xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision aa298b30ce566bb7fe0d5967d3d864cf636d8e4f)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 
39 struct mm_struct;
40 
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "kfd_smi_events.h"
45 #include "kfd_debug.h"
46 
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 DEFINE_MUTEX(kfd_processes_mutex);
53 
54 DEFINE_SRCU(kfd_processes_srcu);
55 
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58 
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66 
67 static struct kfd_process *find_process(const struct task_struct *thread,
68 					bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71 
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74 
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76 
77 struct kfd_procfs_tree {
78 	struct kobject *kobj;
79 };
80 
81 static struct kfd_procfs_tree procfs;
82 
83 /*
84  * Structure for SDMA activity tracking
85  */
86 struct kfd_sdma_activity_handler_workarea {
87 	struct work_struct sdma_activity_work;
88 	struct kfd_process_device *pdd;
89 	uint64_t sdma_activity_counter;
90 };
91 
92 struct temp_sdma_queue_list {
93 	uint64_t __user *rptr;
94 	uint64_t sdma_val;
95 	unsigned int queue_id;
96 	struct list_head list;
97 };
98 
99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101 	struct kfd_sdma_activity_handler_workarea *workarea;
102 	struct kfd_process_device *pdd;
103 	uint64_t val;
104 	struct mm_struct *mm;
105 	struct queue *q;
106 	struct qcm_process_device *qpd;
107 	struct device_queue_manager *dqm;
108 	int ret = 0;
109 	struct temp_sdma_queue_list sdma_q_list;
110 	struct temp_sdma_queue_list *sdma_q, *next;
111 
112 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 				sdma_activity_work);
114 
115 	pdd = workarea->pdd;
116 	if (!pdd)
117 		return;
118 	dqm = pdd->dev->dqm;
119 	qpd = &pdd->qpd;
120 	if (!dqm || !qpd)
121 		return;
122 	/*
123 	 * Total SDMA activity is current SDMA activity + past SDMA activity
124 	 * Past SDMA count is stored in pdd.
125 	 * To get the current activity counters for all active SDMA queues,
126 	 * we loop over all SDMA queues and get their counts from user-space.
127 	 *
128 	 * We cannot call get_user() with dqm_lock held as it can cause
129 	 * a circular lock dependency situation. To read the SDMA stats,
130 	 * we need to do the following:
131 	 *
132 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 	 *    with dqm_lock/dqm_unlock().
134 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 	 *    Save the SDMA count for each node and also add the count to the total
136 	 *    SDMA count counter.
137 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
138 	 *    from the qpd->queues_list.
139 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 	 *    If any node got deleted, its SDMA count would be captured in the sdma
141 	 *    past activity counter. So subtract the SDMA counter stored in step 2
142 	 *    for this node from the total SDMA count.
143 	 */
144 	INIT_LIST_HEAD(&sdma_q_list.list);
145 
146 	/*
147 	 * Create the temp list of all SDMA queues
148 	 */
149 	dqm_lock(dqm);
150 
151 	list_for_each_entry(q, &qpd->queues_list, list) {
152 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 			continue;
155 
156 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 		if (!sdma_q) {
158 			dqm_unlock(dqm);
159 			goto cleanup;
160 		}
161 
162 		INIT_LIST_HEAD(&sdma_q->list);
163 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 		sdma_q->queue_id = q->properties.queue_id;
165 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 	}
167 
168 	/*
169 	 * If the temp list is empty, then no SDMA queues nodes were found in
170 	 * qpd->queues_list. Return the past activity count as the total sdma
171 	 * count
172 	 */
173 	if (list_empty(&sdma_q_list.list)) {
174 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 		dqm_unlock(dqm);
176 		return;
177 	}
178 
179 	dqm_unlock(dqm);
180 
181 	/*
182 	 * Get the usage count for each SDMA queue in temp_list.
183 	 */
184 	mm = get_task_mm(pdd->process->lead_thread);
185 	if (!mm)
186 		goto cleanup;
187 
188 	kthread_use_mm(mm);
189 
190 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 		val = 0;
192 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 		if (ret) {
194 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 				 sdma_q->queue_id);
196 		} else {
197 			sdma_q->sdma_val = val;
198 			workarea->sdma_activity_counter += val;
199 		}
200 	}
201 
202 	kthread_unuse_mm(mm);
203 	mmput(mm);
204 
205 	/*
206 	 * Do a second iteration over qpd_queues_list to check if any SDMA
207 	 * nodes got deleted while fetching SDMA counter.
208 	 */
209 	dqm_lock(dqm);
210 
211 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212 
213 	list_for_each_entry(q, &qpd->queues_list, list) {
214 		if (list_empty(&sdma_q_list.list))
215 			break;
216 
217 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 			continue;
220 
221 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 			     (sdma_q->queue_id == q->properties.queue_id)) {
224 				list_del(&sdma_q->list);
225 				kfree(sdma_q);
226 				break;
227 			}
228 		}
229 	}
230 
231 	dqm_unlock(dqm);
232 
233 	/*
234 	 * If temp list is not empty, it implies some queues got deleted
235 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 	 * count for each node from the total SDMA count.
237 	 */
238 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 		list_del(&sdma_q->list);
241 		kfree(sdma_q);
242 	}
243 
244 	return;
245 
246 cleanup:
247 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 		list_del(&sdma_q->list);
249 		kfree(sdma_q);
250 	}
251 }
252 
253 /**
254  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255  * by current process. Translates acquired wave count into number of compute units
256  * that are occupied.
