1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mutex.h> 25 #include <linux/log2.h> 26 #include <linux/sched.h> 27 #include <linux/sched/mm.h> 28 #include <linux/sched/task.h> 29 #include <linux/mmu_context.h> 30 #include <linux/slab.h> 31 #include <linux/amd-iommu.h> 32 #include <linux/notifier.h> 33 #include <linux/compat.h> 34 #include <linux/mman.h> 35 #include <linux/file.h> 36 #include <linux/pm_runtime.h> 37 #include "amdgpu_amdkfd.h" 38 #include "amdgpu.h" 39 40 struct mm_struct; 41 42 #include "kfd_priv.h" 43 #include "kfd_device_queue_manager.h" 44 #include "kfd_iommu.h" 45 #include "kfd_svm.h" 46 #include "kfd_smi_events.h" 47 #include "kfd_debug.h" 48 49 /* 50 * List of struct kfd_process (field kfd_process). 51 * Unique/indexed by mm_struct* 52 */ 53 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 54 DEFINE_MUTEX(kfd_processes_mutex); 55 56 DEFINE_SRCU(kfd_processes_srcu); 57 58 /* For process termination handling */ 59 static struct workqueue_struct *kfd_process_wq; 60 61 /* Ordered, single-threaded workqueue for restoring evicted 62 * processes. Restoring multiple processes concurrently under memory 63 * pressure can lead to processes blocking each other from validating 64 * their BOs and result in a live-lock situation where processes 65 * remain evicted indefinitely. 66 */ 67 static struct workqueue_struct *kfd_restore_wq; 68 69 static struct kfd_process *find_process(const struct task_struct *thread, 70 bool ref); 71 static void kfd_process_ref_release(struct kref *ref); 72 static struct kfd_process *create_process(const struct task_struct *thread); 73 74 static void evict_process_worker(struct work_struct *work); 75 static void restore_process_worker(struct work_struct *work); 76 77 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); 78 79 struct kfd_procfs_tree { 80 struct kobject *kobj; 81 }; 82 83 static struct kfd_procfs_tree procfs; 84 85 /* 86 * Structure for SDMA activity tracking 87 */ 88 struct kfd_sdma_activity_handler_workarea { 89 struct work_struct sdma_activity_work; 90 struct kfd_process_device *pdd; 91 uint64_t sdma_activity_counter; 92 }; 93 94 struct temp_sdma_queue_list { 95 uint64_t __user *rptr; 96 uint64_t sdma_val; 97 unsigned int queue_id; 98 struct list_head list; 99 }; 100 101 static void kfd_sdma_activity_worker(struct work_struct *work) 102 { 103 struct kfd_sdma_activity_handler_workarea *workarea; 104 struct kfd_process_device *pdd; 105 uint64_t val; 106 struct mm_struct *mm; 107 struct queue *q; 108 struct qcm_process_device *qpd; 109 struct device_queue_manager *dqm; 110 int ret = 0; 111 struct temp_sdma_queue_list sdma_q_list; 112 struct temp_sdma_queue_list *sdma_q, *next; 113 114 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 115 sdma_activity_work); 116 117 pdd = workarea->pdd; 118 if (!pdd) 119 return; 120 dqm = pdd->dev->dqm; 121 qpd = &pdd->qpd; 122 if (!dqm || !qpd) 123 return; 124 /* 125 * Total SDMA activity is current SDMA activity + past SDMA activity 126 * Past SDMA count is stored in pdd. 127 * To get the current activity counters for all active SDMA queues, 128 * we loop over all SDMA queues and get their counts from user-space. 129 * 130 * We cannot call get_user() with dqm_lock held as it can cause 131 * a circular lock dependency situation. To read the SDMA stats, 132 * we need to do the following: 133 * 134 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 135 * with dqm_lock/dqm_unlock(). 136 * 2. Call get_user() for each node in temporary list without dqm_lock. 137 * Save the SDMA count for each node and also add the count to the total 138 * SDMA count counter. 139 * Its possible, during this step, a few SDMA queue nodes got deleted 140 * from the qpd->queues_list. 141 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 142 * If any node got deleted, its SDMA count would be captured in the sdma 143 * past activity counter. So subtract the SDMA counter stored in step 2 144 * for this node from the total SDMA count. 145 */ 146 INIT_LIST_HEAD(&sdma_q_list.list); 147 148 /* 149 * Create the temp list of all SDMA queues 150 */ 151 dqm_lock(dqm); 152 153 list_for_each_entry(q, &qpd->queues_list, list) { 154 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 155 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 156 continue; 157 158 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 159 if (!sdma_q) { 160 dqm_unlock(dqm); 161 goto cleanup; 162 } 163 164 INIT_LIST_HEAD(&sdma_q->list); 165 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 166 sdma_q->queue_id = q->properties.queue_id; 167 list_add_tail(&sdma_q->list, &sdma_q_list.list); 168 } 169 170 /* 171 * If the temp list is empty, then no SDMA queues nodes were found in 172 * qpd->queues_list. Return the past activity count as the total sdma 173 * count 174 */ 175 if (list_empty(&sdma_q_list.list)) { 176 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 177 dqm_unlock(dqm); 178 return; 179 } 180 181 dqm_unlock(dqm); 182 183 /* 184 * Get the usage count for each SDMA queue in temp_list. 185 */ 186 mm = get_task_mm(pdd->process->lead_thread); 187 if (!mm) 188 goto cleanup; 189 190 kthread_use_mm(mm); 191 192 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 193 val = 0; 194 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 195 if (ret) { 196 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 197 sdma_q->queue_id); 198 } else { 199 sdma_q->sdma_val = val; 200 workarea->sdma_activity_counter += val; 201 } 202 } 203 204 kthread_unuse_mm(mm); 205 mmput(mm); 206 207 /* 208 * Do a second iteration over qpd_queues_list to check if any SDMA 209 * nodes got deleted while fetching SDMA counter. 210 */ 211 dqm_lock(dqm); 212 213 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 214 215 list_for_each_entry(q, &qpd->queues_list, list) { 216 if (list_empty(&sdma_q_list.list)) 217 break; 218 219 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 220 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 221 continue; 222 223 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 224 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 225 (sdma_q->queue_id == q->properties.queue_id)) { 226 list_del(&sdma_q->list); 227 kfree(sdma_q); 228 break; 229 } 230 } 231 } 232 233 dqm_unlock(dqm); 234 235 /* 236 * If temp list is not empty, it implies some queues got deleted 237 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 238 * count for each node from the total SDMA count. 239 */ 240 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 241 workarea->sdma_activity_counter -= sdma_q->sdma_val; 242 list_del(&sdma_q->list); 243 kfree(sdma_q); 244 } 245 246 return; 247 248 cleanup: 249 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 250 list_del(&sdma_q->list); 251 kfree(sdma_q); 252 } 253 } 254 255 /** 256 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device 257 * by current process. Translates acquired wave count into number of compute units 258 * that are occupied. 