid 3246 * @p: current kfd_process 3247 * @start: range start address, in pages 3248 * @size: range size, in pages 3249 * 3250 * Valid virtual address range means it belongs to one or more VMAs 3251 * 3252 * Context: Process context 3253 * 3254 * Return: 3255 * 0 - OK, otherwise error code 3256 */ 3257 static int 3258 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size) 3259 { 3260 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP; 3261 struct vm_area_struct *vma; 3262 unsigned long end; 3263 unsigned long start_unchg = start; 3264 3265 start <<= PAGE_SHIFT; 3266 end = start + (size << PAGE_SHIFT); 3267 do { 3268 vma = vma_lookup(p->mm, start); 3269 if (!vma || (vma->vm_flags & device_vma)) 3270 return -EFAULT; 3271 start = min(end, vma->vm_end); 3272 } while (start < end); 3273 3274 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL, 3275 NULL); 3276 } 3277 3278 /** 3279 * svm_range_best_prefetch_location - decide the best prefetch location 3280 * @prange: svm range structure 3281 * 3282 * For xnack off: 3283 * If range map to single GPU, the best prefetch location is prefetch_loc, which 3284 * can be CPU or GPU. 3285 * 3286 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on 3287 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise 3288 * the best prefetch location is always CPU, because GPU can not have coherent 3289 * mapping VRAM of other GPUs even with large-BAR PCIe connection. 3290 * 3291 * For xnack on: 3292 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is 3293 * prefetch_loc, other GPU access will generate vm fault and trigger migration. 3294 * 3295 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same 3296 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best 3297 * prefetch location is always CPU. 3298 * 3299 * Context: Process context 3300 * 3301 * Return: 3302 * 0 for CPU or GPU id 3303 */ 3304 static uint32_t 3305 svm_range_best_prefetch_location(struct svm_range *prange) 3306 { 3307 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 3308 uint32_t best_loc = prange->prefetch_loc; 3309 struct kfd_process_device *pdd; 3310 struct kfd_node *bo_node; 3311 struct kfd_process *p; 3312 uint32_t gpuidx; 3313 3314 p = container_of(prange->svms, struct kfd_process, svms); 3315 3316 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) 3317 goto out; 3318 3319 bo_node = svm_range_get_node_by_id(prange, best_loc); 3320 if (!bo_node) { 3321 WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc); 3322 best_loc = 0; 3323 goto out; 3324 } 3325 3326 if (bo_node->adev->gmc.is_app_apu) { 3327 best_loc = 0; 3328 goto out; 3329 } 3330 3331 if (p->xnack_enabled) 3332 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); 3333 else 3334 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, 3335 MAX_GPU_INSTANCE); 3336 3337 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 3338 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 3339 if (!pdd) { 3340 pr_debug("failed to get device by idx 0x%x\n", gpuidx); 3341 continue; 3342 } 3343 3344 if (pdd->dev->adev == bo_node->adev) 3345 continue; 3346 3347 if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) { 3348 best_loc = 0; 3349 break; 3350 } 3351 } 3352 3353 out: 3354 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n", 3355 p->xnack_enabled, &p->svms, prange->start, prange->last, 3356 best_loc); 3357 3358 return best_loc; 3359 } 3360 3361 /* svm_range_trigger_migration - start page migration if prefetch loc changed 3362 * @mm: current process mm_struct 3363 * @prange: svm range structure 3364 * @migrated: output, true if migration is triggered 3365 * 3366 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range 3367 * from ram to vram. 3368 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range 3369 * from vram to ram. 3370 * 3371 * If GPU vm fault retry is not enabled, migration interact with MMU notifier 3372 * and restore work: 3373 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict 3374 * stops all queues, schedule restore work 3375 * 2. svm_range_restore_work wait for migration is done by 3376 * a. svm_range_validate_vram takes prange->migrate_mutex 3377 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns 3378 * 3. restore work update mappings of GPU, resume all queues. 