1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/mutex.h> 24 #include <linux/log2.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/slab.h> 29 #include <linux/amd-iommu.h> 30 #include <linux/notifier.h> 31 #include <linux/compat.h> 32 #include <linux/mman.h> 33 #include <linux/file.h> 34 35 struct mm_struct; 36 37 #include "kfd_priv.h" 38 #include "kfd_device_queue_manager.h" 39 #include "kfd_dbgmgr.h" 40 #include "kfd_iommu.h" 41 42 /* 43 * List of struct kfd_process (field kfd_process). 44 * Unique/indexed by mm_struct* 45 */ 46 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 47 static DEFINE_MUTEX(kfd_processes_mutex); 48 49 DEFINE_SRCU(kfd_processes_srcu); 50 51 /* For process termination handling */ 52 static struct workqueue_struct *kfd_process_wq; 53 54 /* Ordered, single-threaded workqueue for restoring evicted 55 * processes. Restoring multiple processes concurrently under memory 56 * pressure can lead to processes blocking each other from validating 57 * their BOs and result in a live-lock situation where processes 58 * remain evicted indefinitely. 59 */ 60 static struct workqueue_struct *kfd_restore_wq; 61 62 static struct kfd_process *find_process(const struct task_struct *thread); 63 static void kfd_process_ref_release(struct kref *ref); 64 static struct kfd_process *create_process(const struct task_struct *thread, 65 struct file *filep); 66 67 static void evict_process_worker(struct work_struct *work); 68 static void restore_process_worker(struct work_struct *work); 69 70 71 int kfd_process_create_wq(void) 72 { 73 if (!kfd_process_wq) 74 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 75 if (!kfd_restore_wq) 76 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0); 77 78 if (!kfd_process_wq || !kfd_restore_wq) { 79 kfd_process_destroy_wq(); 80 return -ENOMEM; 81 } 82 83 return 0; 84 } 85 86 void kfd_process_destroy_wq(void) 87 { 88 if (kfd_process_wq) { 89 destroy_workqueue(kfd_process_wq); 90 kfd_process_wq = NULL; 91 } 92 if (kfd_restore_wq) { 93 destroy_workqueue(kfd_restore_wq); 94 kfd_restore_wq = NULL; 95 } 96 } 97 98 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 99 struct kfd_process_device *pdd) 100 { 101 struct kfd_dev *dev = pdd->dev; 102 103 dev->kfd2kgd->unmap_memory_to_gpu(dev->kgd, mem, pdd->vm); 104 dev->kfd2kgd->free_memory_of_gpu(dev->kgd, mem); 105 } 106 107 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 108 * This function should be only called right after the process 109 * is created and when kfd_processes_mutex is still being held 110 * to avoid concurrency. Because of that exclusiveness, we do 111 * not need to take p->mutex. 112 */ 113 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 114 uint64_t gpu_va, uint32_t size, 115 uint32_t flags, void **kptr) 116 { 117 struct kfd_dev *kdev = pdd->dev; 118 struct kgd_mem *mem = NULL; 119 int handle; 120 int err; 121 122 err = kdev->kfd2kgd->alloc_memory_of_gpu(kdev->kgd, gpu_va, size, 123 pdd->vm, &mem, NULL, flags); 124 if (err) 125 goto err_alloc_mem; 126 127 err = kdev->kfd2kgd->map_memory_to_gpu(kdev->kgd, mem, pdd->vm); 128 if (err) 129 goto err_map_mem; 130 131 err = kdev->kfd2kgd->sync_memory(kdev->kgd, mem, true); 132 if (err) { 133 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 134 goto sync_memory_failed; 135 } 136 137 /* Create an obj handle so kfd_process_device_remove_obj_handle 138 * will take care of the bo removal when the process finishes. 