257  *
258  * @attr: Handle of attribute that allows reporting of wave count. The attribute
259  * handle encapsulates GPU device it is associated with, thereby allowing collection
260  * of waves in flight, etc
261  * @buffer: Handle of user provided buffer updated with wave count
262  *
263  * Return: Number of bytes written to user buffer or an error value
264  */
265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267 	int cu_cnt;
268 	int wave_cnt;
269 	int max_waves_per_cu;
270 	struct kfd_node *dev = NULL;
271 	struct kfd_process *proc = NULL;
272 	struct kfd_process_device *pdd = NULL;
273 
274 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275 	dev = pdd->dev;
276 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
277 		return -EINVAL;
278 
279 	cu_cnt = 0;
280 	proc = pdd->process;
281 	if (pdd->qpd.queue_count == 0) {
282 		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283 			 dev->id, proc->pasid);
284 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285 	}
286 
287 	/* Collect wave count from device if it supports */
288 	wave_cnt = 0;
289 	max_waves_per_cu = 0;
290 	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
291 			&max_waves_per_cu, 0);
292 
293 	/* Translate wave count to number of compute units */
294 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296 }
297 
298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299 			       char *buffer)
300 {
301 	if (strcmp(attr->name, "pasid") == 0) {
302 		struct kfd_process *p = container_of(attr, struct kfd_process,
303 						     attr_pasid);
304 
305 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
307 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308 							      attr_vram);
309 		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
311 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312 							      attr_sdma);
313 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314 
315 		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316 					kfd_sdma_activity_worker);
317 
318 		sdma_activity_work_handler.pdd = pdd;
319 		sdma_activity_work_handler.sdma_activity_counter = 0;
320 
321 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322 
323 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
324 
325 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
326 				(sdma_activity_work_handler.sdma_activity_counter)/
327 				 SDMA_ACTIVITY_DIVISOR);
328 	} else {
329 		pr_err("Invalid attribute");
330 		return -EINVAL;
331 	}
332 
333 	return 0;
334 }
335 
336 static void kfd_procfs_kobj_release(struct kobject *kobj)
337 {
338 	kfree(kobj);
339 }
340 
341 static const struct sysfs_ops kfd_procfs_ops = {
342 	.show = kfd_procfs_show,
343 };
344 
345 static const struct kobj_type procfs_type = {
346 	.release = kfd_procfs_kobj_release,
347 	.sysfs_ops = &kfd_procfs_ops,
348 };
349 
350 void kfd_procfs_init(void)
351 {
352 	int ret = 0;
353 
354 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
355 	if (!procfs.kobj)
356 		return;
357 
358 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359 				   &kfd_device->kobj, "proc");
360 	if (ret) {
361 		pr_warn("Could not create procfs proc folder");
362 		/* If we fail to create the procfs, clean up */
363 		kfd_procfs_shutdown();
364 	}
365 }
366 
367 void kfd_procfs_shutdown(void)
368 {
369 	if (procfs.kobj) {
370 		kobject_del(procfs.kobj);
371 		kobject_put(procfs.kobj);
372 		procfs.kobj = NULL;
373 	}
374 }
375 
376 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377 				     struct attribute *attr, char *buffer)
378 {
379 	struct queue *q = container_of(kobj, struct queue, kobj);
380 
381 	if (!strcmp(attr->name, "size"))
382 		return snprintf(buffer, PAGE_SIZE, "%llu",
383 				q->properties.queue_size);
384 	else if (!strcmp(attr->name, "type"))
385 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386 	else if (!strcmp(attr->name, "gpuid"))
387 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388 	else
389 		pr_err("Invalid attribute");
390 
391 	return 0;
392 }
393 
394 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395 				     struct attribute *attr, char *buffer)
396 {
397 	if (strcmp(attr->name, "evicted_ms") == 0) {
398 		struct kfd_process_device *pdd = container_of(attr,
399 				struct kfd_process_device,
400 				attr_evict);
401 		uint64_t evict_jiffies;
402 
403 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404 
405 		return snprintf(buffer,
406 				PAGE_SIZE,
407 				"%llu\n",
408 				jiffies64_to_msecs(evict_jiffies));
409 
410 	/* Sysfs handle that gets CU occupancy is per device */
411 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
412 		return kfd_get_cu_occupancy(attr, buffer);
413 	} else {
414 		pr_err("Invalid attribute");
415 	}
416 
417 	return 0;
418 }
419 
420 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
421 				       struct attribute *attr, char *buf)
422 {
423 	struct kfd_process_device *pdd;
424 
425 	if (!strcmp(attr->name, "faults")) {
426 		pdd = container_of(attr, struct kfd_process_device,
427 				   attr_faults);
428 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
429 	}
430 	if (!strcmp(attr->name, "page_in")) {
431 		pdd = container_of(attr, struct kfd_process_device,
432 				   attr_page_in);
433 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
434 	}
435 	if (!strcmp(attr->name, "page_out")) {
436 		pdd = container_of(attr, struct kfd_process_device,
437 				   attr_page_out);
438 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
439 	}
440 	return 0;
441 }
442 
443 static struct attribute attr_queue_size = {
444 	.name = "size",
445 	.mode = KFD_SYSFS_FILE_MODE
446 };
447 
448 static struct attribute attr_queue_type = {
449 	.name = "type",
450 	.mode = KFD_SYSFS_FILE_MODE
451 };
452 
453 static struct attribute attr_queue_gpuid = {
454 	.name = "gpuid",
455 	.mode = KFD_SYSFS_FILE_MODE
456 };
457 
458 static struct attribute *procfs_queue_attrs[] = {
459 	&attr_queue_size,
460 	&attr_queue_type,
461 	&attr_queue_gpuid,
462 	NULL
463 };
464 ATTRIBUTE_GROUPS(procfs_queue);
465 
466 static const struct sysfs_ops procfs_queue_ops = {
467 	.show = kfd_procfs_queue_show,
468 };
469 
470 static const struct kobj_type procfs_queue_type = {
471 	.sysfs_ops = &procfs_queue_ops,
472 	.default_groups = procfs_queue_groups,
473 };
474 
475 static const struct sysfs_ops procfs_stats_ops = {
476 	.show = kfd_procfs_stats_show,
477 };
478 
479 static const struct kobj_type procfs_stats_type = {
480 	.sysfs_ops = &procfs_stats_ops,
481 	.release = kfd_procfs_kobj_release,
482 };
483 
484 static const struct sysfs_ops sysfs_counters_ops = {
485 	.show = kfd_sysfs_counters_show,
486 };
487 
488 static const struct kobj_type sysfs_counters_type = {
489 	.sysfs_ops = &sysfs_counters_ops,
490 	.release = kfd_procfs_kobj_release,
491 };
492 
493 int kfd_procfs_add_queue(struct queue *q)
494 {
495 	struct kfd_process *proc;
496 	int ret;
497 
498 	if (!q || !q->process)
499 		return -EINVAL;
500 	proc = q->process;
501 
502 	/* Create proc/<pid>/queues/<queue id> folder */
503 	if (!proc->kobj_queues)
504 		return -EFAULT;