3379 * 3380 * Context: Process context 3381 * 3382 * Return: 3383 * 0 - OK, otherwise - error code of migration 3384 */ 3385 static int 3386 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange, 3387 bool *migrated) 3388 { 3389 uint32_t best_loc; 3390 int r = 0; 3391 3392 *migrated = false; 3393 best_loc = svm_range_best_prefetch_location(prange); 3394 3395 if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3396 best_loc == prange->actual_loc) 3397 return 0; 3398 3399 if (!best_loc) { 3400 r = svm_migrate_vram_to_ram(prange, mm, 3401 KFD_MIGRATE_TRIGGER_PREFETCH, NULL); 3402 *migrated = !r; 3403 return r; 3404 } 3405 3406 r = svm_migrate_to_vram(prange, best_loc, mm, KFD_MIGRATE_TRIGGER_PREFETCH); 3407 *migrated = !r; 3408 3409 return r; 3410 } 3411 3412 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence) 3413 { 3414 if (!fence) 3415 return -EINVAL; 3416 3417 if (dma_fence_is_signaled(&fence->base)) 3418 return 0; 3419 3420 if (fence->svm_bo) { 3421 WRITE_ONCE(fence->svm_bo->evicting, 1); 3422 schedule_work(&fence->svm_bo->eviction_work); 3423 } 3424 3425 return 0; 3426 } 3427 3428 static void svm_range_evict_svm_bo_worker(struct work_struct *work) 3429 { 3430 struct svm_range_bo *svm_bo; 3431 struct mm_struct *mm; 3432 int r = 0; 3433 3434 svm_bo = container_of(work, struct svm_range_bo, eviction_work); 3435 if (!svm_bo_ref_unless_zero(svm_bo)) 3436 return; /* svm_bo was freed while eviction was pending */ 3437 3438 if (mmget_not_zero(svm_bo->eviction_fence->mm)) { 3439 mm = svm_bo->eviction_fence->mm; 3440 } else { 3441 svm_range_bo_unref(svm_bo); 3442 return; 3443 } 3444 3445 mmap_read_lock(mm); 3446 spin_lock(&svm_bo->list_lock); 3447 while (!list_empty(&svm_bo->range_list) && !r) { 3448 struct svm_range *prange = 3449 list_first_entry(&svm_bo->range_list, 3450 struct svm_range, svm_bo_list); 3451 int retries = 3; 3452 3453 list_del_init(&prange->svm_bo_list); 3454 spin_unlock(&svm_bo->list_lock); 3455 3456 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, 3457 prange->start, prange->last); 3458 3459 mutex_lock(&prange->migrate_mutex); 3460 do { 3461 r = svm_migrate_vram_to_ram(prange, mm, 3462 KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL); 3463 } while (!r && prange->actual_loc && --retries); 3464 3465 if (!r && prange->actual_loc) 3466 pr_info_once("Migration failed during eviction"); 3467 3468 if (!prange->actual_loc) { 3469 mutex_lock(&prange->lock); 3470 prange->svm_bo = NULL; 3471 mutex_unlock(&prange->lock); 3472 } 3473 mutex_unlock(&prange->migrate_mutex); 3474 3475 spin_lock(&svm_bo->list_lock); 3476 } 3477 spin_unlock(&svm_bo->list_lock); 3478 mmap_read_unlock(mm); 3479 mmput(mm); 3480 3481 dma_fence_signal(&svm_bo->eviction_fence->base); 3482 3483 /* This is the last reference to svm_bo, after svm_range_vram_node_free 3484 * has been called in svm_migrate_vram_to_ram 3485 */ 3486 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n"); 3487 svm_range_bo_unref(svm_bo); 3488 } 3489 3490 static int 3491 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm, 3492 uint64_t start, uint64_t size, uint32_t nattr, 3493 struct kfd_ioctl_svm_attribute *attrs) 3494 { 3495 struct amdkfd_process_info *process_info = p->kgd_process_info; 3496 struct list_head update_list; 3497 struct list_head insert_list; 3498 struct list_head remove_list; 3499 struct svm_range_list *svms; 3500 struct svm_range *prange; 3501 struct svm_range *next; 