259 * 260 * @attr: Handle of attribute that allows reporting of wave count. The attribute 261 * handle encapsulates GPU device it is associated with, thereby allowing collection 262 * of waves in flight, etc 263 * @buffer: Handle of user provided buffer updated with wave count 264 * 265 * Return: Number of bytes written to user buffer or an error value 266 */ 267 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 268 { 269 int cu_cnt; 270 int wave_cnt; 271 int max_waves_per_cu; 272 struct kfd_node *dev = NULL; 273 struct kfd_process *proc = NULL; 274 struct kfd_process_device *pdd = NULL; 275 276 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 277 dev = pdd->dev; 278 if (dev->kfd2kgd->get_cu_occupancy == NULL) 279 return -EINVAL; 280 281 cu_cnt = 0; 282 proc = pdd->process; 283 if (pdd->qpd.queue_count == 0) { 284 pr_debug("Gpu-Id: %d has no active queues for process %d\n", 285 dev->id, proc->pasid); 286 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 287 } 288 289 /* Collect wave count from device if it supports */ 290 wave_cnt = 0; 291 max_waves_per_cu = 0; 292 dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt, 293 &max_waves_per_cu, 0); 294 295 /* Translate wave count to number of compute units */ 296 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 297 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 298 } 299 300 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 301 char *buffer) 302 { 303 if (strcmp(attr->name, "pasid") == 0) { 304 struct kfd_process *p = container_of(attr, struct kfd_process, 305 attr_pasid); 306 307 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 308 } else if (strncmp(attr->name, "vram_", 5) == 0) { 309 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 310 attr_vram); 311 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage)); 312 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 313 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 314 attr_sdma); 315 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 316 317 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work, 318 kfd_sdma_activity_worker); 319 320 sdma_activity_work_handler.pdd = pdd; 321 sdma_activity_work_handler.sdma_activity_counter = 0; 322 323 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 324 325 flush_work(&sdma_activity_work_handler.sdma_activity_work); 326 327 return snprintf(buffer, PAGE_SIZE, "%llu\n", 328 (sdma_activity_work_handler.sdma_activity_counter)/ 329 SDMA_ACTIVITY_DIVISOR); 330 } else { 331 pr_err("Invalid attribute"); 332 return -EINVAL; 333 } 334 335 return 0; 336 } 337 338 static void kfd_procfs_kobj_release(struct kobject *kobj) 339 { 340 kfree(kobj); 341 } 342 343 static const struct sysfs_ops kfd_procfs_ops = { 344 .show = kfd_procfs_show, 345 }; 346 347 static const struct kobj_type procfs_type = { 348 .release = kfd_procfs_kobj_release, 349 .sysfs_ops = &kfd_procfs_ops, 350 }; 351 352 void kfd_procfs_init(void) 353 { 354 int ret = 0; 355 356 procfs.kobj = kfd_alloc_struct(procfs.kobj); 357 if (!procfs.kobj) 358 return; 359 360 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 361 &kfd_device->kobj, "proc"); 362 if (ret) { 363 pr_warn("Could not create procfs proc folder"); 364 /* If we fail to create the procfs, clean up */ 365 kfd_procfs_shutdown(); 366 } 367 } 368 369 void kfd_procfs_shutdown(void) 370 { 371 if (procfs.kobj) { 372 kobject_del(procfs.kobj); 373 kobject_put(procfs.kobj); 374 procfs.kobj = NULL; 375 } 376 } 377 378 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 379 struct attribute *attr, char *buffer) 380 { 381 struct queue *q = container_of(kobj, struct queue, kobj); 382 383 if (!strcmp(attr->name, "size")) 384 return snprintf(buffer, PAGE_SIZE, "%llu", 385 q->properties.queue_size); 386 else if (!strcmp(attr->name, "type")) 387 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 388 else if (!strcmp(attr->name, "gpuid")) 389 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 390 else 391 pr_err("Invalid attribute"); 392 393 return 0; 394 } 395 396 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 397 struct attribute *attr, char *buffer) 398 { 399 if (strcmp(attr->name, "evicted_ms") == 0) { 400 struct kfd_process_device *pdd = container_of(attr, 401 struct kfd_process_device, 402 attr_evict); 403 uint64_t evict_jiffies; 404 405 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 406 407 return snprintf(buffer, 408 PAGE_SIZE, 409 "%llu\n", 410 jiffies64_to_msecs(evict_jiffies)); 411 412 /* Sysfs handle that gets CU occupancy is per device */ 413 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 414 return kfd_get_cu_occupancy(attr, buffer); 415 } else { 416 pr_err("Invalid attribute"); 417 } 418 419 return 0; 420 } 421 422 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, 423 struct attribute *attr, char *buf) 424 { 425 struct kfd_process_device *pdd; 426 427 if (!strcmp(attr->name, "faults")) { 428 pdd = container_of(attr, struct kfd_process_device, 429 attr_faults); 430 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); 431 } 432 if (!strcmp(attr->name, "page_in")) { 433 pdd = container_of(attr, struct kfd_process_device, 434 attr_page_in); 435 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); 436 } 437 if (!strcmp(attr->name, "page_out")) { 438 pdd = container_of(attr, struct kfd_process_device, 439 attr_page_out); 440 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); 441 } 442 return 0; 443 } 444 445 static struct attribute attr_queue_size = { 446 .name = "size", 447 .mode = KFD_SYSFS_FILE_MODE 448 }; 449 450 static struct attribute attr_queue_type = { 451 .name = "type", 452 .mode = KFD_SYSFS_FILE_MODE 453 }; 454 455 static struct attribute attr_queue_gpuid = { 456 .name = "gpuid", 457 .mode = KFD_SYSFS_FILE_MODE 458 }; 459 460 static struct attribute *procfs_queue_attrs[] = { 461 &attr_queue_size, 462 &attr_queue_type, 463 &attr_queue_gpuid, 464 NULL 465 }; 466 ATTRIBUTE_GROUPS(procfs_queue); 467 468 static const struct sysfs_ops procfs_queue_ops = { 469 .show = kfd_procfs_queue_show, 470 }; 471 472 static const struct kobj_type procfs_queue_type = { 473 .sysfs_ops = &procfs_queue_ops, 474 .default_groups = procfs_queue_groups, 475 }; 476 477 static const struct sysfs_ops procfs_stats_ops = { 478 .show = kfd_procfs_stats_show, 479 }; 480 481 static const struct kobj_type procfs_stats_type = { 482 .sysfs_ops = &procfs_stats_ops, 483 .release = kfd_procfs_kobj_release, 484 }; 485 486 static const struct sysfs_ops sysfs_counters_ops = { 487 .show = kfd_sysfs_counters_show, 488 }; 489 490 static const struct kobj_type sysfs_counters_type = { 491 .sysfs_ops = &sysfs_counters_ops, 492 .release = kfd_procfs_kobj_release, 493 }; 494 495 int kfd_procfs_add_queue(struct queue *q) 496 { 497 struct kfd_process *proc; 498 int ret; 499 500 if (!q || !q->process) 501 return -EINVAL; 502 proc = q->process; 503 504 /* Create proc/<pid>/queues/<queue id> folder */ 505 if (!proc->kobj_queues) 506 return -EFAULT; 507 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 508 proc->kobj_queues, "%u", q->properties.queue_id); 509 if (ret < 0) { 510 pr_warn("Creating proc/<pid>/queues/%u failed", 511 q->properties.queue_id); 512 kobject_put(&q->kobj); 513 return ret; 514 } 515 516 return 0; 517 } 518 519 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, 520 char *name) 521 { 522 int ret; 523 524 if (!kobj || !attr || !name) 525 return; 526 527 attr->name = name; 528 attr->mode = KFD_SYSFS_FILE_MODE; 529 sysfs_attr_init(attr); 530 531 ret = sysfs_create_file(kobj, attr); 532 if (ret) 533 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); 534 } 535 536 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) 537 { 538 int ret; 539 int i; 540 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 541 542 if (!p || !p->kobj) 543 return; 544 545 /* 546 * Create sysfs files for each GPU: 547 * - proc/<pid>/stats_<gpuid>/ 548 * - proc/<pid>/stats_<gpuid>/evicted_ms 549 * - proc/<pid>/stats_<gpuid>/cu_occupancy 550 */ 551 for (i = 0; i < p->n_pdds; i++) { 552 struct kfd_process_device *pdd = p->pdds[i]; 553 554 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 555 "stats_%u", pdd->dev->id); 556 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); 557 if (!pdd->kobj_stats) 558 return; 559 560 ret = kobject_init_and_add(pdd->kobj_stats, 561 &procfs_stats_type, 562 p->kobj, 563 stats_dir_filename); 564 565 if (ret) { 566 pr_warn("Creating KFD proc/stats_%s folder failed", 567 stats_dir_filename); 568 kobject_put(pdd->kobj_stats); 569 pdd->kobj_stats = NULL; 570 return; 571 } 572 573 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, 574 "evicted_ms"); 575 /* Add sysfs file to report compute unit occupancy */ 576 if (pdd->dev->kfd2kgd->get_cu_occupancy) 577 kfd_sysfs_create_file(pdd->kobj_stats, 578 &pdd->attr_cu_occupancy, 579 "cu_occupancy"); 580 } 581 } 582 583 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) 584 { 585 