1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mutex.h> 25 #include <linux/log2.h> 26 #include <linux/sched.h> 27 #include <linux/sched/mm.h> 28 #include <linux/sched/task.h> 29 #include <linux/mmu_context.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 39 struct mm_struct; 40 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_svm.h" 44 #include "kfd_smi_events.h" 45 #include "kfd_debug.h" 46 47 /* 48 * List of struct kfd_process (field kfd_process). 49 * Unique/indexed by mm_struct* 50 */ 51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 52 DEFINE_MUTEX(kfd_processes_mutex); 53 54 DEFINE_SRCU(kfd_processes_srcu); 55 56 /* For process termination handling */ 57 static struct workqueue_struct *kfd_process_wq; 58 59 /* Ordered, single-threaded workqueue for restoring evicted 60 * processes. Restoring multiple processes concurrently under memory 61 * pressure can lead to processes blocking each other from validating 62 * their BOs and result in a live-lock situation where processes 63 * remain evicted indefinitely. 64 */ 65 static struct workqueue_struct *kfd_restore_wq; 66 67 static struct kfd_process *find_process(const struct task_struct *thread, 68 bool ref); 69 static void kfd_process_ref_release(struct kref *ref); 70 static struct kfd_process *create_process(const struct task_struct *thread); 71 72 static void evict_process_worker(struct work_struct *work); 73 static void restore_process_worker(struct work_struct *work); 74 75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); 76 77 struct kfd_procfs_tree { 78 struct kobject *kobj; 79 }; 80 81 static struct kfd_procfs_tree procfs; 82 83 /* 84 * Structure for SDMA activity tracking 85 */ 86 struct kfd_sdma_activity_handler_workarea { 87 struct work_struct sdma_activity_work; 88 struct kfd_process_device *pdd; 89 uint64_t sdma_activity_counter; 90 }; 91 92 struct temp_sdma_queue_list { 93 uint64_t __user *rptr; 94 uint64_t sdma_val; 95 unsigned int queue_id; 96 struct list_head list; 97 }; 98 99 static void kfd_sdma_activity_worker(struct work_struct *work) 100 { 101 struct kfd_sdma_activity_handler_workarea *workarea; 102 struct kfd_process_device *pdd; 103 uint64_t val; 104 struct mm_struct *mm; 105 struct queue *q; 106 struct qcm_process_device *qpd; 107 struct device_queue_manager *dqm; 108 int ret = 0; 109 struct temp_sdma_queue_list sdma_q_list; 110 struct temp_sdma_queue_list *sdma_q, *next; 111 112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 113 sdma_activity_work); 114 115 pdd = workarea->pdd; 116 if (!pdd) 117 return; 118 dqm = pdd->dev->dqm; 119 qpd = &pdd->qpd; 120 if (!dqm || !qpd) 121 return; 122 /* 123 * Total SDMA activity is current SDMA activity + past SDMA activity 124 * Past SDMA count is stored in pdd. 125 * To get the current activity counters for all active SDMA queues, 126 * we loop over all SDMA queues and get their counts from user-space. 127 * 128 * We cannot call get_user() with dqm_lock held as it can cause 129 * a circular lock dependency situation. To read the SDMA stats, 130 * we need to do the following: 131 * 132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 133 * with dqm_lock/dqm_unlock(). 134 * 2. Call get_user() for each node in temporary list without dqm_lock. 135 * Save the SDMA count for each node and also add the count to the total 136 * SDMA count counter. 137 * Its possible, during this step, a few SDMA queue nodes got deleted 138 * from the qpd->queues_list. 139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 140 * If any node got deleted, its SDMA count would be captured in the sdma 141 * past activity counter. So subtract the SDMA counter stored in step 2 142 * for this node from the total SDMA count. 143 */ 144 INIT_LIST_HEAD(&sdma_q_list.list); 145 146 /* 147 * Create the temp list of all SDMA queues 148 */ 149 dqm_lock(dqm); 150 151 list_for_each_entry(q, &qpd->queues_list, list) { 152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 154 continue; 155 156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 157 if (!sdma_q) { 158 dqm_unlock(dqm); 159 goto cleanup; 160 } 161 162 INIT_LIST_HEAD(&sdma_q->list); 163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 164 sdma_q->queue_id = q->properties.queue_id; 165 list_add_tail(&sdma_q->list, &sdma_q_list.list); 166 } 167 168 /* 169 * If the temp list is empty, then no SDMA queues nodes were found in 170 * qpd->queues_list. Return the past activity count as the total sdma 171 * count 172 */ 173 if (list_empty(&sdma_q_list.list)) { 174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 175 dqm_unlock(dqm); 176 return; 177 } 178 179 dqm_unlock(dqm); 180 181 /* 182 * Get the usage count for each SDMA queue in temp_list. 183 */ 184 mm = get_task_mm(pdd->process->lead_thread); 185 if (!mm) 186 goto cleanup; 187 188 kthread_use_mm(mm); 189 190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 191 val = 0; 192 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 193 if (ret) { 194 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 195 sdma_q->queue_id); 196 } else { 197 sdma_q->sdma_val = val; 198 workarea->sdma_activity_counter += val; 199 } 200 } 201 202 kthread_unuse_mm(mm); 203 mmput(mm); 204 205 /* 206 * Do a second iteration over qpd_queues_list to check if any SDMA 207 * nodes got deleted while fetching SDMA counter. 208 */ 209 dqm_lock(dqm); 210 211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 212 213 list_for_each_entry(q, &qpd->queues_list, list) { 214 if (list_empty(&sdma_q_list.list)) 215 break; 216 217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 219 continue; 220 221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 223 (sdma_q->queue_id == q->properties.queue_id)) { 224 list_del(&sdma_q->list); 225 kfree(sdma_q); 226 break; 227 } 228 } 229 } 230 231 dqm_unlock(dqm); 232 233 /* 234 * If temp list is not empty, it implies some queues got deleted 235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 236 * count for each node from the total SDMA count. 237 */ 238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 239 workarea->sdma_activity_counter -= sdma_q->sdma_val; 240 list_del(&sdma_q->list); 241 kfree(sdma_q); 242 } 243 244 return; 245 246 cleanup: 247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 248 list_del(&sdma_q->list); 249 kfree(sdma_q); 250 } 251 } 252 253 /** 254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device 255 * by current process. Translates acquired wave count into number of compute units 256 * that are occupied. 257 * 258 * @attr: Handle of attribute that allows reporting of wave count. The attribute 259 * handle encapsulates GPU device it is associated with, thereby allowing collection 260 * of waves in flight, etc 261 * @buffer: Handle of user provided buffer updated with wave count 262 * 263 * Return: Number of bytes written to user buffer or an error value 264 */ 265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 266 { 267 int cu_cnt; 268 int wave_cnt; 269 int max_waves_per_cu; 270 struct kfd_node *dev = NULL; 271 struct kfd_process *proc = NULL; 272 struct kfd_process_device *pdd = NULL; 273 274 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 275 dev = pdd->dev; 276 if (dev->kfd2kgd->get_cu_occupancy == NULL) 277 return -EINVAL; 278 279 cu_cnt = 0; 280 proc = pdd->process; 281 if (pdd->qpd.queue_count == 0) { 282 pr_debug("Gpu-Id: %d has no active queues for process %d\n", 283 dev->id, proc->pasid); 284 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 285 } 286 287 /* Collect wave count from device if it supports */ 288 wave_cnt = 0; 289 max_waves_per_cu = 0; 290 dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt, 291 &max_waves_per_cu, 0); 292 293 /* Translate wave count to number of compute units */ 294 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 295 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 296 } 297 