1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/types.h> 25 #include <linux/sched/task.h> 26 #include "amdgpu_sync.h" 27 #include "amdgpu_object.h" 28 #include "amdgpu_vm.h" 29 #include "amdgpu_mn.h" 30 #include "amdgpu.h" 31 #include "amdgpu_xgmi.h" 32 #include "kfd_priv.h" 33 #include "kfd_svm.h" 34 #include "kfd_migrate.h" 35 36 #ifdef dev_fmt 37 #undef dev_fmt 38 #endif 39 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__ 40 41 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1 42 43 /* Long enough to ensure no retry fault comes after svm range is restored and 44 * page table is updated. 45 */ 46 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING 2000 47 48 struct criu_svm_metadata { 49 struct list_head list; 50 struct kfd_criu_svm_range_priv_data data; 51 }; 52 53 static void svm_range_evict_svm_bo_worker(struct work_struct *work); 54 static bool 55 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, 56 const struct mmu_notifier_range *range, 57 unsigned long cur_seq); 58 static int 59 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, 60 uint64_t *bo_s, uint64_t *bo_l); 61 static const struct mmu_interval_notifier_ops svm_range_mn_ops = { 62 .invalidate = svm_range_cpu_invalidate_pagetables, 63 }; 64 65 /** 66 * svm_range_unlink - unlink svm_range from lists and interval tree 67 * @prange: svm range structure to be removed 68 * 69 * Remove the svm_range from the svms and svm_bo lists and the svms 70 * interval tree. 71 * 72 * Context: The caller must hold svms->lock 73 */ 74 static void svm_range_unlink(struct svm_range *prange) 75 { 76 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 77 prange, prange->start, prange->last); 78 79 if (prange->svm_bo) { 80 spin_lock(&prange->svm_bo->list_lock); 81 list_del(&prange->svm_bo_list); 82 spin_unlock(&prange->svm_bo->list_lock); 83 } 84 85 list_del(&prange->list); 86 if (prange->it_node.start != 0 && prange->it_node.last != 0) 87 interval_tree_remove(&prange->it_node, &prange->svms->objects); 88 } 89 90 static void 91 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange) 92 { 93 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 94 prange, prange->start, prange->last); 95 96 mmu_interval_notifier_insert_locked(&prange->notifier, mm, 97 prange->start << PAGE_SHIFT, 98 prange->npages << PAGE_SHIFT, 99 &svm_range_mn_ops); 100 } 101 102 /** 103 * svm_range_add_to_svms - add svm range to svms 104 * @prange: svm range structure to be added 105 * 106 * Add the svm range to svms interval tree and link list 107 * 108 * Context: The caller must hold svms->lock 109 */ 110 static void svm_range_add_to_svms(struct svm_range *prange) 111 { 112 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 113 prange, prange->start, prange->last); 114 115 list_move_tail(&prange->list, &prange->svms->list); 116 prange->it_node.start = prange->start; 117 prange->it_node.last = prange->last; 118 interval_tree_insert(&prange->it_node, &prange->svms->objects); 119 } 120 121 static void svm_range_remove_notifier(struct svm_range *prange) 122 { 123 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", 124 prange->svms, prange, 125 prange->notifier.interval_tree.start >> PAGE_SHIFT, 126 prange->notifier.interval_tree.last >> PAGE_SHIFT); 127 128 if (prange->notifier.interval_tree.start != 0 && 129 prange->notifier.interval_tree.last != 0) 130 mmu_interval_notifier_remove(&prange->notifier); 131 } 132 133 static bool 134 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr) 135 { 136 return dma_addr && !dma_mapping_error(dev, dma_addr) && 137 !(dma_addr & SVM_RANGE_VRAM_DOMAIN); 138 } 139 140 static int 141 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange, 142 unsigned long offset, unsigned long npages, 143 unsigned long *hmm_pfns, uint32_t gpuidx) 144 { 145 enum dma_data_direction dir = DMA_BIDIRECTIONAL; 146 dma_addr_t *addr = prange->dma_addr[gpuidx]; 147 struct device *dev = adev->dev; 148 struct page *page; 149 int i, r; 150 151 if (!addr) { 152 addr = kvmalloc_array(prange->npages, sizeof(*addr), 153 GFP_KERNEL | __GFP_ZERO); 154 if (!addr) 155 return -ENOMEM; 156 prange->dma_addr[gpuidx] = addr; 157 } 158 159 addr += offset; 160 for (i = 0; i < npages; i++) { 161 if (svm_is_valid_dma_mapping_addr(dev, addr[i])) 162 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir); 163 164 page = hmm_pfn_to_page(hmm_pfns[i]); 165 if (is_zone_device_page(page)) { 166 struct amdgpu_device *bo_adev = 167 amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); 168 169 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) + 170 bo_adev->vm_manager.vram_base_offset - 171 bo_adev->kfd.dev->pgmap.range.start; 172 addr[i] |= SVM_RANGE_VRAM_DOMAIN; 173 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]); 174 continue; 175 } 176 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir); 177 r = dma_mapping_error(dev, addr[i]); 178 if (r) { 179 dev_err(dev, "failed %d dma_map_page\n", r); 180 return r; 181 } 182 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n", 183 addr[i] >> PAGE_SHIFT, page_to_pfn(page)); 184 } 185 return 0; 186 } 187 188 static int 189 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap, 190 unsigned long offset, unsigned long npages, 191 unsigned long *hmm_pfns) 192 { 193 struct kfd_process *p; 194 uint32_t gpuidx; 195 int r; 196 197 p = container_of(prange->svms, struct kfd_process, svms); 198 199 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 200 struct kfd_process_device *pdd; 201 202 pr_debug("mapping to gpu idx 0x%x\n", gpuidx); 203 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 204 if (!pdd) { 205 pr_debug("failed to find device idx %d\n", gpuidx); 206 return -EINVAL; 207 } 208 209 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages, 210 hmm_pfns, gpuidx); 211 if (r) 212 break; 213 } 214 215 return r; 216 } 217 218 void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr, 219 unsigned long offset, unsigned long npages) 220 { 221 enum dma_data_direction dir = DMA_BIDIRECTIONAL; 222 int i; 223 224 if (!dma_addr) 225 return; 226 227 for (i = offset; i < offset + npages; i++) { 228 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i])) 229 continue; 230 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT); 231 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir); 232 dma_addr[i] = 0; 233 } 234 } 235 236 void svm_range_free_dma_mappings(struct svm_range *prange) 237 { 238 struct kfd_process_device *pdd; 239 dma_addr_t *dma_addr; 240 struct device *dev; 241 struct kfd_process *p; 242 uint32_t gpuidx; 243 244 p = container_of(prange->svms, struct kfd_process, svms); 245 246 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) { 247 dma_addr = prange->dma_addr[gpuidx]; 248 if (!dma_addr) 249 continue; 250 251 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 252 if (!pdd) { 253 pr_debug("failed to find device idx %d\n", gpuidx); 254 continue; 255 } 256 dev = &pdd->dev->pdev->dev; 257 svm_range_dma_unmap(dev, dma_addr, 0, prange->npages); 258 kvfree(dma_addr); 259 prange->dma_addr[gpuidx] = NULL; 260 } 261 } 262 263 static void svm_range_free(struct svm_range *prange) 264 { 265 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, 266 prange->start, prange->last); 267 268 svm_range_vram_node_free(prange); 269 svm_range_free_dma_mappings(prange); 270 mutex_destroy(&prange->lock); 271 mutex_destroy(&prange->migrate_mutex); 272 kfree(prange); 273 } 274 275 static void 276 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc, 277 uint8_t *granularity, uint32_t *flags) 278 { 279 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 280 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 281 *granularity = 9; 282 *flags = 283 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT; 284 } 285 286 static struct 287 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start, 288 uint64_t last) 289 { 290 uint64_t size = last - start + 1; 291 struct svm_range *prange; 292 struct kfd_process *p; 293 294 prange = kzalloc(sizeof(*prange), GFP_KERNEL); 295 if (!prange) 296 return NULL; 297 prange->npages = size; 298 prange->svms = svms; 299 prange->start = start; 300 prange->last = last; 301 INIT_LIST_HEAD(&prange->list); 302 INIT_LIST_HEAD(&prange->update_list); 303 INIT_LIST_HEAD(&prange->svm_bo_list); 304 INIT_LIST_HEAD(&prange->deferred_list); 305 INIT_LIST_HEAD(&prange->child_list); 306 atomic_set(&prange->invalid, 0); 307 prange->validate_timestamp = 0; 308 mutex_init(&prange->migrate_mutex); 309 mutex_init(&prange->lock); 310 311 p = container_of(svms, struct kfd_process, svms); 312 if (p->xnack_enabled) 313 bitmap_copy(prange->bitmap_access, svms->bitmap_supported, 314 MAX_GPU_INSTANCE); 315 316 svm_range_set_default_attributes(&prange->preferred_loc, 317 &prange->prefetch_loc, 318 &prange->granularity, &prange->flags); 319 320 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last); 321 322 return prange; 323 } 324 325 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo) 326 { 327 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref)) 328 return false; 329 330 return true; 331 } 332 333 static void svm_range_bo_release(struct kref *kref) 334 { 335 struct svm_range_bo *svm_bo; 336 337 svm_bo = container_of(kref, struct svm_range_bo, kref); 338 pr_debug("svm_bo 0x%p\n", svm_bo); 339 340 spin_lock(&svm_bo->list_lock); 341 while (!list_empty(&svm_bo->range_list)) { 342 struct svm_range *prange = 343 list_first_entry(&svm_bo->range_list, 344 struct svm_range, svm_bo_list); 345 /* list_del_init tells a concurrent svm_range_vram_node_new when 346 * it's safe to reuse the svm_bo pointer and svm_bo_list head. 347 */ 348 list_del_init(&prange->svm_bo_list); 349 spin_unlock(&svm_bo->list_lock); 350 351 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, 352 prange->start, prange->last); 353 mutex_lock(&prange->lock); 354 prange->svm_bo = NULL; 355 mutex_unlock(&prange->lock); 356 357 spin_lock(&svm_bo->list_lock); 358 } 359 spin_unlock(&svm_bo->list_lock); 360 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) { 361 /* We're not in the eviction worker. 362 * Signal the fence and synchronize with any 363 * pending eviction work. 364 */ 365 dma_fence_signal(&svm_bo->eviction_fence->base); 366 cancel_work_sync(&svm_bo->eviction_work); 367 } 368 dma_fence_put(&svm_bo->eviction_fence->base); 369 amdgpu_bo_unref(&svm_bo->bo); 370 kfree(svm_bo); 371 } 372 373 static void svm_range_bo_wq_release(struct work_struct *work) 374 { 375 struct svm_range_bo *svm_bo; 376 377 svm_bo = container_of(work, struct svm_range_bo, release_work); 378 svm_range_bo_release(&svm_bo->kref); 379 } 380 381 static void svm_range_bo_release_async(struct kref *kref) 382 { 383 struct svm_range_bo *svm_bo; 384 385 svm_bo = container_of(kref, struct svm_range_bo, kref); 386 pr_debug("svm_bo 0x%p\n", svm_bo); 387 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release); 388 schedule_work(&svm_bo->release_work); 389 } 390 391 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo) 392 { 393 kref_put(&svm_bo->kref, svm_range_bo_release_async); 394 } 395 396 static void svm_range_bo_unref(struct svm_range_bo *svm_bo) 397 { 398 if (svm_bo) 399 kref_put(&svm_bo->kref, svm_range_bo_release); 400 } 401 402 static bool 403 svm_range_validate_svm_bo(struct amdgpu_device *adev, struct svm_range *prange) 404 { 405 struct amdgpu_device *bo_adev; 406 407 mutex_lock(&prange->lock); 408 if (!prange->svm_bo) { 409 mutex_unlock(&prange->lock); 410 return false; 411 } 412 if (prange->ttm_res) { 413 /* We still have a reference, all is well */ 414 mutex_unlock(&prange->lock); 415 return true; 416 } 417 if (svm_bo_ref_unless_zero(prange->svm_bo)) { 418 /* 419 * Migrate from GPU to GPU, remove range from source bo_adev 420 * svm_bo range list, and return false to allocate svm_bo from 421 * destination adev. 422 */ 423 bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); 424 if (bo_adev != adev) { 425 mutex_unlock(&prange->lock); 426 427 spin_lock(&prange->svm_bo->list_lock); 428 list_del_init(&prange->svm_bo_list); 429 spin_unlock(&prange->svm_bo->list_lock); 430 431 svm_range_bo_unref(prange->svm_bo); 432 return false; 433 } 434 if (READ_ONCE(prange->svm_bo->evicting)) { 435 struct dma_fence *f; 436 struct svm_range_bo *svm_bo; 437 /* The BO is getting evicted, 438 * we need to get a new one 439 */ 440 mutex_unlock(&prange->lock); 441 svm_bo = prange->svm_bo; 442 f = dma_fence_get(&svm_bo->eviction_fence->base); 443 svm_range_bo_unref(prange->svm_bo); 444 /* wait for the fence to avoid long spin-loop 445 * at list_empty_careful 446 */ 447 dma_fence_wait(f, false); 448 dma_fence_put(f); 449 } else { 450 /* The BO was still around and we got 451 * a new reference to it 452 */ 453 mutex_unlock(&prange->lock); 454 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n", 455 prange->svms, prange->start, prange->last); 456 457 prange->ttm_res = prange->svm_bo->bo->tbo.resource; 458 return true; 459 } 460 461 } else { 462 mutex_unlock(&prange->lock); 463 } 464 465 /* We need a new svm_bo. Spin-loop to wait for concurrent 466 * svm_range_bo_release to finish removing this range from 467 * its range list. After this, it is safe to reuse the 468 * svm_bo pointer and svm_bo_list head. 469 */ 470 while (!list_empty_careful(&prange->svm_bo_list)) 471 ; 472 473 return false; 474 } 475 476 static struct svm_range_bo *svm_range_bo_new(void) 477 { 478 struct svm_range_bo *svm_bo; 479 480 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL); 481 if (!svm_bo) 482 return NULL; 483 484 kref_init(&svm_bo->kref); 485 INIT_LIST_HEAD(&svm_bo->range_list); 486 spin_lock_init(&svm_bo->list_lock); 487 488 return svm_bo; 489 } 490 491 int 492 svm_range_vram_node_new(struct amdgpu_device *adev, struct svm_range *prange, 493 bool clear) 494 { 495 struct amdgpu_bo_param bp; 496 struct svm_range_bo *svm_bo; 497 struct amdgpu_bo_user *ubo; 498 struct amdgpu_bo *bo; 499 struct kfd_process *p; 500 struct mm_struct *mm; 501 int r; 502 503 p = container_of(prange->svms, struct kfd_process, svms); 504 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms, 505 prange->start, prange->last); 506 507 if (svm_range_validate_svm_bo(adev, prange)) 508 return 0; 509 510 svm_bo = svm_range_bo_new(); 511 if (!svm_bo) { 512 pr_debug("failed to alloc svm bo\n"); 513 return -ENOMEM; 514 } 515 mm = get_task_mm(p->lead_thread); 516 if (!mm) { 517 pr_debug("failed to get mm\n"); 518 kfree(svm_bo); 519 return -ESRCH; 520 } 521 svm_bo->svms = prange->svms; 522 svm_bo->eviction_fence = 523 