int ret = 0; 586 int i; 587 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; 588 589 if (!p || !p->kobj) 590 return; 591 592 /* 593 * Create sysfs files for each GPU which supports SVM 594 * - proc/<pid>/counters_<gpuid>/ 595 * - proc/<pid>/counters_<gpuid>/faults 596 * - proc/<pid>/counters_<gpuid>/page_in 597 * - proc/<pid>/counters_<gpuid>/page_out 598 */ 599 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 600 struct kfd_process_device *pdd = p->pdds[i]; 601 struct kobject *kobj_counters; 602 603 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, 604 "counters_%u", pdd->dev->id); 605 kobj_counters = kfd_alloc_struct(kobj_counters); 606 if (!kobj_counters) 607 return; 608 609 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, 610 p->kobj, counters_dir_filename); 611 if (ret) { 612 pr_warn("Creating KFD proc/%s folder failed", 613 counters_dir_filename); 614 kobject_put(kobj_counters); 615 return; 616 } 617 618 pdd->kobj_counters = kobj_counters; 619 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, 620 "faults"); 621 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, 622 "page_in"); 623 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, 624 "page_out"); 625 } 626 } 627 628 static void kfd_procfs_add_sysfs_files(struct kfd_process *p) 629 { 630 int i; 631 632 if (!p || !p->kobj) 633 return; 634 635 /* 636 * Create sysfs files for each GPU: 637 * - proc/<pid>/vram_<gpuid> 638 * - proc/<pid>/sdma_<gpuid> 639 */ 640 for (i = 0; i < p->n_pdds; i++) { 641 struct kfd_process_device *pdd = p->pdds[i]; 642 643 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 644 pdd->dev->id); 645 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, 646 pdd->vram_filename); 647 648 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 649 pdd->dev->id); 650 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, 651 pdd->sdma_filename); 652 } 653 } 654 655 void kfd_procfs_del_queue(struct queue *q) 656 { 657 if (!q) 658 return; 659 660 kobject_del(&q->kobj); 661 kobject_put(&q->kobj); 662 } 663 664 int kfd_process_create_wq(void) 665 { 666 if (!kfd_process_wq) 667 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 668 if (!kfd_restore_wq) 669 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0); 670 671 if (!kfd_process_wq || !kfd_restore_wq) { 672 kfd_process_destroy_wq(); 673 return -ENOMEM; 674 } 675 676 return 0; 677 } 678 679 void kfd_process_destroy_wq(void) 680 { 681 if (kfd_process_wq) { 682 destroy_workqueue(kfd_process_wq); 683 kfd_process_wq = NULL; 684 } 685 if (kfd_restore_wq) { 686 destroy_workqueue(kfd_restore_wq); 687 kfd_restore_wq = NULL; 688 } 689 } 690 691 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 692 struct kfd_process_device *pdd, void **kptr) 693 { 694 struct kfd_node *dev = pdd->dev; 695 696 if (kptr && *kptr) { 697 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 698 *kptr = NULL; 699 } 700 701 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv); 702 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv, 703 NULL); 704 } 705 706 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 707 * This function should be only called right after the process 708 * is created and when kfd_processes_mutex is still being held 709 * to avoid concurrency. Because of that exclusiveness, we do 710 * not need to take p->mutex. 711 */ 712 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 713 uint64_t gpu_va, uint32_t size, 714 uint32_t flags, struct kgd_mem **mem, void **kptr) 715 { 716 struct kfd_node *kdev = pdd->dev; 717 int err; 718 719 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size, 720 pdd->drm_priv, mem, NULL, 721 flags, false); 722 if (err) 723 goto err_alloc_mem; 724 725 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem, 726 pdd->drm_priv); 727 if (err) 728 goto err_map_mem; 729 730 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true); 731 if (err) { 732 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 733 goto sync_memory_failed; 734 } 735 736 if (kptr) { 737 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel( 738 (struct kgd_mem *)*mem, kptr, NULL); 739 if (err) { 740 pr_debug("Map GTT BO to kernel failed\n"); 741 goto sync_memory_failed; 742 } 743 } 744 745 return err; 746 747 sync_memory_failed: 748 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv); 749 750 err_map_mem: 751 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv, 752 NULL); 753 err_alloc_mem: 754 *mem = NULL; 755 *kptr = NULL; 756 return err; 757 } 758 759 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 760 * process for IB usage The memory reserved is for KFD to submit 761 * IB to AMDGPU from kernel. If the memory is reserved 762 * successfully, ib_kaddr will have the CPU/kernel 763 * address. Check ib_kaddr before accessing the memory. 764 */ 765 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 766 { 767 struct qcm_process_device *qpd = &pdd->qpd; 768 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 769 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 770 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 771 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 772 struct kgd_mem *mem; 773 void *kaddr; 774 int ret; 775 776 if (qpd->ib_kaddr || !qpd->ib_base) 777 return 0; 778 779 /* ib_base is only set for dGPU */ 780 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 781 &mem, &kaddr); 782 if (ret) 783 return ret; 784 785 qpd->ib_mem = mem; 786 qpd->ib_kaddr = kaddr; 787 788 return 0; 789 } 790 791 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) 792 { 793 struct qcm_process_device *qpd = &pdd->qpd; 794 795 if (!qpd->ib_kaddr || !qpd->ib_base) 796 return; 797 798 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr); 799 } 800 801 struct kfd_process *kfd_create_process(struct task_struct *thread) 802 { 803 struct kfd_process *process; 804 int ret; 805 806 if (!(thread->mm && mmget_not_zero(thread->mm))) 807 return ERR_PTR(-EINVAL); 808 809 /* Only the pthreads threading model is supported. */ 810 if (thread->group_leader->mm != thread->mm) { 811 mmput(thread->mm); 812 return ERR_PTR(-EINVAL); 813 } 814 815 /* 816 * take kfd processes mutex before starting of process creation 817 * so there won't be a case where two threads of the same process 818 * create two kfd_process structures 819 */ 820 mutex_lock(&kfd_processes_mutex); 821 822 if (kfd_is_locked()) { 823 mutex_unlock(&kfd_processes_mutex); 824 pr_debug("KFD is locked! Cannot create process"); 825 return ERR_PTR(-EINVAL); 826 } 827 828 /* A prior open of /dev/kfd could have already created the process. */ 829 process = find_process(thread, false); 830 if (process) { 831 pr_debug("Process already found\n"); 832 } else { 833 process = create_process(thread); 834 if (IS_ERR(process)) 835 goto out; 836 837 if (!procfs.kobj) 838 goto out; 839 840 process->kobj = kfd_alloc_struct(process->kobj); 841 if (!process->kobj) { 842 pr_warn("Creating procfs kobject failed"); 843 goto out; 844 } 845 ret = kobject_init_and_add(process->kobj, &procfs_type, 846 procfs.kobj, "%d", 847 (int)process->lead_thread->pid); 848 if (ret) { 849 pr_warn("Creating procfs pid directory failed"); 850 kobject_put(process->kobj); 851 goto out; 852 } 853 854 kfd_sysfs_create_file(process->kobj, &process->attr_pasid, 855 "pasid"); 856 857 process->kobj_queues = kobject_create_and_add("queues", 858 process->kobj); 859 if (!process->kobj_queues) 860 pr_warn("Creating KFD proc/queues folder failed"); 861 862 kfd_procfs_add_sysfs_stats(process); 863 kfd_procfs_add_sysfs_files(process); 864 kfd_procfs_add_sysfs_counters(process); 865 866 init_waitqueue_head(&process->wait_irq_drain); 867 } 868 out: 869 if (!IS_ERR(process)) 870 kref_get(&process->ref); 871 mutex_unlock(&kfd_processes_mutex); 872 mmput(thread->mm); 873 874 return process; 875 } 876 877 struct kfd_process *kfd_get_process(const struct task_struct *thread) 878 { 879 struct kfd_process *process; 880 881 if (!thread->mm) 