298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 299 char *buffer) 300 { 301 if (strcmp(attr->name, "pasid") == 0) { 302 struct kfd_process *p = container_of(attr, struct kfd_process, 303 attr_pasid); 304 305 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 306 } else if (strncmp(attr->name, "vram_", 5) == 0) { 307 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 308 attr_vram); 309 return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage)); 310 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 311 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 312 attr_sdma); 313 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 314 315 INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work, 316 kfd_sdma_activity_worker); 317 318 sdma_activity_work_handler.pdd = pdd; 319 sdma_activity_work_handler.sdma_activity_counter = 0; 320 321 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 322 323 flush_work(&sdma_activity_work_handler.sdma_activity_work); 324 destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work); 325 326 return snprintf(buffer, PAGE_SIZE, "%llu\n", 327 (sdma_activity_work_handler.sdma_activity_counter)/ 328 SDMA_ACTIVITY_DIVISOR); 329 } else { 330 pr_err("Invalid attribute"); 331 return -EINVAL; 332 } 333 334 return 0; 335 } 336 337 static void kfd_procfs_kobj_release(struct kobject *kobj) 338 { 339 kfree(kobj); 340 } 341 342 static const struct sysfs_ops kfd_procfs_ops = { 343 .show = kfd_procfs_show, 344 }; 345 346 static const struct kobj_type procfs_type = { 347 .release = kfd_procfs_kobj_release, 348 .sysfs_ops = &kfd_procfs_ops, 349 }; 350 351 void kfd_procfs_init(void) 352 { 353 int ret = 0; 354 355 procfs.kobj = kfd_alloc_struct(procfs.kobj); 356 if (!procfs.kobj) 357 return; 358 359 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 360 &kfd_device->kobj, "proc"); 361 if (ret) { 362 pr_warn("Could not create procfs proc folder"); 363 /* If we fail to create the procfs, clean up */ 364 kfd_procfs_shutdown(); 365 } 366 } 367 368 void kfd_procfs_shutdown(void) 369 { 370 if (procfs.kobj) { 371 kobject_del(procfs.kobj); 372 kobject_put(procfs.kobj); 373 procfs.kobj = NULL; 374 } 375 } 376 377 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 378 struct attribute *attr, char *buffer) 379 { 380 struct queue *q = container_of(kobj, struct queue, kobj); 381 382 if (!strcmp(attr->name, "size")) 383 return snprintf(buffer, PAGE_SIZE, "%llu", 384 q->properties.queue_size); 385 else if (!strcmp(attr->name, "type")) 386 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 387 else if (!strcmp(attr->name, "gpuid")) 388 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 389 else 390 pr_err("Invalid attribute"); 391 392 return 0; 393 } 394 395 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 396 struct attribute *attr, char *buffer) 397 { 398 if (strcmp(attr->name, "evicted_ms") == 0) { 399 struct kfd_process_device *pdd = container_of(attr, 400 struct kfd_process_device, 401 attr_evict); 402 uint64_t evict_jiffies; 403 404 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 405 406 return snprintf(buffer, 407 PAGE_SIZE, 408 "%llu\n", 409 jiffies64_to_msecs(evict_jiffies)); 410 411 /* Sysfs handle that gets CU occupancy is per device */ 412 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 413 return kfd_get_cu_occupancy(attr, buffer); 414 } else { 415 pr_err("Invalid attribute"); 416 } 417 418 return 0; 419 } 420 421 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, 422 struct attribute *attr, char *buf) 423 { 424 struct kfd_process_device *pdd; 425 426 if (!strcmp(attr->name, "faults")) { 427 pdd = container_of(attr, struct kfd_process_device, 428 attr_faults); 429 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); 430 } 431 if (!strcmp(attr->name, "page_in")) { 432 pdd = container_of(attr, struct kfd_process_device, 433 attr_page_in); 434 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); 435 } 436 if (!strcmp(attr->name, "page_out")) { 437 pdd = container_of(attr, struct kfd_process_device, 438 attr_page_out); 439 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); 440 } 441 return 0; 442 } 443 444 static struct attribute attr_queue_size = { 445 .name = "size", 446 .mode = KFD_SYSFS_FILE_MODE 447 }; 448 449 static struct attribute attr_queue_type = { 450 .name = "type", 451 .mode = KFD_SYSFS_FILE_MODE 452 }; 453 454 static struct attribute attr_queue_gpuid = { 455 .name = "gpuid", 456 .mode = KFD_SYSFS_FILE_MODE 457 }; 458 459 static struct attribute *procfs_queue_attrs[] = { 460 &attr_queue_size, 461 &attr_queue_type, 462 &attr_queue_gpuid, 463 NULL 464 }; 465 ATTRIBUTE_GROUPS(procfs_queue); 466 467 static const struct sysfs_ops procfs_queue_ops = { 468 .show = kfd_procfs_queue_show, 469 }; 470 471 static const struct kobj_type procfs_queue_type = { 472 .sysfs_ops = &procfs_queue_ops, 473 .default_groups = procfs_queue_groups, 474 }; 475 476 static const struct sysfs_ops procfs_stats_ops = { 477 .show = kfd_procfs_stats_show, 478 }; 479 480 static const struct kobj_type procfs_stats_type = { 481 .sysfs_ops = &procfs_stats_ops, 482 .release = kfd_procfs_kobj_release, 483 }; 484 485 static const struct sysfs_ops sysfs_counters_ops = { 486 .show = kfd_sysfs_counters_show, 487 }; 488 489 static const struct kobj_type sysfs_counters_type = { 490 .sysfs_ops = &sysfs_counters_ops, 491 .release = kfd_procfs_kobj_release, 492 }; 493 494 int kfd_procfs_add_queue(struct queue *q) 495 { 496 struct kfd_process *proc; 497 int ret; 498 499 if (!q || !q->process) 500 return -EINVAL; 501 proc = q->process; 502 503 /* Create proc/<pid>/queues/<queue id> folder */ 504 if (!proc->kobj_queues) 505 return -EFAULT; 506 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 507 proc->kobj_queues, "%u", q->properties.queue_id); 508 if (ret < 0) { 509 pr_warn("Creating proc/<pid>/queues/%u failed", 510 q->properties.queue_id); 511 kobject_put(&q->kobj); 512 return ret; 513 } 514 515 return 0; 516 } 517 518 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, 519 char *name) 520 { 521 int ret; 522 523 if (!kobj || !attr || !name) 524 return; 525 526 attr->name = name; 527 attr->mode = KFD_SYSFS_FILE_MODE; 528 sysfs_attr_init(attr); 529 530 ret = sysfs_create_file(kobj, attr); 531 if (ret) 532 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); 533 } 534 535 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) 536 { 537 int ret; 538 int i; 539 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 540 541 if (!p || !p->kobj) 542 return; 543 544 /* 545 * Create sysfs files for each GPU: 546 * - proc/<pid>/stats_<gpuid>/ 547 * - proc/<pid>/stats_<gpuid>/evicted_ms 548 * - proc/<pid>/stats_<gpuid>/cu_occupancy 549 */ 550 for (i = 0; i < p->n_pdds; i++) { 551 struct kfd_process_device *pdd = p->pdds[i]; 552 553 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 554 "stats_%u", pdd->dev->id); 555 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); 556 if (!pdd->kobj_stats) 557 return; 558 559 ret = kobject_init_and_add(pdd->kobj_stats, 560 &procfs_stats_type, 561 p->kobj, 562 stats_dir_filename); 563 564 if (ret) { 565 pr_warn("Creating KFD proc/stats_%s folder failed", 566 stats_dir_filename); 567 kobject_put(pdd->kobj_stats); 568 pdd->kobj_stats = NULL; 569 return; 570 } 571 572 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, 573 "evicted_ms"); 574 /* Add sysfs file to report compute unit occupancy */ 575 if (pdd->dev->kfd2kgd->get_cu_occupancy) 576 kfd_sysfs_create_file(pdd->kobj_stats, 577 &pdd->attr_cu_occupancy, 578 "cu_occupancy"); 579 } 580 } 581 582 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) 583 { 584 int ret = 0; 585 int i; 586 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; 587 588 if (!p || !p->kobj) 589 return; 590 591 /* 592 * Create sysfs files for each GPU which supports SVM 593 * - proc/<pid>/counters_<gpuid>/ 594 * - proc/<pid>/counters_<gpuid>/faults 595 * - proc/<pid>/counters_<gpuid>/page_in 596 * - proc/<pid>/counters_<gpuid>/page_out 597 */ 598 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 599 struct kfd_process_device *pdd = p->pdds[i]; 600 struct kobject *kobj_counters; 601 602 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, 603 "counters_%u", pdd->dev->id); 604 kobj_counters = kfd_alloc_struct(kobj_counters); 605 if (!kobj_counters) 606 return; 607 608 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, 609 p->kobj, counters_dir_filename); 610 if (ret) { 611 pr_warn("Creating KFD proc/%s folder failed", 612 counters_dir_filename); 613 kobject_put(kobj_counters); 614 return; 615 } 616 617 pdd->kobj_counters = kobj_counters; 618 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, 619 "faults"); 620 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, 621 "page_in"); 622 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, 623 "page_out"); 624 } 625 } 626 627 static void kfd_procfs_add_sysfs_files(struct kfd_process *p) 628 { 629 int i; 630 631 if (!p || !p->kobj) 632 return; 633 634 /* 635 * Create sysfs files for each GPU: 636 * - proc/<pid>/vram_<gpuid> 637 * - proc/<pid>/sdma_<gpuid> 638 */ 639 for (i = 0; i < p->n_pdds; i++) { 640 struct kfd_process_device *pdd = p->pdds[i]; 641 642 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 643 pdd->dev->id); 644 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, 645 pdd->vram_filename); 646 647 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 648 pdd->dev->id); 649 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, 650 pdd->sdma_filename); 651 } 652 } 653 654 void kfd_procfs_del_queue(struct queue *q) 655 { 656 if (!q) 657 return; 658 659 kobject_del(&q->kobj); 660 kobject_put(&q->kobj); 661 } 662 663 int kfd_process_create_wq(void) 664 { 665 if (!kfd_process_wq) 666 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 667 if (!kfd_restore_wq) 668 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0); 669 670 if (!kfd_process_wq || !kfd_restore_wq) { 671 kfd_process_destroy_wq(); 672 return -ENOMEM; 673 } 674 675 return 0; 676 } 677 678 void kfd_process_destroy_wq(void) 679 { 680 if (kfd_process_wq) { 681 destroy_workqueue(kfd_process_wq); 682 kfd_process_wq = NULL; 683 } 684 if (kfd_restore_wq) { 685 destroy_workqueue(kfd_restore_wq); 686 kfd_restore_wq = NULL; 687 } 688 } 689 690 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 691 struct kfd_process_device *pdd, void **kptr) 692 { 693 struct kfd_node *dev = pdd->dev; 694 695 if (kptr && *kptr) { 696 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 697 *kptr = NULL; 698 } 699 700 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv); 701 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv, 702 NULL); 703 } 704 705 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 706 * This function should be only called right after the process 707 * is created and when kfd_processes_mutex is still being held 708 * to avoid concurrency. Because of that exclusiveness, we do 709 * not need to take p->mutex. 710 */ 711 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 712 uint64_t gpu_va, uint32_t size, 713 uint32_t flags, struct kgd_mem **mem, void **kptr) 714 { 715 struct kfd_node *kdev = pdd->dev; 716 int err; 717 718 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size, 719 pdd->drm_priv, mem, NULL, 720 flags, false); 721 if (err) 722 goto err_alloc_mem; 723 724 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem, 725 pdd->drm_priv); 726 if (err) 727 goto err_map_mem; 728 729 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true); 730 if (err) { 731 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 732 goto sync_memory_failed; 733 } 734 735 if (kptr) { 736 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel( 737 (struct kgd_mem *)*mem, kptr, NULL); 738 if (err) { 739 pr_debug("Map GTT BO to kernel failed\n"); 740 goto sync_memory_failed; 741 } 742 } 743 744 return err; 745 746 sync_memory_failed: 747 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv); 748 749 err_map_mem: 750 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv, 751 NULL); 752 err_alloc_mem: 753 *mem = NULL; 754 *kptr = NULL; 755 return err; 756 } 757 758 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 759 * process for IB usage The memory reserved is for KFD to submit 760 * IB to AMDGPU from kernel. If the memory is reserved 761 * successfully, ib_kaddr will have the CPU/kernel 762 * address. Check ib_kaddr before accessing the memory. 763 */ 764 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 765 { 766 struct qcm_process_device *qpd = &pdd->qpd; 767 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 768 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 769 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 770 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 771 struct kgd_mem *mem; 772 void *kaddr; 773 int ret; 774 775 if (qpd->ib_kaddr || !qpd->ib_base) 776 return 0; 777 778 /* ib_base is only set for dGPU */ 779 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 780 &mem, &kaddr); 781 if (ret) 782 return ret; 783 784 qpd->ib_mem = mem; 785 qpd->ib_kaddr = kaddr; 786 787 return 0; 788 } 789 790 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) 791 { 792 struct qcm_process_device *qpd = &pdd->qpd; 793 794 if (!qpd->ib_kaddr || !qpd->ib_base) 795 return; 796 797 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr); 798 } 799 800 struct kfd_process *kfd_create_process(struct task_struct *thread) 801 { 802 struct kfd_process *process; 803 int ret; 804 805 if (!(thread->mm && mmget_not_zero(thread->mm))) 806 return ERR_PTR(-EINVAL); 807 808 /* Only the pthreads threading model is supported. */ 809 if (thread->group_leader->mm != thread->mm) { 810 mmput(thread->mm); 811 return ERR_PTR(-EINVAL); 812 } 813 814 /* 815 * take kfd processes mutex before starting of process creation 816 * so there won't be a case where two threads of the same process 817 * create two kfd_process structures 818 */ 819 mutex_lock(&kfd_processes_mutex); 820 821 if (kfd_is_locked()) { 822 pr_debug("KFD is locked! Cannot create process"); 823 process = ERR_PTR(-EINVAL); 824 goto out; 825 } 826 827 /* A prior open of /dev/kfd could have already created the process. */ 828 process = find_process(thread, false); 829 if (process) { 830 pr_debug("Process already found\n"); 831 } else { 832 /* If the process just called exec(3), it is possible that the 833 * cleanup of the kfd_process (following the release of the mm 834 * of the old process image) is still in the cleanup work queue. 835 * Make sure to drain any job before trying to recreate any 836 * resource for this process. 837 */ 838 flush_workqueue(kfd_process_wq); 839 840 process = create_process(thread); 841 if (IS_ERR(process)) 842 goto out; 843 844 if (!procfs.kobj) 845 goto out; 846 847 process->kobj = kfd_alloc_struct(process->kobj); 848 if (!process->kobj) { 849 pr_warn("Creating procfs kobject failed"); 850 goto out; 851 } 852 ret = kobject_init_and_add(process->kobj, &procfs_type, 853 procfs.kobj, "%d", 854 (int)process->lead_thread->pid); 855 if (ret) { 856 pr_warn("Creating procfs pid directory failed"); 857 kobject_put(process->kobj); 858 goto out; 859 } 860 861 kfd_sysfs_create_file(process->kobj, &process->attr_pasid, 862 "pasid"); 863 864 process->kobj_queues = kobject_create_and_add("queues", 865 process->kobj); 866 if (!process->kobj_queues) 867 pr_warn("Creating KFD proc/queues folder failed"); 868 869 kfd_procfs_add_sysfs_stats(process); 870 kfd_procfs_add_sysfs_files(process); 871 kfd_procfs_add_sysfs_counters(process); 872 873 init_waitqueue_head(&process->wait_irq_drain); 874 } 875 out: 876 if (!IS_ERR(process)) 877 kref_get(&process->ref); 878 mutex_unlock(&kfd_processes_mutex); 879 mmput(thread->mm); 880 881 return process; 882 } 883 884 struct kfd_process *kfd_get_process(const