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 524 mm, 525 svm_bo); 526 mmput(mm); 527 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker); 528 svm_bo->evicting = 0; 529 memset(&bp, 0, sizeof(bp)); 530 bp.size = prange->npages * PAGE_SIZE; 531 bp.byte_align = PAGE_SIZE; 532 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 533 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS; 534 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0; 535 bp.flags |= AMDGPU_AMDKFD_CREATE_SVM_BO; 536 bp.type = ttm_bo_type_device; 537 bp.resv = NULL; 538 539 r = amdgpu_bo_create_user(adev, &bp, &ubo); 540 if (r) { 541 pr_debug("failed %d to create bo\n", r); 542 goto create_bo_failed; 543 } 544 bo = &ubo->bo; 545 r = amdgpu_bo_reserve(bo, true); 546 if (r) { 547 pr_debug("failed %d to reserve bo\n", r); 548 goto reserve_bo_failed; 549 } 550 551 r = dma_resv_reserve_shared(bo->tbo.base.resv, 1); 552 if (r) { 553 pr_debug("failed %d to reserve bo\n", r); 554 amdgpu_bo_unreserve(bo); 555 goto reserve_bo_failed; 556 } 557 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true); 558 559 amdgpu_bo_unreserve(bo); 560 561 svm_bo->bo = bo; 562 prange->svm_bo = svm_bo; 563 prange->ttm_res = bo->tbo.resource; 564 prange->offset = 0; 565 566 spin_lock(&svm_bo->list_lock); 567 list_add(&prange->svm_bo_list, &svm_bo->range_list); 568 spin_unlock(&svm_bo->list_lock); 569 570 return 0; 571 572 reserve_bo_failed: 573 amdgpu_bo_unref(&bo); 574 create_bo_failed: 575 dma_fence_put(&svm_bo->eviction_fence->base); 576 kfree(svm_bo); 577 prange->ttm_res = NULL; 578 579 return r; 580 } 581 582 void svm_range_vram_node_free(struct svm_range *prange) 583 { 584 svm_range_bo_unref(prange->svm_bo); 585 prange->ttm_res = NULL; 586 } 587 588 struct amdgpu_device * 589 svm_range_get_adev_by_id(struct svm_range *prange, uint32_t gpu_id) 590 { 591 struct kfd_process_device *pdd; 592 struct kfd_process *p; 593 int32_t gpu_idx; 594 595 p = container_of(prange->svms, struct kfd_process, svms); 596 597 gpu_idx = kfd_process_gpuidx_from_gpuid(p, gpu_id); 598 if (gpu_idx < 0) { 599 pr_debug("failed to get device by id 0x%x\n", gpu_id); 600 return NULL; 601 } 602 pdd = kfd_process_device_from_gpuidx(p, gpu_idx); 603 if (!pdd) { 604 pr_debug("failed to get device by idx 0x%x\n", gpu_idx); 605 return NULL; 606 } 607 608 return pdd->dev->adev; 609 } 610 611 struct kfd_process_device * 612 svm_range_get_pdd_by_adev(struct svm_range *prange, struct amdgpu_device *adev) 613 { 614 struct kfd_process *p; 615 int32_t gpu_idx, gpuid; 616 int r; 617 618 p = container_of(prange->svms, struct kfd_process, svms); 619 620 r = kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpu_idx); 621 if (r) { 622 pr_debug("failed to get device id by adev %p\n", adev); 623 return NULL; 624 } 625 626 return kfd_process_device_from_gpuidx(p, gpu_idx); 627 } 628 629 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo) 630 { 631 struct ttm_operation_ctx ctx = { false, false }; 632 633 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM); 634 635 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 636 } 637 638 static int 639 svm_range_check_attr(struct kfd_process *p, 640 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) 641 { 642 uint32_t i; 643 644 for (i = 0; i < nattr; i++) { 645 uint32_t val = attrs[i].value; 646 int gpuidx = MAX_GPU_INSTANCE; 647 648 switch (attrs[i].type) { 649 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 650 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM && 651 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED) 652 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 653 break; 654 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 655 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM) 656 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 657 break; 658 case KFD_IOCTL_SVM_ATTR_ACCESS: 659 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 660 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 661 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 662 break; 663 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 664 break; 665 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 666 break; 667 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 668 break; 669 default: 670 pr_debug("unknown attr type 0x%x\n", attrs[i].type); 671 return -EINVAL; 672 } 673 674 if (gpuidx < 0) { 675 pr_debug("no GPU 0x%x found\n", val); 676 return -EINVAL; 677 } else if (gpuidx < MAX_GPU_INSTANCE && 678 !test_bit(gpuidx, p->svms.bitmap_supported)) { 679 pr_debug("GPU 0x%x not supported\n", val); 680 return -EINVAL; 681 } 682 } 683 684 return 0; 685 } 686 687 static void 688 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange, 689 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) 690 { 691 uint32_t i; 692 int gpuidx; 693 694 for (i = 0; i < nattr; i++) { 695 switch (attrs[i].type) { 696 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 697 prange->preferred_loc = attrs[i].value; 698 break; 699 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 700 prange->prefetch_loc = attrs[i].value; 701 break; 702 case KFD_IOCTL_SVM_ATTR_ACCESS: 703 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 704 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 705 gpuidx = kfd_process_gpuidx_from_gpuid(p, 706 attrs[i].value); 707 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { 708 bitmap_clear(prange->bitmap_access, gpuidx, 1); 709 bitmap_clear(prange->bitmap_aip, gpuidx, 1); 710 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { 711 bitmap_set(prange->bitmap_access, gpuidx, 1); 712 bitmap_clear(prange->bitmap_aip, gpuidx, 1); 713 } else { 714 bitmap_clear(prange->bitmap_access, gpuidx, 1); 715 bitmap_set(prange->bitmap_aip, gpuidx, 1); 716 } 717 break; 718 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 719 prange->flags |= attrs[i].value; 720 break; 721 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 722 prange->flags &= ~attrs[i].value; 723 break; 724 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 725 prange->granularity = attrs[i].value; 726 break; 727 default: 728 WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); 729 } 730 } 731 } 732 733 static bool 734 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange, 735 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) 736 { 737 uint32_t i; 738 int gpuidx; 739 740 for (i = 0; i < nattr; i++) { 741 switch (attrs[i].type) { 742 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 743 if (prange->preferred_loc != attrs[i].value) 744 return false; 745 break; 746 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 747 /* Prefetch should always trigger a migration even 748 * if the value of the attribute didn't change. 749 */ 750 return false; 751 case KFD_IOCTL_SVM_ATTR_ACCESS: 752 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 753 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 754 gpuidx = kfd_process_gpuidx_from_gpuid(p, 755 attrs[i].value); 756 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { 757 if (test_bit(gpuidx, prange->bitmap_access) || 758 test_bit(gpuidx, prange->bitmap_aip)) 759 return false; 760 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { 761 if (!test_bit(gpuidx, prange->bitmap_access)) 762 return false; 763 } else { 764 if (!test_bit(gpuidx, prange->bitmap_aip)) 765 return false; 766 } 767 break; 768 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 769 if ((prange->flags & attrs[i].value) != attrs[i].value) 770 return false; 771 break; 772 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 773 if ((prange->flags & attrs[i].value) != 0) 774 return false; 775 break; 776 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 777 if (prange->granularity != attrs[i].value) 778 return false; 779 break; 780 default: 781 WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); 782 } 783 } 784 785 return true; 786 } 787 788 /** 789 * svm_range_debug_dump - print all range information from svms 790 * @svms: svm range list header 791 * 792 * debug output svm range start, end, prefetch location from svms 793 * interval tree and link list 794 * 795 * Context: The caller must hold svms->lock 796 */ 797 static void svm_range_debug_dump(struct svm_range_list *svms) 798 { 799 struct interval_tree_node *node; 800 struct svm_range *prange; 801 802 pr_debug("dump svms 0x%p list\n", svms); 803 pr_debug("range\tstart\tpage\tend\t\tlocation\n"); 804 805 list_for_each_entry(prange, &svms->list, list) { 806 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", 807 prange, prange->start, prange->npages, 808 prange->start + prange->npages - 1, 809 prange->actual_loc); 810 } 811 812 pr_debug("dump svms 0x%p interval tree\n", svms); 813 pr_debug("range\tstart\tpage\tend\t\tlocation\n"); 814 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL); 815 while (node) { 816 prange = container_of(node, struct svm_range, it_node); 817 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", 818 prange, prange->start, prange->npages, 819 prange->start + prange->npages - 1, 820 prange->actual_loc); 821 node = interval_tree_iter_next(node, 0, ~0ULL); 822 } 823 } 824 825 static int 826 svm_range_split_array(void *ppnew, void *ppold, size_t size, 827 uint64_t old_start, uint64_t old_n, 828 uint64_t new_start, uint64_t new_n) 829 { 830 unsigned char *new, *old, *pold; 831 uint64_t d; 832 833 if (!ppold) 834 return 0; 835 pold = *(unsigned char **)ppold; 836 if (!pold) 837 return 0; 838 839 new = kvmalloc_array(new_n, size, GFP_KERNEL); 840 if (!new) 841 return -ENOMEM; 842 843 d = (new_start - old_start) * size; 844 memcpy(new, pold + d, new_n * size); 845 846 old = kvmalloc_array(old_n, size, GFP_KERNEL); 847 if (!old) { 848 kvfree(new); 849 return -ENOMEM; 850 } 851 852 d = (new_start == old_start) ? new_n * size : 0; 853 memcpy(old, pold + d, old_n * size); 854 855 kvfree(pold); 856 *(void **)ppold = old; 857 *(void **)ppnew = new; 858 859 return 0; 860 } 861 862 static int 863 svm_range_split_pages(struct svm_range *new, struct svm_range *old, 864 uint64_t start, uint64_t last) 865 { 866 uint64_t npages = last - start + 1; 867 int i, r; 868 869 for (i = 0; i < MAX_GPU_INSTANCE; i++) { 870 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i], 871 sizeof(*old->dma_addr[i]), old->start, 872 npages, new->start, new->npages); 873 if (r) 874 return r; 875 } 876 877 return 0; 878 } 879 880 static int 881 svm_range_split_nodes(struct svm_range *new, struct svm_range *old, 882 uint64_t start, uint64_t last) 883 { 884 uint64_t npages = last - start + 1; 885 886 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n", 887 new->svms, new, new->start, start, last); 888 889 if (new->start == old->start) { 890 new->offset = old->offset; 891 old->offset += new->npages; 892 } else { 893 new->offset = old->offset + npages; 894 } 895 896 new->svm_bo = svm_range_bo_ref(old->svm_bo); 897 new->ttm_res = old->ttm_res; 898 899 spin_lock(&new->svm_bo->list_lock); 900 list_add(&new->svm_bo_list, &new->svm_bo->range_list); 901 spin_unlock(&new->svm_bo->list_lock); 902 903 return 0; 904 } 905 906 /** 907 * svm_range_split_adjust - split range and adjust 908 * 909 * @new: new range 910 * @old: the old range 911 * @start: the old range adjust to start address in pages 912 * @last: the old range adjust to last address in pages 913 * 914 * Copy system memory dma_addr or vram ttm_res in old range to new 915 * range from new_start up to size new->npages, the remaining old range is from 916 * start to last 917 * 918 * Return: 919 * 0 - OK, -ENOMEM - out of memory 920 */ 921 static int 922 svm_range_split_adjust(struct svm_range *new, struct svm_range *old, 923 uint64_t start, uint64_t last) 924 { 925 int r; 926 927 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n", 928 new->svms, new->start, old->start, old->last, start, last); 929 930 if (new->start < old->start || 931 new->last > old->last) { 932 WARN_ONCE(1, "invalid new range start or last\n"); 933 return -EINVAL; 934 } 935 936 r = svm_range_split_pages(new, old, start, last); 937 if (r) 938 return r; 939 940 if (old->actual_loc && old->ttm_res) { 941 r = svm_range_split_nodes(new, old, start, last); 942 if (r) 943 return r; 944 } 945 946 old->npages = last - start + 1; 947 old->start = start; 948 old->last = last; 949 new->flags = old->flags; 950 new->preferred_loc = old->preferred_loc; 951 new->prefetch_loc = old->prefetch_loc; 952 new->actual_loc = old->actual_loc; 953 new->granularity = old->granularity; 954 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); 955 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); 956 957 return 0; 958 } 959 960 /** 961 * svm_range_split - split a range in 2 ranges 962 * 963 * @prange: the svm range to split 964 * @start: the remaining range start address in pages 965 * @last: the remaining range last address in pages 966 * @new: the result new range generated 967 * 968 * Two cases only: 969 * case 1: if start == prange->start 970 * prange ==> prange[start, last] 971 * new range [last + 1, prange->last] 972 * 973 * case 2: if last == prange->last 974 * prange ==> prange[start, last] 975 * new range [prange->start, start - 1] 976 * 977 * Return: 978 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last 979 */ 980 static int 981 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last, 982 struct svm_range **new) 983 { 984 uint64_t old_start = prange->start; 985 uint64_t old_last = prange->last; 986 struct svm_range_list *svms; 987 int r = 0; 988 989 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms, 990 old_start, old_last, start, last); 991 992 if (old_start != start && old_last != last) 993 return -EINVAL; 994 if (start < old_start || last > old_last) 995 return -EINVAL; 996 997 svms = prange->svms; 998 if (old_start == start) 999 *new = svm_range_new(svms, last + 1, old_last); 1000 else 1001 *new = svm_range_new(svms, old_start, start - 1); 1002 if (!