139 * We do not need to take p->mutex, because the process is just 140 * created and the ioctls have not had the chance to run. 141 */ 142 handle = kfd_process_device_create_obj_handle(pdd, mem); 143 144 if (handle < 0) { 145 err = handle; 146 goto free_gpuvm; 147 } 148 149 if (kptr) { 150 err = kdev->kfd2kgd->map_gtt_bo_to_kernel(kdev->kgd, 151 (struct kgd_mem *)mem, kptr, NULL); 152 if (err) { 153 pr_debug("Map GTT BO to kernel failed\n"); 154 goto free_obj_handle; 155 } 156 } 157 158 return err; 159 160 free_obj_handle: 161 kfd_process_device_remove_obj_handle(pdd, handle); 162 free_gpuvm: 163 sync_memory_failed: 164 kfd_process_free_gpuvm(mem, pdd); 165 return err; 166 167 err_map_mem: 168 kdev->kfd2kgd->free_memory_of_gpu(kdev->kgd, mem); 169 err_alloc_mem: 170 *kptr = NULL; 171 return err; 172 } 173 174 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 175 * process for IB usage The memory reserved is for KFD to submit 176 * IB to AMDGPU from kernel. If the memory is reserved 177 * successfully, ib_kaddr will have the CPU/kernel 178 * address. Check ib_kaddr before accessing the memory. 179 */ 180 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 181 { 182 struct qcm_process_device *qpd = &pdd->qpd; 183 uint32_t flags = ALLOC_MEM_FLAGS_GTT | 184 ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 185 ALLOC_MEM_FLAGS_WRITABLE | 186 ALLOC_MEM_FLAGS_EXECUTABLE; 187 void *kaddr; 188 int ret; 189 190 if (qpd->ib_kaddr || !qpd->ib_base) 191 return 0; 192 193 /* ib_base is only set for dGPU */ 194 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 195 &kaddr); 196 if (ret) 197 return ret; 198 199 qpd->ib_kaddr = kaddr; 200 201 return 0; 202 } 203 204 struct kfd_process *kfd_create_process(struct file *filep) 205 { 206 struct kfd_process *process; 207 struct task_struct *thread = current; 208 209 if (!thread->mm) 210 return ERR_PTR(-EINVAL); 211 212 /* Only the pthreads threading model is supported. */ 213 if (thread->group_leader->mm != thread->mm) 214 return ERR_PTR(-EINVAL); 215 216 /* 217 * take kfd processes mutex before starting of process creation 218 * so there won't be a case where two threads of the same process 219 * create two kfd_process structures 220 */ 221 mutex_lock(&kfd_processes_mutex); 222 223 /* A prior open of /dev/kfd could have already created the process. */ 224 process = find_process(thread); 225 if (process) 226 pr_debug("Process already found\n"); 227 else 228 process = create_process(thread, filep); 229 230 mutex_unlock(&kfd_processes_mutex); 231 232 return process; 233 } 234 235 struct kfd_process *kfd_get_process(const struct task_struct *thread) 236 { 237 struct kfd_process *process; 238 239 if (!thread->mm) 240 return ERR_PTR(-EINVAL); 241 242 /* Only the pthreads threading model is supported. */ 243 if (thread->group_leader->mm != thread->mm) 244 return ERR_PTR(-EINVAL); 245 246 process = find_process(thread); 247 248 return process; 249 } 250 251 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 252 { 253 struct kfd_process *process; 254 255 hash_for_each_possible_rcu(kfd_processes_table, process, 256 kfd_processes, (uintptr_t)mm) 257 if (process->mm == mm) 258 return process; 259 260 return NULL; 261 } 262 263 static struct kfd_process *find_process(const struct task_struct *thread) 264 { 265 struct kfd_process *p; 266 int idx; 267 268 idx = srcu_read_lock(&kfd_processes_srcu); 269 p = find_process_by_mm(thread->mm); 270 srcu_read_unlock(&kfd_processes_srcu, idx); 271 272 return p; 273 } 274 275 void kfd_unref_process(struct kfd_process *p) 276 { 277 kref_put(&p->ref, kfd_process_ref_release); 278 } 279 280 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 281 { 282 struct kfd_process *p = pdd->process; 283 void *mem; 284 int id; 285 286 /* 287 * Remove all handles from idr and release appropriate 288 * local memory object 289 */ 290 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 291 struct kfd_process_device *peer_pdd; 292 293 list_for_each_entry(peer_pdd, &p->per_device_data, 294 per_device_list) { 295 if (!peer_pdd->vm) 296 continue; 297 peer_pdd->dev->kfd2kgd->unmap_memory_to_gpu( 298 peer_pdd->dev->kgd, mem, peer_pdd->vm); 299 } 300 301 pdd->dev->kfd2kgd->free_memory_of_gpu(pdd->dev->kgd, mem); 302 kfd_process_device_remove_obj_handle(pdd, id); 303 } 304 } 305 306 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 307 { 308 struct kfd_process_device *pdd; 309 310 list_for_each_entry(pdd, &p->per_device_data, per_device_list) 311 kfd_process_device_free_bos(pdd); 312 } 313 314 static void kfd_process_destroy_pdds(struct kfd_process *p) 315 { 316 struct kfd_process_device *pdd, *temp; 317 318 list_for_each_entry_safe(pdd, temp, &p->per_device_data, 319 per_device_list) { 320 pr_debug("Releasing pdd (topology id %d) for process (pasid %d)\n", 321 pdd->dev->id, p->pasid); 322 323 if (pdd->drm_file) 324 fput(pdd->drm_file); 325 else if (pdd->vm) 326 pdd->dev->kfd2kgd->destroy_process_vm( 327 pdd->dev->kgd, pdd->vm); 328 329 list_del(&pdd->per_device_list); 330 331 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 332 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 333 get_order(KFD_CWSR_TBA_TMA_SIZE)); 334 335 idr_destroy(&pdd->alloc_idr); 336 337 kfree(pdd); 338 } 339 } 340 341 /* No process locking is needed in this function, because the process 342 * is not findable any more. We must assume that no other thread is 343 * using it any more, otherwise we couldn't safely free the process 344 * structure in the end. 345 */ 346 static void kfd_process_wq_release(struct work_struct *work) 347 { 348 struct kfd_process *p = container_of(work, struct kfd_process, 349 release_work); 350 351 kfd_iommu_unbind_process(p); 352 353 kfd_process_free_outstanding_kfd_bos(p); 354 355 kfd_process_destroy_pdds(p); 356 dma_fence_put(p->ef); 357 358 kfd_event_free_process(p); 359 360 kfd_pasid_free(p->pasid); 361 kfd_free_process_doorbells(p); 362 363 mutex_destroy(&p->mutex); 364 365 put_task_struct(p->lead_thread); 366 367 kfree(p); 368 } 369 370 static void kfd_process_ref_release(struct kref *ref) 371 { 372 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 373 374 INIT_WORK(&p->release_work, kfd_process_wq_release); 375 queue_work(kfd_process_wq, &p->release_work); 376 } 377 378 static void kfd_process_destroy_delayed(struct rcu_head *rcu) 379 { 380 struct kfd_process *p = container_of(rcu, struct kfd_process, rcu); 381 382 kfd_unref_process(p); 383 } 384 385 static void kfd_process_notifier_release(struct mmu_notifier *mn, 386 struct mm_struct *mm) 387 { 388 struct kfd_process *p; 389 struct kfd_process_device *pdd = NULL; 390 391 /* 392 * The kfd_process structure can not be free because the 393 * mmu_notifier srcu is read locked 394 */ 395 p = container_of(mn, struct kfd_process, mmu_notifier); 396 if (WARN_ON(p->mm != mm)) 397 return; 398 399 mutex_lock(&kfd_processes_mutex); 400 hash_del_rcu(&p->kfd_processes); 401 mutex_unlock(&kfd_processes_mutex); 402 synchronize_srcu(&kfd_processes_srcu); 403 404 cancel_delayed_work_sync(&p->eviction_work); 405 cancel_delayed_work_sync(&p->restore_work); 406 407 mutex_lock(&p->mutex); 408 409 /* Iterate over all process device data structures and if the 410 * pdd is in debug mode, we should first force unregistration, 411 * then we will be able to destroy the queues 412 */ 413 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 414 struct kfd_dev *dev = pdd->dev; 415 416 mutex_lock(kfd_get_dbgmgr_mutex()); 417 