3502 bool update_mapping = false; 3503 bool flush_tlb; 3504 int r, ret = 0; 3505 3506 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n", 3507 p->pasid, &p->svms, start, start + size - 1, size); 3508 3509 r = svm_range_check_attr(p, nattr, attrs); 3510 if (r) 3511 return r; 3512 3513 svms = &p->svms; 3514 3515 mutex_lock(&process_info->lock); 3516 3517 svm_range_list_lock_and_flush_work(svms, mm); 3518 3519 r = svm_range_is_valid(p, start, size); 3520 if (r) { 3521 pr_debug("invalid range r=%d\n", r); 3522 mmap_write_unlock(mm); 3523 goto out; 3524 } 3525 3526 mutex_lock(&svms->lock); 3527 3528 /* Add new range and split existing ranges as needed */ 3529 r = svm_range_add(p, start, size, nattr, attrs, &update_list, 3530 &insert_list, &remove_list); 3531 if (r) { 3532 mutex_unlock(&svms->lock); 3533 mmap_write_unlock(mm); 3534 goto out; 3535 } 3536 /* Apply changes as a transaction */ 3537 list_for_each_entry_safe(prange, next, &insert_list, list) { 3538 svm_range_add_to_svms(prange); 3539 svm_range_add_notifier_locked(mm, prange); 3540 } 3541 list_for_each_entry(prange, &update_list, update_list) { 3542 svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping); 3543 /* TODO: unmap ranges from GPU that lost access */ 3544 } 3545 list_for_each_entry_safe(prange, next, &remove_list, update_list) { 3546 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n", 3547 prange->svms, prange, prange->start, 3548 prange->last); 3549 svm_range_unlink(prange); 3550 svm_range_remove_notifier(prange); 3551 svm_range_free(prange, false); 3552 } 3553 3554 mmap_write_downgrade(mm); 3555 /* Trigger migrations and revalidate and map to GPUs as needed. If 3556 * this fails we may be left with partially completed actions. There 3557 * is no clean way of rolling back to the previous state in such a 3558 * case because the rollback wouldn't be guaranteed to work either. 3559 */ 3560 list_for_each_entry(prange, &update_list, update_list) { 3561 bool migrated; 3562 3563 mutex_lock(&prange->migrate_mutex); 3564 3565 r = svm_range_trigger_migration(mm, prange, &migrated); 3566 if (r) 3567 goto out_unlock_range; 3568 3569 if (migrated && (!p->xnack_enabled || 3570 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) && 3571 prange->mapped_to_gpu) { 3572 pr_debug("restore_work will update mappings of GPUs\n"); 3573 mutex_unlock(&prange->migrate_mutex); 3574 continue; 3575 } 3576 3577 if (!migrated && !update_mapping) { 3578 mutex_unlock(&prange->migrate_mutex); 3579 continue; 3580 } 3581 3582 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu; 3583 3584 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE, 3585 true, true, flush_tlb); 3586 if (r) 3587 pr_debug("failed %d to map svm range\n", r); 3588 3589 out_unlock_range: 3590 mutex_unlock(&prange->migrate_mutex); 3591 if (r) 3592 ret = r; 3593 } 3594 3595 dynamic_svm_range_dump(svms); 3596 3597 mutex_unlock(&svms->lock); 3598 mmap_read_unlock(mm); 3599 out: 3600 mutex_unlock(&process_info->lock); 3601 3602 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid, 3603 &p->svms, start, start + size - 1, r); 3604 3605 return ret ? ret : r; 3606 } 3607 3608 static int 3609 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm, 3610 uint64_t start, uint64_t size, uint32_t nattr, 3611 struct kfd_ioctl_svm_attribute *attrs) 3612 { 3613 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE); 3614 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE); 3615 bool get_preferred_loc = false; 3616 bool get_prefetch_loc = false; 3617 bool get_granularity = false; 3618 bool get_accessible = false; 3619 bool get_flags = false; 3620 uint64_t last = start + size - 1UL; 3621 uint8_t granularity = 0xff; 3622 struct interval_tree_node *node; 3623 struct svm_range_list *svms; 3624 struct svm_range *prange; 3625 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3626 