1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/mutex.h>
24 #include <linux/log2.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/amd-iommu.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 
39 struct mm_struct;
40 
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_dbgmgr.h"
44 #include "kfd_iommu.h"
45 #include "kfd_svm.h"
46 
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 static DEFINE_MUTEX(kfd_processes_mutex);
53 
54 DEFINE_SRCU(kfd_processes_srcu);
55 
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58 
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66 
67 static struct kfd_process *find_process(const struct task_struct *thread);
68 static void kfd_process_ref_release(struct kref *ref);
69 static struct kfd_process *create_process(const struct task_struct *thread);
70 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
71 
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74 
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76 
77 struct kfd_procfs_tree {
78 	struct kobject *kobj;
79 };
80 
81 static struct kfd_procfs_tree procfs;
82 
83 /*
84  * Structure for SDMA activity tracking
85  */
86 struct kfd_sdma_activity_handler_workarea {
87 	struct work_struct sdma_activity_work;
88 	struct kfd_process_device *pdd;
89 	uint64_t sdma_activity_counter;
90 };
91 
92 struct temp_sdma_queue_list {
93 	uint64_t __user *rptr;
94 	uint64_t sdma_val;
95 	unsigned int queue_id;
96 	struct list_head list;
97 };
98 
99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101 	struct kfd_sdma_activity_handler_workarea *workarea;
102 	struct kfd_process_device *pdd;
103 	uint64_t val;
104 	struct mm_struct *mm;
105 	struct queue *q;
106 	struct qcm_process_device *qpd;
107 	struct device_queue_manager *dqm;
108 	int ret = 0;
109 	struct temp_sdma_queue_list sdma_q_list;
110 	struct temp_sdma_queue_list *sdma_q, *next;
111 
112 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 				sdma_activity_work);
114 
115 	pdd = workarea->pdd;
116 	if (!pdd)
117 		return;
118 	dqm = pdd->dev->dqm;
119 	qpd = &pdd->qpd;
120 	if (!dqm || !qpd)
121 		return;
122 	/*
123 	 * Total SDMA activity is current SDMA activity + past SDMA activity
124 	 * Past SDMA count is stored in pdd.
125 	 * To get the current activity counters for all active SDMA queues,
126 	 * we loop over all SDMA queues and get their counts from user-space.
127 	 *
128 	 * We cannot call get_user() with dqm_lock held as it can cause
129 	 * a circular lock dependency situation. To read the SDMA stats,
130 	 * we need to do the following:
131 	 *
132 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 	 *    with dqm_lock/dqm_unlock().
134 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 	 *    Save the SDMA count for each node and also add the count to the total
136 	 *    SDMA count counter.
137 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
138 	 *    from the qpd->queues_list.
139 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 	 *    If any node got deleted, its SDMA count would be captured in the sdma
141 	 *    past activity counter. So subtract the SDMA counter stored in step 2
142 	 *    for this node from the total SDMA count.
143 	 */
144 	INIT_LIST_HEAD(&sdma_q_list.list);
145 
146 	/*
147 	 * Create the temp list of all SDMA queues
148 	 */
149 	dqm_lock(dqm);
150 
151 	list_for_each_entry(q, &qpd->queues_list, list) {
152 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 			continue;
155 
156 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 		if (!sdma_q) {
158 			dqm_unlock(dqm);
159 			goto cleanup;
160 		}
161 
162 		INIT_LIST_HEAD(&sdma_q->list);
163 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 		sdma_q->queue_id = q->properties.queue_id;
165 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 	}
167 
168 	/*
169 	 * If the temp list is empty, then no SDMA queues nodes were found in
170 	 * qpd->queues_list. Return the past activity count as the total sdma
171 	 * count
172 	 */
173 	if (list_empty(&sdma_q_list.list)) {
174 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 		dqm_unlock(dqm);
176 		return;
177 	}
178 
179 	dqm_unlock(dqm);
180 
181 	/*
182 	 * Get the usage count for each SDMA queue in temp_list.
183 	 */
184 	mm = get_task_mm(pdd->process->lead_thread);
185 	if (!mm)
186 		goto cleanup;
187 
188 	kthread_use_mm(mm);
189 
190 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 		val = 0;
192 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 		if (ret) {
194 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 				 sdma_q->queue_id);
196 		} else {
197 			sdma_q->sdma_val = val;
198 			workarea->sdma_activity_counter += val;
199 		}
200 	}
201 
202 	kthread_unuse_mm(mm);
203 	mmput(mm);
204 
205 	/*
206 	 * Do a second iteration over qpd_queues_list to check if any SDMA
207 	 * nodes got deleted while fetching SDMA counter.
208 	 */
209 	dqm_lock(dqm);
210 
211 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212 
213 	list_for_each_entry(q, &qpd->queues_list, list) {
214 		if (list_empty(&sdma_q_list.list))
215 			break;
216 
217 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 			continue;
220 
221 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 			     (sdma_q->queue_id == q->properties.queue_id)) {
224 				list_del(&sdma_q->list);
225 				kfree(sdma_q);
226 				break;
227 			}
228 		}
229 	}
230 
231 	dqm_unlock(dqm);
232 
233 	/*
234 	 * If temp list is not empty, it implies some queues got deleted
235 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 	 * count for each node from the total SDMA count.
237 	 */
238 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 		list_del(&sdma_q->list);
241 		kfree(sdma_q);
242 	}
243 
244 	return;
245 
246 cleanup:
247 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 		list_del(&sdma_q->list);
249 		kfree(sdma_q);
250 	}
251 }
252 
253 /**
254  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255  * by current process. Translates acquired wave count into number of compute units
256  * that are occupied.