882 return ERR_PTR(-EINVAL); 883 884 /* Only the pthreads threading model is supported. */ 885 if (thread->group_leader->mm != thread->mm) 886 return ERR_PTR(-EINVAL); 887 888 process = find_process(thread, false); 889 if (!process) 890 return ERR_PTR(-EINVAL); 891 892 return process; 893 } 894 895 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 896 { 897 struct kfd_process *process; 898 899 hash_for_each_possible_rcu(kfd_processes_table, process, 900 kfd_processes, (uintptr_t)mm) 901 if (process->mm == mm) 902 return process; 903 904 return NULL; 905 } 906 907 static struct kfd_process *find_process(const struct task_struct *thread, 908 bool ref) 909 { 910 struct kfd_process *p; 911 int idx; 912 913 idx = srcu_read_lock(&kfd_processes_srcu); 914 p = find_process_by_mm(thread->mm); 915 if (p && ref) 916 kref_get(&p->ref); 917 srcu_read_unlock(&kfd_processes_srcu, idx); 918 919 return p; 920 } 921 922 void kfd_unref_process(struct kfd_process *p) 923 { 924 kref_put(&p->ref, kfd_process_ref_release); 925 } 926 927 /* This increments the process->ref counter. */ 928 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid) 929 { 930 struct task_struct *task = NULL; 931 struct kfd_process *p = NULL; 932 933 if (!pid) { 934 task = current; 935 get_task_struct(task); 936 } else { 937 task = get_pid_task(pid, PIDTYPE_PID); 938 } 939 940 if (task) { 941 p = find_process(task, true); 942 put_task_struct(task); 943 } 944 945 return p; 946 } 947 948 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 949 { 950 struct kfd_process *p = pdd->process; 951 void *mem; 952 int id; 953 int i; 954 955 /* 956 * Remove all handles from idr and release appropriate 957 * local memory object 958 */ 959 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 960 961 for (i = 0; i < p->n_pdds; i++) { 962 struct kfd_process_device *peer_pdd = p->pdds[i]; 963 964 if (!peer_pdd->drm_priv) 965 continue; 966 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 967 peer_pdd->dev->adev, mem, peer_pdd->drm_priv); 968 } 969 970 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem, 971 pdd->drm_priv, NULL); 972 kfd_process_device_remove_obj_handle(pdd, id); 973 } 974 } 975 976 /* 977 * Just kunmap and unpin signal BO here. It will be freed in 978 * kfd_process_free_outstanding_kfd_bos() 979 */ 980 static void kfd_process_kunmap_signal_bo(struct kfd_process *p) 981 { 982 struct kfd_process_device *pdd; 983 struct kfd_node *kdev; 984 void *mem; 985 986 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); 987 if (!kdev) 988 return; 989 990 mutex_lock(&p->mutex); 991 992 pdd = kfd_get_process_device_data(kdev, p); 993 if (!pdd) 994 goto out; 995 996 mem = kfd_process_device_translate_handle( 997 pdd, GET_IDR_HANDLE(p->signal_handle)); 998 if (!mem) 999 goto out; 1000 1001 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 1002 1003 out: 1004 mutex_unlock(&p->mutex); 1005 } 1006 1007 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 1008 { 1009 int i; 1010 1011 for (i = 0; i < p->n_pdds; i++) 1012 kfd_process_device_free_bos(p->pdds[i]); 1013 } 1014 1015 static void kfd_process_destroy_pdds(struct kfd_process *p) 1016 { 1017 int i; 1018 1019 for (i = 0; i < p->n_pdds; i++) { 1020 struct kfd_process_device *pdd = p->pdds[i]; 1021 1022 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 1023 pdd->dev->id, p->pasid); 1024 1025 kfd_process_device_destroy_cwsr_dgpu(pdd); 1026 kfd_process_device_destroy_ib_mem(pdd); 1027 1028 if (pdd->drm_file) { 1029 amdgpu_amdkfd_gpuvm_release_process_vm( 1030 pdd->dev->adev, pdd->drm_priv); 1031 fput(pdd->drm_file); 1032 } 1033 1034 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 1035 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 1036 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1037 1038 idr_destroy(&pdd->alloc_idr); 1039 1040 kfd_free_process_doorbells(pdd->dev->kfd, pdd); 1041 1042 if (pdd->dev->kfd->shared_resources.enable_mes) 1043 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev, 1044 pdd->proc_ctx_bo); 1045 /* 1046 * before destroying pdd, make sure to report availability 1047 * for auto suspend 1048 */ 1049 if (pdd->runtime_inuse) { 1050 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev); 1051 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev); 1052 pdd->runtime_inuse = false; 1053 } 1054 1055 kfree(pdd); 1056 p->pdds[i] = NULL; 1057 } 1058 p->n_pdds = 0; 1059 } 1060 1061 static void kfd_process_remove_sysfs(struct kfd_process *p) 1062 { 1063 struct kfd_process_device *pdd; 1064 int i; 1065 1066 if (!p->kobj) 1067 return; 1068 1069 sysfs_remove_file(p->kobj, &p->attr_pasid); 1070 kobject_del(p->kobj_queues); 1071 kobject_put(p->kobj_queues); 1072 p->kobj_queues = NULL; 1073 1074 for (i = 0; i < p->n_pdds; i++) { 1075 pdd = p->pdds[i]; 1076 1077 sysfs_remove_file(p->kobj, &pdd->attr_vram); 1078 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 1079 1080 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 1081 if (pdd->dev->kfd2kgd->get_cu_occupancy) 1082 sysfs_remove_file(pdd->kobj_stats, 1083 &pdd->attr_cu_occupancy); 1084 kobject_del(pdd->kobj_stats); 1085 kobject_put(pdd->kobj_stats); 1086 pdd->kobj_stats = NULL; 1087 } 1088 1089 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 1090 pdd = p->pdds[i]; 1091 1092 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); 1093 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); 1094 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); 1095 kobject_del(pdd->kobj_counters); 1096 kobject_put(pdd->kobj_counters); 1097 pdd->kobj_counters = NULL; 1098 } 1099 1100 kobject_del(p->kobj); 1101 kobject_put(p->kobj); 1102 p->kobj = NULL; 1103 } 1104 1105 /* No process locking is needed in this function, because the process 1106 * is not findable any more. We must assume that no other thread is 1107 * using it any more, otherwise we couldn't safely free the process 1108 * structure in the end. 1109 */ 1110 static void kfd_process_wq_release(struct work_struct *work) 1111 { 1112 struct kfd_process *p = container_of(work, struct kfd_process, 1113 release_work); 1114 1115 kfd_process_dequeue_from_all_devices(p); 1116 pqm_uninit(&p->pqm); 1117 1118 /* Signal the eviction fence after user mode queues are 1119 * destroyed. This allows any BOs to be freed without 1120 * triggering pointless evictions or waiting for fences. 1121 */ 1122 dma_fence_signal(p->ef); 1123 1124 kfd_process_remove_sysfs(p); 1125 kfd_iommu_unbind_process(p); 1126 1127 kfd_process_kunmap_signal_bo(p); 1128 kfd_process_free_outstanding_kfd_bos(p); 1129 svm_range_list_fini(p); 1130 1131 kfd_process_destroy_pdds(p); 1132 dma_fence_put(p->ef); 1133 1134 kfd_event_free_process(p); 1135 1136 kfd_pasid_free(p->pasid); 1137 mutex_destroy(&p->mutex); 1138 1139 put_task_struct(p->lead_thread); 1140 1141 kfree(p); 1142 } 1143 1144 static void kfd_process_ref_release(struct kref *ref) 1145 { 1146 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1147 1148 INIT_WORK(&p->release_work, kfd_process_wq_release); 1149 queue_work(kfd_process_wq, &p->release_work); 1150 } 1151 1152 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1153 { 1154 int idx = srcu_read_lock(&kfd_processes_srcu); 1155 struct kfd_process *p = find_process_by_mm(mm); 1156 1157 srcu_read_unlock(&kfd_processes_srcu, idx); 1158 1159 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1160 } 1161 1162 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1163 { 1164 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1165 } 1166 1167 static void kfd_process_notifier_release_internal(struct kfd_process *p) 1168 { 1169 int i; 1170 1171 cancel_delayed_work_sync(&p->eviction_work); 1172 cancel_delayed_work_sync(&p->restore_work); 1173 1174 for (i = 0; i < p->n_pdds; i++) { 1175 struct kfd_process_device *pdd = p->pdds[i]; 1176 1177 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */ 1178 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup) 1179 amdgpu_gfx_off_ctrl(pdd->dev->adev, true); 