505 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506 			proc->kobj_queues, "%u", q->properties.queue_id);
507 	if (ret < 0) {
508 		pr_warn("Creating proc/<pid>/queues/%u failed",
509 			q->properties.queue_id);
510 		kobject_put(&q->kobj);
511 		return ret;
512 	}
513 
514 	return 0;
515 }
516 
517 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518 				 char *name)
519 {
520 	int ret;
521 
522 	if (!kobj || !attr || !name)
523 		return;
524 
525 	attr->name = name;
526 	attr->mode = KFD_SYSFS_FILE_MODE;
527 	sysfs_attr_init(attr);
528 
529 	ret = sysfs_create_file(kobj, attr);
530 	if (ret)
531 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532 }
533 
534 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535 {
536 	int ret;
537 	int i;
538 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539 
540 	if (!p || !p->kobj)
541 		return;
542 
543 	/*
544 	 * Create sysfs files for each GPU:
545 	 * - proc/<pid>/stats_<gpuid>/
546 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
547 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
548 	 */
549 	for (i = 0; i < p->n_pdds; i++) {
550 		struct kfd_process_device *pdd = p->pdds[i];
551 
552 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553 				"stats_%u", pdd->dev->id);
554 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555 		if (!pdd->kobj_stats)
556 			return;
557 
558 		ret = kobject_init_and_add(pdd->kobj_stats,
559 					   &procfs_stats_type,
560 					   p->kobj,
561 					   stats_dir_filename);
562 
563 		if (ret) {
564 			pr_warn("Creating KFD proc/stats_%s folder failed",
565 				stats_dir_filename);
566 			kobject_put(pdd->kobj_stats);
567 			pdd->kobj_stats = NULL;
568 			return;
569 		}
570 
571 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572 				      "evicted_ms");
573 		/* Add sysfs file to report compute unit occupancy */
574 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
575 			kfd_sysfs_create_file(pdd->kobj_stats,
576 					      &pdd->attr_cu_occupancy,
577 					      "cu_occupancy");
578 	}
579 }
580 
581 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582 {
583 	int ret = 0;
584 	int i;
585 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586 
587 	if (!p || !p->kobj)
588 		return;
589 
590 	/*
591 	 * Create sysfs files for each GPU which supports SVM
592 	 * - proc/<pid>/counters_<gpuid>/
593 	 * - proc/<pid>/counters_<gpuid>/faults
594 	 * - proc/<pid>/counters_<gpuid>/page_in
595 	 * - proc/<pid>/counters_<gpuid>/page_out
596 	 */
597 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598 		struct kfd_process_device *pdd = p->pdds[i];
599 		struct kobject *kobj_counters;
600 
601 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602 			"counters_%u", pdd->dev->id);
603 		kobj_counters = kfd_alloc_struct(kobj_counters);
604 		if (!kobj_counters)
605 			return;
606 
607 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608 					   p->kobj, counters_dir_filename);
609 		if (ret) {
610 			pr_warn("Creating KFD proc/%s folder failed",
611 				counters_dir_filename);
612 			kobject_put(kobj_counters);
613 			return;
614 		}
615 
616 		pdd->kobj_counters = kobj_counters;
617 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618 				      "faults");
619 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620 				      "page_in");
621 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622 				      "page_out");
623 	}
624 }
625 
626 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627 {
628 	int i;
629 
630 	if (!p || !p->kobj)
631 		return;
632 
633 	/*
634 	 * Create sysfs files for each GPU:
635 	 * - proc/<pid>/vram_<gpuid>
636 	 * - proc/<pid>/sdma_<gpuid>
637 	 */
638 	for (i = 0; i < p->n_pdds; i++) {
639 		struct kfd_process_device *pdd = p->pdds[i];
640 
641 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642 			 pdd->dev->id);
643 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644 				      pdd->vram_filename);
645 
646 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647 			 pdd->dev->id);
648 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649 					    pdd->sdma_filename);
650 	}
651 }
652 
653 void kfd_procfs_del_queue(struct queue *q)
654 {
655 	if (!q)
656 		return;
657 
658 	kobject_del(&q->kobj);
659 	kobject_put(&q->kobj);
660 }
661 
662 int kfd_process_create_wq(void)
663 {
664 	if (!kfd_process_wq)
665 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666 	if (!kfd_restore_wq)
667 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
668 
669 	if (!kfd_process_wq || !kfd_restore_wq) {
670 		kfd_process_destroy_wq();
671 		return -ENOMEM;
672 	}
673 
674 	return 0;
675 }
676 
677 void kfd_process_destroy_wq(void)
678 {
679 	if (kfd_process_wq) {
680 		destroy_workqueue(kfd_process_wq);
681 		kfd_process_wq = NULL;
682 	}
683 	if (kfd_restore_wq) {
684 		destroy_workqueue(kfd_restore_wq);
685 		kfd_restore_wq = NULL;
686 	}
687 }
688 
689 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
690 			struct kfd_process_device *pdd, void **kptr)
691 {
692 	struct kfd_node *dev = pdd->dev;
693 
694 	if (kptr && *kptr) {
695 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
696 		*kptr = NULL;
697 	}
698 
699 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
700 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
701 					       NULL);
702 }
703 
704 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
705  *	This function should be only called right after the process
706  *	is created and when kfd_processes_mutex is still being held
707  *	to avoid concurrency. Because of that exclusiveness, we do
708  *	not need to take p->mutex.
709  */
710 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
711 				   uint64_t gpu_va, uint32_t size,
712 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
713 {
714 	struct kfd_node *kdev = pdd->dev;
715 	int err;
716 
717 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
718 						 pdd->drm_priv, mem, NULL,
719 						 flags, false);
720 	if (err)
721 		goto err_alloc_mem;
722 
723 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
724 			pdd->drm_priv);
725 	if (err)
726 		goto err_map_mem;
727 
728 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
729 	if (err) {
730 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
731 		goto sync_memory_failed;
732 	}
733 
734 	if (kptr) {
735 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
736 				(struct kgd_mem *)*mem, kptr, NULL);
737 		if (err) {
738 			pr_debug("Map GTT BO to kernel failed\n");
739 			goto sync_memory_failed;
740 		}
741 	}
742 
743 	return err;
744 
745 sync_memory_failed:
746 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
747 
748 err_map_mem:
749 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
750 					       NULL);
751 err_alloc_mem:
752 	*mem = NULL;
753 	*kptr = NULL;
754 	return err;
755 }
756 
757 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
758  *	process for IB usage The memory reserved is for KFD to submit
759  *	IB to AMDGPU from kernel.  If the memory is reserved
760  *	successfully, ib_kaddr will have the CPU/kernel
761  *	address. Check ib_kaddr before accessing the memory.