257  *
258  * @attr: Handle of attribute that allows reporting of wave count. The attribute
259  * handle encapsulates GPU device it is associated with, thereby allowing collection
260  * of waves in flight, etc
261  * @buffer: Handle of user provided buffer updated with wave count
262  *
263  * Return: Number of bytes written to user buffer or an error value
264  */
265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267 	int cu_cnt;
268 	int wave_cnt;
269 	int max_waves_per_cu;
270 	struct kfd_dev *dev = NULL;
271 	struct kfd_process *proc = NULL;
272 	struct kfd_process_device *pdd = NULL;
273 
274 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275 	dev = pdd->dev;
276 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
277 		return -EINVAL;
278 
279 	cu_cnt = 0;
280 	proc = pdd->process;
281 	if (pdd->qpd.queue_count == 0) {
282 		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283 			 dev->id, proc->pasid);
284 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285 	}
286 
287 	/* Collect wave count from device if it supports */
288 	wave_cnt = 0;
289 	max_waves_per_cu = 0;
290 	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
291 			&max_waves_per_cu);
292 
293 	/* Translate wave count to number of compute units */
294 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296 }
297 
298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299 			       char *buffer)
300 {
301 	if (strcmp(attr->name, "pasid") == 0) {
302 		struct kfd_process *p = container_of(attr, struct kfd_process,
303 						     attr_pasid);
304 
305 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
307 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308 							      attr_vram);
309 		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
311 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312 							      attr_sdma);
313 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314 
315 		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316 					kfd_sdma_activity_worker);
317 
318 		sdma_activity_work_handler.pdd = pdd;
319 		sdma_activity_work_handler.sdma_activity_counter = 0;
320 
321 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322 
323 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
324 
325 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
326 				(sdma_activity_work_handler.sdma_activity_counter)/
327 				 SDMA_ACTIVITY_DIVISOR);
328 	} else {
329 		pr_err("Invalid attribute");
330 		return -EINVAL;
331 	}
332 
333 	return 0;
334 }
335 
336 static void kfd_procfs_kobj_release(struct kobject *kobj)
337 {
338 	kfree(kobj);
339 }
340 
341 static const struct sysfs_ops kfd_procfs_ops = {
342 	.show = kfd_procfs_show,
343 };
344 
345 static struct kobj_type procfs_type = {
346 	.release = kfd_procfs_kobj_release,
347 	.sysfs_ops = &kfd_procfs_ops,
348 };
349 
350 void kfd_procfs_init(void)
351 {
352 	int ret = 0;
353 
354 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
355 	if (!procfs.kobj)
356 		return;
357 
358 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359 				   &kfd_device->kobj, "proc");
360 	if (ret) {
361 		pr_warn("Could not create procfs proc folder");
362 		/* If we fail to create the procfs, clean up */
363 		kfd_procfs_shutdown();
364 	}
365 }
366 
367 void kfd_procfs_shutdown(void)
368 {
369 	if (procfs.kobj) {
370 		kobject_del(procfs.kobj);
371 		kobject_put(procfs.kobj);
372 		procfs.kobj = NULL;
373 	}
374 }
375 
376 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377 				     struct attribute *attr, char *buffer)
378 {
379 	struct queue *q = container_of(kobj, struct queue, kobj);
380 
381 	if (!strcmp(attr->name, "size"))
382 		return snprintf(buffer, PAGE_SIZE, "%llu",
383 				q->properties.queue_size);
384 	else if (!strcmp(attr->name, "type"))
385 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386 	else if (!strcmp(attr->name, "gpuid"))
387 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388 	else
389 		pr_err("Invalid attribute");
390 
391 	return 0;
392 }
393 
394 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395 				     struct attribute *attr, char *buffer)
396 {
397 	if (strcmp(attr->name, "evicted_ms") == 0) {
398 		struct kfd_process_device *pdd = container_of(attr,
399 				struct kfd_process_device,
400 				attr_evict);
401 		uint64_t evict_jiffies;
402 
403 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404 
405 		return snprintf(buffer,
406 				PAGE_SIZE,
407 				"%llu\n",
408 				jiffies64_to_msecs(evict_jiffies));
409 
410 	/* Sysfs handle that gets CU occupancy is per device */
411 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
412 		return kfd_get_cu_occupancy(attr, buffer);
413 	} else {
414 		pr_err("Invalid attribute");
415 	}
416 
417 	return 0;
418 }
419 
420 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
421 				       struct attribute *attr, char *buf)
422 {
423 	struct kfd_process_device *pdd;
424 
425 	if (!strcmp(attr->name, "faults")) {
426 		pdd = container_of(attr, struct kfd_process_device,
427 				   attr_faults);
428 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
429 	}
430 	if (!strcmp(attr->name, "page_in")) {
431 		pdd = container_of(attr, struct kfd_process_device,
432 				   attr_page_in);
433 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
434 	}
435 	if (!strcmp(attr->name, "page_out")) {
436 		pdd = container_of(attr, struct kfd_process_device,
437 				   attr_page_out);
438 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
439 	}
440 	return 0;
441 }
442 
443 static struct attribute attr_queue_size = {
444 	.name = "size",
445 	.mode = KFD_SYSFS_FILE_MODE
446 };
447 
448 static struct attribute attr_queue_type = {
449 	.name = "type",
450 	.mode = KFD_SYSFS_FILE_MODE
451 };
452 
453 static struct attribute attr_queue_gpuid = {
454 	.name = "gpuid",
455 	.mode = KFD_SYSFS_FILE_MODE
456 };
457 
458 static struct attribute *procfs_queue_attrs[] = {
459 	&attr_queue_size,
460 	&attr_queue_type,
461 	&attr_queue_gpuid,
462 	NULL
463 };
464 ATTRIBUTE_GROUPS(procfs_queue);
465 
466 static const struct sysfs_ops procfs_queue_ops = {
467 	.show = kfd_procfs_queue_show,
468 };
469 
470 static struct kobj_type procfs_queue_type = {
471 	.sysfs_ops = &procfs_queue_ops,
472 	.default_groups = procfs_queue_groups,
473 };
474 
475 static const struct sysfs_ops procfs_stats_ops = {
476 	.show = kfd_procfs_stats_show,
477 };
478 
479 static struct kobj_type procfs_stats_type = {
480 	.sysfs_ops = &procfs_stats_ops,
481 	.release = kfd_procfs_kobj_release,
482 };
483 
484 static const struct sysfs_ops sysfs_counters_ops = {
485 	.show = kfd_sysfs_counters_show,
486 };
487 
488 static struct kobj_type sysfs_counters_type = {
489 	.sysfs_ops = &sysfs_counters_ops,
490 	.release = kfd_procfs_kobj_release,
491 };
492 
493 int kfd_procfs_add_queue(struct queue *q)
494 {
495 	struct kfd_process *proc;
496 	int ret;
497 
498 	if (!q || !q->process)
499 		return -EINVAL;
500 	proc = q->process;
501 
502 	/* Create proc/<pid>/queues/<queue id> folder */
503 	if (!proc->kobj_queues)
504 		return -EFAULT;