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3627 uint32_t flags_and = 0xffffffff; 3628 uint32_t flags_or = 0; 3629 int gpuidx; 3630 uint32_t i; 3631 int r = 0; 3632 3633 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start, 3634 start + size - 1, nattr); 3635 3636 /* Flush pending deferred work to avoid racing with deferred actions from 3637 * previous memory map changes (e.g. munmap). Concurrent memory map changes 3638 * can still race with get_attr because we don't hold the mmap lock. But that 3639 * would be a race condition in the application anyway, and undefined 3640 * behaviour is acceptable in that case. 3641 */ 3642 flush_work(&p->svms.deferred_list_work); 3643 3644 mmap_read_lock(mm); 3645 r = svm_range_is_valid(p, start, size); 3646 mmap_read_unlock(mm); 3647 if (r) { 3648 pr_debug("invalid range r=%d\n", r); 3649 return r; 3650 } 3651 3652 for (i = 0; i < nattr; i++) { 3653 switch (attrs[i].type) { 3654 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 3655 get_preferred_loc = true; 3656 break; 3657 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3658 get_prefetch_loc = true; 3659 break; 3660 case KFD_IOCTL_SVM_ATTR_ACCESS: 3661 get_accessible = true; 3662 break; 3663 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3664 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 3665 get_flags = true; 3666 break; 3667 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 3668 get_granularity = true; 3669 break; 3670 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 3671 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 3672 fallthrough; 3673 default: 3674 pr_debug("get invalid attr type 0x%x\n", attrs[i].type); 3675 return -EINVAL; 3676 } 3677 } 3678 3679 svms = &p->svms; 3680 3681 mutex_lock(&svms->lock); 3682 3683 node = interval_tree_iter_first(&svms->objects, start, last); 3684 if (!node) { 3685 pr_debug("range attrs not found return default values\n"); 3686 svm_range_set_default_attributes(&location, &prefetch_loc, 3687 &granularity, &flags_and); 3688 flags_or = flags_and; 3689 if (p->xnack_enabled) 3690 bitmap_copy(bitmap_access, svms->bitmap_supported, 3691 MAX_GPU_INSTANCE); 3692 else 3693 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE); 3694 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE); 3695 goto fill_values; 3696 } 3697 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE); 3698 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE); 3699 3700 while (node) { 3701 struct interval_tree_node *next; 3702 3703 prange = container_of(node, struct svm_range, it_node); 3704 next = interval_tree_iter_next(node, start, last); 3705 3706 if (get_preferred_loc) { 3707 if (prange->preferred_loc == 3708 KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3709 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED && 3710 location != prange->preferred_loc)) { 3711 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3712 get_preferred_loc = false; 3713 } else { 3714 location = prange->preferred_loc; 3715 } 3716 } 3717 if (get_prefetch_loc) { 3718 if (prange->prefetch_loc == 3719 KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3720 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED && 3721 prefetch_loc != prange->prefetch_loc)) { 3722 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3723 get_prefetch_loc = false; 3724 } else { 3725 prefetch_loc = prange->prefetch_loc; 3726 } 3727 } 3728 if (get_accessible) { 3729 bitmap_and(bitmap_access, bitmap_access, 3730 prange->bitmap_access, MAX_GPU_INSTANCE); 3731 bitmap_and(bitmap_aip, bitmap_aip, 3732 prange->bitmap_aip, MAX_GPU_INSTANCE); 3733 } 3734 if (get_flags) { 3735 flags_and &= prange->flags; 3736 flags_or |= prange->flags; 3737 } 3738 3739 if (get_granularity && prange->granularity < granularity) 3740 granularity = prange->granularity; 3741 3742 