1180 } 1181 1182 /* Indicate to other users that MM is no longer valid */ 1183 p->mm = NULL; 1184 kfd_dbg_trap_disable(p); 1185 1186 if (atomic_read(&p->debugged_process_count) > 0) { 1187 struct kfd_process *target; 1188 unsigned int temp; 1189 int idx = srcu_read_lock(&kfd_processes_srcu); 1190 1191 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) { 1192 if (target->debugger_process && target->debugger_process == p) { 1193 mutex_lock_nested(&target->mutex, 1); 1194 kfd_dbg_trap_disable(target); 1195 mutex_unlock(&target->mutex); 1196 if (atomic_read(&p->debugged_process_count) == 0) 1197 break; 1198 } 1199 } 1200 1201 srcu_read_unlock(&kfd_processes_srcu, idx); 1202 } 1203 1204 mmu_notifier_put(&p->mmu_notifier); 1205 } 1206 1207 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1208 struct mm_struct *mm) 1209 { 1210 struct kfd_process *p; 1211 1212 /* 1213 * The kfd_process structure can not be free because the 1214 * mmu_notifier srcu is read locked 1215 */ 1216 p = container_of(mn, struct kfd_process, mmu_notifier); 1217 if (WARN_ON(p->mm != mm)) 1218 return; 1219 1220 mutex_lock(&kfd_processes_mutex); 1221 /* 1222 * Do early return if table is empty. 1223 * 1224 * This could potentially happen if this function is called concurrently 1225 * by mmu_notifier and by kfd_cleanup_pocesses. 1226 * 1227 */ 1228 if (hash_empty(kfd_processes_table)) { 1229 mutex_unlock(&kfd_processes_mutex); 1230 return; 1231 } 1232 hash_del_rcu(&p->kfd_processes); 1233 mutex_unlock(&kfd_processes_mutex); 1234 synchronize_srcu(&kfd_processes_srcu); 1235 1236 kfd_process_notifier_release_internal(p); 1237 } 1238 1239 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1240 .release = kfd_process_notifier_release, 1241 .alloc_notifier = kfd_process_alloc_notifier, 1242 .free_notifier = kfd_process_free_notifier, 1243 }; 1244 1245 /* 1246 * This code handles the case when driver is being unloaded before all 1247 * mm_struct are released. We need to safely free the kfd_process and 1248 * avoid race conditions with mmu_notifier that might try to free them. 1249 * 1250 */ 1251 void kfd_cleanup_processes(void) 1252 { 1253 struct kfd_process *p; 1254 struct hlist_node *p_temp; 1255 unsigned int temp; 1256 HLIST_HEAD(cleanup_list); 1257 1258 /* 1259 * Move all remaining kfd_process from the process table to a 1260 * temp list for processing. Once done, callback from mmu_notifier 1261 * release will not see the kfd_process in the table and do early return, 1262 * avoiding double free issues. 1263 */ 1264 mutex_lock(&kfd_processes_mutex); 1265 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) { 1266 hash_del_rcu(&p->kfd_processes); 1267 synchronize_srcu(&kfd_processes_srcu); 1268 hlist_add_head(&p->kfd_processes, &cleanup_list); 1269 } 1270 mutex_unlock(&kfd_processes_mutex); 1271 1272 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes) 1273 kfd_process_notifier_release_internal(p); 1274 1275 /* 1276 * Ensures that all outstanding free_notifier get called, triggering 1277 * the release of the kfd_process struct. 1278 */ 1279 mmu_notifier_synchronize(); 1280 } 1281 1282 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1283 { 1284 unsigned long offset; 1285 int i; 1286 1287 if (p->has_cwsr) 1288 return 0; 1289 1290 for (i = 0; i < p->n_pdds; i++) { 1291 struct kfd_node *dev = p->pdds[i]->dev; 1292 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1293 1294 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1295 continue; 1296 1297 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1298 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1299 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1300 MAP_SHARED, offset); 1301 1302 if (IS_ERR_VALUE(qpd->tba_addr)) { 1303 int err = qpd->tba_addr; 1304 1305 pr_err("Failure to set tba address. error %d.\n", err); 1306 qpd->tba_addr = 0; 1307 qpd->cwsr_kaddr = NULL; 1308 return err; 1309 } 1310 1311 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1312 1313 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled); 1314 1315 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1316 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1317 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1318 } 1319 1320 p->has_cwsr = true; 1321 1322 return 0; 1323 } 1324 1325 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1326 { 1327 struct kfd_node *dev = pdd->dev; 1328 struct qcm_process_device *qpd = &pdd->qpd; 1329 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1330 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1331 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1332 struct kgd_mem *mem; 1333 void *kaddr; 1334 int ret; 1335 1336 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1337 return 0; 1338 1339 /* cwsr_base is only set for dGPU */ 1340 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1341 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr); 1342 if (ret) 1343 return ret; 1344 1345 qpd->cwsr_mem = mem; 1346 qpd->cwsr_kaddr = kaddr; 1347 qpd->tba_addr = qpd->cwsr_base; 1348 1349 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1350 1351 kfd_process_set_trap_debug_flag(&pdd->qpd, 1352 pdd->process->debug_trap_enabled); 1353 1354 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1355 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1356 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1357 1358 return 0; 1359 } 1360 1361 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) 1362 { 1363 struct kfd_node *dev = pdd->dev; 1364 struct qcm_process_device *qpd = &pdd->qpd; 1365 1366 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) 1367 return; 1368 1369 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr); 1370 } 1371 1372 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1373 uint64_t tba_addr, 1374 uint64_t tma_addr) 1375 { 1376 if (qpd->cwsr_kaddr) { 1377 /* KFD trap handler is bound, record as second-level TBA/TMA 1378 * in first-level TMA. First-level trap will jump to second. 1379 */ 1380 uint64_t *tma = 1381 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1382 tma[0] = tba_addr; 1383 tma[1] = tma_addr; 1384 } else { 1385 /* No trap handler bound, bind as first-level TBA/TMA. */ 1386 qpd->tba_addr = tba_addr; 1387 qpd->tma_addr = tma_addr; 1388 } 1389 } 1390 1391 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1392 { 1393 int i; 1394 1395 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1396 * boot time retry setting. Mixing processes with different 1397 * XNACK/retry settings can hang the GPU. 1398 * 1399 * Different GPUs can have different noretry settings depending 1400 * on HW bugs or limitations. We need to find at least one 1401 * XNACK mode for this process that's compatible with all GPUs. 1402 * Fortunately GPUs with retry enabled (noretry=0) can run code 1403 * built for XNACK-off. On GFXv9 it may perform slower. 1404 * 1405 * Therefore applications built for XNACK-off can always be 1406 * supported and will be our fallback if any GPU does not 1407 * support retry. 1408 */ 1409 for (i = 0; i < p->n_pdds; i++) { 1410 struct kfd_node *dev = p->pdds[i]->dev; 1411 1412 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1413 * support the SVM APIs and don't need to be considered 1414 * for the XNACK mode selection. 1415 */ 1416 if (!KFD_IS_SOC15(dev)) 1417 continue; 1418 /* Aldebaran can always support XNACK because it can support 1419 * per-process XNACK mode selection. But let the dev->noretry 1420 * setting still influence the default XNACK mode. 1421 */ 1422 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) 1423 continue; 1424 1425 /* GFXv10 and later GPUs do not support shader preemption 1426 * during page faults. This can lead to poor QoS for queue 1427 * management and memory-manager-related preemptions or 1428 * even deadlocks. 