505 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506 			proc->kobj_queues, "%u", q->properties.queue_id);
507 	if (ret < 0) {
508 		pr_warn("Creating proc/<pid>/queues/%u failed",
509 			q->properties.queue_id);
510 		kobject_put(&q->kobj);
511 		return ret;
512 	}
513 
514 	return 0;
515 }
516 
517 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518 				 char *name)
519 {
520 	int ret;
521 
522 	if (!kobj || !attr || !name)
523 		return;
524 
525 	attr->name = name;
526 	attr->mode = KFD_SYSFS_FILE_MODE;
527 	sysfs_attr_init(attr);
528 
529 	ret = sysfs_create_file(kobj, attr);
530 	if (ret)
531 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532 }
533 
534 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535 {
536 	int ret;
537 	int i;
538 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539 
540 	if (!p || !p->kobj)
541 		return;
542 
543 	/*
544 	 * Create sysfs files for each GPU:
545 	 * - proc/<pid>/stats_<gpuid>/
546 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
547 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
548 	 */
549 	for (i = 0; i < p->n_pdds; i++) {
550 		struct kfd_process_device *pdd = p->pdds[i];
551 
552 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553 				"stats_%u", pdd->dev->id);
554 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555 		if (!pdd->kobj_stats)
556 			return;
557 
558 		ret = kobject_init_and_add(pdd->kobj_stats,
559 					   &procfs_stats_type,
560 					   p->kobj,
561 					   stats_dir_filename);
562 
563 		if (ret) {
564 			pr_warn("Creating KFD proc/stats_%s folder failed",
565 				stats_dir_filename);
566 			kobject_put(pdd->kobj_stats);
567 			pdd->kobj_stats = NULL;
568 			return;
569 		}
570 
571 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572 				      "evicted_ms");
573 		/* Add sysfs file to report compute unit occupancy */
574 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
575 			kfd_sysfs_create_file(pdd->kobj_stats,
576 					      &pdd->attr_cu_occupancy,
577 					      "cu_occupancy");
578 	}
579 }
580 
581 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582 {
583 	int ret = 0;
584 	int i;
585 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586 
587 	if (!p || !p->kobj)
588 		return;
589 
590 	/*
591 	 * Create sysfs files for each GPU which supports SVM
592 	 * - proc/<pid>/counters_<gpuid>/
593 	 * - proc/<pid>/counters_<gpuid>/faults
594 	 * - proc/<pid>/counters_<gpuid>/page_in
595 	 * - proc/<pid>/counters_<gpuid>/page_out
596 	 */
597 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598 		struct kfd_process_device *pdd = p->pdds[i];
599 		struct kobject *kobj_counters;
600 
601 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602 			"counters_%u", pdd->dev->id);
603 		kobj_counters = kfd_alloc_struct(kobj_counters);
604 		if (!kobj_counters)
605 			return;
606 
607 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608 					   p->kobj, counters_dir_filename);
609 		if (ret) {
610 			pr_warn("Creating KFD proc/%s folder failed",
611 				counters_dir_filename);
612 			kobject_put(kobj_counters);
613 			return;
614 		}
615 
616 		pdd->kobj_counters = kobj_counters;
617 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618 				      "faults");
619 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620 				      "page_in");
621 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622 				      "page_out");
623 	}
624 }
625 
626 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627 {
628 	int i;
629 
630 	if (!p || !p->kobj)
631 		return;
632 
633 	/*
634 	 * Create sysfs files for each GPU:
635 	 * - proc/<pid>/vram_<gpuid>
636 	 * - proc/<pid>/sdma_<gpuid>
637 	 */
638 	for (i = 0; i < p->n_pdds; i++) {
639 		struct kfd_process_device *pdd = p->pdds[i];
640 
641 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642 			 pdd->dev->id);
643 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644 				      pdd->vram_filename);
645 
646 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647 			 pdd->dev->id);
648 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649 					    pdd->sdma_filename);
650 	}
651 }
652 
653 void kfd_procfs_del_queue(struct queue *q)
654 {
655 	if (!q)
656 		return;
657 
658 	kobject_del(&q->kobj);
659 	kobject_put(&q->kobj);
660 }
661 
662 int kfd_process_create_wq(void)
663 {
664 	if (!kfd_process_wq)
665 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666 	if (!kfd_restore_wq)
667 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
668 
669 	if (!kfd_process_wq || !kfd_restore_wq) {
670 		kfd_process_destroy_wq();
671 		return -ENOMEM;
672 	}
673 
674 	return 0;
675 }
676 
677 void kfd_process_destroy_wq(void)
678 {
679 	if (kfd_process_wq) {
680 		destroy_workqueue(kfd_process_wq);
681 		kfd_process_wq = NULL;
682 	}
683 	if (kfd_restore_wq) {
684 		destroy_workqueue(kfd_restore_wq);
685 		kfd_restore_wq = NULL;
686 	}
687 }
688 
689 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
690 			struct kfd_process_device *pdd, void *kptr)
691 {
692 	struct kfd_dev *dev = pdd->dev;
693 
694 	if (kptr) {
695 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(dev->adev, mem);
696 		kptr = NULL;
697 	}
698 
699 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
700 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
701 					       NULL);
702 }
703 
704 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
705  *	This function should be only called right after the process
706  *	is created and when kfd_processes_mutex is still being held
707  *	to avoid concurrency. Because of that exclusiveness, we do
708  *	not need to take p->mutex.
709  */
710 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
711 				   uint64_t gpu_va, uint32_t size,
712 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
713 {
714 	struct kfd_dev *kdev = pdd->dev;
715 	int err;
716 
717 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
718 						 pdd->drm_priv, mem, NULL, flags);
719 	if (err)
720 		goto err_alloc_mem;
721 
722 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
723 			pdd->drm_priv, NULL);
724 	if (err)
725 		goto err_map_mem;
726 
727 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
728 	if (err) {
729 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
730 		goto sync_memory_failed;
731 	}
732 
733 	if (kptr) {
734 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->adev,
735 				(struct kgd_mem *)*mem, kptr, NULL);
736 		if (err) {
737 			pr_debug("Map GTT BO to kernel failed\n");
738 			goto sync_memory_failed;
739 		}
740 	}
741 
742 	return err;
743 
744 sync_memory_failed:
745 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
746 
747 err_map_mem:
748 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
749 					       NULL);
750 err_alloc_mem:
751 	*mem = NULL;
752 	*kptr = NULL;
753 	return err;
754 }
755 
756 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
757  *	process for IB usage The memory reserved is for KFD to submit
758  *	IB to AMDGPU from kernel.  If the memory is reserved
759  *	successfully, ib_kaddr will have the CPU/kernel
760  *	address. Check ib_kaddr before accessing the memory.