struct task_struct *thread) 885 { 886 struct kfd_process *process; 887 888 if (!thread->mm) 889 return ERR_PTR(-EINVAL); 890 891 /* Only the pthreads threading model is supported. */ 892 if (thread->group_leader->mm != thread->mm) 893 return ERR_PTR(-EINVAL); 894 895 process = find_process(thread, false); 896 if (!process) 897 return ERR_PTR(-EINVAL); 898 899 return process; 900 } 901 902 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 903 { 904 struct kfd_process *process; 905 906 hash_for_each_possible_rcu(kfd_processes_table, process, 907 kfd_processes, (uintptr_t)mm) 908 if (process->mm == mm) 909 return process; 910 911 return NULL; 912 } 913 914 static struct kfd_process *find_process(const struct task_struct *thread, 915 bool ref) 916 { 917 struct kfd_process *p; 918 int idx; 919 920 idx = srcu_read_lock(&kfd_processes_srcu); 921 p = find_process_by_mm(thread->mm); 922 if (p && ref) 923 kref_get(&p->ref); 924 srcu_read_unlock(&kfd_processes_srcu, idx); 925 926 return p; 927 } 928 929 void kfd_unref_process(struct kfd_process *p) 930 { 931 kref_put(&p->ref, kfd_process_ref_release); 932 } 933 934 /* This increments the process->ref counter. */ 935 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid) 936 { 937 struct task_struct *task = NULL; 938 struct kfd_process *p = NULL; 939 940 if (!pid) { 941 task = current; 942 get_task_struct(task); 943 } else { 944 task = get_pid_task(pid, PIDTYPE_PID); 945 } 946 947 if (task) { 948 p = find_process(task, true); 949 put_task_struct(task); 950 } 951 952 return p; 953 } 954 955 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 956 { 957 struct kfd_process *p = pdd->process; 958 void *mem; 959 int id; 960 int i; 961 962 /* 963 * Remove all handles from idr and release appropriate 964 * local memory object 965 */ 966 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 967 968 for (i = 0; i < p->n_pdds; i++) { 969 struct kfd_process_device *peer_pdd = p->pdds[i]; 970 971 if (!peer_pdd->drm_priv) 972 continue; 973 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 974 peer_pdd->dev->adev, mem, peer_pdd->drm_priv); 975 } 976 977 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem, 978 pdd->drm_priv, NULL); 979 kfd_process_device_remove_obj_handle(pdd, id); 980 } 981 } 982 983 /* 984 * Just kunmap and unpin signal BO here. It will be freed in 985 * kfd_process_free_outstanding_kfd_bos() 986 */ 987 static void kfd_process_kunmap_signal_bo(struct kfd_process *p) 988 { 989 struct kfd_process_device *pdd; 990 struct kfd_node *kdev; 991 void *mem; 992 993 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); 994 if (!kdev) 995 return; 996 997 mutex_lock(&p->mutex); 998 999 pdd = kfd_get_process_device_data(kdev, p); 1000 if (!pdd) 1001 goto out; 1002 1003 mem = kfd_process_device_translate_handle( 1004 pdd, GET_IDR_HANDLE(p->signal_handle)); 1005 if (!mem) 1006 goto out; 1007 1008 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 1009 1010 out: 1011 mutex_unlock(&p->mutex); 1012 } 1013 1014 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 1015 { 1016 int i; 1017 1018 for (i = 0; i < p->n_pdds; i++) 1019 kfd_process_device_free_bos(p->pdds[i]); 1020 } 1021 1022 static void kfd_process_destroy_pdds(struct kfd_process *p) 1023 { 1024 int i; 1025 1026 for (i = 0; i < p->n_pdds; i++) { 1027 struct kfd_process_device *pdd = p->pdds[i]; 1028 1029 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 1030 pdd->dev->id, p->pasid); 1031 1032 kfd_process_device_destroy_cwsr_dgpu(pdd); 1033 kfd_process_device_destroy_ib_mem(pdd); 1034 1035 if (pdd->drm_file) { 1036 amdgpu_amdkfd_gpuvm_release_process_vm( 1037 pdd->dev->adev, pdd->drm_priv); 1038 fput(pdd->drm_file); 1039 } 1040 1041 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 1042 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 1043 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1044 1045 idr_destroy(&pdd->alloc_idr); 1046 1047 kfd_free_process_doorbells(pdd->dev->kfd, pdd); 1048 1049 if (pdd->dev->kfd->shared_resources.enable_mes) 1050 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev, 1051 &pdd->proc_ctx_bo); 1052 /* 1053 * before destroying pdd, make sure to report availability 1054 * for auto suspend 1055 */ 1056 if (pdd->runtime_inuse) { 1057 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev); 1058 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev); 1059 pdd->runtime_inuse = false; 1060 } 1061 1062 kfree(pdd); 1063 p->pdds[i] = NULL; 1064 } 1065 p->n_pdds = 0; 1066 } 1067 1068 static void kfd_process_remove_sysfs(struct kfd_process *p) 1069 { 1070 struct kfd_process_device *pdd; 1071 int i; 1072 1073 if (!p->kobj) 1074 return; 1075 1076 sysfs_remove_file(p->kobj, &p->attr_pasid); 1077 kobject_del(p->kobj_queues); 1078 kobject_put(p->kobj_queues); 1079 p->kobj_queues = NULL; 1080 1081 for (i = 0; i < p->n_pdds; i++) { 1082 pdd = p->pdds[i]; 1083 1084 sysfs_remove_file(p->kobj, &pdd->attr_vram); 1085 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 1086 1087 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 1088 if (pdd->dev->kfd2kgd->get_cu_occupancy) 1089 sysfs_remove_file(pdd->kobj_stats, 1090 &pdd->attr_cu_occupancy); 1091 kobject_del(pdd->kobj_stats); 1092 kobject_put(pdd->kobj_stats); 1093 pdd->kobj_stats = NULL; 1094 } 1095 1096 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 1097 pdd = p->pdds[i]; 1098 1099 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); 1100 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); 1101 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); 1102 kobject_del(pdd->kobj_counters); 1103 kobject_put(pdd->kobj_counters); 1104 pdd->kobj_counters = NULL; 1105 } 1106 1107 kobject_del(p->kobj); 1108 kobject_put(p->kobj); 1109 p->kobj = NULL; 1110 } 1111 1112 /* No process locking is needed in this function, because the process 1113 * is not findable any more. We must assume that no other thread is 1114 * using it any more, otherwise we couldn't safely free the process 1115 * structure in the end. 1116 */ 1117 static void kfd_process_wq_release(struct work_struct *work) 1118 { 1119 struct kfd_process *p = container_of(work, struct kfd_process, 1120 release_work); 1121 1122 kfd_process_dequeue_from_all_devices(p); 1123 pqm_uninit(&p->pqm); 1124 1125 /* Signal the eviction fence after user mode queues are 1126 * destroyed. This allows any BOs to be freed without 1127 * triggering pointless evictions or waiting for fences. 1128 */ 1129 dma_fence_signal(p->ef); 1130 1131 kfd_process_remove_sysfs(p); 1132 1133 kfd_process_kunmap_signal_bo(p); 1134 kfd_process_free_outstanding_kfd_bos(p); 1135 svm_range_list_fini(p); 1136 1137 kfd_process_destroy_pdds(p); 1138 dma_fence_put(p->ef); 1139 1140 kfd_event_free_process(p); 1141 1142 kfd_pasid_free(p->pasid); 1143 mutex_destroy(&p->mutex); 1144 1145 put_task_struct(p->lead_thread); 1146 1147 kfree(p); 1148 } 1149 1150 static void kfd_process_ref_release(struct kref *ref) 1151 { 1152 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1153 1154 INIT_WORK(&p->release_work, kfd_process_wq_release); 1155 queue_work(kfd_process_wq, &p->release_work); 1156 } 1157 1158 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1159 { 1160 int idx = srcu_read_lock(&kfd_processes_srcu); 1161 struct kfd_process *p = find_process_by_mm(mm); 1162 1163 srcu_read_unlock(&kfd_processes_srcu, idx); 1164 1165 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1166 } 1167 1168 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1169 { 1170 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1171 } 1172 1173 static void kfd_process_notifier_release_internal(struct kfd_process *p) 1174 { 1175 int i; 1176 1177 cancel_delayed_work_sync(&p->eviction_work); 1178 cancel_delayed_work_sync(&p->restore_work); 1179 1180 for (i = 0; i < p->n_pdds; i++) { 1181 struct kfd_process_device *pdd = p->pdds[i]; 1182 1183 