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) { 418 if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) { 419 kfd_dbgmgr_destroy(dev->dbgmgr); 420 dev->dbgmgr = NULL; 421 } 422 } 423 mutex_unlock(kfd_get_dbgmgr_mutex()); 424 } 425 426 kfd_process_dequeue_from_all_devices(p); 427 pqm_uninit(&p->pqm); 428 429 /* Indicate to other users that MM is no longer valid */ 430 p->mm = NULL; 431 432 mutex_unlock(&p->mutex); 433 434 mmu_notifier_unregister_no_release(&p->mmu_notifier, mm); 435 mmu_notifier_call_srcu(&p->rcu, &kfd_process_destroy_delayed); 436 } 437 438 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 439 .release = kfd_process_notifier_release, 440 }; 441 442 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 443 { 444 unsigned long offset; 445 struct kfd_process_device *pdd; 446 447 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 448 struct kfd_dev *dev = pdd->dev; 449 struct qcm_process_device *qpd = &pdd->qpd; 450 451 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 452 continue; 453 454 offset = (dev->id | KFD_MMAP_RESERVED_MEM_MASK) << PAGE_SHIFT; 455 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 456 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 457 MAP_SHARED, offset); 458 459 if (IS_ERR_VALUE(qpd->tba_addr)) { 460 int err = qpd->tba_addr; 461 462 pr_err("Failure to set tba address. error %d.\n", err); 463 qpd->tba_addr = 0; 464 qpd->cwsr_kaddr = NULL; 465 return err; 466 } 467 468 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 469 470 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 471 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 472 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 473 } 474 475 return 0; 476 } 477 478 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 479 { 480 struct kfd_dev *dev = pdd->dev; 481 struct qcm_process_device *qpd = &pdd->qpd; 482 uint32_t flags = ALLOC_MEM_FLAGS_GTT | 483 ALLOC_MEM_FLAGS_NO_SUBSTITUTE | ALLOC_MEM_FLAGS_EXECUTABLE; 484 void *kaddr; 485 int ret; 486 487 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 488 return 0; 489 490 /* cwsr_base is only set for dGPU */ 491 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 492 KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr); 493 if (ret) 494 return ret; 495 496 qpd->cwsr_kaddr = kaddr; 497 qpd->tba_addr = qpd->cwsr_base; 498 499 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 500 501 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 502 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 503 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 504 505 return 0; 506 } 507 508 static struct kfd_process *create_process(const struct task_struct *thread, 509 struct file *filep) 510 { 511 struct kfd_process *process; 512 int err = -ENOMEM; 513 514 process = kzalloc(sizeof(*process), GFP_KERNEL); 515 516 if (!process) 517 goto err_alloc_process; 518 519 process->pasid = kfd_pasid_alloc(); 520 if (process->pasid == 0) 521 goto err_alloc_pasid; 522 523 if (kfd_alloc_process_doorbells(process) < 0) 524 goto err_alloc_doorbells; 525 526 kref_init(&process->ref); 527 528 mutex_init(&process->mutex); 529 530 process->mm = thread->mm; 531 532 /* register notifier */ 533 process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops; 534 err = mmu_notifier_register(&process->mmu_notifier, process->mm); 535 if (err) 536 goto err_mmu_notifier; 537 538 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 539 (uintptr_t)process->mm); 540 541 process->lead_thread = thread->group_leader; 542 get_task_struct(process->lead_thread); 543 544 INIT_LIST_HEAD(&process->per_device_data); 545 546 