761  */
762 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
763 {
764 	struct qcm_process_device *qpd = &pdd->qpd;
765 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
766 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
767 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
768 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
769 	struct kgd_mem *mem;
770 	void *kaddr;
771 	int ret;
772 
773 	if (qpd->ib_kaddr || !qpd->ib_base)
774 		return 0;
775 
776 	/* ib_base is only set for dGPU */
777 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
778 				      &mem, &kaddr);
779 	if (ret)
780 		return ret;
781 
782 	qpd->ib_mem = mem;
783 	qpd->ib_kaddr = kaddr;
784 
785 	return 0;
786 }
787 
788 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
789 {
790 	struct qcm_process_device *qpd = &pdd->qpd;
791 
792 	if (!qpd->ib_kaddr || !qpd->ib_base)
793 		return;
794 
795 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, qpd->ib_kaddr);
796 }
797 
798 struct kfd_process *kfd_create_process(struct file *filep)
799 {
800 	struct kfd_process *process;
801 	struct task_struct *thread = current;
802 	int ret;
803 
804 	if (!thread->mm)
805 		return ERR_PTR(-EINVAL);
806 
807 	/* Only the pthreads threading model is supported. */
808 	if (thread->group_leader->mm != thread->mm)
809 		return ERR_PTR(-EINVAL);
810 
811 	/*
812 	 * take kfd processes mutex before starting of process creation
813 	 * so there won't be a case where two threads of the same process
814 	 * create two kfd_process structures
815 	 */
816 	mutex_lock(&kfd_processes_mutex);
817 
818 	/* A prior open of /dev/kfd could have already created the process. */
819 	process = find_process(thread);
820 	if (process) {
821 		pr_debug("Process already found\n");
822 	} else {
823 		process = create_process(thread);
824 		if (IS_ERR(process))
825 			goto out;
826 
827 		ret = kfd_process_init_cwsr_apu(process, filep);
828 		if (ret)
829 			goto out_destroy;
830 
831 		if (!procfs.kobj)
832 			goto out;
833 
834 		process->kobj = kfd_alloc_struct(process->kobj);
835 		if (!process->kobj) {
836 			pr_warn("Creating procfs kobject failed");
837 			goto out;
838 		}
839 		ret = kobject_init_and_add(process->kobj, &procfs_type,
840 					   procfs.kobj, "%d",
841 					   (int)process->lead_thread->pid);
842 		if (ret) {
843 			pr_warn("Creating procfs pid directory failed");
844 			kobject_put(process->kobj);
845 			goto out;
846 		}
847 
848 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
849 				      "pasid");
850 
851 		process->kobj_queues = kobject_create_and_add("queues",
852 							process->kobj);
853 		if (!process->kobj_queues)
854 			pr_warn("Creating KFD proc/queues folder failed");
855 
856 		kfd_procfs_add_sysfs_stats(process);
857 		kfd_procfs_add_sysfs_files(process);
858 		kfd_procfs_add_sysfs_counters(process);
859 	}
860 out:
861 	if (!IS_ERR(process))
862 		kref_get(&process->ref);
863 	mutex_unlock(&kfd_processes_mutex);
864 
865 	return process;
866 
867 out_destroy:
868 	hash_del_rcu(&process->kfd_processes);
869 	mutex_unlock(&kfd_processes_mutex);
870 	synchronize_srcu(&kfd_processes_srcu);
871 	/* kfd_process_free_notifier will trigger the cleanup */
872 	mmu_notifier_put(&process->mmu_notifier);
873 	return ERR_PTR(ret);
874 }
875 
876 struct kfd_process *kfd_get_process(const struct task_struct *thread)
877 {
878 	struct kfd_process *process;
879 
880 	if (!thread->mm)
881 		return ERR_PTR(-EINVAL);
882 
883 	/* Only the pthreads threading model is supported. */
884 	if (thread->group_leader->mm != thread->mm)
885 		return ERR_PTR(-EINVAL);
886 
887 	process = find_process(thread);
888 	if (!process)
889 		return ERR_PTR(-EINVAL);
890 
891 	return process;
892 }
893 
894 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
895 {
896 	struct kfd_process *process;
897 
898 	hash_for_each_possible_rcu(kfd_processes_table, process,
899 					kfd_processes, (uintptr_t)mm)
900 		if (process->mm == mm)
901 			return process;
902 
903 	return NULL;
904 }
905 
906 static struct kfd_process *find_process(const struct task_struct *thread)
907 {
908 	struct kfd_process *p;
909 	int idx;
910 
911 	idx = srcu_read_lock(&kfd_processes_srcu);
912 	p = find_process_by_mm(thread->mm);
913 	srcu_read_unlock(&kfd_processes_srcu, idx);
914 
915 	return p;
916 }
917 
918 void kfd_unref_process(struct kfd_process *p)
919 {
920 	kref_put(&p->ref, kfd_process_ref_release);
921 }
922 
923 
924 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
925 {
926 	struct kfd_process *p = pdd->process;
927 	void *mem;
928 	int id;
929 	int i;
930 
931 	/*
932 	 * Remove all handles from idr and release appropriate
933 	 * local memory object
934 	 */
935 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
936 
937 		for (i = 0; i < p->n_pdds; i++) {
938 			struct kfd_process_device *peer_pdd = p->pdds[i];
939 
940 			if (!peer_pdd->drm_priv)
941 				continue;
942 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
943 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
944 		}
945 
946 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
947 						       pdd->drm_priv, NULL);
948 		kfd_process_device_remove_obj_handle(pdd, id);
949 	}
950 }
951 
952 /*
953  * Just kunmap and unpin signal BO here. It will be freed in
954  * kfd_process_free_outstanding_kfd_bos()
955  */
956 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
957 {
958 	struct kfd_process_device *pdd;
959 	struct kfd_dev *kdev;
960 	void *mem;
961 
962 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
963 	if (!kdev)
964 		return;
965 
966 	mutex_lock(&p->mutex);
967 
968 	pdd = kfd_get_process_device_data(kdev, p);
969 	if (!pdd)
970 		goto out;
971 
972 	mem = kfd_process_device_translate_handle(
973 		pdd, GET_IDR_HANDLE(p->signal_handle));
974 	if (!mem)
975 		goto out;
976 
977 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(kdev->adev, mem);
978 
979 out:
980 	mutex_unlock(&p->mutex);
981 }
982 
983 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
984 {
985 	int i;
986 
987 	for (i = 0; i < p->n_pdds; i++)
988 		kfd_process_device_free_bos(p->pdds[i]);
989 }
990 
991 static void kfd_process_destroy_pdds(struct kfd_process *p)
992 {
993 	int i;
994 
995 	for (i = 0; i < p->n_pdds; i++) {
996 		struct kfd_process_device *pdd = p->pdds[i];
997 
998 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
999 				pdd->dev->id, p->pasid);
1000 
1001 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1002 		kfd_process_device_destroy_ib_mem(pdd);
1003 
1004 		if (pdd->drm_file) {
1005 			amdgpu_amdkfd_gpuvm_release_process_vm(
1006 					pdd->dev->adev, pdd->drm_priv);
1007 			fput(pdd->drm_file);
1008 		}
1009 
1010 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1011 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1012 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1013 
1014 		bitmap_free(pdd->qpd.doorbell_bitmap);
1015 		idr_destroy(&pdd->alloc_idr);
1016 
1017 		kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
1018 
1019 		/*
1020 		 * before destroying pdd, make sure to report availability
1021 		 * for auto suspend
1022 		 */
1023 		if (pdd->runtime_inuse) {
1024 			pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
1025 			pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
1026 			pdd->runtime_inuse = false;
1027 		}
1028 
1029 		kfree(pdd);
1030 		p->pdds[i] = NULL;
1031 	}
1032 	p->n_pdds = 0;
1033 }
1034 
1035 static void kfd_process_remove_sysfs(struct kfd_process *p)
1036 {
1037 	struct kfd_process_device *pdd;
1038 	int i;
1039 
1040 	if (!p->kobj)
1041 		return;
1042 
1043 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1044 	kobject_del(p->kobj_queues);
1045 	kobject_put(p->kobj_queues);
1046 	p->kobj_queues = NULL;
1047 
1048 	for (i = 0; i < p->n_pdds; i++) {
1049 		pdd = p->pdds[i];
1050 
1051 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1052 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1053 
1054 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1055 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1056 			sysfs_remove_file(pdd->kobj_stats,
1057 					  &pdd->attr_cu_occupancy);
1058 		kobject_del(pdd->kobj_stats);
1059 		kobject_put(pdd->kobj_stats);
1060 		pdd->kobj_stats = NULL;
1061 	}
1062 
1063 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1064 		pdd = p->pdds[i];
1065 
1066 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1067 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1068 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1069 		kobject_del(pdd->kobj_counters);
1070 		kobject_put(pdd->kobj_counters);
1071 		pdd->kobj_counters = NULL;
1072 	}
1073 
1074 	kobject_del(p->kobj);
1075 	kobject_put(p->kobj);
1076 	p->kobj = NULL;
1077 }
1078 
1079 /* No process locking is needed in this function, because the process
1080  * is not findable any more. We must assume that no other thread is
1081  * using it any more, otherwise we couldn't safely free the process
1082  * structure in the end.