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */ 1184 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup) 1185 amdgpu_gfx_off_ctrl(pdd->dev->adev, true); 1186 } 1187 1188 /* Indicate to other users that MM is no longer valid */ 1189 p->mm = NULL; 1190 kfd_dbg_trap_disable(p); 1191 1192 if (atomic_read(&p->debugged_process_count) > 0) { 1193 struct kfd_process *target; 1194 unsigned int temp; 1195 int idx = srcu_read_lock(&kfd_processes_srcu); 1196 1197 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) { 1198 if (target->debugger_process && target->debugger_process == p) { 1199 mutex_lock_nested(&target->mutex, 1); 1200 kfd_dbg_trap_disable(target); 1201 mutex_unlock(&target->mutex); 1202 if (atomic_read(&p->debugged_process_count) == 0) 1203 break; 1204 } 1205 } 1206 1207 srcu_read_unlock(&kfd_processes_srcu, idx); 1208 } 1209 1210 mmu_notifier_put(&p->mmu_notifier); 1211 } 1212 1213 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1214 struct mm_struct *mm) 1215 { 1216 struct kfd_process *p; 1217 1218 /* 1219 * The kfd_process structure can not be free because the 1220 * mmu_notifier srcu is read locked 1221 */ 1222 p = container_of(mn, struct kfd_process, mmu_notifier); 1223 if (WARN_ON(p->mm != mm)) 1224 return; 1225 1226 mutex_lock(&kfd_processes_mutex); 1227 /* 1228 * Do early return if table is empty. 1229 * 1230 * This could potentially happen if this function is called concurrently 1231 * by mmu_notifier and by kfd_cleanup_pocesses. 1232 * 1233 */ 1234 if (hash_empty(kfd_processes_table)) { 1235 mutex_unlock(&kfd_processes_mutex); 1236 return; 1237 } 1238 hash_del_rcu(&p->kfd_processes); 1239 mutex_unlock(&kfd_processes_mutex); 1240 synchronize_srcu(&kfd_processes_srcu); 1241 1242 kfd_process_notifier_release_internal(p); 1243 } 1244 1245 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1246 .release = kfd_process_notifier_release, 1247 .alloc_notifier = kfd_process_alloc_notifier, 1248 .free_notifier = kfd_process_free_notifier, 1249 }; 1250 1251 /* 1252 * This code handles the case when driver is being unloaded before all 1253 * mm_struct are released. We need to safely free the kfd_process and 1254 * avoid race conditions with mmu_notifier that might try to free them. 1255 * 1256 */ 1257 void kfd_cleanup_processes(void) 1258 { 1259 struct kfd_process *p; 1260 struct hlist_node *p_temp; 1261 unsigned int temp; 1262 HLIST_HEAD(cleanup_list); 1263 1264 /* 1265 * Move all remaining kfd_process from the process table to a 1266 * temp list for processing. Once done, callback from mmu_notifier 1267 * release will not see the kfd_process in the table and do early return, 1268 * avoiding double free issues. 1269 */ 1270 mutex_lock(&kfd_processes_mutex); 1271 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) { 1272 hash_del_rcu(&p->kfd_processes); 1273 synchronize_srcu(&kfd_processes_srcu); 1274 hlist_add_head(&p->kfd_processes, &cleanup_list); 1275 } 1276 mutex_unlock(&kfd_processes_mutex); 1277 1278 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes) 1279 kfd_process_notifier_release_internal(p); 1280 1281 /* 1282 * Ensures that all outstanding free_notifier get called, triggering 1283 * the release of the kfd_process struct. 1284 */ 1285 mmu_notifier_synchronize(); 1286 } 1287 1288 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1289 { 1290 unsigned long offset; 1291 int i; 1292 1293 if (p->has_cwsr) 1294 return 0; 1295 1296 for (i = 0; i < p->n_pdds; i++) { 1297 struct kfd_node *dev = p->pdds[i]->dev; 1298 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1299 1300 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1301 continue; 1302 1303 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1304 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1305 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1306 MAP_SHARED, offset); 1307 1308 if (IS_ERR_VALUE(qpd->tba_addr)) { 1309 int err = qpd->tba_addr; 1310 1311 pr_err("Failure to set tba address. error %d.\n", err); 1312 qpd->tba_addr = 0; 1313 qpd->cwsr_kaddr = NULL; 1314 return err; 1315 } 1316 1317 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1318 1319 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled); 1320 1321 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1322 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1323 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1324 } 1325 1326 p->has_cwsr = true; 1327 1328 return 0; 1329 } 1330 1331 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1332 { 1333 struct kfd_node *dev = pdd->dev; 1334 struct qcm_process_device *qpd = &pdd->qpd; 1335 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1336 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1337 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1338 struct kgd_mem *mem; 1339 void *kaddr; 1340 int ret; 1341 1342 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1343 return 0; 1344 1345 /* cwsr_base is only set for dGPU */ 1346 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1347 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr); 1348 if (ret) 1349 return ret; 1350 1351 qpd->cwsr_mem = mem; 1352 qpd->cwsr_kaddr = kaddr; 1353 qpd->tba_addr = qpd->cwsr_base; 1354 1355 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1356 1357 kfd_process_set_trap_debug_flag(&pdd->qpd, 1358 pdd->process->debug_trap_enabled); 1359 1360 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1361 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1362 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1363 1364 return 0; 1365 } 1366 1367 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) 1368 { 1369 struct kfd_node *dev = pdd->dev; 1370 struct qcm_process_device *qpd = &pdd->qpd; 1371 1372 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) 1373 return; 1374 1375 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr); 1376 } 1377 1378 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1379 uint64_t tba_addr, 1380 uint64_t tma_addr) 1381 { 1382 if (qpd->cwsr_kaddr) { 1383 /* KFD trap handler is bound, record as second-level TBA/TMA 1384 * in first-level TMA. First-level trap will jump to second. 1385 */ 1386 uint64_t *tma = 1387 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1388 tma[0] = tba_addr; 1389 tma[1] = tma_addr; 1390 } else { 1391 /* No trap handler bound, bind as first-level TBA/TMA. */ 1392 qpd->tba_addr = tba_addr; 1393 qpd->tma_addr = tma_addr; 1394 } 1395 } 1396 1397 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1398 { 1399 int i; 1400 1401 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1402 * boot time retry setting. Mixing processes with different 1403 * XNACK/retry settings can hang the GPU. 1404 * 1405 * Different GPUs can have different noretry settings depending 1406 * on HW bugs or limitations. We need to find at least one 1407 * XNACK mode for this process that's compatible with all GPUs. 1408 * Fortunately GPUs with retry enabled (noretry=0) can run code 1409 * built for XNACK-off. On GFXv9 it may perform slower. 1410 * 1411 * Therefore applications built for XNACK-off can always be 1412 * supported and will be our fallback if any GPU does not 1413 * support retry. 1414 */ 1415 for (i = 0; i < p->n_pdds; i++) { 1416 struct kfd_node *dev = p->pdds[i]->dev; 1417 1418 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1419 * support the SVM APIs and don't need to be considered 1420 * for the XNACK mode selection. 1421 */ 1422 if (!KFD_IS_SOC15(dev)) 1423 continue; 1424 /* Aldebaran can always support XNACK because it can support 1425 * per-process XNACK mode selection. But let the dev->noretry 1426 * setting still influence the default XNACK mode. 1427 */ 1428 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) 1429 continue; 1430 1431 /* GFXv10 and later GPUs do not support shader preemption 1432 * during page faults. This can lead to poor QoS for queue 1433 * management and memory-manager-related preemptions or 1434 * even deadlocks. 