762  */
763 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
764 {
765 	struct qcm_process_device *qpd = &pdd->qpd;
766 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
767 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
768 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
769 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
770 	struct kgd_mem *mem;
771 	void *kaddr;
772 	int ret;
773 
774 	if (qpd->ib_kaddr || !qpd->ib_base)
775 		return 0;
776 
777 	/* ib_base is only set for dGPU */
778 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
779 				      &mem, &kaddr);
780 	if (ret)
781 		return ret;
782 
783 	qpd->ib_mem = mem;
784 	qpd->ib_kaddr = kaddr;
785 
786 	return 0;
787 }
788 
789 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
790 {
791 	struct qcm_process_device *qpd = &pdd->qpd;
792 
793 	if (!qpd->ib_kaddr || !qpd->ib_base)
794 		return;
795 
796 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
797 }
798 
799 struct kfd_process *kfd_create_process(struct task_struct *thread)
800 {
801 	struct kfd_process *process;
802 	int ret;
803 
804 	if (!(thread->mm && mmget_not_zero(thread->mm)))
805 		return ERR_PTR(-EINVAL);
806 
807 	/* Only the pthreads threading model is supported. */
808 	if (thread->group_leader->mm != thread->mm) {
809 		mmput(thread->mm);
810 		return ERR_PTR(-EINVAL);
811 	}
812 
813 	/*
814 	 * take kfd processes mutex before starting of process creation
815 	 * so there won't be a case where two threads of the same process
816 	 * create two kfd_process structures
817 	 */
818 	mutex_lock(&kfd_processes_mutex);
819 
820 	if (kfd_is_locked()) {
821 		mutex_unlock(&kfd_processes_mutex);
822 		pr_debug("KFD is locked! Cannot create process");
823 		return ERR_PTR(-EINVAL);
824 	}
825 
826 	/* A prior open of /dev/kfd could have already created the process. */
827 	process = find_process(thread, false);
828 	if (process) {
829 		pr_debug("Process already found\n");
830 	} else {
831 		process = create_process(thread);
832 		if (IS_ERR(process))
833 			goto out;
834 
835 		if (!procfs.kobj)
836 			goto out;
837 
838 		process->kobj = kfd_alloc_struct(process->kobj);
839 		if (!process->kobj) {
840 			pr_warn("Creating procfs kobject failed");
841 			goto out;
842 		}
843 		ret = kobject_init_and_add(process->kobj, &procfs_type,
844 					   procfs.kobj, "%d",
845 					   (int)process->lead_thread->pid);
846 		if (ret) {
847 			pr_warn("Creating procfs pid directory failed");
848 			kobject_put(process->kobj);
849 			goto out;
850 		}
851 
852 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
853 				      "pasid");
854 
855 		process->kobj_queues = kobject_create_and_add("queues",
856 							process->kobj);
857 		if (!process->kobj_queues)
858 			pr_warn("Creating KFD proc/queues folder failed");
859 
860 		kfd_procfs_add_sysfs_stats(process);
861 		kfd_procfs_add_sysfs_files(process);
862 		kfd_procfs_add_sysfs_counters(process);
863 
864 		init_waitqueue_head(&process->wait_irq_drain);
865 	}
866 out:
867 	if (!IS_ERR(process))
868 		kref_get(&process->ref);
869 	mutex_unlock(&kfd_processes_mutex);
870 	mmput(thread->mm);
871 
872 	return process;
873 }
874 
875 struct kfd_process *kfd_get_process(const struct task_struct *thread)
876 {
877 	struct kfd_process *process;
878 
879 	if (!thread->mm)
880 		return ERR_PTR(-EINVAL);
881 
882 	/* Only the pthreads threading model is supported. */
883 	if (thread->group_leader->mm != thread->mm)
884 		return ERR_PTR(-EINVAL);
885 
886 	process = find_process(thread, false);
887 	if (!process)
888 		return ERR_PTR(-EINVAL);
889 
890 	return process;
891 }
892 
893 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
894 {
895 	struct kfd_process *process;
896 
897 	hash_for_each_possible_rcu(kfd_processes_table, process,
898 					kfd_processes, (uintptr_t)mm)
899 		if (process->mm == mm)
900 			return process;
901 
902 	return NULL;
903 }
904 
905 static struct kfd_process *find_process(const struct task_struct *thread,
906 					bool ref)
907 {
908 	struct kfd_process *p;
909 	int idx;
910 
911 	idx = srcu_read_lock(&kfd_processes_srcu);
912 	p = find_process_by_mm(thread->mm);
913 	if (p && ref)
914 		kref_get(&p->ref);
915 	srcu_read_unlock(&kfd_processes_srcu, idx);
916 
917 	return p;
918 }
919 
920 void kfd_unref_process(struct kfd_process *p)
921 {
922 	kref_put(&p->ref, kfd_process_ref_release);
923 }
924 
925 /* This increments the process->ref counter. */
926 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
927 {
928 	struct task_struct *task = NULL;
929 	struct kfd_process *p    = NULL;
930 
931 	if (!pid) {
932 		task = current;
933 		get_task_struct(task);
934 	} else {
935 		task = get_pid_task(pid, PIDTYPE_PID);
936 	}
937 
938 	if (task) {
939 		p = find_process(task, true);
940 		put_task_struct(task);
941 	}
942 
943 	return p;
944 }
945 
946 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
947 {
948 	struct kfd_process *p = pdd->process;
949 	void *mem;
950 	int id;
951 	int i;
952 
953 	/*
954 	 * Remove all handles from idr and release appropriate
955 	 * local memory object
956 	 */
957 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
958 
959 		for (i = 0; i < p->n_pdds; i++) {
960 			struct kfd_process_device *peer_pdd = p->pdds[i];
961 
962 			if (!peer_pdd->drm_priv)
963 				continue;
964 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
965 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
966 		}
967 
968 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
969 						       pdd->drm_priv, NULL);
970 		kfd_process_device_remove_obj_handle(pdd, id);
971 	}
972 }
973 
974 /*
975  * Just kunmap and unpin signal BO here. It will be freed in
976  * kfd_process_free_outstanding_kfd_bos()
977  */
978 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
979 {
980 	struct kfd_process_device *pdd;
981 	struct kfd_node *kdev;
982 	void *mem;
983 
984 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
985 	if (!kdev)
986 		return;
987 
988 	mutex_lock(&p->mutex);
989 
990 	pdd = kfd_get_process_device_data(kdev, p);
991 	if (!pdd)
992 		goto out;
993 
994 	mem = kfd_process_device_translate_handle(
995 		pdd, GET_IDR_HANDLE(p->signal_handle));
996 	if (!mem)
997 		goto out;
998 
999 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1000 
1001 out:
1002 	mutex_unlock(&p->mutex);
1003 }
1004 
1005 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1006 {
1007 	int i;
1008 
1009 	for (i = 0; i < p->n_pdds; i++)
1010 		kfd_process_device_free_bos(p->pdds[i]);
1011 }
1012 
1013 static void kfd_process_destroy_pdds(struct kfd_process *p)
1014 {
1015 	int i;
1016 
1017 	for (i = 0; i < p->n_pdds; i++) {
1018 		struct kfd_process_device *pdd = p->pdds[i];
1019 
1020 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1021 				pdd->dev->id, p->pasid);
1022 
1023 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1024 		kfd_process_device_destroy_ib_mem(pdd);
1025 
1026 		if (pdd->drm_file) {
1027 			amdgpu_amdkfd_gpuvm_release_process_vm(
1028 					pdd->dev->adev, pdd->drm_priv);
1029 			fput(pdd->drm_file);
1030 		}
1031 
1032 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1033 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1034 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1035 
1036 		idr_destroy(&pdd->alloc_idr);
1037 
1038 		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1039 
1040 		if (pdd->dev->kfd->shared_resources.enable_mes)
1041 			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1042 						   pdd->proc_ctx_bo);
1043 		/*
1044 		 * before destroying pdd, make sure to report availability
1045 		 * for auto suspend
1046 		 */
1047 		if (pdd->runtime_inuse) {
1048 			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1049 			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1050 			pdd->runtime_inuse = false;
1051 		}
1052 
1053 		kfree(pdd);
1054 		p->pdds[i] = NULL;
1055 	}
1056 	p->n_pdds = 0;
1057 }
1058 
1059 static void kfd_process_remove_sysfs(struct kfd_process *p)
1060 {
1061 	struct kfd_process_device *pdd;
1062 	int i;
1063 
1064 	if (!p->kobj)
1065 		return;
1066 
1067 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1068 	kobject_del(p->kobj_queues);
1069 	kobject_put(p->kobj_queues);
1070 	p->kobj_queues = NULL;
1071 
1072 	for (i = 0; i < p->n_pdds; i++) {
1073 		pdd = p->pdds[i];
1074 
1075 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1076 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1077 
1078 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1079 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1080 			sysfs_remove_file(pdd->kobj_stats,
1081 					  &pdd->attr_cu_occupancy);
1082 		kobject_del(pdd->kobj_stats);
1083 		kobject_put(pdd->kobj_stats);
1084 		pdd->kobj_stats = NULL;
1085 	}
1086 
1087 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1088 		pdd = p->pdds[i];
1089 
1090 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1091 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1092 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1093 		kobject_del(pdd->kobj_counters);
1094 		kobject_put(pdd->kobj_counters);
1095 		pdd->kobj_counters = NULL;
1096 	}
1097 
1098 	kobject_del(p->kobj);
1099 	kobject_put(p->kobj);
1100 	p->kobj = NULL;
1101 }
1102 
1103 /* No process locking is needed in this function, because the process
1104  * is not findable any more. We must assume that no other thread is
1105  * using it any more, otherwise we couldn't safely free the process
1106  * structure in the end.