1083  */
1084 static void kfd_process_wq_release(struct work_struct *work)
1085 {
1086 	struct kfd_process *p = container_of(work, struct kfd_process,
1087 					     release_work);
1088 
1089 	kfd_process_remove_sysfs(p);
1090 	kfd_iommu_unbind_process(p);
1091 
1092 	kfd_process_kunmap_signal_bo(p);
1093 	kfd_process_free_outstanding_kfd_bos(p);
1094 	svm_range_list_fini(p);
1095 
1096 	kfd_process_destroy_pdds(p);
1097 	dma_fence_put(p->ef);
1098 
1099 	kfd_event_free_process(p);
1100 
1101 	kfd_pasid_free(p->pasid);
1102 	mutex_destroy(&p->mutex);
1103 
1104 	put_task_struct(p->lead_thread);
1105 
1106 	kfree(p);
1107 }
1108 
1109 static void kfd_process_ref_release(struct kref *ref)
1110 {
1111 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1112 
1113 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1114 	queue_work(kfd_process_wq, &p->release_work);
1115 }
1116 
1117 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1118 {
1119 	int idx = srcu_read_lock(&kfd_processes_srcu);
1120 	struct kfd_process *p = find_process_by_mm(mm);
1121 
1122 	srcu_read_unlock(&kfd_processes_srcu, idx);
1123 
1124 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1125 }
1126 
1127 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1128 {
1129 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1130 }
1131 
1132 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1133 					struct mm_struct *mm)
1134 {
1135 	struct kfd_process *p;
1136 	int i;
1137 
1138 	/*
1139 	 * The kfd_process structure can not be free because the
1140 	 * mmu_notifier srcu is read locked
1141 	 */
1142 	p = container_of(mn, struct kfd_process, mmu_notifier);
1143 	if (WARN_ON(p->mm != mm))
1144 		return;
1145 
1146 	mutex_lock(&kfd_processes_mutex);
1147 	hash_del_rcu(&p->kfd_processes);
1148 	mutex_unlock(&kfd_processes_mutex);
1149 	synchronize_srcu(&kfd_processes_srcu);
1150 
1151 	cancel_delayed_work_sync(&p->eviction_work);
1152 	cancel_delayed_work_sync(&p->restore_work);
1153 	cancel_delayed_work_sync(&p->svms.restore_work);
1154 
1155 	mutex_lock(&p->mutex);
1156 
1157 	/* Iterate over all process device data structures and if the
1158 	 * pdd is in debug mode, we should first force unregistration,
1159 	 * then we will be able to destroy the queues
1160 	 */
1161 	for (i = 0; i < p->n_pdds; i++) {
1162 		struct kfd_dev *dev = p->pdds[i]->dev;
1163 
1164 		mutex_lock(kfd_get_dbgmgr_mutex());
1165 		if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
1166 			if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
1167 				kfd_dbgmgr_destroy(dev->dbgmgr);
1168 				dev->dbgmgr = NULL;
1169 			}
1170 		}
1171 		mutex_unlock(kfd_get_dbgmgr_mutex());
1172 	}
1173 
1174 	kfd_process_dequeue_from_all_devices(p);
1175 	pqm_uninit(&p->pqm);
1176 
1177 	/* Indicate to other users that MM is no longer valid */
1178 	p->mm = NULL;
1179 	/* Signal the eviction fence after user mode queues are
1180 	 * destroyed. This allows any BOs to be freed without
1181 	 * triggering pointless evictions or waiting for fences.
1182 	 */
1183 	dma_fence_signal(p->ef);
1184 
1185 	mutex_unlock(&p->mutex);
1186 
1187 	mmu_notifier_put(&p->mmu_notifier);
1188 }
1189 
1190 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1191 	.release = kfd_process_notifier_release,
1192 	.alloc_notifier = kfd_process_alloc_notifier,
1193 	.free_notifier = kfd_process_free_notifier,
1194 };
1195 
1196 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1197 {
1198 	unsigned long  offset;
1199 	int i;
1200 
1201 	for (i = 0; i < p->n_pdds; i++) {
1202 		struct kfd_dev *dev = p->pdds[i]->dev;
1203 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1204 
1205 		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1206 			continue;
1207 
1208 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1209 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1210 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1211 			MAP_SHARED, offset);
1212 
1213 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1214 			int err = qpd->tba_addr;
1215 
1216 			pr_err("Failure to set tba address. error %d.\n", err);
1217 			qpd->tba_addr = 0;
1218 			qpd->cwsr_kaddr = NULL;
1219 			return err;
1220 		}
1221 
1222 		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1223 
1224 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1225 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1226 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1233 {
1234 	struct kfd_dev *dev = pdd->dev;
1235 	struct qcm_process_device *qpd = &pdd->qpd;
1236 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1237 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1238 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1239 	struct kgd_mem *mem;
1240 	void *kaddr;
1241 	int ret;
1242 
1243 	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1244 		return 0;
1245 
1246 	/* cwsr_base is only set for dGPU */
1247 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1248 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1249 	if (ret)
1250 		return ret;
1251 
1252 	qpd->cwsr_mem = mem;
1253 	qpd->cwsr_kaddr = kaddr;
1254 	qpd->tba_addr = qpd->cwsr_base;
1255 
1256 	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1257 
1258 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1259 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1260 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1261 
1262 	return 0;
1263 }
1264 
1265 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1266 {
1267 	struct kfd_dev *dev = pdd->dev;
1268 	struct qcm_process_device *qpd = &pdd->qpd;
1269 
1270 	if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1271 		return;
1272 
1273 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, qpd->cwsr_kaddr);
1274 }
1275 
1276 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1277 				  uint64_t tba_addr,
1278 				  uint64_t tma_addr)
1279 {
1280 	if (qpd->cwsr_kaddr) {
1281 		/* KFD trap handler is bound, record as second-level TBA/TMA
1282 		 * in first-level TMA. First-level trap will jump to second.
1283 		 */
1284 		uint64_t *tma =
1285 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1286 		tma[0] = tba_addr;
1287 		tma[1] = tma_addr;
1288 	} else {
1289 		/* No trap handler bound, bind as first-level TBA/TMA. */
1290 		qpd->tba_addr = tba_addr;
1291 		qpd->tma_addr = tma_addr;
1292 	}
1293 }
1294 
1295 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1296 {
1297 	int i;
1298 
1299 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1300 	 * boot time retry setting. Mixing processes with different
1301 	 * XNACK/retry settings can hang the GPU.