1435 */ 1436 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 1437 return false; 1438 1439 if (dev->kfd->noretry) 1440 return false; 1441 } 1442 1443 return true; 1444 } 1445 1446 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd, 1447 bool enabled) 1448 { 1449 if (qpd->cwsr_kaddr) { 1450 uint64_t *tma = 1451 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1452 tma[2] = enabled; 1453 } 1454 } 1455 1456 /* 1457 * On return the kfd_process is fully operational and will be freed when the 1458 * mm is released 1459 */ 1460 static struct kfd_process *create_process(const struct task_struct *thread) 1461 { 1462 struct kfd_process *process; 1463 struct mmu_notifier *mn; 1464 int err = -ENOMEM; 1465 1466 process = kzalloc(sizeof(*process), GFP_KERNEL); 1467 if (!process) 1468 goto err_alloc_process; 1469 1470 kref_init(&process->ref); 1471 mutex_init(&process->mutex); 1472 process->mm = thread->mm; 1473 process->lead_thread = thread->group_leader; 1474 process->n_pdds = 0; 1475 process->queues_paused = false; 1476 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1477 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1478 process->last_restore_timestamp = get_jiffies_64(); 1479 err = kfd_event_init_process(process); 1480 if (err) 1481 goto err_event_init; 1482 process->is_32bit_user_mode = in_compat_syscall(); 1483 process->debug_trap_enabled = false; 1484 process->debugger_process = NULL; 1485 process->exception_enable_mask = 0; 1486 atomic_set(&process->debugged_process_count, 0); 1487 sema_init(&process->runtime_enable_sema, 0); 1488 1489 process->pasid = kfd_pasid_alloc(); 1490 if (process->pasid == 0) { 1491 err = -ENOSPC; 1492 goto err_alloc_pasid; 1493 } 1494 1495 err = pqm_init(&process->pqm, process); 1496 if (err != 0) 1497 goto err_process_pqm_init; 1498 1499 /* init process apertures*/ 1500 err = kfd_init_apertures(process); 1501 if (err != 0) 1502 goto err_init_apertures; 1503 1504 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1505 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1506 1507 err = svm_range_list_init(process); 1508 if (err) 1509 goto err_init_svm_range_list; 1510 1511 /* alloc_notifier needs to find the process in the hash table */ 1512 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1513 (uintptr_t)process->mm); 1514 1515 /* Avoid free_notifier to start kfd_process_wq_release if 1516 * mmu_notifier_get failed because of pending signal. 1517 */ 1518 kref_get(&process->ref); 1519 1520 /* MMU notifier registration must be the last call that can fail 1521 * because after this point we cannot unwind the process creation. 1522 * After this point, mmu_notifier_put will trigger the cleanup by 1523 * dropping the last process reference in the free_notifier. 1524 */ 1525 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1526 if (IS_ERR(mn)) { 1527 err = PTR_ERR(mn); 1528 goto err_register_notifier; 1529 } 1530 BUG_ON(mn != &process->mmu_notifier); 1531 1532 kfd_unref_process(process); 1533 get_task_struct(process->lead_thread); 1534 1535 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler); 1536 1537 return process; 1538 1539 err_register_notifier: 1540 hash_del_rcu(&process->kfd_processes); 1541 svm_range_list_fini(process); 1542 err_init_svm_range_list: 1543 kfd_process_free_outstanding_kfd_bos(process); 1544 kfd_process_destroy_pdds(process); 1545 err_init_apertures: 1546 pqm_uninit(&process->pqm); 1547 err_process_pqm_init: 1548 kfd_pasid_free(process->pasid); 1549 err_alloc_pasid: 1550 kfd_event_free_process(process); 1551 err_event_init: 1552 mutex_destroy(&process->mutex); 1553 kfree(process); 1554 err_alloc_process: 1555 return ERR_PTR(err); 1556 } 1557 1558 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, 1559 struct kfd_process *p) 1560 { 1561 int i; 1562 1563 for (i = 0; i < p->n_pdds; i++) 1564 if (p->pdds[i]->dev == dev) 1565 return p->pdds[i]; 1566 1567 return NULL; 1568 } 1569 1570 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, 1571 struct kfd_process *p) 1572 { 1573 struct kfd_process_device *pdd = NULL; 1574 int retval = 0; 1575 1576 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1577 return NULL; 1578 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1579 if (!pdd) 1580 return NULL; 1581 1582 pdd->dev = dev; 1583 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1584 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1585 pdd->qpd.dqm = dev->dqm; 1586 pdd->qpd.pqm = &p->pqm; 1587 pdd->qpd.evicted = 0; 1588 pdd->qpd.mapped_gws_queue = false; 1589 pdd->process = p; 1590 pdd->bound = PDD_UNBOUND; 1591 pdd->already_dequeued = false; 1592 pdd->runtime_inuse = false; 1593 atomic64_set(&pdd->vram_usage, 0); 1594 pdd->sdma_past_activity_counter = 0; 1595 pdd->user_gpu_id = dev->id; 1596 atomic64_set(&pdd->evict_duration_counter, 0); 1597 1598 if (dev->kfd->shared_resources.enable_mes) { 1599 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, 1600 AMDGPU_MES_PROC_CTX_SIZE, 1601 &pdd->proc_ctx_bo, 1602 &pdd->proc_ctx_gpu_addr, 1603 &pdd->proc_ctx_cpu_ptr, 1604 false); 1605 if (retval) { 1606 pr_err("failed to allocate process context bo\n"); 1607 goto err_free_pdd; 1608 } 1609 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE); 1610 } 1611 1612 p->pdds[p->n_pdds++] = pdd; 1613 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) 1614 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap( 1615 pdd->dev->adev, 1616 false, 1617 0); 1618 1619 /* Init idr used for memory handle translation */ 1620 idr_init(&pdd->alloc_idr); 1621 1622 return pdd; 1623 1624 err_free_pdd: 1625 kfree(pdd); 1626 return NULL; 1627 } 1628 1629 /** 1630 * kfd_process_device_init_vm - Initialize a VM for a process-device 1631 * 1632 * @pdd: The process-device 1633 * @drm_file: Optional pointer to a DRM file descriptor 1634 * 1635 * If @drm_file is specified, it will be used to acquire the VM from 1636 * that file descriptor. If successful, the @pdd takes ownership of 1637 * the file descriptor. 1638 * 1639 * If @drm_file is NULL, a new VM is created. 1640 * 1641 * Returns 0 on success, -errno on failure. 1642 */ 1643 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1644 struct file *drm_file) 1645 { 1646 struct amdgpu_fpriv *drv_priv; 1647 struct amdgpu_vm *avm; 1648 struct kfd_process *p; 1649 struct kfd_node *dev; 1650 int ret; 1651 1652 if (!drm_file) 1653 return -EINVAL; 1654 1655 if (pdd->drm_priv) 1656 return -EBUSY; 1657 1658 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv); 1659 if (ret) 1660 return ret; 1661 avm = &drv_priv->vm; 1662 1663 p = pdd->process; 1664 dev = pdd->dev; 1665 1666 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm, 1667 &p->kgd_process_info, 1668 &p->ef); 1669 if (ret) { 1670 pr_err("Failed to create process VM object\n"); 1671 return ret; 1672 } 1673 pdd->drm_priv = drm_file->private_data; 1674 atomic64_set(&pdd->tlb_seq, 0); 1675 1676 ret = kfd_process_device_reserve_ib_mem(pdd); 1677 if (ret) 1678 goto err_reserve_ib_mem; 1679 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1680 if (ret) 1681 goto err_init_cwsr; 1682 1683 ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid); 1684 if (ret) 1685 goto err_set_pasid; 1686 1687 pdd->drm_file = drm_file; 1688 1689 return 0; 1690 1691 err_set_pasid: 1692 kfd_process_device_destroy_cwsr_dgpu(pdd); 1693 err_init_cwsr: 1694 kfd_process_device_destroy_ib_mem(pdd); 1695 err_reserve_ib_mem: 1696 pdd->drm_priv = NULL; 1697 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm); 1698 1699 return ret; 1700 } 1701 1702 /* 1703 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1704 * to the device. 1705 * Unbinding occurs when the process dies or the device is removed. 