node = next; 3743 } 3744 fill_values: 3745 mutex_unlock(&svms->lock); 3746 3747 for (i = 0; i < nattr; i++) { 3748 switch (attrs[i].type) { 3749 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 3750 attrs[i].value = location; 3751 break; 3752 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3753 attrs[i].value = prefetch_loc; 3754 break; 3755 case KFD_IOCTL_SVM_ATTR_ACCESS: 3756 gpuidx = kfd_process_gpuidx_from_gpuid(p, 3757 attrs[i].value); 3758 if (gpuidx < 0) { 3759 pr_debug("invalid gpuid %x\n", attrs[i].value); 3760 return -EINVAL; 3761 } 3762 if (test_bit(gpuidx, bitmap_access)) 3763 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS; 3764 else if (test_bit(gpuidx, bitmap_aip)) 3765 attrs[i].type = 3766 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE; 3767 else 3768 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS; 3769 break; 3770 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3771 attrs[i].value = flags_and; 3772 break; 3773 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 3774 attrs[i].value = ~flags_or; 3775 break; 3776 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 3777 attrs[i].value = (uint32_t)granularity; 3778 break; 3779 } 3780 } 3781 3782 return 0; 3783 } 3784 3785 int kfd_criu_resume_svm(struct kfd_process *p) 3786 { 3787 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL; 3788 int nattr_common = 4, nattr_accessibility = 1; 3789 struct criu_svm_metadata *criu_svm_md = NULL; 3790 struct svm_range_list *svms = &p->svms; 3791 struct criu_svm_metadata *next = NULL; 3792 uint32_t set_flags = 0xffffffff; 3793 int i, j, num_attrs, ret = 0; 3794 uint64_t set_attr_size; 3795 struct mm_struct *mm; 3796 3797 if (list_empty(&svms->criu_svm_metadata_list)) { 3798 pr_debug("No SVM data from CRIU restore stage 2\n"); 3799 return ret; 3800 } 3801 3802 mm = get_task_mm(p->lead_thread); 3803 if (!mm) { 3804 pr_err("failed to get mm for the target process\n"); 3805 return -ESRCH; 3806 } 3807 3808 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds); 3809 3810 i = j = 0; 3811 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) { 3812 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n", 3813 i, criu_svm_md->data.start_addr, criu_svm_md->data.size); 3814 3815 for (j = 0; j < num_attrs; j++) { 3816 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n", 3817 i, j, criu_svm_md->data.attrs[j].type, 3818 i, j, criu_svm_md->data.attrs[j].value); 3819 switch (criu_svm_md->data.attrs[j].type) { 3820 /* During Checkpoint operation, the query for 3821 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might 3822 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were 3823 * not used by the range which was checkpointed. Care 3824 * must be taken to not restore with an invalid value 3825 * otherwise the gpuidx value will be invalid and 3826 * set_attr would eventually fail so just replace those 3827 * with another dummy attribute such as 3828 * KFD_IOCTL_SVM_ATTR_SET_FLAGS. 3829 */ 3830 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3831 if (criu_svm_md->data.attrs[j].value == 3832 KFD_IOCTL_SVM_LOCATION_UNDEFINED) { 3833 criu_svm_md->data.attrs[j].type = 3834 KFD_IOCTL_SVM_ATTR_SET_FLAGS; 3835 criu_svm_md->data.attrs[j].value = 0; 3836 } 3837 break; 3838 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3839 set_flags = criu_svm_md->data.attrs[j].value; 3840 break; 3841 default: 3842 break; 3843 } 3844 } 3845 3846 /* CLR_FLAGS is not available via get_attr during checkpoint but 3847 * it needs to be inserted before restoring the ranges so 3848 * allocate extra space for it before calling set_attr 3849 */ 3850 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 3851 (num_attrs + 1); 3852 set_attr_new = krealloc(set_attr, set_attr_size, 3853 GFP_KERNEL); 3854 if (!set_attr_new) { 3855 ret = -ENOMEM; 3856 goto exit; 3857 } 