1302 	 *
1303 	 * Different GPUs can have different noretry settings depending
1304 	 * on HW bugs or limitations. We need to find at least one
1305 	 * XNACK mode for this process that's compatible with all GPUs.
1306 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1307 	 * built for XNACK-off. On GFXv9 it may perform slower.
1308 	 *
1309 	 * Therefore applications built for XNACK-off can always be
1310 	 * supported and will be our fallback if any GPU does not
1311 	 * support retry.
1312 	 */
1313 	for (i = 0; i < p->n_pdds; i++) {
1314 		struct kfd_dev *dev = p->pdds[i]->dev;
1315 
1316 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1317 		 * support the SVM APIs and don't need to be considered
1318 		 * for the XNACK mode selection.
1319 		 */
1320 		if (!KFD_IS_SOC15(dev))
1321 			continue;
1322 		/* Aldebaran can always support XNACK because it can support
1323 		 * per-process XNACK mode selection. But let the dev->noretry
1324 		 * setting still influence the default XNACK mode.
1325 		 */
1326 		if (supported && KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2))
1327 			continue;
1328 
1329 		/* GFXv10 and later GPUs do not support shader preemption
1330 		 * during page faults. This can lead to poor QoS for queue
1331 		 * management and memory-manager-related preemptions or
1332 		 * even deadlocks.
1333 		 */
1334 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1335 			return false;
1336 
1337 		if (dev->noretry)
1338 			return false;
1339 	}
1340 
1341 	return true;
1342 }
1343 
1344 /*
1345  * On return the kfd_process is fully operational and will be freed when the
1346  * mm is released
1347  */
1348 static struct kfd_process *create_process(const struct task_struct *thread)
1349 {
1350 	struct kfd_process *process;
1351 	struct mmu_notifier *mn;
1352 	int err = -ENOMEM;
1353 
1354 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1355 	if (!process)
1356 		goto err_alloc_process;
1357 
1358 	kref_init(&process->ref);
1359 	mutex_init(&process->mutex);
1360 	process->mm = thread->mm;
1361 	process->lead_thread = thread->group_leader;
1362 	process->n_pdds = 0;
1363 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1364 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1365 	process->last_restore_timestamp = get_jiffies_64();
1366 	kfd_event_init_process(process);
1367 	process->is_32bit_user_mode = in_compat_syscall();
1368 
1369 	process->pasid = kfd_pasid_alloc();
1370 	if (process->pasid == 0)
1371 		goto err_alloc_pasid;
1372 
1373 	err = pqm_init(&process->pqm, process);
1374 	if (err != 0)
1375 		goto err_process_pqm_init;
1376 
1377 	/* init process apertures*/
1378 	err = kfd_init_apertures(process);
1379 	if (err != 0)
1380 		goto err_init_apertures;
1381 
1382 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1383 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1384 
1385 	err = svm_range_list_init(process);
1386 	if (err)
1387 		goto err_init_svm_range_list;
1388 
1389 	/* alloc_notifier needs to find the process in the hash table */
1390 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1391 			(uintptr_t)process->mm);
1392 
1393 	/* MMU notifier registration must be the last call that can fail
1394 	 * because after this point we cannot unwind the process creation.
1395 	 * After this point, mmu_notifier_put will trigger the cleanup by
1396 	 * dropping the last process reference in the free_notifier.
1397 	 */
1398 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1399 	if (IS_ERR(mn)) {
1400 		err = PTR_ERR(mn);
1401 		goto err_register_notifier;
1402 	}
1403 	BUG_ON(mn != &process->mmu_notifier);
1404 
1405 	get_task_struct(process->lead_thread);
1406 
1407 	return process;
1408 
1409 err_register_notifier:
1410 	hash_del_rcu(&process->kfd_processes);
1411 	svm_range_list_fini(process);
1412 err_init_svm_range_list:
1413 	kfd_process_free_outstanding_kfd_bos(process);
1414 	kfd_process_destroy_pdds(process);
1415 err_init_apertures:
1416 	pqm_uninit(&process->pqm);
1417 err_process_pqm_init:
1418 	kfd_pasid_free(process->pasid);
1419 err_alloc_pasid:
1420 	mutex_destroy(&process->mutex);
1421 	kfree(process);
1422 err_alloc_process:
1423 	return ERR_PTR(err);
1424 }
1425 
1426 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1427 			struct kfd_dev *dev)
1428 {
1429 	unsigned int i;
1430 	int range_start = dev->shared_resources.non_cp_doorbells_start;
1431 	int range_end = dev->shared_resources.non_cp_doorbells_end;
1432 
1433 	if (!KFD_IS_SOC15(dev))
1434 		return 0;
1435 
1436 	qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1437 					     GFP_KERNEL);
1438 	if (!qpd->doorbell_bitmap)
1439 		return -ENOMEM;
1440 
1441 	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1442 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1443 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1444 			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1445 			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1446 
1447 	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1448 		if (i >= range_start && i <= range_end) {
1449 			__set_bit(i, qpd->doorbell_bitmap);
1450 			__set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1451 				  qpd->doorbell_bitmap);
1452 		}
1453 	}
1454 
1455 	return 0;
1456 }
1457 
1458 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1459 							struct kfd_process *p)
1460 {
1461 	int i;
1462 
1463 	for (i = 0; i < p->n_pdds; i++)
1464 		if (p->pdds[i]->dev == dev)
1465 			return p->pdds[i];
1466 
1467 	return NULL;
1468 }
1469 
1470 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1471 							struct kfd_process *p)
1472 {
1473 	struct kfd_process_device *pdd = NULL;
1474 
1475 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1476 		return NULL;
1477 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1478 	if (!pdd)
1479 		return NULL;
1480 
1481 	if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
1482 		pr_err("Failed to alloc doorbell for pdd\n");
1483 		goto err_free_pdd;
1484 	}
1485 
1486 	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1487 		pr_err("Failed to init doorbell for process\n");
1488 		goto err_free_pdd;
1489 	}
1490 
1491 	pdd->dev = dev;
1492 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1493 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1494 	pdd->qpd.dqm = dev->dqm;
1495 	pdd->qpd.pqm = &p->pqm;
1496 	pdd->qpd.evicted = 0;
1497 	pdd->qpd.mapped_gws_queue = false;
1498 	pdd->process = p;
1499 	pdd->bound = PDD_UNBOUND;
1500 	pdd->already_dequeued = false;
1501 	pdd->runtime_inuse = false;
1502 	pdd->vram_usage = 0;
1503 	pdd->sdma_past_activity_counter = 0;
1504 	atomic64_set(&pdd->evict_duration_counter, 0);
1505 	p->pdds[p->n_pdds++] = pdd;
1506 
1507 	/* Init idr used for memory handle translation */
1508 	idr_init(&pdd->alloc_idr);
1509 
1510 	return pdd;
1511 
1512 err_free_pdd:
1513 	kfree(pdd);
1514 	return NULL;
1515 }
1516 
1517 /**
1518  * kfd_process_device_init_vm - Initialize a VM for a process-device
1519  *
1520  * @pdd: The process-device
1521  * @drm_file: Optional pointer to a DRM file descriptor
1522  *
1523  * If @drm_file is specified, it will be used to acquire the VM from
1524  * that file descriptor. If successful, the @pdd takes ownership of
1525  * the file descriptor.