1706 * 1707 * Assumes that the process lock is held. 1708 */ 1709 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, 1710 struct kfd_process *p) 1711 { 1712 struct kfd_process_device *pdd; 1713 int err; 1714 1715 pdd = kfd_get_process_device_data(dev, p); 1716 if (!pdd) { 1717 pr_err("Process device data doesn't exist\n"); 1718 return ERR_PTR(-ENOMEM); 1719 } 1720 1721 if (!pdd->drm_priv) 1722 return ERR_PTR(-ENODEV); 1723 1724 /* 1725 * signal runtime-pm system to auto resume and prevent 1726 * further runtime suspend once device pdd is created until 1727 * pdd is destroyed. 1728 */ 1729 if (!pdd->runtime_inuse) { 1730 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev); 1731 if (err < 0) { 1732 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev); 1733 return ERR_PTR(err); 1734 } 1735 } 1736 1737 /* 1738 * make sure that runtime_usage counter is incremented just once 1739 * per pdd 1740 */ 1741 pdd->runtime_inuse = true; 1742 1743 return pdd; 1744 } 1745 1746 /* Create specific handle mapped to mem from process local memory idr 1747 * Assumes that the process lock is held. 1748 */ 1749 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1750 void *mem) 1751 { 1752 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1753 } 1754 1755 /* Translate specific handle from process local memory idr 1756 * Assumes that the process lock is held. 1757 */ 1758 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1759 int handle) 1760 { 1761 if (handle < 0) 1762 return NULL; 1763 1764 return idr_find(&pdd->alloc_idr, handle); 1765 } 1766 1767 /* Remove specific handle from process local memory idr 1768 * Assumes that the process lock is held. 1769 */ 1770 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1771 int handle) 1772 { 1773 if (handle >= 0) 1774 idr_remove(&pdd->alloc_idr, handle); 1775 } 1776 1777 /* This increments the process->ref counter. */ 1778 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) 1779 { 1780 struct kfd_process *p, *ret_p = NULL; 1781 unsigned int temp; 1782 1783 int idx = srcu_read_lock(&kfd_processes_srcu); 1784 1785 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1786 if (p->pasid == pasid) { 1787 kref_get(&p->ref); 1788 ret_p = p; 1789 break; 1790 } 1791 } 1792 1793 srcu_read_unlock(&kfd_processes_srcu, idx); 1794 1795 return ret_p; 1796 } 1797 1798 /* This increments the process->ref counter. */ 1799 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1800 { 1801 struct kfd_process *p; 1802 1803 int idx = srcu_read_lock(&kfd_processes_srcu); 1804 1805 p = find_process_by_mm(mm); 1806 if (p) 1807 kref_get(&p->ref); 1808 1809 srcu_read_unlock(&kfd_processes_srcu, idx); 1810 1811 return p; 1812 } 1813 1814 /* kfd_process_evict_queues - Evict all user queues of a process 1815 * 1816 * Eviction is reference-counted per process-device. This means multiple 1817 * evictions from different sources can be nested safely. 1818 */ 1819 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger) 1820 { 1821 int r = 0; 1822 int i; 1823 unsigned int n_evicted = 0; 1824 1825 for (i = 0; i < p->n_pdds; i++) { 1826 struct kfd_process_device *pdd = p->pdds[i]; 1827 1828 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid, 1829 trigger); 1830 1831 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1832 &pdd->qpd); 1833 /* evict return -EIO if HWS is hang or asic is resetting, in this case 1834 * we would like to set all the queues to be in evicted state to prevent 1835 * them been add back since they actually not be saved right now. 1836 */ 1837 if (r && r != -EIO) { 1838 pr_err("Failed to evict process queues\n"); 1839 goto fail; 1840 } 1841 n_evicted++; 1842 } 1843 1844 return r; 1845 1846 fail: 1847 /* To keep state consistent, roll back partial eviction by 1848 * restoring queues 1849 */ 1850 for (i = 0; i < p->n_pdds; i++) { 1851 struct kfd_process_device *pdd = p->pdds[i]; 1852 1853 if (n_evicted == 0) 1854 break; 1855 1856 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1857 1858 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1859 &pdd->qpd)) 1860 pr_err("Failed to restore queues\n"); 1861 1862 n_evicted--; 1863 } 1864 1865 return r; 1866 } 1867 1868 /* kfd_process_restore_queues - Restore all user queues of a process */ 1869 int kfd_process_restore_queues(struct kfd_process *p) 1870 { 1871 int r, ret = 0; 1872 int i; 1873 1874 for (i = 0; i < p->n_pdds; i++) { 1875 struct kfd_process_device *pdd = p->pdds[i]; 1876 1877 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1878 1879 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1880 &pdd->qpd); 1881 if (r) { 1882 pr_err("Failed to restore process queues\n"); 1883 if (!ret) 1884 ret = r; 1885 } 1886 } 1887 1888 return ret; 1889 } 1890 1891 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 1892 { 1893 int i; 1894 1895 for (i = 0; i < p->n_pdds; i++) 1896 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id) 1897 return i; 1898 return -EINVAL; 1899 } 1900 1901 int 1902 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, 1903 uint32_t *gpuid, uint32_t *gpuidx) 1904 { 1905 int i; 1906 1907 for (i = 0; i < p->n_pdds; i++) 1908 if (p->pdds[i] && p->pdds[i]->dev == node) { 1909 *gpuid = p->pdds[i]->user_gpu_id; 1910 *gpuidx = i; 1911 return 0; 1912 } 1913 return -EINVAL; 1914 } 1915 1916 static void evict_process_worker(struct work_struct *work) 1917 { 1918 int ret; 1919 struct kfd_process *p; 1920 struct delayed_work *dwork; 1921 1922 dwork = to_delayed_work(work); 1923 1924 /* Process termination destroys this worker thread. So during the 1925 * lifetime of this thread, kfd_process p will be valid 1926 */ 1927 p = container_of(dwork, struct kfd_process, eviction_work); 1928 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, 1929 "Eviction fence mismatch\n"); 1930 1931 /* Narrow window of overlap between restore and evict work 1932 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos 1933 * unreserves KFD BOs, it is possible to evicted again. But 1934 * restore has few more steps of finish. So lets wait for any 1935 * previous restore work to complete 1936 */ 1937 flush_delayed_work(&p->restore_work); 1938 1939 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1940 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM); 1941 if (!ret) { 1942 dma_fence_signal(p->ef); 1943 dma_fence_put(p->ef); 1944 p->ef = NULL; 1945 queue_delayed_work(kfd_restore_wq, &p->restore_work, 1946 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); 1947 1948 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 1949 } else 1950 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 1951 } 1952 1953 static void restore_process_worker(struct work_struct *work) 1954 { 1955 struct delayed_work *dwork; 1956 struct kfd_process *p; 1957 int ret = 0; 1958 1959 dwork = to_delayed_work(work); 1960 1961 /* Process termination destroys this worker thread. So during the 1962 * lifetime of this thread, kfd_process p will be valid 1963 */ 1964 p = container_of(dwork, struct kfd_process, restore_work); 1965 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 1966 1967 /* Setting last_restore_timestamp before successful restoration. 