1107  */
1108 static void kfd_process_wq_release(struct work_struct *work)
1109 {
1110 	struct kfd_process *p = container_of(work, struct kfd_process,
1111 					     release_work);
1112 
1113 	kfd_process_dequeue_from_all_devices(p);
1114 	pqm_uninit(&p->pqm);
1115 
1116 	/* Signal the eviction fence after user mode queues are
1117 	 * destroyed. This allows any BOs to be freed without
1118 	 * triggering pointless evictions or waiting for fences.
1119 	 */
1120 	dma_fence_signal(p->ef);
1121 
1122 	kfd_process_remove_sysfs(p);
1123 
1124 	kfd_process_kunmap_signal_bo(p);
1125 	kfd_process_free_outstanding_kfd_bos(p);
1126 	svm_range_list_fini(p);
1127 
1128 	kfd_process_destroy_pdds(p);
1129 	dma_fence_put(p->ef);
1130 
1131 	kfd_event_free_process(p);
1132 
1133 	kfd_pasid_free(p->pasid);
1134 	mutex_destroy(&p->mutex);
1135 
1136 	put_task_struct(p->lead_thread);
1137 
1138 	kfree(p);
1139 }
1140 
1141 static void kfd_process_ref_release(struct kref *ref)
1142 {
1143 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1144 
1145 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1146 	queue_work(kfd_process_wq, &p->release_work);
1147 }
1148 
1149 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1150 {
1151 	int idx = srcu_read_lock(&kfd_processes_srcu);
1152 	struct kfd_process *p = find_process_by_mm(mm);
1153 
1154 	srcu_read_unlock(&kfd_processes_srcu, idx);
1155 
1156 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1157 }
1158 
1159 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1160 {
1161 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1162 }
1163 
1164 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1165 {
1166 	int i;
1167 
1168 	cancel_delayed_work_sync(&p->eviction_work);
1169 	cancel_delayed_work_sync(&p->restore_work);
1170 
1171 	for (i = 0; i < p->n_pdds; i++) {
1172 		struct kfd_process_device *pdd = p->pdds[i];
1173 
1174 		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1175 		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1176 			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1177 	}
1178 
1179 	/* Indicate to other users that MM is no longer valid */
1180 	p->mm = NULL;
1181 	kfd_dbg_trap_disable(p);
1182 
1183 	if (atomic_read(&p->debugged_process_count) > 0) {
1184 		struct kfd_process *target;
1185 		unsigned int temp;
1186 		int idx = srcu_read_lock(&kfd_processes_srcu);
1187 
1188 		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1189 			if (target->debugger_process && target->debugger_process == p) {
1190 				mutex_lock_nested(&target->mutex, 1);
1191 				kfd_dbg_trap_disable(target);
1192 				mutex_unlock(&target->mutex);
1193 				if (atomic_read(&p->debugged_process_count) == 0)
1194 					break;
1195 			}
1196 		}
1197 
1198 		srcu_read_unlock(&kfd_processes_srcu, idx);
1199 	}
1200 
1201 	mmu_notifier_put(&p->mmu_notifier);
1202 }
1203 
1204 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1205 					struct mm_struct *mm)
1206 {
1207 	struct kfd_process *p;
1208 
1209 	/*
1210 	 * The kfd_process structure can not be free because the
1211 	 * mmu_notifier srcu is read locked
1212 	 */
1213 	p = container_of(mn, struct kfd_process, mmu_notifier);
1214 	if (WARN_ON(p->mm != mm))
1215 		return;
1216 
1217 	mutex_lock(&kfd_processes_mutex);
1218 	/*
1219 	 * Do early return if table is empty.
1220 	 *
1221 	 * This could potentially happen if this function is called concurrently
1222 	 * by mmu_notifier and by kfd_cleanup_pocesses.
1223 	 *
1224 	 */
1225 	if (hash_empty(kfd_processes_table)) {
1226 		mutex_unlock(&kfd_processes_mutex);
1227 		return;
1228 	}
1229 	hash_del_rcu(&p->kfd_processes);
1230 	mutex_unlock(&kfd_processes_mutex);
1231 	synchronize_srcu(&kfd_processes_srcu);
1232 
1233 	kfd_process_notifier_release_internal(p);
1234 }
1235 
1236 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1237 	.release = kfd_process_notifier_release,
1238 	.alloc_notifier = kfd_process_alloc_notifier,
1239 	.free_notifier = kfd_process_free_notifier,
1240 };
1241 
1242 /*
1243  * This code handles the case when driver is being unloaded before all
1244  * mm_struct are released.  We need to safely free the kfd_process and
1245  * avoid race conditions with mmu_notifier that might try to free them.
1246  *
1247  */
1248 void kfd_cleanup_processes(void)
1249 {
1250 	struct kfd_process *p;
1251 	struct hlist_node *p_temp;
1252 	unsigned int temp;
1253 	HLIST_HEAD(cleanup_list);
1254 
1255 	/*
1256 	 * Move all remaining kfd_process from the process table to a
1257 	 * temp list for processing.   Once done, callback from mmu_notifier
1258 	 * release will not see the kfd_process in the table and do early return,
1259 	 * avoiding double free issues.