3858 set_attr = set_attr_new; 3859 3860 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs * 3861 sizeof(struct kfd_ioctl_svm_attribute)); 3862 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS; 3863 set_attr[num_attrs].value = ~set_flags; 3864 3865 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr, 3866 criu_svm_md->data.size, num_attrs + 1, 3867 set_attr); 3868 if (ret) { 3869 pr_err("CRIU: failed to set range attributes\n"); 3870 goto exit; 3871 } 3872 3873 i++; 3874 } 3875 exit: 3876 kfree(set_attr); 3877 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) { 3878 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n", 3879 criu_svm_md->data.start_addr); 3880 kfree(criu_svm_md); 3881 } 3882 3883 mmput(mm); 3884 return ret; 3885 3886 } 3887 3888 int kfd_criu_restore_svm(struct kfd_process *p, 3889 uint8_t __user *user_priv_ptr, 3890 uint64_t *priv_data_offset, 3891 uint64_t max_priv_data_size) 3892 { 3893 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size; 3894 int nattr_common = 4, nattr_accessibility = 1; 3895 struct criu_svm_metadata *criu_svm_md = NULL; 3896 struct svm_range_list *svms = &p->svms; 3897 uint32_t num_devices; 3898 int ret = 0; 3899 3900 num_devices = p->n_pdds; 3901 /* Handle one SVM range object at a time, also the number of gpus are 3902 * assumed to be same on the restore node, checking must be done while 3903 * evaluating the topology earlier 3904 */ 3905 3906 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) * 3907 (nattr_common + nattr_accessibility * num_devices); 3908 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size; 3909 3910 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) + 3911 svm_attrs_size; 3912 3913 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL); 3914 if (!criu_svm_md) { 3915 pr_err("failed to allocate memory to store svm metadata\n"); 3916 return -ENOMEM; 3917 } 3918 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) { 3919 ret = -EINVAL; 3920 goto exit; 3921 } 3922 3923 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset, 3924 svm_priv_data_size); 3925 if (ret) { 3926 ret = -EFAULT; 3927 goto exit; 3928 } 3929 *priv_data_offset += svm_priv_data_size; 3930 3931 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list); 3932 3933 return 0; 3934 3935 3936 exit: 3937 kfree(criu_svm_md); 3938 return ret; 3939 } 3940 3941 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges, 3942 uint64_t *svm_priv_data_size) 3943 { 3944 uint64_t total_size, accessibility_size, common_attr_size; 3945 int nattr_common = 4, nattr_accessibility = 1; 3946 int num_devices = p->n_pdds; 3947 struct svm_range_list *svms; 3948 struct svm_range *prange; 3949 uint32_t count = 0; 3950 3951 *svm_priv_data_size = 0; 3952 3953 svms = &p->svms; 3954 if (!svms) 3955 return -EINVAL; 3956 3957 mutex_lock(&svms->lock); 3958 list_for_each_entry(prange, &svms->list, list) { 3959 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n", 3960 prange, prange->start, prange->npages, 3961 prange->start + prange->npages - 1); 3962 count++; 3963 } 3964 mutex_unlock(&svms->lock); 3965 3966 *num_svm_ranges = count; 3967 /* Only the accessbility attributes need to be queried for all the gpus 3968 * individually, remaining ones are spanned across the entire process 3969 * regardless of the various gpu nodes. Of the remaining attributes, 3970 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved. 3971 * 3972 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC 3973 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC 3974 * KFD_IOCTL_SVM_ATTR_SET_FLAGS 3975 * KFD_IOCTL_SVM_ATTR_GRANULARITY 3976 * 3977 * ** ACCESSBILITY ATTRIBUTES ** 3978 * (Considered as one, type is altered during query, value is gpuid) 3979 * KFD_IOCTL_SVM_ATTR_ACCESS 3980 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE 3981 * KFD_IOCTL_SVM_ATTR_NO_ACCESS 