kfd_event_init_process(process); 547 548 err = pqm_init(&process->pqm, process); 549 if (err != 0) 550 goto err_process_pqm_init; 551 552 /* init process apertures*/ 553 process->is_32bit_user_mode = in_compat_syscall(); 554 err = kfd_init_apertures(process); 555 if (err != 0) 556 goto err_init_apertures; 557 558 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 559 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 560 process->last_restore_timestamp = get_jiffies_64(); 561 562 err = kfd_process_init_cwsr_apu(process, filep); 563 if (err) 564 goto err_init_cwsr; 565 566 return process; 567 568 err_init_cwsr: 569 kfd_process_free_outstanding_kfd_bos(process); 570 kfd_process_destroy_pdds(process); 571 err_init_apertures: 572 pqm_uninit(&process->pqm); 573 err_process_pqm_init: 574 hash_del_rcu(&process->kfd_processes); 575 synchronize_rcu(); 576 mmu_notifier_unregister_no_release(&process->mmu_notifier, process->mm); 577 err_mmu_notifier: 578 mutex_destroy(&process->mutex); 579 kfd_free_process_doorbells(process); 580 err_alloc_doorbells: 581 kfd_pasid_free(process->pasid); 582 err_alloc_pasid: 583 kfree(process); 584 err_alloc_process: 585 return ERR_PTR(err); 586 } 587 588 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 589 struct kfd_process *p) 590 { 591 struct kfd_process_device *pdd = NULL; 592 593 list_for_each_entry(pdd, &p->per_device_data, per_device_list) 594 if (pdd->dev == dev) 595 return pdd; 596 597 return NULL; 598 } 599 600 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 601 struct kfd_process *p) 602 { 603 struct kfd_process_device *pdd = NULL; 604 605 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 606 if (!pdd) 607 return NULL; 608 609 pdd->dev = dev; 610 INIT_LIST_HEAD(&pdd->qpd.queues_list); 611 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 612 pdd->qpd.dqm = dev->dqm; 613 pdd->qpd.pqm = &p->pqm; 614 pdd->qpd.evicted = 0; 615 pdd->process = p; 616 pdd->bound = PDD_UNBOUND; 617 pdd->already_dequeued = false; 618 list_add(&pdd->per_device_list, &p->per_device_data); 619 620 /* Init idr used for memory handle translation */ 621 idr_init(&pdd->alloc_idr); 622 623 return pdd; 624 } 625 626 /** 627 * kfd_process_device_init_vm - Initialize a VM for a process-device 628 * 629 * @pdd: The process-device 630 * @drm_file: Optional pointer to a DRM file descriptor 631 * 632 * If @drm_file is specified, it will be used to acquire the VM from 633 * that file descriptor. If successful, the @pdd takes ownership of 634 * the file descriptor. 635 * 636 * If @drm_file is NULL, a new VM is created. 637 * 638 * Returns 0 on success, -errno on failure. 639 */ 640 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 641 struct file *drm_file) 642 { 643 struct kfd_process *p; 644 struct kfd_dev *dev; 645 int ret; 646 647 if (pdd->vm) 648 return drm_file ? -EBUSY : 0; 649 650 p = pdd->process; 651 dev = pdd->dev; 652 653 if (drm_file) 654 ret = dev->kfd2kgd->acquire_process_vm( 655 dev->kgd, drm_file, 656 &pdd->vm, &p->kgd_process_info, &p->ef); 657 else 658 ret = dev->kfd2kgd->create_process_vm( 659 dev->kgd, &pdd->vm, &p->kgd_process_info, &p->ef); 660 if (ret) { 661 pr_err("Failed to create process VM object\n"); 662 return ret; 663 } 664 665 ret = kfd_process_device_reserve_ib_mem(pdd); 666 if (ret) 667 goto err_reserve_ib_mem; 668 ret = kfd_process_device_init_cwsr_dgpu(pdd); 669 if (ret) 670 goto err_init_cwsr; 671 672 pdd->drm_file = drm_file; 673 674 return 0; 675 676 err_init_cwsr: 677 err_reserve_ib_mem: 678 kfd_process_device_free_bos(pdd); 679 if (!drm_file) 680 dev->kfd2kgd->destroy_process_vm(dev->kgd, pdd->vm); 681 pdd->vm = NULL; 682 683 return ret; 684 } 685 686 /* 687 * Direct the IOMMU to bind the process (specifically the pasid->mm) 688 * to the device. 