*new) 1003 return -ENOMEM; 1004 1005 r = svm_range_split_adjust(*new, prange, start, last); 1006 if (r) { 1007 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", 1008 r, old_start, old_last, start, last); 1009 svm_range_free(*new); 1010 *new = NULL; 1011 } 1012 1013 return r; 1014 } 1015 1016 static int 1017 svm_range_split_tail(struct svm_range *prange, 1018 uint64_t new_last, struct list_head *insert_list) 1019 { 1020 struct svm_range *tail; 1021 int r = svm_range_split(prange, prange->start, new_last, &tail); 1022 1023 if (!r) 1024 list_add(&tail->list, insert_list); 1025 return r; 1026 } 1027 1028 static int 1029 svm_range_split_head(struct svm_range *prange, 1030 uint64_t new_start, struct list_head *insert_list) 1031 { 1032 struct svm_range *head; 1033 int r = svm_range_split(prange, new_start, prange->last, &head); 1034 1035 if (!r) 1036 list_add(&head->list, insert_list); 1037 return r; 1038 } 1039 1040 static void 1041 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm, 1042 struct svm_range *pchild, enum svm_work_list_ops op) 1043 { 1044 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n", 1045 pchild, pchild->start, pchild->last, prange, op); 1046 1047 pchild->work_item.mm = mm; 1048 pchild->work_item.op = op; 1049 list_add_tail(&pchild->child_list, &prange->child_list); 1050 } 1051 1052 /** 1053 * svm_range_split_by_granularity - collect ranges within granularity boundary 1054 * 1055 * @p: the process with svms list 1056 * @mm: mm structure 1057 * @addr: the vm fault address in pages, to split the prange 1058 * @parent: parent range if prange is from child list 1059 * @prange: prange to split 1060 * 1061 * Trims @prange to be a single aligned block of prange->granularity if 1062 * possible. The head and tail are added to the child_list in @parent. 1063 * 1064 * Context: caller must hold mmap_read_lock and prange->lock 1065 * 1066 * Return: 1067 * 0 - OK, otherwise error code 1068 */ 1069 int 1070 svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm, 1071 unsigned long addr, struct svm_range *parent, 1072 struct svm_range *prange) 1073 { 1074 struct svm_range *head, *tail; 1075 unsigned long start, last, size; 1076 int r; 1077 1078 /* Align splited range start and size to granularity size, then a single 1079 * PTE will be used for whole range, this reduces the number of PTE 1080 * updated and the L1 TLB space used for translation. 1081 */ 1082 size = 1UL << prange->granularity; 1083 start = ALIGN_DOWN(addr, size); 1084 last = ALIGN(addr + 1, size) - 1; 1085 1086 pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n", 1087 prange->svms, prange->start, prange->last, start, last, size); 1088 1089 if (start > prange->start) { 1090 r = svm_range_split(prange, start, prange->last, &head); 1091 if (r) 1092 return r; 1093 svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE); 1094 } 1095 1096 if (last < prange->last) { 1097 r = svm_range_split(prange, prange->start, last, &tail); 1098 if (r) 1099 return r; 1100 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); 1101 } 1102 1103 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */ 1104 if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) { 1105 prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP; 1106 pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n", 1107 prange, prange->start, prange->last, 1108 SVM_OP_ADD_RANGE_AND_MAP); 1109 } 1110 return 0; 1111 } 1112 1113 static uint64_t 1114 svm_range_get_pte_flags(struct amdgpu_device *adev, struct svm_range *prange, 1115 int domain) 1116 { 1117 struct amdgpu_device *bo_adev; 1118 uint32_t flags = prange->flags; 1119 uint32_t mapping_flags = 0; 1120 uint64_t pte_flags; 1121 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN); 1122 bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT; 1123 1124 if (domain == SVM_RANGE_VRAM_DOMAIN) 1125 bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); 1126 1127 switch (KFD_GC_VERSION(adev->kfd.dev)) { 1128 case IP_VERSION(9, 4, 1): 1129 if (domain == SVM_RANGE_VRAM_DOMAIN) { 1130 if (bo_adev == adev) { 1131 mapping_flags |= coherent ? 1132 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; 1133 } else { 1134 mapping_flags |= coherent ? 1135 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1136 if (amdgpu_xgmi_same_hive(adev, bo_adev)) 1137 snoop = true; 1138 } 1139 } else { 1140 mapping_flags |= coherent ? 1141 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1142 } 1143 break; 1144 case IP_VERSION(9, 4, 2): 1145 if (domain == SVM_RANGE_VRAM_DOMAIN) { 1146 if (bo_adev == adev) { 1147 mapping_flags |= coherent ? 1148 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; 1149 if (adev->gmc.xgmi.connected_to_cpu) 1150 snoop = true; 1151 } else { 1152 mapping_flags |= coherent ? 1153 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1154 if (amdgpu_xgmi_same_hive(adev, bo_adev)) 1155 snoop = true; 1156 } 1157 } else { 1158 mapping_flags |= coherent ? 1159 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1160 } 1161 break; 1162 default: 1163 mapping_flags |= coherent ? 1164 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1165 } 1166 1167 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE; 1168 1169 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO) 1170 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE; 1171 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC) 1172 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 1173 1174 pte_flags = AMDGPU_PTE_VALID; 1175 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM; 1176 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0; 1177 1178 pte_flags |= amdgpu_gem_va_map_flags(adev, mapping_flags); 1179 return pte_flags; 1180 } 1181 1182 static int 1183 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1184 uint64_t start, uint64_t last, 1185 struct dma_fence **fence) 1186 { 1187 uint64_t init_pte_value = 0; 1188 1189 pr_debug("[0x%llx 0x%llx]\n", start, last); 1190 1191 return amdgpu_vm_update_range(adev, vm, false, true, true, NULL, start, 1192 last, init_pte_value, 0, 0, NULL, NULL, 1193 fence); 1194 } 1195 1196 static int 1197 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start, 1198 unsigned long last) 1199 { 1200 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 1201 struct kfd_process_device *pdd; 1202 struct dma_fence *fence = NULL; 1203 struct kfd_process *p; 1204 uint32_t gpuidx; 1205 int r = 0; 1206 1207 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, 1208 MAX_GPU_INSTANCE); 1209 p = container_of(prange->svms, struct kfd_process, svms); 1210 1211 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 1212 pr_debug("unmap from gpu idx 0x%x\n", gpuidx); 1213 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1214 if (!pdd) { 1215 pr_debug("failed to find device idx %d\n", gpuidx); 1216 return -EINVAL; 1217 } 1218 1219 r = svm_range_unmap_from_gpu(pdd->dev->adev, 1220 drm_priv_to_vm(pdd->drm_priv), 1221 start, last, &fence); 1222 if (r) 1223 break; 1224 1225 if (fence) { 1226 r = dma_fence_wait(fence, false); 1227 dma_fence_put(fence); 1228 fence = NULL; 1229 if (r) 1230 break; 1231 } 1232 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT); 1233 } 1234 1235 return r; 1236 } 1237 1238 static int 1239 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange, 1240 unsigned long offset, unsigned long npages, bool readonly, 1241 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev, 1242 struct dma_fence **fence) 1243 { 1244 struct amdgpu_device *adev = pdd->dev->adev; 1245 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv); 1246 uint64_t pte_flags; 1247 unsigned long last_start; 1248 int last_domain; 1249 int r = 0; 1250 int64_t i, j; 1251 1252 last_start = prange->start + offset; 1253 1254 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms, 1255 last_start, last_start + npages - 1, readonly); 1256 1257 for (i = offset; i < offset + npages; i++) { 1258 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN; 1259 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN; 1260 1261 /* Collect all pages in the same address range and memory domain 1262 * that can be mapped with a single call to update mapping. 1263 */ 1264 if (i < offset + npages - 1 && 1265 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN)) 1266 continue; 1267 1268 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n", 1269 last_start, prange->start + i, last_domain ? "GPU" : "CPU"); 1270 1271 pte_flags = svm_range_get_pte_flags(adev, prange, last_domain); 1272 if (readonly) 1273 pte_flags &= ~AMDGPU_PTE_WRITEABLE; 1274 1275 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n", 1276 prange->svms, last_start, prange->start + i, 1277 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0, 1278 pte_flags); 1279 1280 r = amdgpu_vm_update_range(adev, vm, false, false, false, NULL, 1281 last_start, prange->start + i, 1282 pte_flags, 1283 last_start - prange->start, 1284 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0, 1285 NULL, dma_addr, &vm->last_update); 1286 1287 for (j = last_start - prange->start; j <= i; j++) 1288 dma_addr[j] |= last_domain; 1289 1290 if (r) { 1291 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start); 1292 goto out; 1293 } 1294 last_start = prange->start + i + 1; 1295 } 1296 1297 r = amdgpu_vm_update_pdes(adev, vm, false); 1298 if (r) { 1299 pr_debug("failed %d to update directories 0x%lx\n", r, 1300 prange->start); 1301 goto out; 1302 } 1303 1304 if (fence) 1305 *fence = dma_fence_get(vm->last_update); 1306 1307 out: 1308 return r; 1309 } 1310 1311 static int 1312 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset, 1313 unsigned long npages, bool readonly, 1314 unsigned long *bitmap, bool wait) 1315 { 1316 struct kfd_process_device *pdd; 1317 struct amdgpu_device *bo_adev; 1318 struct kfd_process *p; 1319 struct dma_fence *fence = NULL; 1320 uint32_t gpuidx; 1321 int r = 0; 1322 1323 if (prange->svm_bo && prange->ttm_res) 1324 bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); 1325 else 1326 bo_adev = NULL; 1327 1328 p = container_of(prange->svms, struct kfd_process, svms); 1329 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 1330 pr_debug("mapping to gpu idx 0x%x\n", gpuidx); 1331 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1332 if (!pdd) { 1333 pr_debug("failed to find device idx %d\n", gpuidx); 1334 return -EINVAL; 1335 } 1336 1337 pdd = kfd_bind_process_to_device(pdd->dev, p); 1338 if (IS_ERR(pdd)) 1339 return -EINVAL; 1340 1341 if (bo_adev && pdd->dev->adev != bo_adev && 1342 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) { 1343 pr_debug("cannot map to device idx %d\n", gpuidx); 1344 continue; 1345 } 1346 1347 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly, 1348 prange->dma_addr[gpuidx], 1349 bo_adev, wait ? &fence : NULL); 1350 if (r) 1351 break; 1352 1353 if (fence) { 1354 r = dma_fence_wait(fence, false); 1355 dma_fence_put(fence); 1356 fence = NULL; 1357 if (r) { 1358 pr_debug("failed %d to dma fence wait\n", r); 1359 break; 1360 } 1361 } 1362 1363 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); 1364 } 1365 1366 return r; 1367 } 1368 1369 struct svm_validate_context { 1370 struct kfd_process *process; 1371 struct svm_range *prange; 1372 bool intr; 1373 unsigned long bitmap[MAX_GPU_INSTANCE]; 1374 struct ttm_validate_buffer tv[MAX_GPU_INSTANCE]; 1375 struct list_head validate_list; 1376 struct ww_acquire_ctx ticket; 1377 }; 1378 1379 static int svm_range_reserve_bos(struct svm_validate_context *ctx) 1380 { 1381 struct kfd_process_device *pdd; 1382 struct amdgpu_vm *vm; 1383 uint32_t gpuidx; 1384 int r; 1385 1386 INIT_LIST_HEAD(&ctx->validate_list); 1387 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { 1388 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); 1389 if (!pdd) { 1390 pr_debug("failed to find device idx %d\n", gpuidx); 1391 return -EINVAL; 1392 } 1393 vm = drm_priv_to_vm(pdd->drm_priv); 1394 1395 ctx->tv[gpuidx].bo = &vm->root.bo->tbo; 1396 ctx->tv[gpuidx].num_shared = 4; 1397 list_add(&ctx->tv[gpuidx].head, &ctx->validate_list); 1398 } 1399 1400 r = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->validate_list, 1401 ctx->intr, NULL); 1402 if (r) { 1403 pr_debug("failed %d to reserve bo\n", r); 1404 return r; 1405 } 1406 1407 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { 1408 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); 1409 if (!pdd) { 1410 pr_debug("failed to find device idx %d\n", gpuidx); 1411 r = -EINVAL; 1412 goto unreserve_out; 1413 } 1414 1415 r = amdgpu_vm_validate_pt_bos(pdd->dev->adev, 1416 drm_priv_to_vm(pdd->drm_priv), 1417 svm_range_bo_validate, NULL); 1418 if (r) { 1419 pr_debug("failed %d validate pt bos\n", r); 1420 goto unreserve_out; 1421 } 1422 } 1423 1424 return 0; 1425 1426 unreserve_out: 1427 ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list); 1428 return r; 1429 } 1430 1431 static void svm_range_unreserve_bos(struct svm_validate_context *ctx) 1432 { 1433 ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list); 1434 } 1435 1436 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx) 1437 { 1438 struct kfd_process_device *pdd; 1439 1440 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1441 1442 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev); 1443 } 1444 1445 /* 1446 * Validation+GPU mapping with concurrent invalidation (MMU notifiers) 1447 * 1448 * To prevent concurrent destruction or change of range attributes, the 1449 * svm_read_lock must be held. The caller must not hold the svm_write_lock 1450 * because that would block concurrent evictions and lead to deadlocks. To 1451 * serialize concurrent migrations or validations of the same range, the 1452 * prange->migrate_mutex must be held. 1453 * 1454 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its 1455 * eviction fence. 