1260 	 */
1261 	mutex_lock(&kfd_processes_mutex);
1262 	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1263 		hash_del_rcu(&p->kfd_processes);
1264 		synchronize_srcu(&kfd_processes_srcu);
1265 		hlist_add_head(&p->kfd_processes, &cleanup_list);
1266 	}
1267 	mutex_unlock(&kfd_processes_mutex);
1268 
1269 	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1270 		kfd_process_notifier_release_internal(p);
1271 
1272 	/*
1273 	 * Ensures that all outstanding free_notifier get called, triggering
1274 	 * the release of the kfd_process struct.
1275 	 */
1276 	mmu_notifier_synchronize();
1277 }
1278 
1279 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1280 {
1281 	unsigned long  offset;
1282 	int i;
1283 
1284 	if (p->has_cwsr)
1285 		return 0;
1286 
1287 	for (i = 0; i < p->n_pdds; i++) {
1288 		struct kfd_node *dev = p->pdds[i]->dev;
1289 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1290 
1291 		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1292 			continue;
1293 
1294 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1295 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1296 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1297 			MAP_SHARED, offset);
1298 
1299 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1300 			int err = qpd->tba_addr;
1301 
1302 			pr_err("Failure to set tba address. error %d.\n", err);
1303 			qpd->tba_addr = 0;
1304 			qpd->cwsr_kaddr = NULL;
1305 			return err;
1306 		}
1307 
1308 		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1309 
1310 		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1311 
1312 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1313 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1314 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1315 	}
1316 
1317 	p->has_cwsr = true;
1318 
1319 	return 0;
1320 }
1321 
1322 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1323 {
1324 	struct kfd_node *dev = pdd->dev;
1325 	struct qcm_process_device *qpd = &pdd->qpd;
1326 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1327 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1328 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1329 	struct kgd_mem *mem;
1330 	void *kaddr;
1331 	int ret;
1332 
1333 	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1334 		return 0;
1335 
1336 	/* cwsr_base is only set for dGPU */
1337 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1338 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1339 	if (ret)
1340 		return ret;
1341 
1342 	qpd->cwsr_mem = mem;
1343 	qpd->cwsr_kaddr = kaddr;
1344 	qpd->tba_addr = qpd->cwsr_base;
1345 
1346 	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1347 
1348 	kfd_process_set_trap_debug_flag(&pdd->qpd,
1349 					pdd->process->debug_trap_enabled);
1350 
1351 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1352 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1353 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1354 
1355 	return 0;
1356 }
1357 
1358 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1359 {
1360 	struct kfd_node *dev = pdd->dev;
1361 	struct qcm_process_device *qpd = &pdd->qpd;
1362 
1363 	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1364 		return;
1365 
1366 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1367 }
1368 
1369 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1370 				  uint64_t tba_addr,
1371 				  uint64_t tma_addr)
1372 {
1373 	if (qpd->cwsr_kaddr) {
1374 		/* KFD trap handler is bound, record as second-level TBA/TMA
1375 		 * in first-level TMA. First-level trap will jump to second.
1376 		 */
1377 		uint64_t *tma =
1378 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1379 		tma[0] = tba_addr;
1380 		tma[1] = tma_addr;
1381 	} else {
1382 		/* No trap handler bound, bind as first-level TBA/TMA. */
1383 		qpd->tba_addr = tba_addr;
1384 		qpd->tma_addr = tma_addr;
1385 	}
1386 }
1387 
1388 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1389 {
1390 	int i;
1391 
1392 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1393 	 * boot time retry setting. Mixing processes with different
1394 	 * XNACK/retry settings can hang the GPU.
1395 	 *
1396 	 * Different GPUs can have different noretry settings depending
1397 	 * on HW bugs or limitations. We need to find at least one
1398 	 * XNACK mode for this process that's compatible with all GPUs.
1399 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1400 	 * built for XNACK-off. On GFXv9 it may perform slower.
1401 	 *
1402 	 * Therefore applications built for XNACK-off can always be
1403 	 * supported and will be our fallback if any GPU does not
1404 	 * support retry.
1405 	 */
1406 	for (i = 0; i < p->n_pdds; i++) {
1407 		struct kfd_node *dev = p->pdds[i]->dev;
1408 
1409 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1410 		 * support the SVM APIs and don't need to be considered
1411 		 * for the XNACK mode selection.
1412 		 */
1413 		if (!KFD_IS_SOC15(dev))
1414 			continue;
1415 		/* Aldebaran can always support XNACK because it can support
1416 		 * per-process XNACK mode selection. But let the dev->noretry
1417 		 * setting still influence the default XNACK mode.
1418 		 */
1419 		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev))
1420 			continue;
1421 
1422 		/* GFXv10 and later GPUs do not support shader preemption
1423 		 * during page faults. This can lead to poor QoS for queue
1424 		 * management and memory-manager-related preemptions or
1425 		 * even deadlocks.
1426 		 */
1427 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1428 			return false;
1429 
1430 		if (dev->kfd->noretry)
1431 			return false;
1432 	}
1433 
1434 	return true;
1435 }
1436 
1437 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1438 				     bool enabled)
1439 {
1440 	if (qpd->cwsr_kaddr) {
1441 		uint64_t *tma =
1442 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1443 		tma[2] = enabled;
1444 	}
1445 }
1446 
1447 /*
1448  * On return the kfd_process is fully operational and will be freed when the
1449  * mm is released
1450  */
1451 static struct kfd_process *create_process(const struct task_struct *thread)
1452 {
1453 	struct kfd_process *process;
1454 	struct mmu_notifier *mn;
1455 	int err = -ENOMEM;
1456 
1457 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1458 	if (!process)
1459 		goto err_alloc_process;
1460 
1461 	kref_init(&process->ref);
1462 	mutex_init(&process->mutex);
1463 	process->mm = thread->mm;
1464 	process->lead_thread = thread->group_leader;
1465 	process->n_pdds = 0;
1466 	process->queues_paused = false;
1467 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1468 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1469 	process->last_restore_timestamp = get_jiffies_64();
1470 	err = kfd_event_init_process(process);
1471 	if (err)
1472 		goto err_event_init;
1473 	process->is_32bit_user_mode = in_compat_syscall();
1474 	process->debug_trap_enabled = false;
1475 	process->debugger_process = NULL;
1476 	process->exception_enable_mask = 0;
1477 	atomic_set(&process->debugged_process_count, 0);
1478 	sema_init(&process->runtime_enable_sema, 0);
1479 
1480 	process->pasid = kfd_pasid_alloc();
1481 	if (process->pasid == 0) {
1482 		err = -ENOSPC;
1483 		goto err_alloc_pasid;
1484 	}
1485 
1486 	err = pqm_init(&process->pqm, process);
1487 	if (err != 0)
1488 		goto err_process_pqm_init;
1489 
1490 	/* init process apertures*/
1491 	err = kfd_init_apertures(process);
1492 	if (err != 0)
1493 		goto err_init_apertures;
1494 
1495 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1496 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1497 
1498 	err = svm_range_list_init(process);
1499 	if (err)
1500 		goto err_init_svm_range_list;
1501 
1502 	/* alloc_notifier needs to find the process in the hash table */
1503 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1504 			(uintptr_t)process->mm);
1505 
1506 	/* Avoid free_notifier to start kfd_process_wq_release if
1507 	 * mmu_notifier_get failed because of pending signal.