689 * Unbinding occurs when the process dies or the device is removed. 690 * 691 * Assumes that the process lock is held. 692 */ 693 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 694 struct kfd_process *p) 695 { 696 struct kfd_process_device *pdd; 697 int err; 698 699 pdd = kfd_get_process_device_data(dev, p); 700 if (!pdd) { 701 pr_err("Process device data doesn't exist\n"); 702 return ERR_PTR(-ENOMEM); 703 } 704 705 err = kfd_iommu_bind_process_to_device(pdd); 706 if (err) 707 return ERR_PTR(err); 708 709 err = kfd_process_device_init_vm(pdd, NULL); 710 if (err) 711 return ERR_PTR(err); 712 713 return pdd; 714 } 715 716 struct kfd_process_device *kfd_get_first_process_device_data( 717 struct kfd_process *p) 718 { 719 return list_first_entry(&p->per_device_data, 720 struct kfd_process_device, 721 per_device_list); 722 } 723 724 struct kfd_process_device *kfd_get_next_process_device_data( 725 struct kfd_process *p, 726 struct kfd_process_device *pdd) 727 { 728 if (list_is_last(&pdd->per_device_list, &p->per_device_data)) 729 return NULL; 730 return list_next_entry(pdd, per_device_list); 731 } 732 733 bool kfd_has_process_device_data(struct kfd_process *p) 734 { 735 return !(list_empty(&p->per_device_data)); 736 } 737 738 /* Create specific handle mapped to mem from process local memory idr 739 * Assumes that the process lock is held. 740 */ 741 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 742 void *mem) 743 { 744 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 745 } 746 747 /* Translate specific handle from process local memory idr 748 * Assumes that the process lock is held. 749 */ 750 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 751 int handle) 752 { 753 if (handle < 0) 754 return NULL; 755 756 return idr_find(&pdd->alloc_idr, handle); 757 } 758 759 /* Remove specific handle from process local memory idr 760 * Assumes that the process lock is held. 761 */ 762 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 763 int handle) 764 { 765 if (handle >= 0) 766 idr_remove(&pdd->alloc_idr, handle); 767 } 768 769 /* This increments the process->ref counter. */ 770 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid) 771 { 772 struct kfd_process *p, *ret_p = NULL; 773 unsigned int temp; 774 775 int idx = srcu_read_lock(&kfd_processes_srcu); 776 777 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 778 if (p->pasid == pasid) { 779 kref_get(&p->ref); 780 ret_p = p; 781 break; 782 } 783 } 784 785 srcu_read_unlock(&kfd_processes_srcu, idx); 786 787 return ret_p; 788 } 789 790 /* This increments the process->ref counter. */ 791 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 792 { 793 struct kfd_process *p; 794 795 int idx = srcu_read_lock(&kfd_processes_srcu); 796 797 p = find_process_by_mm(mm); 798 if (p) 799 kref_get(&p->ref); 800 801 srcu_read_unlock(&kfd_processes_srcu, idx); 802 803 return p; 804 } 805 806 /* process_evict_queues - Evict all user queues of a process 807 * 808 * Eviction is reference-counted per process-device. This means multiple 809 * evictions from different sources can be nested safely. 