1968 * Otherwise this would have to be set by KGD (restore_process_bos) 1969 * before KFD BOs are unreserved. If not, the process can be evicted 1970 * again before the timestamp is set. 1971 * If restore fails, the timestamp will be set again in the next 1972 * attempt. This would mean that the minimum GPU quanta would be 1973 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 1974 * functions) 1975 */ 1976 1977 p->last_restore_timestamp = get_jiffies_64(); 1978 /* VMs may not have been acquired yet during debugging. */ 1979 if (p->kgd_process_info) 1980 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info, 1981 &p->ef); 1982 if (ret) { 1983 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 1984 p->pasid, PROCESS_BACK_OFF_TIME_MS); 1985 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work, 1986 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); 1987 WARN(!ret, "reschedule restore work failed\n"); 1988 return; 1989 } 1990 1991 ret = kfd_process_restore_queues(p); 1992 if (!ret) 1993 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 1994 else 1995 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 1996 } 1997 1998 void kfd_suspend_all_processes(void) 1999 { 2000 struct kfd_process *p; 2001 unsigned int temp; 2002 int idx = srcu_read_lock(&kfd_processes_srcu); 2003 2004 WARN(debug_evictions, "Evicting all processes"); 2005 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2006 cancel_delayed_work_sync(&p->eviction_work); 2007 flush_delayed_work(&p->restore_work); 2008 2009 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND)) 2010 pr_err("Failed to suspend process 0x%x\n", p->pasid); 2011 dma_fence_signal(p->ef); 2012 dma_fence_put(p->ef); 2013 p->ef = NULL; 2014 } 2015 srcu_read_unlock(&kfd_processes_srcu, idx); 2016 } 2017 2018 int kfd_resume_all_processes(void) 2019 { 2020 struct kfd_process *p; 2021 unsigned int temp; 2022 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 2023 2024 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2025 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) { 2026 pr_err("Restore process %d failed during resume\n", 2027 p->pasid); 2028 ret = -EFAULT; 2029 } 2030 } 2031 srcu_read_unlock(&kfd_processes_srcu, idx); 2032 return ret; 2033 } 2034 2035 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, 2036 struct vm_area_struct *vma) 2037 { 2038 struct kfd_process_device *pdd; 2039 struct qcm_process_device *qpd; 2040 2041 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 2042 pr_err("Incorrect CWSR mapping size.\n"); 2043 return -EINVAL; 2044 } 2045 2046 pdd = kfd_get_process_device_data(dev, process); 2047 if (!pdd) 2048 return -EINVAL; 2049 qpd = &pdd->qpd; 2050 2051 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2052 get_order(KFD_CWSR_TBA_TMA_SIZE)); 2053 if (!qpd->cwsr_kaddr) { 2054 pr_err("Error allocating per process CWSR buffer.\n"); 2055 return -ENOMEM; 2056 } 2057 2058 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND 2059 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); 2060 /* Mapping pages to user process */ 2061 return remap_pfn_range(vma, vma->vm_start, 2062 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 2063 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 2064 } 2065 2066 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type) 2067 { 2068 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv); 2069 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); 2070 struct kfd_node *dev = pdd->dev; 2071 uint32_t xcc_mask = dev->xcc_mask; 2072 int xcc = 0; 2073 2074 /* 2075 * It can be that we race and lose here, but that is extremely unlikely 2076 * and the worst thing which could happen is that we flush the changes 2077 * into the TLB once more which is harmless. 2078 */ 2079 if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq) 2080 return; 2081 2082 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 2083 /* Nothing to flush until a VMID is assigned, which 2084 * only happens when the first queue is created. 2085 */ 2086 if (pdd->qpd.vmid) 2087 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev, 2088 pdd->qpd.vmid); 2089 } else { 2090 for_each_inst(xcc, xcc_mask) 2091 amdgpu_amdkfd_flush_gpu_tlb_pasid( 2092 dev->adev, pdd->process->pasid, type, xcc); 2093 } 2094 } 2095 2096 /* assumes caller holds process lock. */ 2097 int kfd_process_drain_interrupts(struct kfd_process_device *pdd) 2098 { 2099 uint32_t irq_drain_fence[8]; 2100 uint8_t node_id = 0; 2101 int r = 0; 2102 2103 if (!KFD_IS_SOC15(pdd->dev)) 2104 return 0; 2105 2106 pdd->process->irq_drain_is_open = true; 2107 2108 memset(irq_drain_fence, 0, sizeof(irq_drain_fence)); 2109 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) | 2110 KFD_IRQ_FENCE_CLIENTID; 2111 irq_drain_fence[3] = pdd->process->pasid; 2112 2113 /* 2114 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3] 2115 */ 2116 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) { 2117 node_id = ffs(pdd->dev->interrupt_bitmap) - 1; 2118 irq_drain_fence[3] |= node_id << 16; 2119 } 2120 2121 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */ 2122 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev, 2123 irq_drain_fence)) { 2124 pdd->process->irq_drain_is_open = false; 2125 return 0; 2126 } 2127 2128 r = wait_event_interruptible(pdd->process->wait_irq_drain, 2129 !READ_ONCE(pdd->process->irq_drain_is_open)); 2130 if (r) 2131 pdd->process->irq_drain_is_open = false; 2132 2133 return r; 2134 } 2135 2136 void kfd_process_close_interrupt_drain(unsigned int pasid) 2137 { 2138 struct kfd_process *p; 2139 2140 p = kfd_lookup_process_by_pasid(pasid); 2141 2142 if (!p) 2143 return; 2144 2145 WRITE_ONCE(p->irq_drain_is_open, false); 2146 wake_up_all(&p->wait_irq_drain); 2147 kfd_unref_process(p); 2148 } 2149 2150 struct send_exception_work_handler_workarea { 2151 struct work_struct work; 2152 struct kfd_process *p; 2153 unsigned int queue_id; 2154 uint64_t error_reason; 2155 }; 2156 2157 static void send_exception_work_handler(struct work_struct *work) 2158 { 2159 struct send_exception_work_handler_workarea *workarea; 2160 struct kfd_process *p; 2161 struct queue *q; 2162 struct mm_struct *mm; 2163 struct kfd_context_save_area_header __user *csa_header; 2164 uint64_t __user *err_payload_ptr; 2165 uint64_t cur_err; 2166 uint32_t ev_id; 2167 2168 workarea = container_of(work, 2169 struct send_exception_work_handler_workarea, 2170 work); 2171 p = workarea->p; 2172 2173 mm = get_task_mm(p->lead_thread); 2174 2175 if (!mm) 2176 return; 2177 2178 kthread_use_mm(mm); 2179 2180 q = pqm_get_user_queue(&p->pqm, workarea->queue_id); 2181 2182 if (!q) 2183 goto out; 2184 2185 csa_header = (void __user *)q->properties.ctx_save_restore_area_address; 2186 2187 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr); 2188 get_user(cur_err, err_payload_ptr); 2189 cur_err |= workarea->error_reason; 2190 put_user(cur_err, err_payload_ptr); 2191 get_user(ev_id, &csa_header->err_event_id); 2192 2193 kfd_set_event(p, ev_id); 2194 2195 out: 2196 kthread_unuse_mm(mm); 2197 mmput(mm); 2198 } 2199 2200 int kfd_send_exception_to_runtime(struct kfd_process *p, 2201 unsigned int queue_id, 2202 uint64_t error_reason) 2203 { 2204 struct send_exception_work_handler_workarea worker; 2205 2206 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler); 2207 2208 worker.p = p; 2209 worker.queue_id = queue_id; 2210 worker.error_reason = error_reason; 2211 2212 schedule_work(&worker.work); 2213 flush_work(&worker.work); 2214 destroy_work_on_stack(&worker.work); 2215 2216 return 0; 2217 } 2218 2219 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id) 2220 { 2221 int i; 2222 2223 if (gpu_id) { 2224 for (i = 0; i < p->n_pdds; i++) { 2225 struct kfd_process_device *pdd = p->pdds[i]; 2226 2227 if (pdd->user_gpu_id == gpu_id) 2228 return pdd; 2229 } 2230 } 2231 return NULL; 2232 } 2233 2234 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id) 2235 { 2236 int i; 2237 2238 if (!actual_gpu_id) 2239 return 0; 2240 2241 for (i = 0; i < p->n_pdds; i++) { 2242 struct kfd_process_device *pdd = p->pdds[i]; 2243 2244 if (pdd->dev->id == actual_gpu_id) 2245 return pdd->user_gpu_id; 2246 } 2247 return -EINVAL; 2248 } 2249 2250 #if defined(CONFIG_DEBUG_FS) 2251 2252 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 2253 { 2254 struct kfd_process *p; 2255 unsigned int temp; 2256 int r = 0; 2257 2258 int idx = srcu_read_lock(&kfd_processes_srcu); 2259 2260 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2261 seq_printf(m, "Process %d PASID 0x%x:\n", 2262 p->lead_thread->tgid, p->pasid); 2263 2264 mutex_lock(&p->mutex); 2265 r = pqm_debugfs_mqds(m, &p->pqm); 2266 mutex_unlock(&p->mutex); 2267 2268 if (r) 2269 break; 2270 } 2271 2272 srcu_read_unlock(&kfd_processes_srcu, idx); 2273 2274 return r; 2275 } 2276 2277 #endif 2278