1526  *
1527  * If @drm_file is NULL, a new VM is created.
1528  *
1529  * Returns 0 on success, -errno on failure.
1530  */
1531 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1532 			       struct file *drm_file)
1533 {
1534 	struct kfd_process *p;
1535 	struct kfd_dev *dev;
1536 	int ret;
1537 
1538 	if (!drm_file)
1539 		return -EINVAL;
1540 
1541 	if (pdd->drm_priv)
1542 		return -EBUSY;
1543 
1544 	p = pdd->process;
1545 	dev = pdd->dev;
1546 
1547 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1548 		dev->adev, drm_file, p->pasid,
1549 		&p->kgd_process_info, &p->ef);
1550 	if (ret) {
1551 		pr_err("Failed to create process VM object\n");
1552 		return ret;
1553 	}
1554 	pdd->drm_priv = drm_file->private_data;
1555 
1556 	ret = kfd_process_device_reserve_ib_mem(pdd);
1557 	if (ret)
1558 		goto err_reserve_ib_mem;
1559 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1560 	if (ret)
1561 		goto err_init_cwsr;
1562 
1563 	pdd->drm_file = drm_file;
1564 
1565 	return 0;
1566 
1567 err_init_cwsr:
1568 err_reserve_ib_mem:
1569 	kfd_process_device_free_bos(pdd);
1570 	pdd->drm_priv = NULL;
1571 
1572 	return ret;
1573 }
1574 
1575 /*
1576  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1577  * to the device.
1578  * Unbinding occurs when the process dies or the device is removed.
1579  *
1580  * Assumes that the process lock is held.
1581  */
1582 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1583 							struct kfd_process *p)
1584 {
1585 	struct kfd_process_device *pdd;
1586 	int err;
1587 
1588 	pdd = kfd_get_process_device_data(dev, p);
1589 	if (!pdd) {
1590 		pr_err("Process device data doesn't exist\n");
1591 		return ERR_PTR(-ENOMEM);
1592 	}
1593 
1594 	if (!pdd->drm_priv)
1595 		return ERR_PTR(-ENODEV);
1596 
1597 	/*
1598 	 * signal runtime-pm system to auto resume and prevent
1599 	 * further runtime suspend once device pdd is created until
1600 	 * pdd is destroyed.
1601 	 */
1602 	if (!pdd->runtime_inuse) {
1603 		err = pm_runtime_get_sync(dev->ddev->dev);
1604 		if (err < 0) {
1605 			pm_runtime_put_autosuspend(dev->ddev->dev);
1606 			return ERR_PTR(err);
1607 		}
1608 	}
1609 
1610 	err = kfd_iommu_bind_process_to_device(pdd);
1611 	if (err)
1612 		goto out;
1613 
1614 	/*
1615 	 * make sure that runtime_usage counter is incremented just once
1616 	 * per pdd
1617 	 */
1618 	pdd->runtime_inuse = true;
1619 
1620 	return pdd;
1621 
1622 out:
1623 	/* balance runpm reference count and exit with error */
1624 	if (!pdd->runtime_inuse) {
1625 		pm_runtime_mark_last_busy(dev->ddev->dev);
1626 		pm_runtime_put_autosuspend(dev->ddev->dev);
1627 	}
1628 
1629 	return ERR_PTR(err);
1630 }
1631 
1632 /* Create specific handle mapped to mem from process local memory idr
1633  * Assumes that the process lock is held.
1634  */
1635 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1636 					void *mem)
1637 {
1638 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1639 }
1640 
1641 /* Translate specific handle from process local memory idr
1642  * Assumes that the process lock is held.
1643  */
1644 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1645 					int handle)
1646 {
1647 	if (handle < 0)
1648 		return NULL;
1649 
1650 	return idr_find(&pdd->alloc_idr, handle);
1651 }
1652 
1653 /* Remove specific handle from process local memory idr
1654  * Assumes that the process lock is held.
1655  */
1656 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1657 					int handle)
1658 {
1659 	if (handle >= 0)
1660 		idr_remove(&pdd->alloc_idr, handle);
1661 }
1662 
1663 /* This increments the process->ref counter. */
1664 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1665 {
1666 	struct kfd_process *p, *ret_p = NULL;
1667 	unsigned int temp;
1668 
1669 	int idx = srcu_read_lock(&kfd_processes_srcu);
1670 
1671 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1672 		if (p->pasid == pasid) {
1673 			kref_get(&p->ref);
1674 			ret_p = p;
1675 			break;
1676 		}
1677 	}
1678 
1679 	srcu_read_unlock(&kfd_processes_srcu, idx);
1680 
1681 	return ret_p;
1682 }
1683 
1684 /* This increments the process->ref counter. */
1685 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1686 {
1687 	struct kfd_process *p;
1688 
1689 	int idx = srcu_read_lock(&kfd_processes_srcu);
1690 
1691 	p = find_process_by_mm(mm);
1692 	if (p)
1693 		kref_get(&p->ref);
1694 
1695 	srcu_read_unlock(&kfd_processes_srcu, idx);
1696 
1697 	return p;
1698 }
1699 
1700 /* kfd_process_evict_queues - Evict all user queues of a process
1701  *
1702  * Eviction is reference-counted per process-device. This means multiple
1703  * evictions from different sources can be nested safely.
1704  */
1705 int kfd_process_evict_queues(struct kfd_process *p)
1706 {
1707 	int r = 0;
1708 	int i;
1709 	unsigned int n_evicted = 0;
1710 
1711 	for (i = 0; i < p->n_pdds; i++) {
1712 		struct kfd_process_device *pdd = p->pdds[i];
1713 
1714 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1715 							    &pdd->qpd);
1716 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1717 		 * we would like to set all the queues to be in evicted state to prevent
1718 		 * them been add back since they actually not be saved right now.