810 */ 811 static int process_evict_queues(struct kfd_process *p) 812 { 813 struct kfd_process_device *pdd; 814 int r = 0; 815 unsigned int n_evicted = 0; 816 817 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 818 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 819 &pdd->qpd); 820 if (r) { 821 pr_err("Failed to evict process queues\n"); 822 goto fail; 823 } 824 n_evicted++; 825 } 826 827 return r; 828 829 fail: 830 /* To keep state consistent, roll back partial eviction by 831 * restoring queues 832 */ 833 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 834 if (n_evicted == 0) 835 break; 836 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 837 &pdd->qpd)) 838 pr_err("Failed to restore queues\n"); 839 840 n_evicted--; 841 } 842 843 return r; 844 } 845 846 /* process_restore_queues - Restore all user queues of a process */ 847 static int process_restore_queues(struct kfd_process *p) 848 { 849 struct kfd_process_device *pdd; 850 int r, ret = 0; 851 852 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 853 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 854 &pdd->qpd); 855 if (r) { 856 pr_err("Failed to restore process queues\n"); 857 if (!ret) 858 ret = r; 859 } 860 } 861 862 return ret; 863 } 864 865 static void evict_process_worker(struct work_struct *work) 866 { 867 int ret; 868 struct kfd_process *p; 869 struct delayed_work *dwork; 870 871 dwork = to_delayed_work(work); 872 873 /* Process termination destroys this worker thread. So during the 874 * lifetime of this thread, kfd_process p will be valid 875 */ 876 p = container_of(dwork, struct kfd_process, eviction_work); 877 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, 878 "Eviction fence mismatch\n"); 879 880 /* Narrow window of overlap between restore and evict work 881 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos 882 * unreserves KFD BOs, it is possible to evicted again. But 883 * restore has few more steps of finish. So lets wait for any 884 * previous restore work to complete 885 */ 886 flush_delayed_work(&p->restore_work); 887 888 pr_debug("Started evicting pasid %d\n", p->pasid); 889 ret = process_evict_queues(p); 890 if (!ret) { 891 dma_fence_signal(p->ef); 892 dma_fence_put(p->ef); 893 p->ef = NULL; 894 queue_delayed_work(kfd_restore_wq, &p->restore_work, 895 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); 896 897 pr_debug("Finished evicting pasid %d\n", p->pasid); 898 } else 899 pr_err("Failed to evict queues of pasid %d\n", p->pasid); 900 } 901 902 static void restore_process_worker(struct work_struct *work) 903 { 904 struct delayed_work *dwork; 905 struct kfd_process *p; 906 struct kfd_process_device *pdd; 907 int ret = 0; 908 909 dwork = to_delayed_work(work); 910 911 /* Process termination destroys this worker thread. So during the 912 * lifetime of this thread, kfd_process p will be valid 913 */ 914 p = container_of(dwork, struct kfd_process, restore_work); 915 916 /* Call restore_process_bos on the first KGD device. This function 917 * takes care of restoring the whole process including other devices. 918 * Restore can fail if enough memory is not available. If so, 919 * reschedule again. 920 */ 921 pdd = list_first_entry(&p->per_device_data, 922 struct kfd_process_device, 923 per_device_list); 924 925 pr_debug("Started restoring pasid %d\n", p->pasid); 926 927 /* Setting last_restore_timestamp before successful restoration. 928 * Otherwise this would have to be set by KGD (restore_process_bos) 929 * before KFD BOs are unreserved. If not, the process can be evicted 930 * again before the timestamp is set. 931 * If restore fails, the timestamp will be set again in the next 932 * attempt. This would mean that the minimum GPU quanta would be 933 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 934 * functions) 935 */ 936 937 p->last_restore_timestamp = get_jiffies_64(); 938 ret = pdd->dev->kfd2kgd->restore_process_bos(p->kgd_process_info, 939 &p->ef); 940 if (ret) { 941 pr_debug("Failed to restore BOs of pasid %d, retry after %d ms\n", 942 