1508 	 */
1509 	kref_get(&process->ref);
1510 
1511 	/* MMU notifier registration must be the last call that can fail
1512 	 * because after this point we cannot unwind the process creation.
1513 	 * After this point, mmu_notifier_put will trigger the cleanup by
1514 	 * dropping the last process reference in the free_notifier.
1515 	 */
1516 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1517 	if (IS_ERR(mn)) {
1518 		err = PTR_ERR(mn);
1519 		goto err_register_notifier;
1520 	}
1521 	BUG_ON(mn != &process->mmu_notifier);
1522 
1523 	kfd_unref_process(process);
1524 	get_task_struct(process->lead_thread);
1525 
1526 	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1527 
1528 	return process;
1529 
1530 err_register_notifier:
1531 	hash_del_rcu(&process->kfd_processes);
1532 	svm_range_list_fini(process);
1533 err_init_svm_range_list:
1534 	kfd_process_free_outstanding_kfd_bos(process);
1535 	kfd_process_destroy_pdds(process);
1536 err_init_apertures:
1537 	pqm_uninit(&process->pqm);
1538 err_process_pqm_init:
1539 	kfd_pasid_free(process->pasid);
1540 err_alloc_pasid:
1541 	kfd_event_free_process(process);
1542 err_event_init:
1543 	mutex_destroy(&process->mutex);
1544 	kfree(process);
1545 err_alloc_process:
1546 	return ERR_PTR(err);
1547 }
1548 
1549 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1550 							struct kfd_process *p)
1551 {
1552 	int i;
1553 
1554 	for (i = 0; i < p->n_pdds; i++)
1555 		if (p->pdds[i]->dev == dev)
1556 			return p->pdds[i];
1557 
1558 	return NULL;
1559 }
1560 
1561 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1562 							struct kfd_process *p)
1563 {
1564 	struct kfd_process_device *pdd = NULL;
1565 	int retval = 0;
1566 
1567 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1568 		return NULL;
1569 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1570 	if (!pdd)
1571 		return NULL;
1572 
1573 	pdd->dev = dev;
1574 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1575 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1576 	pdd->qpd.dqm = dev->dqm;
1577 	pdd->qpd.pqm = &p->pqm;
1578 	pdd->qpd.evicted = 0;
1579 	pdd->qpd.mapped_gws_queue = false;
1580 	pdd->process = p;
1581 	pdd->bound = PDD_UNBOUND;
1582 	pdd->already_dequeued = false;
1583 	pdd->runtime_inuse = false;
1584 	pdd->vram_usage = 0;
1585 	pdd->sdma_past_activity_counter = 0;
1586 	pdd->user_gpu_id = dev->id;
1587 	atomic64_set(&pdd->evict_duration_counter, 0);
1588 
1589 	if (dev->kfd->shared_resources.enable_mes) {
1590 		retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1591 						AMDGPU_MES_PROC_CTX_SIZE,
1592 						&pdd->proc_ctx_bo,
1593 						&pdd->proc_ctx_gpu_addr,
1594 						&pdd->proc_ctx_cpu_ptr,
1595 						false);
1596 		if (retval) {
1597 			pr_err("failed to allocate process context bo\n");
1598 			goto err_free_pdd;
1599 		}
1600 		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1601 	}
1602 
1603 	p->pdds[p->n_pdds++] = pdd;
1604 	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1605 		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1606 							pdd->dev->adev,
1607 							false,
1608 							0);
1609 
1610 	/* Init idr used for memory handle translation */
1611 	idr_init(&pdd->alloc_idr);
1612 
1613 	return pdd;
1614 
1615 err_free_pdd:
1616 	kfree(pdd);
1617 	return NULL;
1618 }
1619 
1620 /**
1621  * kfd_process_device_init_vm - Initialize a VM for a process-device
1622  *
1623  * @pdd: The process-device
1624  * @drm_file: Optional pointer to a DRM file descriptor
1625  *
1626  * If @drm_file is specified, it will be used to acquire the VM from
1627  * that file descriptor. If successful, the @pdd takes ownership of
1628  * the file descriptor.
1629  *
1630  * If @drm_file is NULL, a new VM is created.
1631  *
1632  * Returns 0 on success, -errno on failure.
1633  */
1634 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1635 			       struct file *drm_file)
1636 {
1637 	struct amdgpu_fpriv *drv_priv;
1638 	struct amdgpu_vm *avm;
1639 	struct kfd_process *p;
1640 	struct kfd_node *dev;
1641 	int ret;
1642 
1643 	if (!drm_file)
1644 		return -EINVAL;
1645 
1646 	if (pdd->drm_priv)
1647 		return -EBUSY;
1648 
1649 	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1650 	if (ret)
1651 		return ret;
1652 	avm = &drv_priv->vm;
1653 
1654 	p = pdd->process;
1655 	dev = pdd->dev;
1656 
1657 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1658 						     &p->kgd_process_info,
1659 						     &p->ef);
1660 	if (ret) {
1661 		pr_err("Failed to create process VM object\n");
1662 		return ret;
1663 	}
1664 	pdd->drm_priv = drm_file->private_data;
1665 	atomic64_set(&pdd->tlb_seq, 0);
1666 
1667 	ret = kfd_process_device_reserve_ib_mem(pdd);
1668 	if (ret)
1669 		goto err_reserve_ib_mem;
1670 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1671 	if (ret)
1672 		goto err_init_cwsr;
1673 
1674 	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1675 	if (ret)
1676 		goto err_set_pasid;
1677 
1678 	pdd->drm_file = drm_file;
1679 
1680 	return 0;
1681 
1682 err_set_pasid:
1683 	kfd_process_device_destroy_cwsr_dgpu(pdd);
1684 err_init_cwsr:
1685 	kfd_process_device_destroy_ib_mem(pdd);
1686 err_reserve_ib_mem:
1687 	pdd->drm_priv = NULL;
1688 	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1689 
1690 	return ret;
1691 }
1692 
1693 /*
1694  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1695  * to the device.
1696  * Unbinding occurs when the process dies or the device is removed.