1456 * 1457 * The following sequence ensures race-free validation and GPU mapping: 1458 * 1459 * 1. Reserve page table (and SVM BO if range is in VRAM) 1460 * 2. hmm_range_fault to get page addresses (if system memory) 1461 * 3. DMA-map pages (if system memory) 1462 * 4-a. Take notifier lock 1463 * 4-b. Check that pages still valid (mmu_interval_read_retry) 1464 * 4-c. Check that the range was not split or otherwise invalidated 1465 * 4-d. Update GPU page table 1466 * 4.e. Release notifier lock 1467 * 5. Release page table (and SVM BO) reservation 1468 */ 1469 static int svm_range_validate_and_map(struct mm_struct *mm, 1470 struct svm_range *prange, 1471 int32_t gpuidx, bool intr, bool wait) 1472 { 1473 struct svm_validate_context ctx; 1474 unsigned long start, end, addr; 1475 struct kfd_process *p; 1476 void *owner; 1477 int32_t idx; 1478 int r = 0; 1479 1480 ctx.process = container_of(prange->svms, struct kfd_process, svms); 1481 ctx.prange = prange; 1482 ctx.intr = intr; 1483 1484 if (gpuidx < MAX_GPU_INSTANCE) { 1485 bitmap_zero(ctx.bitmap, MAX_GPU_INSTANCE); 1486 bitmap_set(ctx.bitmap, gpuidx, 1); 1487 } else if (ctx.process->xnack_enabled) { 1488 bitmap_copy(ctx.bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); 1489 1490 /* If prefetch range to GPU, or GPU retry fault migrate range to 1491 * GPU, which has ACCESS attribute to the range, create mapping 1492 * on that GPU. 1493 */ 1494 if (prange->actual_loc) { 1495 gpuidx = kfd_process_gpuidx_from_gpuid(ctx.process, 1496 prange->actual_loc); 1497 if (gpuidx < 0) { 1498 WARN_ONCE(1, "failed get device by id 0x%x\n", 1499 prange->actual_loc); 1500 return -EINVAL; 1501 } 1502 if (test_bit(gpuidx, prange->bitmap_access)) 1503 bitmap_set(ctx.bitmap, gpuidx, 1); 1504 } 1505 } else { 1506 bitmap_or(ctx.bitmap, prange->bitmap_access, 1507 prange->bitmap_aip, MAX_GPU_INSTANCE); 1508 } 1509 1510 if (bitmap_empty(ctx.bitmap, MAX_GPU_INSTANCE)) 1511 return 0; 1512 1513 if (prange->actual_loc && !prange->ttm_res) { 1514 /* This should never happen. actual_loc gets set by 1515 * svm_migrate_ram_to_vram after allocating a BO. 1516 */ 1517 WARN_ONCE(1, "VRAM BO missing during validation\n"); 1518 return -EINVAL; 1519 } 1520 1521 svm_range_reserve_bos(&ctx); 1522 1523 p = container_of(prange->svms, struct kfd_process, svms); 1524 owner = kfd_svm_page_owner(p, find_first_bit(ctx.bitmap, 1525 MAX_GPU_INSTANCE)); 1526 for_each_set_bit(idx, ctx.bitmap, MAX_GPU_INSTANCE) { 1527 if (kfd_svm_page_owner(p, idx) != owner) { 1528 owner = NULL; 1529 break; 1530 } 1531 } 1532 1533 start = prange->start << PAGE_SHIFT; 1534 end = (prange->last + 1) << PAGE_SHIFT; 1535 for (addr = start; addr < end && !r; ) { 1536 struct hmm_range *hmm_range; 1537 struct vm_area_struct *vma; 1538 unsigned long next; 1539 unsigned long offset; 1540 unsigned long npages; 1541 bool readonly; 1542 1543 vma = find_vma(mm, addr); 1544 if (!vma || addr < vma->vm_start) { 1545 r = -EFAULT; 1546 goto unreserve_out; 1547 } 1548 readonly = !(vma->vm_flags & VM_WRITE); 1549 1550 next = min(vma->vm_end, end); 1551 npages = (next - addr) >> PAGE_SHIFT; 1552 WRITE_ONCE(p->svms.faulting_task, current); 1553 r = amdgpu_hmm_range_get_pages(&prange->notifier, mm, NULL, 1554 addr, npages, &hmm_range, 1555 readonly, true, owner); 1556 WRITE_ONCE(p->svms.faulting_task, NULL); 1557 if (r) { 1558 pr_debug("failed %d to get svm range pages\n", r); 1559 goto unreserve_out; 1560 } 1561 1562 offset = (addr - start) >> PAGE_SHIFT; 1563 r = svm_range_dma_map(prange, ctx.bitmap, offset, npages, 1564 hmm_range->hmm_pfns); 1565 if (r) { 1566 pr_debug("failed %d to dma map range\n", r); 1567 goto unreserve_out; 1568 } 1569 1570 svm_range_lock(prange); 1571 if (amdgpu_hmm_range_get_pages_done(hmm_range)) { 1572 pr_debug("hmm update the range, need validate again\n"); 1573 r = -EAGAIN; 1574 goto unlock_out; 1575 } 1576 if (!list_empty(&prange->child_list)) { 1577 pr_debug("range split by unmap in parallel, validate again\n"); 1578 r = -EAGAIN; 1579 goto unlock_out; 1580 } 1581 1582 r = svm_range_map_to_gpus(prange, offset, npages, readonly, 1583 ctx.bitmap, wait); 1584 1585 unlock_out: 1586 svm_range_unlock(prange); 1587 1588 addr = next; 1589 } 1590 1591 if (addr == end) 1592 prange->validated_once = true; 1593 1594 unreserve_out: 1595 svm_range_unreserve_bos(&ctx); 1596 1597 if (!r) 1598 prange->validate_timestamp = ktime_to_us(ktime_get()); 1599 1600 return r; 1601 } 1602 1603 /** 1604 * svm_range_list_lock_and_flush_work - flush pending deferred work 1605 * 1606 * @svms: the svm range list 1607 * @mm: the mm structure 1608 * 1609 * Context: Returns with mmap write lock held, pending deferred work flushed 1610 * 1611 */ 1612 void 1613 svm_range_list_lock_and_flush_work(struct svm_range_list *svms, 1614 struct mm_struct *mm) 1615 { 1616 retry_flush_work: 1617 flush_work(&svms->deferred_list_work); 1618 mmap_write_lock(mm); 1619 1620 if (list_empty(&svms->deferred_range_list)) 1621 return; 1622 mmap_write_unlock(mm); 1623 pr_debug("retry flush\n"); 1624 goto retry_flush_work; 1625 } 1626 1627 static void svm_range_restore_work(struct work_struct *work) 1628 { 1629 struct delayed_work *dwork = to_delayed_work(work); 1630 struct amdkfd_process_info *process_info; 1631 struct svm_range_list *svms; 1632 struct svm_range *prange; 1633 struct kfd_process *p; 1634 struct mm_struct *mm; 1635 int evicted_ranges; 1636 int invalid; 1637 int r; 1638 1639 svms = container_of(dwork, struct svm_range_list, restore_work); 1640 evicted_ranges = atomic_read(&svms->evicted_ranges); 1641 if (!evicted_ranges) 1642 return; 1643 1644 pr_debug("restore svm ranges\n"); 1645 1646 p = container_of(svms, struct kfd_process, svms); 1647 process_info = p->kgd_process_info; 1648 1649 /* Keep mm reference when svm_range_validate_and_map ranges */ 1650 mm = get_task_mm(p->lead_thread); 1651 if (!mm) { 1652 pr_debug("svms 0x%p process mm gone\n", svms); 1653 return; 1654 } 1655 1656 mutex_lock(&process_info->lock); 1657 svm_range_list_lock_and_flush_work(svms, mm); 1658 mutex_lock(&svms->lock); 1659 1660 evicted_ranges = atomic_read(&svms->evicted_ranges); 1661 1662 list_for_each_entry(prange, &svms->list, list) { 1663 invalid = atomic_read(&prange->invalid); 1664 if (!invalid) 1665 continue; 1666 1667 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n", 1668 prange->svms, prange, prange->start, prange->last, 1669 invalid); 1670 1671 /* 1672 * If range is migrating, wait for migration is done. 1673 */ 1674 mutex_lock(&prange->migrate_mutex); 1675 1676 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE, 1677 false, true); 1678 if (r) 1679 pr_debug("failed %d to map 0x%lx to gpus\n", r, 1680 prange->start); 1681 1682 mutex_unlock(&prange->migrate_mutex); 1683 if (r) 1684 goto out_reschedule; 1685 1686 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid) 1687 goto out_reschedule; 1688 } 1689 1690 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) != 1691 evicted_ranges) 1692 goto out_reschedule; 1693 1694 evicted_ranges = 0; 1695 1696 r = kgd2kfd_resume_mm(mm); 1697 if (r) { 1698 /* No recovery from this failure. Probably the CP is 1699 * hanging. No point trying again. 1700 */ 1701 pr_debug("failed %d to resume KFD\n", r); 1702 } 1703 1704 pr_debug("restore svm ranges successfully\n"); 1705 1706 out_reschedule: 1707 mutex_unlock(&svms->lock); 1708 mmap_write_unlock(mm); 1709 mutex_unlock(&process_info->lock); 1710 mmput(mm); 1711 1712 /* If validation failed, reschedule another attempt */ 1713 if (evicted_ranges) { 1714 pr_debug("reschedule to restore svm range\n"); 1715 schedule_delayed_work(&svms->restore_work, 1716 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); 1717 } 1718 } 1719 1720 /** 1721 * svm_range_evict - evict svm range 1722 * @prange: svm range structure 1723 * @mm: current process mm_struct 1724 * @start: starting process queue number 1725 * @last: last process queue number 1726 * 1727 * Stop all queues of the process to ensure GPU doesn't access the memory, then 1728 * return to let CPU evict the buffer and proceed CPU pagetable update. 1729 * 1730 * Don't need use lock to sync cpu pagetable invalidation with GPU execution. 1731 * If invalidation happens while restore work is running, restore work will 1732 * restart to ensure to get the latest CPU pages mapping to GPU, then start 1733 * the queues. 1734 */ 1735 static int 1736 svm_range_evict(struct svm_range *prange, struct mm_struct *mm, 1737 unsigned long start, unsigned long last) 1738 { 1739 struct svm_range_list *svms = prange->svms; 1740 struct svm_range *pchild; 1741 struct kfd_process *p; 1742 int r = 0; 1743 1744 p = container_of(svms, struct kfd_process, svms); 1745 1746 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n", 1747 svms, prange->start, prange->last, start, last); 1748 1749 if (!p->xnack_enabled) { 1750 int evicted_ranges; 1751 1752 list_for_each_entry(pchild, &prange->child_list, child_list) { 1753 mutex_lock_nested(&pchild->lock, 1); 1754 if (pchild->start <= last && pchild->last >= start) { 1755 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n", 1756 pchild->start, pchild->last); 1757 atomic_inc(&pchild->invalid); 1758 } 1759 mutex_unlock(&pchild->lock); 1760 } 1761 1762 if (prange->start <= last && prange->last >= start) 1763 atomic_inc(&prange->invalid); 1764 1765 evicted_ranges = atomic_inc_return(&svms->evicted_ranges); 1766 if (evicted_ranges != 1) 1767 return r; 1768 1769 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n", 1770 prange->svms, prange->start, prange->last); 1771 1772 /* First eviction, stop the queues */ 1773 r = kgd2kfd_quiesce_mm(mm); 1774 if (r) 1775 pr_debug("failed to quiesce KFD\n"); 1776 1777 pr_debug("schedule to restore svm %p ranges\n", svms); 1778 schedule_delayed_work(&svms->restore_work, 1779 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); 1780 } else { 1781 unsigned long s, l; 1782 1783 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n", 1784 prange->svms, start, last); 1785 list_for_each_entry(pchild, &prange->child_list, child_list) { 1786 mutex_lock_nested(&pchild->lock, 1); 1787 s = max(start, pchild->start); 1788 l = min(last, pchild->last); 1789 if (l >= s) 1790 svm_range_unmap_from_gpus(pchild, s, l); 1791 mutex_unlock(&pchild->lock); 1792 } 1793 s = max(start, prange->start); 1794 l = min(last, prange->last); 1795 if (l >= s) 1796 svm_range_unmap_from_gpus(prange, s, l); 1797 } 1798 1799 return r; 1800 } 1801 1802 static struct svm_range *svm_range_clone(struct svm_range *old) 1803 { 1804 struct svm_range *new; 1805 1806 new = svm_range_new(old->svms, old->start, old->last); 1807 if (!new) 1808 return NULL; 1809 1810 if (old->svm_bo) { 1811 new->ttm_res = old->ttm_res; 1812 new->offset = old->offset; 1813 new->svm_bo = svm_range_bo_ref(old->svm_bo); 1814 spin_lock(&new->svm_bo->list_lock); 1815 list_add(&new->svm_bo_list, &new->svm_bo->range_list); 1816 spin_unlock(&new->svm_bo->list_lock); 1817 } 1818 new->flags = old->flags; 1819 new->preferred_loc = old->preferred_loc; 1820 new->prefetch_loc = old->prefetch_loc; 1821 new->actual_loc = old->actual_loc; 1822 new->granularity = old->granularity; 1823 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); 1824 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); 1825 1826 return new; 1827 } 1828 1829 /** 1830 * svm_range_add - add svm range and handle overlap 1831 * @p: the range add to this process svms 1832 * @start: page size aligned 1833 * @size: page size aligned 1834 * @nattr: number of attributes 1835 * @attrs: array of attributes 1836 * @update_list: output, the ranges need validate and update GPU mapping 1837 * @insert_list: output, the ranges need insert to svms 1838 * @remove_list: output, the ranges are replaced and need remove from svms 1839 * 1840 * Check if the virtual address range has overlap with any existing ranges, 1841 * split partly overlapping ranges and add new ranges in the gaps. All changes 1842 * should be applied to the range_list and interval tree transactionally. If 1843 * any range split or allocation fails, the entire update fails. Therefore any 1844 * existing overlapping svm_ranges are cloned and the original svm_ranges left 1845 * unchanged. 1846 * 1847 * If the transaction succeeds, the caller can update and insert clones and 1848 * new ranges, then free the originals. 1849 * 1850 * Otherwise the caller can free the clones and new ranges, while the old 1851 * svm_ranges remain unchanged. 1852 * 1853 * Context: Process context, caller must hold svms->lock 1854 * 1855 * Return: 1856 * 0 - OK, otherwise error code 1857 */ 1858 static int 1859 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size, 1860 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs, 1861 struct list_head *update_list, struct list_head *insert_list, 1862 struct list_head *remove_list) 1863 { 1864 unsigned long last = start + size - 1UL; 1865 struct svm_range_list *svms = &p->svms; 1866 struct interval_tree_node *node; 1867 struct svm_range *prange; 1868 struct svm_range *tmp; 1869 int r = 0; 1870 1871 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last); 1872 1873 INIT_LIST_HEAD(update_list); 1874 INIT_LIST_HEAD(insert_list); 1875 INIT_LIST_HEAD(remove_list); 1876 1877 node = interval_tree_iter_first(&svms->objects, start, last); 1878 while (node) { 1879 struct interval_tree_node *next; 1880 unsigned long next_start; 1881 1882 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start, 1883 node->last); 1884 1885 prange = container_of(node, struct svm_range, it_node); 1886 next = interval_tree_iter_next(node, start, last); 1887 next_start = min(node->last, last) + 1; 1888 1889 if (svm_range_is_same_attrs(p, prange, nattr, attrs)) { 1890 /* nothing to do */ 1891 } else if (node->start < start || node->last > last) { 1892 /* node intersects the update range and its attributes 1893 * will change. Clone and split it, apply updates only 1894 * to the overlapping part 1895 */ 1896 struct svm_range *old = prange; 1897 1898 prange = svm_range_clone(old); 1899 if (!prange) { 1900 r = -ENOMEM; 1901 goto out; 1902 } 1903 1904 list_add(&old->update_list, remove_list); 1905 list_add(&prange->list, insert_list); 1906 list_add(&prange->update_list, update_list); 1907 1908 if (node->start < start) { 1909 pr_debug("change old range start\n"); 1910 r = svm_range_split_head(prange, start, 1911 insert_list); 1912 if (r) 1913 goto out; 1914 } 1915 if (node->last > last) { 1916 pr_debug("change old range last\n"); 1917 r = svm_range_split_tail(prange, last, 1918 insert_list); 1919 if (r) 1920 goto out; 1921 } 1922 } else { 1923 /* The node is contained within start..last, 1924 * just update it 1925 */ 1926 list_add(&prange->update_list, update_list); 1927 } 1928 1929 /* insert a new node if needed */ 1930 if (node->start > start) { 1931 prange = svm_range_new(svms, start, node->start - 1); 1932 if (!prange) { 1933 r = -ENOMEM; 1934 goto out; 1935 } 1936 1937 list_add(&prange->list, insert_list); 1938 list_add(&prange->update_list, update_list); 1939 } 1940 1941 node = next; 1942 start = next_start; 1943 } 1944 1945 /* add a final range at the end if needed */ 1946 if (start <= last) { 1947 prange = svm_range_new(svms, start, last); 1948 if (!prange) { 1949 r = -ENOMEM; 1950 goto out; 1951 } 1952 list_add(&prange->list, insert_list); 1953 list_add(&prange->update_list, update_list); 1954 } 1955 1956 out: 1957 if (r) 1958 list_for_each_entry_safe(prange, tmp, insert_list, list) 1959 svm_range_free(prange); 1960 1961 return r; 1962 } 1963 1964 static void 1965 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm, 1966 struct svm_range *prange) 1967 { 1968 unsigned long start; 1969 unsigned long last; 1970 1971 start = prange->notifier.interval_tree.start >> PAGE_SHIFT; 1972 last = prange->notifier.interval_tree.last >> PAGE_SHIFT; 1973 1974 if (prange->start == start && prange->last == last) 1975 return; 1976 1977 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", 1978 prange->svms, prange, start, last, prange->start, 1979 prange->last); 1980 1981 if (start != 0 && last != 0) { 1982 interval_tree_remove(&prange->it_node, &prange->svms->objects); 1983 svm_range_remove_notifier(prange); 1984 } 1985 prange->it_node.start = prange->start; 1986 prange->it_node.last = prange->last; 1987 1988 interval_tree_insert(&prange->it_node, &prange->svms->objects); 1989 svm_range_add_notifier_locked(mm, prange); 1990 } 1991 1992 static void 1993 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange, 1994 struct mm_struct *mm) 1995 { 1996 switch (prange->work_item.op) { 1997 case SVM_OP_NULL: 1998 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n", 1999 svms, prange, prange->start, prange->last); 2000 break; 2001 case SVM_OP_UNMAP_RANGE: 2002 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2003 svms, prange, prange->start, prange->last); 2004 svm_range_unlink(prange); 2005 svm_range_remove_notifier(prange); 2006 svm_range_free(prange); 2007 break; 2008 case SVM_OP_UPDATE_RANGE_NOTIFIER: 2009 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2010 svms, prange, prange->start, prange->last); 2011 svm_range_update_notifier_and_interval_tree(mm, prange); 2012 break; 2013 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP: 2014 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2015 svms, prange, prange->start, prange->last); 2016 svm_range_update_notifier_and_interval_tree(mm, prange); 2017 /* TODO: implement deferred validation and mapping */ 2018 break; 2019 case SVM_OP_ADD_RANGE: 2020 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, 2021 prange->start, prange->last); 2022 svm_range_add_to_svms(prange); 2023 svm_range_add_notifier_locked(mm, prange); 2024 break; 2025 case SVM_OP_ADD_RANGE_AND_MAP: 2026 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, 2027 prange, prange->start, prange->last); 2028 svm_range_add_to_svms(prange); 2029 svm_range_add_notifier_locked(mm, prange); 2030 /* TODO: implement deferred validation and mapping */ 2031 break; 2032 default: 2033 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange, 2034 prange->work_item.op); 2035 } 2036 } 2037 2038 static void svm_range_drain_retry_fault(struct svm_range_list *svms) 2039 { 2040 struct kfd_process_device *pdd; 2041 struct kfd_process *p; 2042 int drain; 2043 uint32_t i; 2044 2045 p = container_of(svms, struct kfd_process, svms); 2046 2047 restart: 2048 drain = atomic_read(&svms->drain_pagefaults); 2049 if (!drain) 2050 return; 2051 2052 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) { 2053 pdd = p->pdds[i]; 2054 if (!pdd) 2055 continue; 2056 2057 pr_debug("drain retry fault gpu %d svms %p\n", i, svms); 2058 2059 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev, 2060 &pdd->dev->adev->irq.ih1); 2061 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms); 2062 } 2063 if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain) 2064 goto restart; 2065 } 2066 2067 static void svm_range_deferred_list_work(struct work_struct *work) 2068 { 2069 struct svm_range_list *svms; 2070 struct svm_range *prange; 2071 struct mm_struct *mm; 2072 2073 svms = container_of(work, struct svm_range_list, deferred_list_work); 2074 pr_debug("enter svms 0x%p\n", svms); 2075 2076 spin_lock(&svms->deferred_list_lock); 2077 while (!list_empty(&svms->deferred_range_list)) { 2078 prange = list_first_entry(&svms->deferred_range_list, 2079 struct svm_range, deferred_list); 2080 spin_unlock(&svms->deferred_list_lock); 2081 2082 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange, 2083 prange->start, prange->last, prange->work_item.op); 2084 2085 mm = prange->work_item.mm; 2086 retry: 2087 mmap_write_lock(mm); 2088 2089 /* Checking for the need to drain retry faults must be inside 2090 * mmap write lock to serialize with munmap notifiers. 2091 */ 2092 if (unlikely(atomic_read(&svms->drain_pagefaults))) { 2093 mmap_write_unlock(mm); 2094 svm_range_drain_retry_fault(svms); 2095 goto retry; 2096 } 2097 2098 /* Remove from deferred_list must be inside mmap write lock, for 2099 * two race cases: 2100 * 1. unmap_from_cpu may change work_item.op and add the range 2101 * to deferred_list again, cause use after free bug. 2102 * 2. svm_range_list_lock_and_flush_work may hold mmap write 2103 * lock and continue because deferred_list is empty, but 2104 * deferred_list work is actually waiting for mmap lock. 2105 */ 2106 spin_lock(&svms->deferred_list_lock); 2107 list_del_init(&prange->deferred_list); 2108 spin_unlock(&svms->deferred_list_lock); 2109 2110 mutex_lock(&svms->lock); 2111 mutex_lock(&prange->migrate_mutex); 2112 while (!list_empty(&prange->child_list)) { 2113 struct svm_range *pchild; 2114 2115 pchild = list_first_entry(&prange->child_list, 2116 struct svm_range, child_list); 2117 pr_debug("child prange 0x%p op %d\n", pchild, 2118 pchild->work_item.op); 2119 list_del_init(&pchild->child_list); 2120 svm_range_handle_list_op(svms, pchild, mm); 2121 } 2122 mutex_unlock(&prange->migrate_mutex); 2123 2124 svm_range_handle_list_op(svms, prange, mm); 2125 mutex_unlock(&svms->lock); 2126 mmap_write_unlock(mm); 2127 2128 /* Pairs with mmget in svm_range_add_list_work */ 2129 mmput(mm); 2130 2131 spin_lock(&svms->deferred_list_lock); 2132 } 2133 spin_unlock(&svms->deferred_list_lock); 2134 pr_debug("exit svms 0x%p\n", svms); 2135 } 2136 2137 void 2138 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange, 2139 struct mm_struct *mm, enum svm_work_list_ops op) 2140 { 2141 spin_lock(&svms->deferred_list_lock); 2142 /* if prange is on the deferred list */ 2143 if (!list_empty(&prange->deferred_list)) { 2144 pr_debug("update exist prange 0x%p work op %d\n", prange, op); 2145 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n"); 2146 if (op != SVM_OP_NULL && 2147 prange->work_item.op != SVM_OP_UNMAP_RANGE) 2148 prange->work_item.op = op; 2149 } else { 2150 prange->work_item.op = op; 2151 2152 /* Pairs with mmput in deferred_list_work */ 2153 mmget(mm); 2154 prange->work_item.mm = mm; 2155 list_add_tail(&prange->deferred_list, 2156 &prange->svms->deferred_range_list); 2157 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n", 2158 prange, prange->start, prange->last, op); 2159 } 2160 spin_unlock(&svms->deferred_list_lock); 2161 } 2162 2163 void schedule_deferred_list_work(struct svm_range_list *svms) 2164 { 2165 spin_lock(&svms->deferred_list_lock); 2166 if (!list_empty(&svms->deferred_range_list)) 2167 schedule_work(&svms->deferred_list_work); 2168 spin_unlock(&svms->deferred_list_lock); 2169 } 2170 2171 static void 2172 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent, 2173 struct svm_range *prange, unsigned long start, 2174 unsigned long last) 2175 { 2176 struct svm_range *head; 2177 struct svm_range *tail; 2178 2179 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { 2180 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange, 2181 prange->start, prange->last); 2182 return; 2183 } 2184 if (start > prange->last || last < prange->start) 2185 return; 2186 2187 head = tail = prange; 2188 if (start > prange->start) 2189 svm_range_split(prange, prange->start, start - 1, &tail); 2190 if (last < tail->last) 2191 svm_range_split(tail, last + 1, tail->last, &head); 2192 2193 if (head != prange && tail != prange) { 2194 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); 2195 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); 2196 } else if (tail != prange) { 2197 svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE); 2198 } else if (head != prange) { 2199 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); 2200 } else if (parent != prange) { 2201 prange->work_item.op = SVM_OP_UNMAP_RANGE; 2202 } 2203 } 2204 2205 static void 2206 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange, 2207 unsigned long start, unsigned long last) 2208 { 2209 struct svm_range_list *svms; 2210 struct svm_range *pchild; 2211 struct kfd_process *p; 2212 unsigned long s, l; 2213 bool unmap_parent; 2214 2215 p = kfd_lookup_process_by_mm(mm); 2216 if (!p) 2217 return; 2218 svms = &p->svms; 2219 2220 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms, 2221 prange, prange->start, prange->last, start, last); 2222 2223 /* Make sure pending page faults are drained in the deferred worker 2224 * before the range is freed to avoid straggler interrupts on 2225 * unmapped memory causing "phantom faults". 2226 */ 2227 atomic_inc(&svms->drain_pagefaults); 2228 2229 unmap_parent = start <= prange->start && last >= prange->last; 2230 2231 list_for_each_entry(pchild, &prange->child_list, child_list) { 2232 mutex_lock_nested(&pchild->lock, 1); 2233 s = max(start, pchild->start); 2234 l = min(last, pchild->last); 2235 if (l >= s) 2236 svm_range_unmap_from_gpus(pchild, s, l); 2237 svm_range_unmap_split(mm, prange, pchild, start, last); 2238 mutex_unlock(&pchild->lock); 2239 } 2240 s = max(start, prange->start); 2241 l = min(last, prange->last); 2242 if (l >= s) 2243 svm_range_unmap_from_gpus(prange, s, l); 2244 svm_range_unmap_split(mm, prange, prange, start, last); 2245 2246 if (unmap_parent) 2247 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE); 2248 else 2249 svm_range_add_list_work(svms, prange, mm, 2250 SVM_OP_UPDATE_RANGE_NOTIFIER); 2251 schedule_deferred_list_work(svms); 2252 2253 kfd_unref_process(p); 2254 } 2255 2256 /** 2257 * svm_range_cpu_invalidate_pagetables - interval notifier callback 2258 * @mni: mmu_interval_notifier struct 2259 * @range: mmu_notifier_range struct 2260 * @cur_seq: value to pass to mmu_interval_set_seq() 2261 * 2262 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it 2263 * is from migration, or CPU page invalidation callback. 2264 * 2265 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed 2266 * work thread, and split prange if only part of prange is unmapped. 2267 * 2268 * For invalidation event, if GPU retry fault is not enabled, evict the queues, 2269 * then schedule svm_range_restore_work to update GPU mapping and resume queues. 2270 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will 2271 * update GPU mapping to recover. 2272 * 2273 * Context: mmap lock, notifier_invalidate_start lock are held 2274 * for invalidate event, prange lock is held if this is from migration 2275 */ 2276 static bool 2277 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, 2278 const struct mmu_notifier_range *range, 2279 unsigned long cur_seq) 2280 { 2281 struct svm_range *prange; 2282 unsigned long start; 2283 unsigned long last; 2284 2285 if (range->event == MMU_NOTIFY_RELEASE) 2286 return true; 2287 2288 start = mni->interval_tree.start; 2289 last = mni->interval_tree.last; 2290 start = max(start, range->start) >> PAGE_SHIFT; 2291 last = min(last, range->end - 1) >> PAGE_SHIFT; 2292 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n", 2293 start, last, range->start >> PAGE_SHIFT, 2294 (range->end - 1) >> PAGE_SHIFT, 2295 mni->interval_tree.start >> PAGE_SHIFT, 2296 mni->interval_tree.last >> PAGE_SHIFT, range->event); 2297 2298 prange = container_of(mni, struct svm_range, notifier); 2299 2300 svm_range_lock(prange); 2301 mmu_interval_set_seq(mni, cur_seq); 2302 2303 switch (range->event) { 2304 case MMU_NOTIFY_UNMAP: 2305 svm_range_unmap_from_cpu(mni->mm, prange, start, last); 2306 break; 2307 default: 2308 svm_range_evict(prange, mni->mm, start, last); 2309 break; 2310 } 2311 2312 svm_range_unlock(prange); 2313 2314 return true; 2315 } 2316 2317 /** 2318 * svm_range_from_addr - find svm range from fault address 2319 * @svms: svm range list header 2320 * @addr: address to search range interval tree, in pages 2321 * @parent: parent range if range is on child list 2322 * 2323 * Context: The caller must hold svms->lock 2324 * 2325 * Return: the svm_range found or NULL 2326 */ 2327 struct svm_range * 2328 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr, 2329 struct svm_range **parent) 2330 { 2331 struct interval_tree_node *node; 2332 struct svm_range *prange; 2333 struct svm_range *pchild; 2334 2335 node = interval_tree_iter_first(&svms->objects, addr, addr); 2336 if (!node) 2337 return NULL; 2338 2339 prange = container_of(node, struct svm_range, it_node); 2340 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n", 2341 addr, prange->start, prange->last, node->start, node->last); 2342 2343 if (addr >= prange->start && addr <= prange->last) { 2344 if (parent) 2345 *parent = prange; 2346 return prange; 2347 } 2348 list_for_each_entry(pchild, &prange->child_list, child_list) 2349 if (addr >= pchild->start && addr <= pchild->last) { 2350 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n", 2351 addr, pchild->start, pchild->last); 2352 if (parent) 2353 *parent = prange; 2354 return pchild; 2355 } 2356 2357 return NULL; 2358 } 2359 2360 /* svm_range_best_restore_location - decide the best fault restore location 2361 * @prange: svm range structure 2362 * @adev: the GPU on which vm fault happened 2363 * 2364 * This is only called when xnack is on, to decide the best location to restore 2365 * the range mapping after GPU vm fault. Caller uses the best location to do 2366 * migration if actual loc is not best location, then update GPU page table 2367 * mapping to the best location. 2368 * 2369 * If the preferred loc is accessible by faulting GPU, use preferred loc. 2370 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu 2371 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then 2372 * if range actual loc is cpu, best_loc is cpu 2373 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is 2374 * range actual loc. 2375 * Otherwise, GPU no access, best_loc is -1. 