1429 */ 1430 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 1431 return false; 1432 1433 if (dev->kfd->noretry) 1434 return false; 1435 } 1436 1437 return true; 1438 } 1439 1440 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd, 1441 bool enabled) 1442 { 1443 if (qpd->cwsr_kaddr) { 1444 uint64_t *tma = 1445 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1446 tma[2] = enabled; 1447 } 1448 } 1449 1450 /* 1451 * On return the kfd_process is fully operational and will be freed when the 1452 * mm is released 1453 */ 1454 static struct kfd_process *create_process(const struct task_struct *thread) 1455 { 1456 struct kfd_process *process; 1457 struct mmu_notifier *mn; 1458 int err = -ENOMEM; 1459 1460 process = kzalloc(sizeof(*process), GFP_KERNEL); 1461 if (!process) 1462 goto err_alloc_process; 1463 1464 kref_init(&process->ref); 1465 mutex_init(&process->mutex); 1466 process->mm = thread->mm; 1467 process->lead_thread = thread->group_leader; 1468 process->n_pdds = 0; 1469 process->queues_paused = false; 1470 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1471 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1472 process->last_restore_timestamp = get_jiffies_64(); 1473 err = kfd_event_init_process(process); 1474 if (err) 1475 goto err_event_init; 1476 process->is_32bit_user_mode = in_compat_syscall(); 1477 process->debug_trap_enabled = false; 1478 process->debugger_process = NULL; 1479 process->exception_enable_mask = 0; 1480 atomic_set(&process->debugged_process_count, 0); 1481 sema_init(&process->runtime_enable_sema, 0); 1482 1483 process->pasid = kfd_pasid_alloc(); 1484 if (process->pasid == 0) { 1485 err = -ENOSPC; 1486 goto err_alloc_pasid; 1487 } 1488 1489 err = pqm_init(&process->pqm, process); 1490 if (err != 0) 1491 goto err_process_pqm_init; 1492 1493 /* init process apertures*/ 1494 err = kfd_init_apertures(process); 1495 if (err != 0) 1496 goto err_init_apertures; 1497 1498 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1499 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1500 1501 err = svm_range_list_init(process); 1502 if (err) 1503 goto err_init_svm_range_list; 1504 1505 /* alloc_notifier needs to find the process in the hash table */ 1506 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1507 (uintptr_t)process->mm); 1508 1509 /* Avoid free_notifier to start kfd_process_wq_release if 1510 * mmu_notifier_get failed because of pending signal. 1511 */ 1512 kref_get(&process->ref); 1513 1514 /* MMU notifier registration must be the last call that can fail 1515 * because after this point we cannot unwind the process creation. 1516 * After this point, mmu_notifier_put will trigger the cleanup by 1517 * dropping the last process reference in the free_notifier. 1518 */ 1519 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1520 if (IS_ERR(mn)) { 1521 err = PTR_ERR(mn); 1522 goto err_register_notifier; 1523 } 1524 BUG_ON(mn != &process->mmu_notifier); 1525 1526 kfd_unref_process(process); 1527 get_task_struct(process->lead_thread); 1528 1529 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler); 1530 1531 return process; 1532 1533 err_register_notifier: 1534 hash_del_rcu(&process->kfd_processes); 1535 svm_range_list_fini(process); 1536 err_init_svm_range_list: 1537 kfd_process_free_outstanding_kfd_bos(process); 1538 kfd_process_destroy_pdds(process); 1539 err_init_apertures: 1540 pqm_uninit(&process->pqm); 1541 err_process_pqm_init: 1542 kfd_pasid_free(process->pasid); 1543 err_alloc_pasid: 1544 kfd_event_free_process(process); 1545 err_event_init: 1546 mutex_destroy(&process->mutex); 1547 kfree(process); 1548 err_alloc_process: 1549 return ERR_PTR(err); 1550 } 1551 1552 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, 1553 struct kfd_process *p) 1554 { 1555 int i; 1556 1557 for (i = 0; i < p->n_pdds; i++) 1558 if (p->pdds[i]->dev == dev) 1559 return p->pdds[i]; 1560 1561 return NULL; 1562 } 1563 1564 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, 1565 struct kfd_process *p) 1566 { 1567 struct kfd_process_device *pdd = NULL; 1568 int retval = 0; 1569 1570 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1571 return NULL; 1572 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1573 if (!pdd) 1574 return NULL; 1575 1576 pdd->dev = dev; 1577 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1578 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1579 pdd->qpd.dqm = dev->dqm; 1580 pdd->qpd.pqm = &p->pqm; 1581 pdd->qpd.evicted = 0; 1582 pdd->qpd.mapped_gws_queue = false; 1583 pdd->process = p; 1584 pdd->bound = PDD_UNBOUND; 1585 pdd->already_dequeued = false; 1586 pdd->runtime_inuse = false; 1587 pdd->vram_usage = 0; 1588 pdd->sdma_past_activity_counter = 0; 1589 pdd->user_gpu_id = dev->id; 1590 atomic64_set(&pdd->evict_duration_counter, 0); 1591 1592 if (dev->kfd->shared_resources.enable_mes) { 1593 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, 1594 AMDGPU_MES_PROC_CTX_SIZE, 1595 &pdd->proc_ctx_bo, 1596 &pdd->proc_ctx_gpu_addr, 1597 &pdd->proc_ctx_cpu_ptr, 1598 false); 1599 if (retval) { 1600 pr_err("failed to allocate process context bo\n"); 1601 goto err_free_pdd; 1602 } 1603 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE); 1604 } 1605 1606 p->pdds[p->n_pdds++] = pdd; 1607 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) 1608 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap( 1609 pdd->dev->adev, 1610 false, 1611 0); 1612 1613 /* Init idr used for memory handle translation */ 1614 idr_init(&pdd->alloc_idr); 1615 1616 return pdd; 1617 1618 err_free_pdd: 1619 kfree(pdd); 1620 return NULL; 1621 } 1622 1623 /** 1624 * kfd_process_device_init_vm - Initialize a VM for a process-device 1625 * 1626 * @pdd: The process-device 1627 * @drm_file: Optional pointer to a DRM file descriptor 1628 * 1629 * If @drm_file is specified, it will be used to acquire the VM from 1630 * that file descriptor. If successful, the @pdd takes ownership of 1631 * the file descriptor. 1632 * 1633 * If @drm_file is NULL, a new VM is created. 1634 * 1635 * Returns 0 on success, -errno on failure. 1636 */ 1637 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1638 struct file *drm_file) 1639 { 1640 struct amdgpu_fpriv *drv_priv; 1641 struct amdgpu_vm *avm; 1642 struct kfd_process *p; 1643 struct kfd_node *dev; 1644 int ret; 1645 1646 if (!drm_file) 1647 return -EINVAL; 1648 1649 if (pdd->drm_priv) 1650 return -EBUSY; 1651 1652 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv); 1653 if (ret) 1654 return ret; 1655 avm = &drv_priv->vm; 1656 1657 p = pdd->process; 1658 dev = pdd->dev; 1659 1660 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm, 1661 &p->kgd_process_info, 1662 &p->ef); 1663 if (ret) { 1664 pr_err("Failed to create process VM object\n"); 1665 return ret; 1666 } 1667 pdd->drm_priv = drm_file->private_data; 1668 atomic64_set(&pdd->tlb_seq, 0); 1669 1670 ret = kfd_process_device_reserve_ib_mem(pdd); 1671 if (ret) 1672 goto err_reserve_ib_mem; 1673 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1674 if (ret) 1675 goto err_init_cwsr; 1676 1677 ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid); 1678 if (ret) 1679 goto err_set_pasid; 1680 1681 pdd->drm_file = drm_file; 1682 1683 return 0; 1684 1685 err_set_pasid: 1686 kfd_process_device_destroy_cwsr_dgpu(pdd); 1687 err_init_cwsr: 1688 kfd_process_device_destroy_ib_mem(pdd); 1689 err_reserve_ib_mem: 1690 pdd->drm_priv = NULL; 1691 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm); 1692 1693 return ret; 1694 } 1695 1696 /* 1697 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1698 * to the device. 1699 * Unbinding occurs when the process dies or the device is removed. 1700 * 1701 * Assumes that the process lock is held. 1702 */ 1703 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, 1704 struct kfd_process *p) 1705 { 1706 struct kfd_process_device *pdd; 1707 int err; 1708 1709 pdd = kfd_get_process_device_data(dev, p); 1710 if (!pdd) { 1711 pr_err("Process device data doesn't exist\n"); 1712 return ERR_PTR(-ENOMEM); 1713 } 1714 1715 if (!pdd->drm_priv) 1716 return ERR_PTR(-ENODEV); 1717 1718 /* 1719 * signal runtime-pm system to auto resume and prevent 1720 * further runtime suspend once device pdd is created until 1721 * pdd is destroyed. 