1719 		 */
1720 		if (r && r != -EIO) {
1721 			pr_err("Failed to evict process queues\n");
1722 			goto fail;
1723 		}
1724 		n_evicted++;
1725 	}
1726 
1727 	return r;
1728 
1729 fail:
1730 	/* To keep state consistent, roll back partial eviction by
1731 	 * restoring queues
1732 	 */
1733 	for (i = 0; i < p->n_pdds; i++) {
1734 		struct kfd_process_device *pdd = p->pdds[i];
1735 
1736 		if (n_evicted == 0)
1737 			break;
1738 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1739 							      &pdd->qpd))
1740 			pr_err("Failed to restore queues\n");
1741 
1742 		n_evicted--;
1743 	}
1744 
1745 	return r;
1746 }
1747 
1748 /* kfd_process_restore_queues - Restore all user queues of a process */
1749 int kfd_process_restore_queues(struct kfd_process *p)
1750 {
1751 	int r, ret = 0;
1752 	int i;
1753 
1754 	for (i = 0; i < p->n_pdds; i++) {
1755 		struct kfd_process_device *pdd = p->pdds[i];
1756 
1757 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1758 							      &pdd->qpd);
1759 		if (r) {
1760 			pr_err("Failed to restore process queues\n");
1761 			if (!ret)
1762 				ret = r;
1763 		}
1764 	}
1765 
1766 	return ret;
1767 }
1768 
1769 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1770 {
1771 	int i;
1772 
1773 	for (i = 0; i < p->n_pdds; i++)
1774 		if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id)
1775 			return i;
1776 	return -EINVAL;
1777 }
1778 
1779 int
1780 kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev,
1781 			   uint32_t *gpuid, uint32_t *gpuidx)
1782 {
1783 	int i;
1784 
1785 	for (i = 0; i < p->n_pdds; i++)
1786 		if (p->pdds[i] && p->pdds[i]->dev->adev == adev) {
1787 			*gpuid = p->pdds[i]->dev->id;
1788 			*gpuidx = i;
1789 			return 0;
1790 		}
1791 	return -EINVAL;
1792 }
1793 
1794 static void evict_process_worker(struct work_struct *work)
1795 {
1796 	int ret;
1797 	struct kfd_process *p;
1798 	struct delayed_work *dwork;
1799 
1800 	dwork = to_delayed_work(work);
1801 
1802 	/* Process termination destroys this worker thread. So during the
1803 	 * lifetime of this thread, kfd_process p will be valid
1804 	 */
1805 	p = container_of(dwork, struct kfd_process, eviction_work);
1806 	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1807 		  "Eviction fence mismatch\n");
1808 
1809 	/* Narrow window of overlap between restore and evict work
1810 	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1811 	 * unreserves KFD BOs, it is possible to evicted again. But
1812 	 * restore has few more steps of finish. So lets wait for any
1813 	 * previous restore work to complete
1814 	 */
1815 	flush_delayed_work(&p->restore_work);
1816 
1817 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1818 	ret = kfd_process_evict_queues(p);
1819 	if (!ret) {
1820 		dma_fence_signal(p->ef);
1821 		dma_fence_put(p->ef);
1822 		p->ef = NULL;
1823 		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1824 				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1825 
1826 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1827 	} else
1828 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1829 }
1830 
1831 static void restore_process_worker(struct work_struct *work)
1832 {
1833 	struct delayed_work *dwork;
1834 	struct kfd_process *p;
1835 	int ret = 0;
1836 
1837 	dwork = to_delayed_work(work);
1838 
1839 	/* Process termination destroys this worker thread. So during the
1840 	 * lifetime of this thread, kfd_process p will be valid
1841 	 */
1842 	p = container_of(dwork, struct kfd_process, restore_work);
1843 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1844 
1845 	/* Setting last_restore_timestamp before successful restoration.
1846 	 * Otherwise this would have to be set by KGD (restore_process_bos)
1847 	 * before KFD BOs are unreserved. If not, the process can be evicted
1848 	 * again before the timestamp is set.
1849 	 * If restore fails, the timestamp will be set again in the next
1850 	 * attempt. This would mean that the minimum GPU quanta would be
1851 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1852 	 * functions)
1853 	 */
1854 
1855 	p->last_restore_timestamp = get_jiffies_64();
1856 	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1857 						     &p->ef);
1858 	if (ret) {
1859 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1860 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1861 		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1862 				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1863 		WARN(!ret, "reschedule restore work failed\n");
1864 		return;
1865 	}
1866 
1867 	ret = kfd_process_restore_queues(p);
1868 	if (!ret)
1869 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1870 	else
1871 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1872 }
1873 
1874 void kfd_suspend_all_processes(void)
1875 {
1876 	struct kfd_process *p;
1877 	unsigned int temp;
1878 	int idx = srcu_read_lock(&kfd_processes_srcu);
1879 
1880 	WARN(debug_evictions, "Evicting all processes");
1881 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1882 		cancel_delayed_work_sync(&p->eviction_work);
1883 		cancel_delayed_work_sync(&p->restore_work);
1884 
1885 		if (kfd_process_evict_queues(p))
1886 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1887 		dma_fence_signal(p->ef);
1888 		dma_fence_put(p->ef);
1889 		p->ef = NULL;
1890 	}
1891 	srcu_read_unlock(&kfd_processes_srcu, idx);
1892 }
1893 
1894 int kfd_resume_all_processes(void)
1895 {
1896 	struct kfd_process *p;
1897 	unsigned int temp;
1898 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1899 
1900 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1901 		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1902 			pr_err("Restore process %d failed during resume\n",
1903 			       p->pasid);
1904 			ret = -EFAULT;
1905 		}
1906 	}
1907 	srcu_read_unlock(&kfd_processes_srcu, idx);
1908 	return ret;
1909 }
1910 
1911 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1912 			  struct vm_area_struct *vma)
1913 {
1914 	struct kfd_process_device *pdd;
1915 	struct qcm_process_device *qpd;
1916 
1917 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1918 		pr_err("Incorrect CWSR mapping size.\n");
1919 		return -EINVAL;
1920 	}
1921 
1922 	pdd = kfd_get_process_device_data(dev, process);
1923 	if (!pdd)
1924 		return -EINVAL;
1925 	qpd = &pdd->qpd;
1926 
1927 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1928 					get_order(KFD_CWSR_TBA_TMA_SIZE));
1929 	if (!qpd->cwsr_kaddr) {
1930 		pr_err("Error allocating per process CWSR buffer.\n");
1931 		return -ENOMEM;
1932 	}
1933 
1934 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1935 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1936 	/* Mapping pages to user process */
1937 	return remap_pfn_range(vma, vma->vm_start,
1938 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1939 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1940 }
1941 
1942 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1943 {
1944 	struct kfd_dev *dev = pdd->dev;
1945 
1946 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1947 		/* Nothing to flush until a VMID is assigned, which
1948 		 * only happens when the first queue is created.
1949 		 */
1950 		if (pdd->qpd.vmid)
1951 			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
1952 							pdd->qpd.vmid);
1953 	} else {
1954 		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->adev,
1955 					pdd->process->pasid, type);
1956 	}
1957 }
1958 
1959 #if defined(CONFIG_DEBUG_FS)
1960 
1961 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1962 {
1963 	struct kfd_process *p;
1964 	unsigned int temp;
1965 	int r = 0;
1966 
1967 	int idx = srcu_read_lock(&kfd_processes_srcu);
1968 
1969 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1970 		seq_printf(m, "Process %d PASID 0x%x:\n",
1971 			   p->lead_thread->tgid, p->pasid);
1972 
1973 		mutex_lock(&p->mutex);
1974 		r = pqm_debugfs_mqds(m, &p->pqm);
1975 		mutex_unlock(&p->mutex);
1976 
1977 		if (r)
1978 			break;
1979 	}
1980 
1981 	srcu_read_unlock(&kfd_processes_srcu, idx);
1982 
1983 	return r;
1984 }
1985 
1986 #endif
1987 
1988