2376 * 2377 * Return: 2378 * -1 means vm fault GPU no access 2379 * 0 for CPU or GPU id 2380 */ 2381 static int32_t 2382 svm_range_best_restore_location(struct svm_range *prange, 2383 struct amdgpu_device *adev, 2384 int32_t *gpuidx) 2385 { 2386 struct amdgpu_device *bo_adev, *preferred_adev; 2387 struct kfd_process *p; 2388 uint32_t gpuid; 2389 int r; 2390 2391 p = container_of(prange->svms, struct kfd_process, svms); 2392 2393 r = kfd_process_gpuid_from_adev(p, adev, &gpuid, gpuidx); 2394 if (r < 0) { 2395 pr_debug("failed to get gpuid from kgd\n"); 2396 return -1; 2397 } 2398 2399 if (prange->preferred_loc == gpuid || 2400 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) { 2401 return prange->preferred_loc; 2402 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) { 2403 preferred_adev = svm_range_get_adev_by_id(prange, 2404 prange->preferred_loc); 2405 if (amdgpu_xgmi_same_hive(adev, preferred_adev)) 2406 return prange->preferred_loc; 2407 /* fall through */ 2408 } 2409 2410 if (test_bit(*gpuidx, prange->bitmap_access)) 2411 return gpuid; 2412 2413 if (test_bit(*gpuidx, prange->bitmap_aip)) { 2414 if (!prange->actual_loc) 2415 return 0; 2416 2417 bo_adev = svm_range_get_adev_by_id(prange, prange->actual_loc); 2418 if (amdgpu_xgmi_same_hive(adev, bo_adev)) 2419 return prange->actual_loc; 2420 else 2421 return 0; 2422 } 2423 2424 return -1; 2425 } 2426 2427 static int 2428 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr, 2429 unsigned long *start, unsigned long *last, 2430 bool *is_heap_stack) 2431 { 2432 struct vm_area_struct *vma; 2433 struct interval_tree_node *node; 2434 unsigned long start_limit, end_limit; 2435 2436 vma = find_vma(p->mm, addr << PAGE_SHIFT); 2437 if (!vma || (addr << PAGE_SHIFT) < vma->vm_start) { 2438 pr_debug("VMA does not exist in address [0x%llx]\n", addr); 2439 return -EFAULT; 2440 } 2441 2442 *is_heap_stack = (vma->vm_start <= vma->vm_mm->brk && 2443 vma->vm_end >= vma->vm_mm->start_brk) || 2444 (vma->vm_start <= vma->vm_mm->start_stack && 2445 vma->vm_end >= vma->vm_mm->start_stack); 2446 2447 start_limit = max(vma->vm_start >> PAGE_SHIFT, 2448 (unsigned long)ALIGN_DOWN(addr, 2UL << 8)); 2449 end_limit = min(vma->vm_end >> PAGE_SHIFT, 2450 (unsigned long)ALIGN(addr + 1, 2UL << 8)); 2451 /* First range that starts after the fault address */ 2452 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX); 2453 if (node) { 2454 end_limit = min(end_limit, node->start); 2455 /* Last range that ends before the fault address */ 2456 node = container_of(rb_prev(&node->rb), 2457 struct interval_tree_node, rb); 2458 } else { 2459 /* Last range must end before addr because 2460 * there was no range after addr 2461 */ 2462 node = container_of(rb_last(&p->svms.objects.rb_root), 2463 struct interval_tree_node, rb); 2464 } 2465 if (node) { 2466 if (node->last >= addr) { 2467 WARN(1, "Overlap with prev node and page fault addr\n"); 2468 return -EFAULT; 2469 } 2470 start_limit = max(start_limit, node->last + 1); 2471 } 2472 2473 *start = start_limit; 2474 *last = end_limit - 1; 2475 2476 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n", 2477 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT, 2478 *start, *last, *is_heap_stack); 2479 2480 return 0; 2481 } 2482 2483 static int 2484 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last, 2485 uint64_t *bo_s, uint64_t *bo_l) 2486 { 2487 struct amdgpu_bo_va_mapping *mapping; 2488 struct interval_tree_node *node; 2489 struct amdgpu_bo *bo = NULL; 2490 unsigned long userptr; 2491 uint32_t i; 2492 int r; 2493 2494 for (i = 0; i < p->n_pdds; i++) { 2495 struct amdgpu_vm *vm; 2496 2497 if (!p->pdds[i]->drm_priv) 2498 continue; 2499 2500 vm = drm_priv_to_vm(p->pdds[i]->drm_priv); 2501 r = amdgpu_bo_reserve(vm->root.bo, false); 2502 if (r) 2503 return r; 2504 2505 /* Check userptr by searching entire vm->va interval tree */ 2506 node = interval_tree_iter_first(&vm->va, 0, ~0ULL); 2507 while (node) { 2508 mapping = container_of((struct rb_node *)node, 2509 struct amdgpu_bo_va_mapping, rb); 2510 bo = mapping->bo_va->base.bo; 2511 2512 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm, 2513 start << PAGE_SHIFT, 2514 last << PAGE_SHIFT, 2515 &userptr)) { 2516 node = interval_tree_iter_next(node, 0, ~0ULL); 2517 continue; 2518 } 2519 2520 pr_debug("[0x%llx 0x%llx] already userptr mapped\n", 2521 start, last); 2522 if (bo_s && bo_l) { 2523 *bo_s = userptr >> PAGE_SHIFT; 2524 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1; 2525 } 2526 amdgpu_bo_unreserve(vm->root.bo); 2527 return -EADDRINUSE; 2528 } 2529 amdgpu_bo_unreserve(vm->root.bo); 2530 } 2531 return 0; 2532 } 2533 2534 static struct 2535 svm_range *svm_range_create_unregistered_range(struct amdgpu_device *adev, 2536 struct kfd_process *p, 2537 struct mm_struct *mm, 2538 int64_t addr) 2539 { 2540 struct svm_range *prange = NULL; 2541 unsigned long start, last; 2542 uint32_t gpuid, gpuidx; 2543 bool is_heap_stack; 2544 uint64_t bo_s = 0; 2545 uint64_t bo_l = 0; 2546 int r; 2547 2548 if (svm_range_get_range_boundaries(p, addr, &start, &last, 2549 &is_heap_stack)) 2550 return NULL; 2551 2552 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l); 2553 if (r != -EADDRINUSE) 2554 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l); 2555 2556 if (r == -EADDRINUSE) { 2557 if (addr >= bo_s && addr <= bo_l) 2558 return NULL; 2559 2560 /* Create one page svm range if 2MB range overlapping */ 2561 start = addr; 2562 last = addr; 2563 } 2564 2565 prange = svm_range_new(&p->svms, start, last); 2566 if (!prange) { 2567 pr_debug("Failed to create prange in address [0x%llx]\n", addr); 2568 return NULL; 2569 } 2570 if (kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpuidx)) { 2571 pr_debug("failed to get gpuid from kgd\n"); 2572 svm_range_free(prange); 2573 return NULL; 2574 } 2575 2576 if (is_heap_stack) 2577 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM; 2578 2579 svm_range_add_to_svms(prange); 2580 svm_range_add_notifier_locked(mm, prange); 2581 2582 return prange; 2583 } 2584 2585 /* svm_range_skip_recover - decide if prange can be recovered 2586 * @prange: svm range structure 2587 * 2588 * GPU vm retry fault handle skip recover the range for cases: 2589 * 1. prange is on deferred list to be removed after unmap, it is stale fault, 2590 * deferred list work will drain the stale fault before free the prange. 2591 * 2. prange is on deferred list to add interval notifier after split, or 2592 * 3. prange is child range, it is split from parent prange, recover later 2593 * after interval notifier is added. 2594 * 2595 * Return: true to skip recover, false to recover 2596 */ 2597 static bool svm_range_skip_recover(struct svm_range *prange) 2598 { 2599 struct svm_range_list *svms = prange->svms; 2600 2601 spin_lock(&svms->deferred_list_lock); 2602 if (list_empty(&prange->deferred_list) && 2603 list_empty(&prange->child_list)) { 2604 spin_unlock(&svms->deferred_list_lock); 2605 return false; 2606 } 2607 spin_unlock(&svms->deferred_list_lock); 2608 2609 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { 2610 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n", 2611 svms, prange, prange->start, prange->last); 2612 return true; 2613 } 2614 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP || 2615 prange->work_item.op == SVM_OP_ADD_RANGE) { 2616 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n", 2617 svms, prange, prange->start, prange->last); 2618 return true; 2619 } 2620 return false; 2621 } 2622 2623 static void 2624 svm_range_count_fault(struct amdgpu_device *adev, struct kfd_process *p, 2625 int32_t gpuidx) 2626 { 2627 struct kfd_process_device *pdd; 2628 2629 /* fault is on different page of same range 2630 * or fault is skipped to recover later 2631 * or fault is on invalid virtual address 2632 */ 2633 if (gpuidx == MAX_GPU_INSTANCE) { 2634 uint32_t gpuid; 2635 int r; 2636 2637 r = kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpuidx); 2638 if (r < 0) 2639 return; 2640 } 2641 2642 /* fault is recovered 2643 * or fault cannot recover because GPU no access on the range 2644 */ 2645 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 2646 if (pdd) 2647 WRITE_ONCE(pdd->faults, pdd->faults + 1); 2648 } 2649 2650 static bool 2651 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault) 2652 { 2653 unsigned long requested = VM_READ; 2654 2655 if (write_fault) 2656 requested |= VM_WRITE; 2657 2658 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested, 2659 vma->vm_flags); 2660 return (vma->vm_flags & requested) == requested; 2661 } 2662 2663 int 2664 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid, 2665 uint64_t addr, bool write_fault) 2666 { 2667 struct mm_struct *mm = NULL; 2668 struct svm_range_list *svms; 2669 struct svm_range *prange; 2670 struct kfd_process *p; 2671 uint64_t timestamp; 2672 int32_t best_loc; 2673 int32_t gpuidx = MAX_GPU_INSTANCE; 2674 bool write_locked = false; 2675 struct vm_area_struct *vma; 2676 int r = 0; 2677 2678 if (!KFD_IS_SVM_API_SUPPORTED(adev->kfd.dev)) { 2679 pr_debug("device does not support SVM\n"); 2680 return -EFAULT; 2681 } 2682 2683 p = kfd_lookup_process_by_pasid(pasid); 2684 if (!p) { 2685 pr_debug("kfd process not founded pasid 0x%x\n", pasid); 2686 return 0; 2687 } 2688 svms = &p->svms; 2689 2690 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr); 2691 2692 if (atomic_read(&svms->drain_pagefaults)) { 2693 pr_debug("draining retry fault, drop fault 0x%llx\n", addr); 2694 r = 0; 2695 goto out; 2696 } 2697 2698 if (!p->xnack_enabled) { 2699 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid); 2700 r = -EFAULT; 2701 goto out; 2702 } 2703 2704 /* p->lead_thread is available as kfd_process_wq_release flush the work 2705 * before releasing task ref. 2706 */ 2707 mm = get_task_mm(p->lead_thread); 2708 if (!mm) { 2709 pr_debug("svms 0x%p failed to get mm\n", svms); 2710 r = 0; 2711 goto out; 2712 } 2713 2714 mmap_read_lock(mm); 2715 retry_write_locked: 2716 mutex_lock(&svms->lock); 2717 prange = svm_range_from_addr(svms, addr, NULL); 2718 if (!prange) { 2719 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n", 2720 svms, addr); 2721 if (!write_locked) { 2722 /* Need the write lock to create new range with MMU notifier. 2723 * Also flush pending deferred work to make sure the interval 2724 * tree is up to date before we add a new range 2725 */ 2726 mutex_unlock(&svms->lock); 2727 mmap_read_unlock(mm); 2728 mmap_write_lock(mm); 2729 write_locked = true; 2730 goto retry_write_locked; 2731 } 2732 prange = svm_range_create_unregistered_range(adev, p, mm, addr); 2733 if (!prange) { 2734 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n", 2735 svms, addr); 2736 mmap_write_downgrade(mm); 2737 r = -EFAULT; 2738 goto out_unlock_svms; 2739 } 2740 } 2741 if (write_locked) 2742 mmap_write_downgrade(mm); 2743 2744 mutex_lock(&prange->migrate_mutex); 2745 2746 if (svm_range_skip_recover(prange)) { 2747 amdgpu_gmc_filter_faults_remove(adev, addr, pasid); 2748 r = 0; 2749 goto out_unlock_range; 2750 } 2751 2752 timestamp = ktime_to_us(ktime_get()) - prange->validate_timestamp; 2753 /* skip duplicate vm fault on different pages of same range */ 2754 if (timestamp < AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING) { 2755 pr_debug("svms 0x%p [0x%lx %lx] already restored\n", 2756 svms, prange->start, prange->last); 2757 r = 0; 2758 goto out_unlock_range; 2759 } 2760 2761 /* __do_munmap removed VMA, return success as we are handling stale 2762 * retry fault. 2763 */ 2764 vma = find_vma(mm, addr << PAGE_SHIFT); 2765 if (!vma || (addr << PAGE_SHIFT) < vma->vm_start) { 2766 pr_debug("address 0x%llx VMA is removed\n", addr); 2767 r = 0; 2768 goto out_unlock_range; 2769 } 2770 2771 if (!svm_fault_allowed(vma, write_fault)) { 2772 pr_debug("fault addr 0x%llx no %s permission\n", addr, 2773 write_fault ? "write" : "read"); 2774 r = -EPERM; 2775 goto out_unlock_range; 2776 } 2777 2778 best_loc = svm_range_best_restore_location(prange, adev, &gpuidx); 2779 if (best_loc == -1) { 2780 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n", 2781 svms, prange->start, prange->last); 2782 r = -EACCES; 2783 goto out_unlock_range; 2784 } 2785 2786 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n", 2787 svms, prange->start, prange->last, best_loc, 2788 prange->actual_loc); 2789 2790 if (prange->actual_loc != best_loc) { 2791 if (best_loc) { 2792 r = svm_migrate_to_vram(prange, best_loc, mm); 2793 if (r) { 2794 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n", 2795 r, addr); 2796 /* Fallback to system memory if migration to 2797 * VRAM failed 2798 */ 2799 if (prange->actual_loc) 2800 r = svm_migrate_vram_to_ram(prange, mm); 2801 else 2802 r = 0; 2803 } 2804 } else { 2805 r = svm_migrate_vram_to_ram(prange, mm); 2806 } 2807 if (r) { 2808 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n", 2809 r, svms, prange->start, prange->last); 2810 goto out_unlock_range; 2811 } 2812 } 2813 2814 r = svm_range_validate_and_map(mm, prange, gpuidx, false, false); 2815 if (r) 2816 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n", 2817 r, svms, prange->start, prange->last); 2818 2819 out_unlock_range: 2820 mutex_unlock(&prange->migrate_mutex); 2821 out_unlock_svms: 2822 mutex_unlock(&svms->lock); 2823 mmap_read_unlock(mm); 2824 2825 svm_range_count_fault(adev, p, gpuidx); 2826 2827 mmput(mm); 2828 out: 2829 kfd_unref_process(p); 2830 2831 if (r == -EAGAIN) { 2832 pr_debug("recover vm fault later\n"); 2833 amdgpu_gmc_filter_faults_remove(adev, addr, pasid); 2834 r = 0; 2835 } 2836 return r; 2837 } 2838 2839 void svm_range_list_fini(struct kfd_process *p) 2840 { 2841 struct svm_range *prange; 2842 struct svm_range *next; 2843 2844 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms); 2845 2846 cancel_delayed_work_sync(&p->svms.restore_work); 2847 2848 /* Ensure list work is finished before process is destroyed */ 2849 flush_work(&p->svms.deferred_list_work); 2850 2851 /* 2852 * Ensure no retry fault comes in afterwards, as page fault handler will 2853 * not find kfd process and take mm lock to recover fault. 2854 */ 2855 atomic_inc(&p->svms.drain_pagefaults); 2856 svm_range_drain_retry_fault(&p->svms); 2857 2858 list_for_each_entry_safe(prange, next, &p->svms.list, list) { 2859 svm_range_unlink(prange); 2860 svm_range_remove_notifier(prange); 2861 svm_range_free(prange); 2862 } 2863 2864 mutex_destroy(&p->svms.lock); 2865 2866 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms); 2867 } 2868 2869 int svm_range_list_init(struct kfd_process *p) 2870 { 2871 struct svm_range_list *svms = &p->svms; 2872 int i; 2873 2874 svms->objects = RB_ROOT_CACHED; 2875 mutex_init(&svms->lock); 2876 INIT_LIST_HEAD(&svms->list); 2877 atomic_set(&svms->evicted_ranges, 0); 2878 atomic_set(&svms->drain_pagefaults, 0); 2879 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work); 2880 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work); 2881 INIT_LIST_HEAD(&svms->deferred_range_list); 2882 INIT_LIST_HEAD(&svms->criu_svm_metadata_list); 2883 spin_lock_init(&svms->deferred_list_lock); 2884 2885 for (i = 0; i < p->n_pdds; i++) 2886 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev)) 2887 bitmap_set(svms->bitmap_supported, i, 1); 2888 2889 return 0; 2890 } 2891 2892 /** 2893 * svm_range_check_vm - check if virtual address range mapped already 2894 * @p: current kfd_process 2895 * @start: range start address, in pages 2896 * @last: range last address, in pages 2897 * @bo_s: mapping start address in pages if address range already mapped 2898 * @bo_l: mapping last address in pages if address range already mapped 2899 * 2900 * The purpose is to avoid virtual address ranges already allocated by 2901 * kfd_ioctl_alloc_memory_of_gpu ioctl. 