3982 */ 3983 if (*num_svm_ranges > 0) { 3984 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 3985 nattr_common; 3986 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) * 3987 nattr_accessibility * num_devices; 3988 3989 total_size = sizeof(struct kfd_criu_svm_range_priv_data) + 3990 common_attr_size + accessibility_size; 3991 3992 *svm_priv_data_size = *num_svm_ranges * total_size; 3993 } 3994 3995 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges, 3996 *svm_priv_data_size); 3997 return 0; 3998 } 3999 4000 int kfd_criu_checkpoint_svm(struct kfd_process *p, 4001 uint8_t __user *user_priv_data, 4002 uint64_t *priv_data_offset) 4003 { 4004 struct kfd_criu_svm_range_priv_data *svm_priv = NULL; 4005 struct kfd_ioctl_svm_attribute *query_attr = NULL; 4006 uint64_t svm_priv_data_size, query_attr_size = 0; 4007 int index, nattr_common = 4, ret = 0; 4008 struct svm_range_list *svms; 4009 int num_devices = p->n_pdds; 4010 struct svm_range *prange; 4011 struct mm_struct *mm; 4012 4013 svms = &p->svms; 4014 if (!svms) 4015 return -EINVAL; 4016 4017 mm = get_task_mm(p->lead_thread); 4018 if (!mm) { 4019 pr_err("failed to get mm for the target process\n"); 4020 return -ESRCH; 4021 } 4022 4023 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 4024 (nattr_common + num_devices); 4025 4026 query_attr = kzalloc(query_attr_size, GFP_KERNEL); 4027 if (!query_attr) { 4028 ret = -ENOMEM; 4029 goto exit; 4030 } 4031 4032 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC; 4033 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC; 4034 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS; 4035 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY; 4036 4037 for (index = 0; index < num_devices; index++) { 4038 struct kfd_process_device *pdd = p->pdds[index]; 4039 4040 query_attr[index + nattr_common].type = 4041 KFD_IOCTL_SVM_ATTR_ACCESS; 4042 query_attr[index + nattr_common].value = pdd->user_gpu_id; 4043 } 4044 4045 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size; 4046 4047 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL); 4048 if (!svm_priv) { 4049 ret = -ENOMEM; 4050 goto exit_query; 4051 } 4052 4053 index = 0; 4054 list_for_each_entry(prange, &svms->list, list) { 4055 4056 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE; 4057 svm_priv->start_addr = prange->start; 4058 svm_priv->size = prange->npages; 4059 memcpy(&svm_priv->attrs, query_attr, query_attr_size); 4060 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n", 4061 prange, prange->start, prange->npages, 4062 prange->start + prange->npages - 1, 4063 prange->npages * PAGE_SIZE); 4064 4065 ret = svm_range_get_attr(p, mm, svm_priv->start_addr, 4066 svm_priv->size, 4067 (nattr_common + num_devices), 4068 svm_priv->attrs); 4069 if (ret) { 4070 pr_err("CRIU: failed to obtain range attributes\n"); 4071 goto exit_priv; 4072 } 4073 4074 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv, 4075 svm_priv_data_size)) { 4076 pr_err("Failed to copy svm priv to user\n"); 4077 ret = -EFAULT; 4078 goto exit_priv; 4079 } 4080 4081 *priv_data_offset += svm_priv_data_size; 4082 4083 } 4084 4085 4086 exit_priv: 4087 kfree(svm_priv); 4088 exit_query: 4089 kfree(query_attr); 4090 exit: 4091 mmput(mm); 4092 return ret; 4093 } 4094 4095 int 4096 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start, 4097 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs) 4098 { 4099 struct mm_struct *mm = current->mm; 4100 int r; 4101 4102 start >>= PAGE_SHIFT; 4103 size >>= PAGE_SHIFT; 4104 4105 switch (op) { 4106 case KFD_IOCTL_SVM_OP_SET_ATTR: 4107 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs); 4108 break; 4109 case KFD_IOCTL_SVM_OP_GET_ATTR: 4110 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs); 4111 break; 4112 default: 4113 r = EINVAL; 4114 break; 4115 } 4116 4117 return r; 4118 } 4119