1722 */ 1723 if (!pdd->runtime_inuse) { 1724 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev); 1725 if (err < 0) { 1726 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev); 1727 return ERR_PTR(err); 1728 } 1729 } 1730 1731 err = kfd_iommu_bind_process_to_device(pdd); 1732 if (err) 1733 goto out; 1734 1735 /* 1736 * make sure that runtime_usage counter is incremented just once 1737 * per pdd 1738 */ 1739 pdd->runtime_inuse = true; 1740 1741 return pdd; 1742 1743 out: 1744 /* balance runpm reference count and exit with error */ 1745 if (!pdd->runtime_inuse) { 1746 pm_runtime_mark_last_busy(adev_to_drm(dev->adev)->dev); 1747 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev); 1748 } 1749 1750 return ERR_PTR(err); 1751 } 1752 1753 /* Create specific handle mapped to mem from process local memory idr 1754 * Assumes that the process lock is held. 1755 */ 1756 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1757 void *mem) 1758 { 1759 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1760 } 1761 1762 /* Translate specific handle from process local memory idr 1763 * Assumes that the process lock is held. 1764 */ 1765 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1766 int handle) 1767 { 1768 if (handle < 0) 1769 return NULL; 1770 1771 return idr_find(&pdd->alloc_idr, handle); 1772 } 1773 1774 /* Remove specific handle from process local memory idr 1775 * Assumes that the process lock is held. 1776 */ 1777 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1778 int handle) 1779 { 1780 if (handle >= 0) 1781 idr_remove(&pdd->alloc_idr, handle); 1782 } 1783 1784 /* This increments the process->ref counter. */ 1785 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) 1786 { 1787 struct kfd_process *p, *ret_p = NULL; 1788 unsigned int temp; 1789 1790 int idx = srcu_read_lock(&kfd_processes_srcu); 1791 1792 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1793 if (p->pasid == pasid) { 1794 kref_get(&p->ref); 1795 ret_p = p; 1796 break; 1797 } 1798 } 1799 1800 srcu_read_unlock(&kfd_processes_srcu, idx); 1801 1802 return ret_p; 1803 } 1804 1805 /* This increments the process->ref counter. */ 1806 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1807 { 1808 struct kfd_process *p; 1809 1810 int idx = srcu_read_lock(&kfd_processes_srcu); 1811 1812 p = find_process_by_mm(mm); 1813 if (p) 1814 kref_get(&p->ref); 1815 1816 srcu_read_unlock(&kfd_processes_srcu, idx); 1817 1818 return p; 1819 } 1820 1821 /* kfd_process_evict_queues - Evict all user queues of a process 1822 * 1823 * Eviction is reference-counted per process-device. This means multiple 1824 * evictions from different sources can be nested safely. 1825 */ 1826 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger) 1827 { 1828 int r = 0; 1829 int i; 1830 unsigned int n_evicted = 0; 1831 1832 for (i = 0; i < p->n_pdds; i++) { 1833 struct kfd_process_device *pdd = p->pdds[i]; 1834 1835 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid, 1836 trigger); 1837 1838 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1839 &pdd->qpd); 1840 /* evict return -EIO if HWS is hang or asic is resetting, in this case 1841 * we would like to set all the queues to be in evicted state to prevent 1842 * them been add back since they actually not be saved right now. 1843 */ 1844 if (r && r != -EIO) { 1845 pr_err("Failed to evict process queues\n"); 1846 goto fail; 1847 } 1848 n_evicted++; 1849 } 1850 1851 return r; 1852 1853 fail: 1854 /* To keep state consistent, roll back partial eviction by 1855 * restoring queues 1856 */ 1857 for (i = 0; i < p->n_pdds; i++) { 1858 struct kfd_process_device *pdd = p->pdds[i]; 1859 1860 if (n_evicted == 0) 1861 break; 1862 1863 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1864 1865 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1866 &pdd->qpd)) 1867 pr_err("Failed to restore queues\n"); 1868 1869 n_evicted--; 1870 } 1871 1872 return r; 1873 } 1874 1875 /* kfd_process_restore_queues - Restore all user queues of a process */ 1876 int kfd_process_restore_queues(struct kfd_process *p) 1877 { 1878 int r, ret = 0; 1879 int i; 1880 1881 for (i = 0; i < p->n_pdds; i++) { 1882 struct kfd_process_device *pdd = p->pdds[i]; 1883 1884 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1885 1886 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1887 &pdd->qpd); 1888 if (r) { 1889 pr_err("Failed to restore process queues\n"); 1890 if (!ret) 1891 ret = r; 1892 } 1893 } 1894 1895 return ret; 1896 } 1897 1898 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 1899 { 1900 int i; 1901 1902 for (i = 0; i < p->n_pdds; i++) 1903 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id) 1904 return i; 1905 return -EINVAL; 1906 } 1907 1908 int 1909 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, 1910 uint32_t *gpuid, uint32_t *gpuidx) 1911 { 1912 int i; 1913 1914 for (i = 0; i < p->n_pdds; i++) 1915 if (p->pdds[i] && p->pdds[i]->dev == node) { 1916 *gpuid = p->pdds[i]->user_gpu_id; 1917 *gpuidx = i; 1918 return 0; 1919 } 1920 return -EINVAL; 1921 } 1922 1923 static void evict_process_worker(struct work_struct *work) 1924 { 1925 int ret; 1926 struct kfd_process *p; 1927 struct delayed_work *dwork; 1928 1929 dwork = to_delayed_work(work); 1930 1931 /* Process termination destroys this worker thread. So during the 1932 * lifetime of this thread, kfd_process p will be valid 1933 */ 1934 p = container_of(dwork, struct kfd_process, eviction_work); 1935 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, 1936 "Eviction fence mismatch\n"); 1937 1938 /* Narrow window of overlap between restore and evict work 1939 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos 1940 * unreserves KFD BOs, it is possible to evicted again. But 1941 * restore has few more steps of finish. So lets wait for any 1942 * previous restore work to complete 1943 */ 1944 flush_delayed_work(&p->restore_work); 1945 1946 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1947 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM); 1948 if (!ret) { 1949 dma_fence_signal(p->ef); 1950 dma_fence_put(p->ef); 1951 p->ef = NULL; 1952 queue_delayed_work(kfd_restore_wq, &p->restore_work, 1953 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); 1954 1955 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 1956 } else 1957 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 1958 } 1959 1960 static void restore_process_worker(struct work_struct *work) 1961 { 1962 struct delayed_work *dwork; 1963 struct kfd_process *p; 1964 int ret = 0; 1965 1966 dwork = to_delayed_work(work); 1967 1968 /* Process termination destroys this worker thread. So during the 1969 * lifetime of this thread, kfd_process p will be valid 1970 */ 1971 p = container_of(dwork, struct kfd_process, restore_work); 1972 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 1973 1974 /* Setting last_restore_timestamp before successful restoration. 