p->pasid, PROCESS_BACK_OFF_TIME_MS); 943 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work, 944 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); 945 WARN(!ret, "reschedule restore work failed\n"); 946 return; 947 } 948 949 ret = process_restore_queues(p); 950 if (!ret) 951 pr_debug("Finished restoring pasid %d\n", p->pasid); 952 else 953 pr_err("Failed to restore queues of pasid %d\n", p->pasid); 954 } 955 956 void kfd_suspend_all_processes(void) 957 { 958 struct kfd_process *p; 959 unsigned int temp; 960 int idx = srcu_read_lock(&kfd_processes_srcu); 961 962 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 963 cancel_delayed_work_sync(&p->eviction_work); 964 cancel_delayed_work_sync(&p->restore_work); 965 966 if (process_evict_queues(p)) 967 pr_err("Failed to suspend process %d\n", p->pasid); 968 dma_fence_signal(p->ef); 969 dma_fence_put(p->ef); 970 p->ef = NULL; 971 } 972 srcu_read_unlock(&kfd_processes_srcu, idx); 973 } 974 975 int kfd_resume_all_processes(void) 976 { 977 struct kfd_process *p; 978 unsigned int temp; 979 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 980 981 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 982 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) { 983 pr_err("Restore process %d failed during resume\n", 984 p->pasid); 985 ret = -EFAULT; 986 } 987 } 988 srcu_read_unlock(&kfd_processes_srcu, idx); 989 return ret; 990 } 991 992 int kfd_reserved_mem_mmap(struct kfd_process *process, 993 struct vm_area_struct *vma) 994 { 995 struct kfd_dev *dev = kfd_device_by_id(vma->vm_pgoff); 996 struct kfd_process_device *pdd; 997 struct qcm_process_device *qpd; 998 999 if (!dev) 1000 return -EINVAL; 1001 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 1002 pr_err("Incorrect CWSR mapping size.\n"); 1003 return -EINVAL; 1004 } 1005 1006 pdd = kfd_get_process_device_data(dev, process); 1007 if (!pdd) 1008 return -EINVAL; 1009 qpd = &pdd->qpd; 1010 1011 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1012 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1013 if (!qpd->cwsr_kaddr) { 1014 pr_err("Error allocating per process CWSR buffer.\n"); 1015 return -ENOMEM; 1016 } 1017 1018 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND 1019 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; 1020 /* Mapping pages to user process */ 1021 return remap_pfn_range(vma, vma->vm_start, 1022 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 1023 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 1024 } 1025 1026 void kfd_flush_tlb(struct kfd_process_device *pdd) 1027 { 1028 struct kfd_dev *dev = pdd->dev; 1029 const struct kfd2kgd_calls *f2g = dev->kfd2kgd; 1030 1031 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1032 /* Nothing to flush until a VMID is assigned, which 1033 * only happens when the first queue is created. 1034 */ 1035 if (pdd->qpd.vmid) 1036 f2g->invalidate_tlbs_vmid(dev->kgd, pdd->qpd.vmid); 1037 } else { 1038 f2g->invalidate_tlbs(dev->kgd, pdd->process->pasid); 1039 } 1040 } 1041 1042 #if defined(CONFIG_DEBUG_FS) 1043 1044 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 1045 { 1046 struct kfd_process *p; 1047 unsigned int temp; 1048 int r = 0; 1049 1050 int idx = srcu_read_lock(&kfd_processes_srcu); 1051 1052 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1053 seq_printf(m, "Process %d PASID %d:\n", 1054 p->lead_thread->tgid, p->pasid); 1055 1056 mutex_lock(&p->mutex); 1057 r = pqm_debugfs_mqds(m, &p->pqm); 1058 mutex_unlock(&p->mutex); 1059 1060 if (r) 1061 break; 1062 } 1063 1064 srcu_read_unlock(&kfd_processes_srcu, idx); 1065 1066 return r; 1067 } 1068 1069 #endif 1070