2902 * It looks for each pdd in the kfd_process. 2903 * 2904 * Context: Process context 2905 * 2906 * Return 0 - OK, if the range is not mapped. 2907 * Otherwise error code: 2908 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu 2909 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by 2910 * a signal. Release all buffer reservations and return to user-space. 2911 */ 2912 static int 2913 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, 2914 uint64_t *bo_s, uint64_t *bo_l) 2915 { 2916 struct amdgpu_bo_va_mapping *mapping; 2917 struct interval_tree_node *node; 2918 uint32_t i; 2919 int r; 2920 2921 for (i = 0; i < p->n_pdds; i++) { 2922 struct amdgpu_vm *vm; 2923 2924 if (!p->pdds[i]->drm_priv) 2925 continue; 2926 2927 vm = drm_priv_to_vm(p->pdds[i]->drm_priv); 2928 r = amdgpu_bo_reserve(vm->root.bo, false); 2929 if (r) 2930 return r; 2931 2932 node = interval_tree_iter_first(&vm->va, start, last); 2933 if (node) { 2934 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n", 2935 start, last); 2936 mapping = container_of((struct rb_node *)node, 2937 struct amdgpu_bo_va_mapping, rb); 2938 if (bo_s && bo_l) { 2939 *bo_s = mapping->start; 2940 *bo_l = mapping->last; 2941 } 2942 amdgpu_bo_unreserve(vm->root.bo); 2943 return -EADDRINUSE; 2944 } 2945 amdgpu_bo_unreserve(vm->root.bo); 2946 } 2947 2948 return 0; 2949 } 2950 2951 /** 2952 * svm_range_is_valid - check if virtual address range is valid 2953 * @p: current kfd_process 2954 * @start: range start address, in pages 2955 * @size: range size, in pages 2956 * 2957 * Valid virtual address range means it belongs to one or more VMAs 2958 * 2959 * Context: Process context 2960 * 2961 * Return: 2962 * 0 - OK, otherwise error code 2963 */ 2964 static int 2965 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size) 2966 { 2967 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP; 2968 struct vm_area_struct *vma; 2969 unsigned long end; 2970 unsigned long start_unchg = start; 2971 2972 start <<= PAGE_SHIFT; 2973 end = start + (size << PAGE_SHIFT); 2974 do { 2975 vma = find_vma(p->mm, start); 2976 if (!vma || start < vma->vm_start || 2977 (vma->vm_flags & device_vma)) 2978 return -EFAULT; 2979 start = min(end, vma->vm_end); 2980 } while (start < end); 2981 2982 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL, 2983 NULL); 2984 } 2985 2986 /** 2987 * svm_range_best_prefetch_location - decide the best prefetch location 2988 * @prange: svm range structure 2989 * 2990 * For xnack off: 2991 * If range map to single GPU, the best prefetch location is prefetch_loc, which 2992 * can be CPU or GPU. 2993 * 2994 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on 2995 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise 2996 * the best prefetch location is always CPU, because GPU can not have coherent 2997 * mapping VRAM of other GPUs even with large-BAR PCIe connection. 2998 * 2999 * For xnack on: 3000 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is 3001 * prefetch_loc, other GPU access will generate vm fault and trigger migration. 3002 * 3003 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same 3004 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best 3005 * prefetch location is always CPU. 3006 * 3007 * Context: Process context 3008 * 3009 * Return: 3010 * 0 for CPU or GPU id 3011 */ 3012 static uint32_t 3013 svm_range_best_prefetch_location(struct svm_range *prange) 3014 { 3015 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 3016 uint32_t best_loc = prange->prefetch_loc; 3017 struct kfd_process_device *pdd; 3018 struct amdgpu_device *bo_adev; 3019 struct kfd_process *p; 3020 uint32_t gpuidx; 3021 3022 p = container_of(prange->svms, struct kfd_process, svms); 3023 3024 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) 3025 goto out; 3026 3027 bo_adev = svm_range_get_adev_by_id(prange, best_loc); 3028 if (!bo_adev) { 3029 WARN_ONCE(1, "failed to get device by id 0x%x\n", best_loc); 3030 best_loc = 0; 3031 goto out; 3032 } 3033 3034 if (p->xnack_enabled) 3035 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); 3036 else 3037 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, 3038 MAX_GPU_INSTANCE); 3039 3040 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 3041 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 3042 if (!pdd) { 3043 pr_debug("failed to get device by idx 0x%x\n", gpuidx); 3044 continue; 3045 } 3046 3047 if (pdd->dev->adev == bo_adev) 3048 continue; 3049 3050 if (!amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) { 3051 best_loc = 0; 3052 break; 3053 } 3054 } 3055 3056 out: 3057 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n", 3058 p->xnack_enabled, &p->svms, prange->start, prange->last, 3059 best_loc); 3060 3061 return best_loc; 3062 } 3063 3064 /* FIXME: This is a workaround for page locking bug when some pages are 3065 * invalid during migration to VRAM 3066 */ 3067 void svm_range_prefault(struct svm_range *prange, struct mm_struct *mm, 3068 void *owner) 3069 { 3070 struct hmm_range *hmm_range; 3071 int r; 3072 3073 if (prange->validated_once) 3074 return; 3075 3076 r = amdgpu_hmm_range_get_pages(&prange->notifier, mm, NULL, 3077 prange->start << PAGE_SHIFT, 3078 prange->npages, &hmm_range, 3079 false, true, owner); 3080 if (!r) { 3081 amdgpu_hmm_range_get_pages_done(hmm_range); 3082 prange->validated_once = true; 3083 } 3084 } 3085 3086 /* svm_range_trigger_migration - start page migration if prefetch loc changed 3087 * @mm: current process mm_struct 3088 * @prange: svm range structure 3089 * @migrated: output, true if migration is triggered 3090 * 3091 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range 3092 * from ram to vram. 3093 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range 3094 * from vram to ram. 3095 * 3096 * If GPU vm fault retry is not enabled, migration interact with MMU notifier 3097 * and restore work: 3098 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict 3099 * stops all queues, schedule restore work 3100 * 2. svm_range_restore_work wait for migration is done by 3101 * a. svm_range_validate_vram takes prange->migrate_mutex 3102 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns 3103 * 3. restore work update mappings of GPU, resume all queues. 3104 * 3105 * Context: Process context 3106 * 3107 * Return: 3108 * 0 - OK, otherwise - error code of migration 3109 */ 3110 static int 3111 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange, 3112 bool *migrated) 3113 { 3114 uint32_t best_loc; 3115 int r = 0; 3116 3117 *migrated = false; 3118 best_loc = svm_range_best_prefetch_location(prange); 3119 3120 if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3121 best_loc == prange->actual_loc) 3122 return 0; 3123 3124 if (!best_loc) { 3125 r = svm_migrate_vram_to_ram(prange, mm); 3126 *migrated = !r; 3127 return r; 3128 } 3129 3130 r = svm_migrate_to_vram(prange, best_loc, mm); 3131 *migrated = !r; 3132 3133 return r; 3134 } 3135 3136 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence) 3137 { 3138 if (!fence) 3139 return -EINVAL; 3140 3141 if (dma_fence_is_signaled(&fence->base)) 3142 return 0; 3143 3144 if (fence->svm_bo) { 3145 WRITE_ONCE(fence->svm_bo->evicting, 1); 3146 schedule_work(&fence->svm_bo->eviction_work); 3147 } 3148 3149 return 0; 3150 } 3151 3152 static void svm_range_evict_svm_bo_worker(struct work_struct *work) 3153 { 3154 struct svm_range_bo *svm_bo; 3155 struct kfd_process *p; 3156 struct mm_struct *mm; 3157 int r = 0; 3158 3159 svm_bo = container_of(work, struct svm_range_bo, eviction_work); 3160 if (!svm_bo_ref_unless_zero(svm_bo)) 3161 return; /* svm_bo was freed while eviction was pending */ 3162 3163 /* svm_range_bo_release destroys this worker thread. So during 3164 * the lifetime of this thread, kfd_process and mm will be valid. 3165 */ 3166 p = container_of(svm_bo->svms, struct kfd_process, svms); 3167 mm = p->mm; 3168 if (!mm) 3169 return; 3170 3171 mmap_read_lock(mm); 3172 spin_lock(&svm_bo->list_lock); 3173 while (!list_empty(&svm_bo->range_list) && !r) { 3174 struct svm_range *prange = 3175 list_first_entry(&svm_bo->range_list, 3176 struct svm_range, svm_bo_list); 3177 int retries = 3; 3178 3179 list_del_init(&prange->svm_bo_list); 3180 spin_unlock(&svm_bo->list_lock); 3181 3182 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, 3183 prange->start, prange->last); 3184 3185 mutex_lock(&prange->migrate_mutex); 3186 do { 3187 r = svm_migrate_vram_to_ram(prange, 3188 svm_bo->eviction_fence->mm); 3189 } while (!r && prange->actual_loc && --retries); 3190 3191 if (!r && prange->actual_loc) 3192 pr_info_once("Migration failed during eviction"); 3193 3194 if (!prange->actual_loc) { 3195 mutex_lock(&prange->lock); 3196 prange->svm_bo = NULL; 3197 mutex_unlock(&prange->lock); 3198 } 3199 mutex_unlock(&prange->migrate_mutex); 3200 3201 spin_lock(&svm_bo->list_lock); 3202 } 3203 spin_unlock(&svm_bo->list_lock); 3204 mmap_read_unlock(mm); 3205 3206 dma_fence_signal(&svm_bo->eviction_fence->base); 3207 3208 /* This is the last reference to svm_bo, after svm_range_vram_node_free 3209 * has been called in svm_migrate_vram_to_ram 3210 */ 3211 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n"); 3212 svm_range_bo_unref(svm_bo); 3213 } 3214 3215 static int 3216 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm, 3217 uint64_t start, uint64_t size, uint32_t nattr, 3218 struct kfd_ioctl_svm_attribute *attrs) 3219 { 3220 struct amdkfd_process_info *process_info = p->kgd_process_info; 3221 struct list_head update_list; 3222 struct list_head insert_list; 3223 struct list_head remove_list; 3224 struct svm_range_list *svms; 3225 struct svm_range *prange; 3226 struct svm_range *next; 3227 int r = 0; 3228 3229 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n", 3230 p->pasid, &p->svms, start, start + size - 1, size); 3231 3232 r = svm_range_check_attr(p, nattr, attrs); 3233 if (r) 3234 return r; 3235 3236 svms = &p->svms; 3237 3238 mutex_lock(&process_info->lock); 3239 3240 svm_range_list_lock_and_flush_work(svms, mm); 3241 3242 r = svm_range_is_valid(p, start, size); 3243 if (r) { 3244 pr_debug("invalid range r=%d\n", r); 3245 mmap_write_unlock(mm); 3246 goto out; 3247 } 3248 3249 mutex_lock(&svms->lock); 3250 3251 /* Add new range and split existing ranges as needed */ 3252 r = svm_range_add(p, start, size, nattr, attrs, &update_list, 3253 &insert_list, &remove_list); 3254 if (r) { 3255 mutex_unlock(&svms->lock); 3256 mmap_write_unlock(mm); 3257 goto out; 3258 } 3259 /* Apply changes as a transaction */ 3260 list_for_each_entry_safe(prange, next, &insert_list, list) { 3261 svm_range_add_to_svms(prange); 3262 svm_range_add_notifier_locked(mm, prange); 3263 } 3264 list_for_each_entry(prange, &update_list, update_list) { 3265 svm_range_apply_attrs(p, prange, nattr, attrs); 3266 /* TODO: unmap ranges from GPU that lost access */ 3267 } 3268 list_for_each_entry_safe(prange, next, &remove_list, update_list) { 3269 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n", 3270 prange->svms, prange, prange->start, 3271 prange->last); 3272 svm_range_unlink(prange); 3273 svm_range_remove_notifier(prange); 3274 svm_range_free(prange); 3275 } 3276 3277 mmap_write_downgrade(mm); 3278 /* Trigger migrations and revalidate and map to GPUs as needed. If 3279 * this fails we may be left with partially completed actions. There 3280 * is no clean way of rolling back to the previous state in such a 3281 * case because the rollback wouldn't be guaranteed to work either. 3282 */ 3283 list_for_each_entry(prange, &update_list, update_list) { 3284 bool migrated; 3285 3286 mutex_lock(&prange->migrate_mutex); 3287 3288 r = svm_range_trigger_migration(mm, prange, &migrated); 3289 if (r) 3290 goto out_unlock_range; 3291 3292 if (migrated && !p->xnack_enabled) { 3293 pr_debug("restore_work will update mappings of GPUs\n"); 3294 mutex_unlock(&prange->migrate_mutex); 3295 continue; 3296 } 3297 3298 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE, 3299 true, true); 3300 if (r) 3301 pr_debug("failed %d to map svm range\n", r); 3302 3303 out_unlock_range: 3304 mutex_unlock(&prange->migrate_mutex); 3305 if (r) 3306 break; 3307 } 3308 3309 svm_range_debug_dump(svms); 3310 3311 mutex_unlock(&svms->lock); 3312 mmap_read_unlock(mm); 3313 out: 3314 mutex_unlock(&process_info->lock); 3315 3316 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid, 3317 &p->svms, start, start + size - 1, r); 3318 3319 return r; 3320 } 3321 3322 static int 3323 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm, 3324 uint64_t start, uint64_t size, uint32_t nattr, 3325 struct kfd_ioctl_svm_attribute *attrs) 3326 { 3327 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE); 3328 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE); 3329 bool get_preferred_loc = false; 3330 bool get_prefetch_loc = false; 3331 bool get_granularity = false; 3332 bool get_accessible = false; 3333 bool get_flags = false; 3334 uint64_t last = start + size - 1UL; 3335 uint8_t granularity = 0xff; 3336 struct interval_tree_node *node; 3337 struct svm_range_list *svms; 3338 struct svm_range *prange; 3339 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3340 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3341 uint32_t flags_and = 0xffffffff; 3342 uint32_t flags_or = 0; 3343 int gpuidx; 3344 uint32_t i; 3345 int r = 0; 3346 3347 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start, 3348 start + size - 1, nattr); 3349 3350 /* Flush pending deferred work to avoid racing with deferred actions from 3351 * previous memory map changes (e.g. munmap). Concurrent memory map changes 3352 * can still race with get_attr because we don't hold the mmap lock. But that 3353 * would be a race condition in the application anyway, and undefined 3354 * behaviour is acceptable in that case. 3355 */ 3356 flush_work(&p->svms.deferred_list_work); 3357 3358 mmap_read_lock(mm); 3359 r = svm_range_is_valid(p, start, size); 3360 mmap_read_unlock(mm); 3361 if (r) { 3362 pr_debug("invalid range r=%d\n", r); 3363 return r; 3364 } 3365 3366 for (i = 0; i < nattr; i++) { 3367 switch (attrs[i].type) { 3368 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 3369 get_preferred_loc = true; 3370 break; 3371 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3372 get_prefetch_loc = true; 3373 break; 3374 case KFD_IOCTL_SVM_ATTR_ACCESS: 3375 get_accessible = true; 3376 break; 3377 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3378 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 3379 get_flags = true; 3380 break; 3381 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 3382 get_granularity = true; 3383 break; 3384 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 3385 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 3386 fallthrough; 3387 default: 3388 pr_debug("get invalid attr type 0x%x\n", attrs[i].type); 3389 return -EINVAL; 3390 } 3391 } 3392 3393 svms = &p->svms; 3394 3395 mutex_lock(&svms->lock); 3396 3397 node = interval_tree_iter_first(&svms->objects, start, last); 3398 if (!node) { 3399 pr_debug("range attrs not found return default values\n"); 3400 svm_range_set_default_attributes(&location, &prefetch_loc, 3401 &granularity, &flags_and); 3402 flags_or = flags_and; 3403 if (p->xnack_enabled) 3404 bitmap_copy(bitmap_access, svms->bitmap_supported, 3405 MAX_GPU_INSTANCE); 3406 else 3407 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE); 3408 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE); 3409 goto fill_values; 3410 } 3411 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE); 3412 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE); 3413 3414 while (node) { 3415 struct interval_tree_node *next; 3416 3417 prange = container_of(node, struct svm_range, it_node); 3418 next = interval_tree_iter_next(node, start, last); 3419 3420 if (get_preferred_loc) { 3421 if (prange->preferred_loc == 3422 KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3423 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED && 3424 location != prange->preferred_loc)) { 3425 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3426 get_preferred_loc = false; 3427 } else { 3428 location = prange->preferred_loc; 3429 } 3430 } 3431 if (get_prefetch_loc) { 3432 if (prange->prefetch_loc == 3433 KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3434 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED && 3435 prefetch_loc != prange->prefetch_loc)) { 3436 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3437 get_prefetch_loc = false; 3438 } else { 3439 prefetch_loc = prange->prefetch_loc; 3440 } 3441 } 3442 if (get_accessible) { 3443 bitmap_and(bitmap_access, bitmap_access, 3444 prange->bitmap_access, MAX_GPU_INSTANCE); 3445 bitmap_and(bitmap_aip, bitmap_aip, 3446 prange->bitmap_aip, MAX_GPU_INSTANCE); 3447 } 3448 if (get_flags) { 3449 flags_and &= prange->flags; 3450 flags_or |= prange->flags; 3451 } 3452 3453 if (get_granularity && prange->granularity < granularity) 3454 granularity = prange->granularity; 3455 3456 node = next; 3457 } 3458 fill_values: 3459 mutex_unlock(&svms->lock); 3460 3461 for (i = 0; i < nattr; i++) { 3462 switch (attrs[i].type) { 3463 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 3464 attrs[i].value = location; 3465 break; 3466 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3467 attrs[i].value = prefetch_loc; 3468 break; 3469 case KFD_IOCTL_SVM_ATTR_ACCESS: 3470 gpuidx = kfd_process_gpuidx_from_gpuid(p, 3471 attrs[i].value); 3472 if (gpuidx < 0) { 3473 pr_debug("invalid gpuid %x\n", attrs[i].value); 3474 return -EINVAL; 3475 } 3476 if (test_bit(gpuidx, bitmap_access)) 3477 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS; 3478 else if (test_bit(gpuidx, bitmap_aip)) 3479 attrs[i].type = 3480 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE; 3481 else 3482 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS; 3483 break; 3484 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3485 attrs[i].value = flags_and; 3486 break; 3487 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 3488 attrs[i].value = ~flags_or; 3489 break; 3490 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 3491 attrs[i].value = (uint32_t)granularity; 3492 break; 3493 } 3494 } 3495 3496 return 0; 3497 } 3498 3499 int kfd_criu_resume_svm(struct kfd_process *p) 3500 { 3501 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL; 3502 int nattr_common = 4, nattr_accessibility = 1; 3503 struct criu_svm_metadata *criu_svm_md = NULL; 3504 struct svm_range_list *svms = &p->svms; 3505 struct criu_svm_metadata *next = NULL; 3506 uint32_t set_flags = 0xffffffff; 3507 int i, j, num_attrs, ret = 0; 3508 uint64_t set_attr_size; 3509 struct mm_struct *mm; 3510 3511 if (list_empty(&svms->criu_svm_metadata_list)) { 3512 pr_debug("No SVM data from CRIU restore stage 2\n"); 3513 return ret; 3514 } 3515 3516 mm = get_task_mm(p->lead_thread); 3517 if (!mm) { 3518 pr_err("failed to get mm for the target process\n"); 3519 return -ESRCH; 3520 } 3521 3522 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds); 3523 3524 i = j = 0; 3525 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) { 3526 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n", 3527 i, criu_svm_md->data.start_addr, criu_svm_md->data.size); 3528 3529 for (j = 0; j < num_attrs; j++) { 3530 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n", 3531 i, j, criu_svm_md->data.attrs[j].type, 3532 i, j, criu_svm_md->data.attrs[j].value); 3533 switch (criu_svm_md->data.attrs[j].type) { 3534 /* During Checkpoint operation, the query for 3535 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might 3536 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were 3537 * not used by the range which was checkpointed. Care 3538 * must be taken to not restore with an invalid value 3539 * otherwise the gpuidx value will be invalid and 3540 * set_attr would eventually fail so just replace those 3541 * with another dummy attribute such as 3542 * KFD_IOCTL_SVM_ATTR_SET_FLAGS. 3543 */ 3544 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3545 if (criu_svm_md->data.attrs[j].value == 3546 KFD_IOCTL_SVM_LOCATION_UNDEFINED) { 3547 criu_svm_md->data.attrs[j].type = 3548 KFD_IOCTL_SVM_ATTR_SET_FLAGS; 3549 criu_svm_md->data.attrs[j].value = 0; 3550 } 3551 break; 3552 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3553 set_flags = criu_svm_md->data.attrs[j].value; 3554 break; 3555 default: 3556 break; 3557 } 3558 } 3559 3560 /* CLR_FLAGS is not available via get_attr during checkpoint but 3561 * it needs to be inserted before restoring the ranges so 3562 * allocate extra space for it before calling set_attr 3563 */ 3564 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 3565 (num_attrs + 1); 3566 set_attr_new = krealloc(set_attr, set_attr_size, 3567 GFP_KERNEL); 3568 if (!set_attr_new) { 3569 ret = -ENOMEM; 3570 goto exit; 3571 } 3572 set_attr = set_attr_new; 3573 3574 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs * 3575 sizeof(struct kfd_ioctl_svm_attribute)); 3576 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS; 3577 set_attr[num_attrs].value = ~set_flags; 3578 3579 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr, 3580 criu_svm_md->data.size, num_attrs + 1, 3581 set_attr); 3582 if (ret) { 3583 pr_err("CRIU: failed to set range attributes\n"); 3584 goto exit; 3585 } 3586 3587 i++; 3588 } 3589 exit: 3590 kfree(set_attr); 3591 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) { 3592 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n", 3593 criu_svm_md->data.start_addr); 3594 kfree(criu_svm_md); 3595 } 3596 3597 mmput(mm); 3598 return ret; 3599 3600 } 3601 3602 int kfd_criu_restore_svm(struct kfd_process *p, 3603 uint8_t __user *user_priv_ptr, 3604 uint64_t *priv_data_offset, 3605 uint64_t max_priv_data_size) 3606 { 3607 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size; 3608 int nattr_common = 4, nattr_accessibility = 1; 3609 struct criu_svm_metadata *criu_svm_md = NULL; 3610 struct svm_range_list *svms = &p->svms; 3611 uint32_t num_devices; 3612 int ret = 0; 3613 3614 num_devices = p->n_pdds; 3615 /* Handle one SVM range object at a time, also the number of gpus are 3616 * assumed to be same on the restore node, checking must be done while 3617 * evaluating the topology earlier 3618 */ 3619 3620 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) * 3621 (nattr_common + nattr_accessibility * num_devices); 3622 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size; 3623 3624 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) + 3625 svm_attrs_size; 3626 3627 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL); 3628 if (!criu_svm_md) { 3629 pr_err("failed to allocate memory to store svm metadata\n"); 3630 return -ENOMEM; 3631 } 3632 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) { 3633 ret = -EINVAL; 3634 goto exit; 3635 } 3636 3637 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset, 3638 svm_priv_data_size); 3639 if (ret) { 3640 ret = -EFAULT; 3641 goto exit; 3642 } 3643 *priv_data_offset += svm_priv_data_size; 3644 3645 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list); 3646 3647 return 0; 3648 3649 3650 exit: 3651 kfree(criu_svm_md); 3652 return ret; 3653 } 3654 3655 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges, 3656 uint64_t *svm_priv_data_size) 3657 { 3658 uint64_t total_size, accessibility_size, common_attr_size; 3659 int nattr_common = 4, nattr_accessibility = 1; 3660 int num_devices = p->n_pdds; 3661 struct svm_range_list *svms; 3662 struct svm_range *prange; 3663 uint32_t count = 0; 3664 3665 *svm_priv_data_size = 0; 3666 3667 svms = &p->svms; 3668 if (!svms) 3669 return -EINVAL; 3670 3671 mutex_lock(&svms->lock); 3672 list_for_each_entry(prange, &svms->list, list) { 3673 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n", 3674 prange, prange->start, prange->npages, 3675 prange->start + prange->npages - 1); 3676 count++; 3677 } 3678 mutex_unlock(&svms->lock); 3679 3680 *num_svm_ranges = count; 3681 /* Only the accessbility attributes need to be queried for all the gpus 3682 * individually, remaining ones are spanned across the entire process 3683 * regardless of the various gpu nodes. Of the remaining attributes, 3684 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved. 3685 * 3686 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC 3687 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC 3688 * KFD_IOCTL_SVM_ATTR_SET_FLAGS 3689 * KFD_IOCTL_SVM_ATTR_GRANULARITY 3690 * 3691 * ** ACCESSBILITY ATTRIBUTES ** 3692 * (Considered as one, type is altered during query, value is gpuid) 3693 * KFD_IOCTL_SVM_ATTR_ACCESS 3694 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE 3695 * KFD_IOCTL_SVM_ATTR_NO_ACCESS 3696 */ 3697 if (*num_svm_ranges > 0) { 3698 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 3699 nattr_common; 3700 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) * 3701 nattr_accessibility * num_devices; 3702 3703 total_size = sizeof(struct kfd_criu_svm_range_priv_data) + 3704 common_attr_size + accessibility_size; 3705 3706 *svm_priv_data_size = *num_svm_ranges * total_size; 3707 } 3708 3709 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges, 3710 *svm_priv_data_size); 3711 return 0; 3712 } 3713 3714 int kfd_criu_checkpoint_svm(struct kfd_process *p, 3715 uint8_t __user *user_priv_data, 3716 uint64_t *priv_data_offset) 3717 { 3718 struct kfd_criu_svm_range_priv_data *svm_priv = NULL; 3719 struct kfd_ioctl_svm_attribute *query_attr = NULL; 3720 uint64_t svm_priv_data_size, query_attr_size = 0; 3721 int index, nattr_common = 4, ret = 0; 3722 struct svm_range_list *svms; 3723 int num_devices = p->n_pdds; 3724 struct svm_range *prange; 3725 struct mm_struct *mm; 3726 3727 svms = &p->svms; 3728 if (!svms) 3729 return -EINVAL; 3730 3731 mm = get_task_mm(p->lead_thread); 3732 if (!mm) { 3733 pr_err("failed to get mm for the target process\n"); 3734 return -ESRCH; 3735 } 3736 3737 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 3738 (nattr_common + num_devices); 3739 3740 query_attr = kzalloc(query_attr_size, GFP_KERNEL); 3741 if (!query_attr) { 3742 ret = -ENOMEM; 3743 goto exit; 3744 } 3745 3746 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC; 3747 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC; 3748 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS; 3749 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY; 3750 3751 for (index = 0; index < num_devices; index++) { 3752 struct kfd_process_device *pdd = p->pdds[index]; 3753 3754 query_attr[index + nattr_common].type = 3755 KFD_IOCTL_SVM_ATTR_ACCESS; 3756 query_attr[index + nattr_common].value = pdd->user_gpu_id; 3757 } 3758 3759 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size; 3760 3761 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL); 3762 if (!svm_priv) { 3763 ret = -ENOMEM; 3764 goto exit_query; 3765 } 3766 3767 index = 0; 3768 list_for_each_entry(prange, &svms->list, list) { 3769 3770 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE; 3771 svm_priv->start_addr = prange->start; 3772 svm_priv->size = prange->npages; 3773 memcpy(&svm_priv->attrs, query_attr, query_attr_size); 3774 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n", 3775 prange, prange->start, prange->npages, 3776 prange->start + prange->npages - 1, 3777 prange->npages * PAGE_SIZE); 3778 3779 ret = svm_range_get_attr(p, mm, svm_priv->start_addr, 3780 svm_priv->size, 3781 (nattr_common + num_devices), 3782 svm_priv->attrs); 3783 if (ret) { 3784 pr_err("CRIU: failed to obtain range attributes\n"); 3785 goto exit_priv; 3786 } 3787 3788 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv, 3789 svm_priv_data_size)) { 3790 pr_err("Failed to copy svm priv to user\n"); 3791 ret = -EFAULT; 3792 goto exit_priv; 3793 } 3794 3795 *priv_data_offset += svm_priv_data_size; 3796 3797 } 3798 3799 3800 exit_priv: 3801 kfree(svm_priv); 3802 exit_query: 3803 kfree(query_attr); 3804 exit: 3805 mmput(mm); 3806 return ret; 3807 } 3808 3809 int 3810 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start, 3811 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs) 3812 { 3813 struct mm_struct *mm = current->mm; 3814 int r; 3815 3816 start >>= PAGE_SHIFT; 3817 size >>= PAGE_SHIFT; 3818 3819 switch (op) { 3820 case KFD_IOCTL_SVM_OP_SET_ATTR: 3821 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs); 3822 break; 3823 case KFD_IOCTL_SVM_OP_GET_ATTR: 3824 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs); 3825 break; 3826 default: 3827 r = EINVAL; 3828 break; 3829 } 3830 3831 return r; 3832 } 3833