1975 * Otherwise this would have to be set by KGD (restore_process_bos) 1976 * before KFD BOs are unreserved. If not, the process can be evicted 1977 * again before the timestamp is set. 1978 * If restore fails, the timestamp will be set again in the next 1979 * attempt. This would mean that the minimum GPU quanta would be 1980 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 1981 * functions) 1982 */ 1983 1984 p->last_restore_timestamp = get_jiffies_64(); 1985 /* VMs may not have been acquired yet during debugging. */ 1986 if (p->kgd_process_info) 1987 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info, 1988 &p->ef); 1989 if (ret) { 1990 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 1991 p->pasid, PROCESS_BACK_OFF_TIME_MS); 1992 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work, 1993 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); 1994 WARN(!ret, "reschedule restore work failed\n"); 1995 return; 1996 } 1997 1998 ret = kfd_process_restore_queues(p); 1999 if (!ret) 2000 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 2001 else 2002 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 2003 } 2004 2005 void kfd_suspend_all_processes(void) 2006 { 2007 struct kfd_process *p; 2008 unsigned int temp; 2009 int idx = srcu_read_lock(&kfd_processes_srcu); 2010 2011 WARN(debug_evictions, "Evicting all processes"); 2012 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2013 cancel_delayed_work_sync(&p->eviction_work); 2014 flush_delayed_work(&p->restore_work); 2015 2016 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND)) 2017 pr_err("Failed to suspend process 0x%x\n", p->pasid); 2018 dma_fence_signal(p->ef); 2019 dma_fence_put(p->ef); 2020 p->ef = NULL; 2021 } 2022 srcu_read_unlock(&kfd_processes_srcu, idx); 2023 } 2024 2025 int kfd_resume_all_processes(void) 2026 { 2027 struct kfd_process *p; 2028 unsigned int temp; 2029 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 2030 2031 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2032 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) { 2033 pr_err("Restore process %d failed during resume\n", 2034 p->pasid); 2035 ret = -EFAULT; 2036 } 2037 } 2038 srcu_read_unlock(&kfd_processes_srcu, idx); 2039 return ret; 2040 } 2041 2042 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, 2043 struct vm_area_struct *vma) 2044 { 2045 struct kfd_process_device *pdd; 2046 struct qcm_process_device *qpd; 2047 2048 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 2049 pr_err("Incorrect CWSR mapping size.\n"); 2050 return -EINVAL; 2051 } 2052 2053 pdd = kfd_get_process_device_data(dev, process); 2054 if (!pdd) 2055 return -EINVAL; 2056 qpd = &pdd->qpd; 2057 2058 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2059 get_order(KFD_CWSR_TBA_TMA_SIZE)); 2060 if (!qpd->cwsr_kaddr) { 2061 pr_err("Error allocating per process CWSR buffer.\n"); 2062 return -ENOMEM; 2063 } 2064 2065 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND 2066 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); 2067 /* Mapping pages to user process */ 2068 return remap_pfn_range(vma, vma->vm_start, 2069 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 2070 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 2071 } 2072 2073 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type) 2074 { 2075 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv); 2076 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); 2077 struct kfd_node *dev = pdd->dev; 2078 uint32_t xcc_mask = dev->xcc_mask; 2079 int xcc = 0; 2080 2081 /* 2082 * It can be that we race and lose here, but that is extremely unlikely 2083 * and the worst thing which could happen is that we flush the changes 2084 * into the TLB once more which is harmless. 2085 */ 2086 if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq) 2087 return; 2088 2089 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 2090 /* Nothing to flush until a VMID is assigned, which 2091 * only happens when the first queue is created. 2092 */ 2093 if (pdd->qpd.vmid) 2094 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev, 2095 pdd->qpd.vmid); 2096 } else { 2097 for_each_inst(xcc, xcc_mask) 2098 amdgpu_amdkfd_flush_gpu_tlb_pasid( 2099 dev->adev, pdd->process->pasid, type, xcc); 2100 } 2101 } 2102 2103 /* assumes caller holds process lock. */ 2104 int kfd_process_drain_interrupts(struct kfd_process_device *pdd) 2105 { 2106 uint32_t irq_drain_fence[8]; 2107 uint8_t node_id = 0; 2108 int r = 0; 2109 2110 if (!KFD_IS_SOC15(pdd->dev)) 2111 return 0; 2112 2113 pdd->process->irq_drain_is_open = true; 2114 2115 memset(irq_drain_fence, 0, sizeof(irq_drain_fence)); 2116 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) | 2117 KFD_IRQ_FENCE_CLIENTID; 2118 irq_drain_fence[3] = pdd->process->pasid; 2119 2120 /* 2121 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3] 2122 */ 2123 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) { 2124 node_id = ffs(pdd->dev->interrupt_bitmap) - 1; 2125 irq_drain_fence[3] |= node_id << 16; 2126 } 2127 2128 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */ 2129 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev, 2130 irq_drain_fence)) { 2131 pdd->process->irq_drain_is_open = false; 2132 return 0; 2133 } 2134 2135 r = wait_event_interruptible(pdd->process->wait_irq_drain, 2136 !READ_ONCE(pdd->process->irq_drain_is_open)); 2137 if (r) 2138 pdd->process->irq_drain_is_open = false; 2139 2140 return r; 2141 } 2142 2143 void kfd_process_close_interrupt_drain(unsigned int pasid) 2144 { 2145 struct kfd_process *p; 2146 2147 p = kfd_lookup_process_by_pasid(pasid); 2148 2149 if (!p) 2150 return; 2151 2152 WRITE_ONCE(p->irq_drain_is_open, false); 2153 wake_up_all(&p->wait_irq_drain); 2154 kfd_unref_process(p); 2155 } 2156 2157 struct send_exception_work_handler_workarea { 2158 struct work_struct work; 2159 struct kfd_process *p; 2160 unsigned int queue_id; 2161 uint64_t error_reason; 2162 }; 2163 2164 static void send_exception_work_handler(struct work_struct *work) 2165 { 2166 struct send_exception_work_handler_workarea *workarea; 2167 struct kfd_process *p; 2168 struct queue *q; 2169 struct mm_struct *mm; 2170 struct kfd_context_save_area_header __user *csa_header; 2171 uint64_t __user *err_payload_ptr; 2172 uint64_t cur_err; 2173 uint32_t ev_id; 2174 2175 workarea = container_of(work, 2176 struct send_exception_work_handler_workarea, 2177 work); 2178 p = workarea->p; 2179 2180 mm = get_task_mm(p->lead_thread); 2181 2182 if (!mm) 2183 return; 2184 2185 kthread_use_mm(mm); 2186 2187 q = pqm_get_user_queue(&p->pqm, workarea->queue_id); 2188 2189 if (!q) 2190 goto out; 2191 2192 csa_header = (void __user *)q->properties.ctx_save_restore_area_address; 2193 2194 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr); 2195 get_user(cur_err, err_payload_ptr); 2196 cur_err |= workarea->error_reason; 2197 put_user(cur_err, err_payload_ptr); 2198 get_user(ev_id, &csa_header->err_event_id); 2199 2200 kfd_set_event(p, ev_id); 2201 2202 out: 2203 kthread_unuse_mm(mm); 2204 mmput(mm); 2205 } 2206 2207 int kfd_send_exception_to_runtime(struct kfd_process *p, 2208 unsigned int queue_id, 2209 uint64_t error_reason) 2210 { 2211 struct send_exception_work_handler_workarea worker; 2212 2213 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler); 2214 2215 worker.p = p; 2216 worker.queue_id = queue_id; 2217 worker.error_reason = error_reason; 2218 2219 schedule_work(&worker.work); 2220 flush_work(&worker.work); 2221 destroy_work_on_stack(&worker.work); 2222 2223 return 0; 2224 } 2225 2226 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id) 2227 { 2228 int i; 2229 2230 if (gpu_id) { 2231 for (i = 0; i < p->n_pdds; i++) { 2232 struct kfd_process_device *pdd = p->pdds[i]; 2233 2234 if (pdd->user_gpu_id == gpu_id) 2235 return pdd; 2236 } 2237 } 2238 return NULL; 2239 } 2240 2241 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id) 2242 { 2243 int i; 2244 2245 if (!actual_gpu_id) 2246 return 0; 2247 2248 for (i = 0; i < p->n_pdds; i++) { 2249 struct kfd_process_device *pdd = p->pdds[i]; 2250 2251 if (pdd->dev->id == actual_gpu_id) 2252 return pdd->user_gpu_id; 2253 } 2254 return -EINVAL; 2255 } 2256 2257 #if defined(CONFIG_DEBUG_FS) 2258 2259 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 2260 { 2261 struct kfd_process *p; 2262 unsigned int temp; 2263 int r = 0; 2264 2265 int idx = srcu_read_lock(&kfd_processes_srcu); 2266 2267 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2268 seq_printf(m, "Process %d PASID 0x%x:\n", 2269 p->lead_thread->tgid, p->pasid); 2270 2271 mutex_lock(&p->mutex); 2272 r = pqm_debugfs_mqds(m, &p->pqm); 2273 mutex_unlock(&p->mutex); 2274 2275 if (r) 2276 break; 2277 } 2278 2279 srcu_read_unlock(&kfd_processes_srcu, idx); 2280 2281 return r; 2282 } 2283 2284 #endif 2285