1697  *
1698  * Assumes that the process lock is held.
1699  */
1700 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1701 							struct kfd_process *p)
1702 {
1703 	struct kfd_process_device *pdd;
1704 	int err;
1705 
1706 	pdd = kfd_get_process_device_data(dev, p);
1707 	if (!pdd) {
1708 		pr_err("Process device data doesn't exist\n");
1709 		return ERR_PTR(-ENOMEM);
1710 	}
1711 
1712 	if (!pdd->drm_priv)
1713 		return ERR_PTR(-ENODEV);
1714 
1715 	/*
1716 	 * signal runtime-pm system to auto resume and prevent
1717 	 * further runtime suspend once device pdd is created until
1718 	 * pdd is destroyed.
1719 	 */
1720 	if (!pdd->runtime_inuse) {
1721 		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1722 		if (err < 0) {
1723 			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1724 			return ERR_PTR(err);
1725 		}
1726 	}
1727 
1728 	/*
1729 	 * make sure that runtime_usage counter is incremented just once
1730 	 * per pdd
1731 	 */
1732 	pdd->runtime_inuse = true;
1733 
1734 	return pdd;
1735 }
1736 
1737 /* Create specific handle mapped to mem from process local memory idr
1738  * Assumes that the process lock is held.
1739  */
1740 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1741 					void *mem)
1742 {
1743 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1744 }
1745 
1746 /* Translate specific handle from process local memory idr
1747  * Assumes that the process lock is held.
1748  */
1749 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1750 					int handle)
1751 {
1752 	if (handle < 0)
1753 		return NULL;
1754 
1755 	return idr_find(&pdd->alloc_idr, handle);
1756 }
1757 
1758 /* Remove specific handle from process local memory idr
1759  * Assumes that the process lock is held.
1760  */
1761 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1762 					int handle)
1763 {
1764 	if (handle >= 0)
1765 		idr_remove(&pdd->alloc_idr, handle);
1766 }
1767 
1768 /* This increments the process->ref counter. */
1769 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1770 {
1771 	struct kfd_process *p, *ret_p = NULL;
1772 	unsigned int temp;
1773 
1774 	int idx = srcu_read_lock(&kfd_processes_srcu);
1775 
1776 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1777 		if (p->pasid == pasid) {
1778 			kref_get(&p->ref);
1779 			ret_p = p;
1780 			break;
1781 		}
1782 	}
1783 
1784 	srcu_read_unlock(&kfd_processes_srcu, idx);
1785 
1786 	return ret_p;
1787 }
1788 
1789 /* This increments the process->ref counter. */
1790 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1791 {
1792 	struct kfd_process *p;
1793 
1794 	int idx = srcu_read_lock(&kfd_processes_srcu);
1795 
1796 	p = find_process_by_mm(mm);
1797 	if (p)
1798 		kref_get(&p->ref);
1799 
1800 	srcu_read_unlock(&kfd_processes_srcu, idx);
1801 
1802 	return p;
1803 }
1804 
1805 /* kfd_process_evict_queues - Evict all user queues of a process
1806  *
1807  * Eviction is reference-counted per process-device. This means multiple
1808  * evictions from different sources can be nested safely.
1809  */
1810 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1811 {
1812 	int r = 0;
1813 	int i;
1814 	unsigned int n_evicted = 0;
1815 
1816 	for (i = 0; i < p->n_pdds; i++) {
1817 		struct kfd_process_device *pdd = p->pdds[i];
1818 
1819 		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1820 					     trigger);
1821 
1822 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1823 							    &pdd->qpd);
1824 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1825 		 * we would like to set all the queues to be in evicted state to prevent
1826 		 * them been add back since they actually not be saved right now.
1827 		 */
1828 		if (r && r != -EIO) {
1829 			pr_err("Failed to evict process queues\n");
1830 			goto fail;
1831 		}
1832 		n_evicted++;
1833 	}
1834 
1835 	return r;
1836 
1837 fail:
1838 	/* To keep state consistent, roll back partial eviction by
1839 	 * restoring queues
1840 	 */
1841 	for (i = 0; i < p->n_pdds; i++) {
1842 		struct kfd_process_device *pdd = p->pdds[i];
1843 
1844 		if (n_evicted == 0)
1845 			break;
1846 
1847 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1848 
1849 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1850 							      &pdd->qpd))
1851 			pr_err("Failed to restore queues\n");
1852 
1853 		n_evicted--;
1854 	}
1855 
1856 	return r;
1857 }
1858 
1859 /* kfd_process_restore_queues - Restore all user queues of a process */
1860 int kfd_process_restore_queues(struct kfd_process *p)
1861 {
1862 	int r, ret = 0;
1863 	int i;
1864 
1865 	for (i = 0; i < p->n_pdds; i++) {
1866 		struct kfd_process_device *pdd = p->pdds[i];
1867 
1868 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1869 
1870 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1871 							      &pdd->qpd);
1872 		if (r) {
1873 			pr_err("Failed to restore process queues\n");
1874 			if (!ret)
1875 				ret = r;
1876 		}
1877 	}
1878 
1879 	return ret;
1880 }
1881 
1882 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1883 {
1884 	int i;
1885 
1886 	for (i = 0; i < p->n_pdds; i++)
1887 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1888 			return i;
1889 	return -EINVAL;
1890 }
1891 
1892 int
1893 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1894 			    uint32_t *gpuid, uint32_t *gpuidx)
1895 {
1896 	int i;
1897 
1898 	for (i = 0; i < p->n_pdds; i++)
1899 		if (p->pdds[i] && p->pdds[i]->dev == node) {
1900 			*gpuid = p->pdds[i]->user_gpu_id;
1901 			*gpuidx = i;
1902 			return 0;
1903 		}
1904 	return -EINVAL;
1905 }
1906 
1907 static void evict_process_worker(struct work_struct *work)
1908 {
1909 	int ret;
1910 	struct kfd_process *p;
1911 	struct delayed_work *dwork;
1912 
1913 	dwork = to_delayed_work(work);
1914 
1915 	/* Process termination destroys this worker thread. So during the
1916 	 * lifetime of this thread, kfd_process p will be valid
1917 	 */
1918 	p = container_of(dwork, struct kfd_process, eviction_work);
1919 	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1920 		  "Eviction fence mismatch\n");
1921 
1922 	/* Narrow window of overlap between restore and evict work
1923 	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1924 	 * unreserves KFD BOs, it is possible to evicted again. But
1925 	 * restore has few more steps of finish. So lets wait for any
1926 	 * previous restore work to complete
1927 	 */
1928 	flush_delayed_work(&p->restore_work);
1929 
1930 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1931 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1932 	if (!ret) {
1933 		dma_fence_signal(p->ef);
1934 		dma_fence_put(p->ef);
1935 		p->ef = NULL;
1936 		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1937 				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1938 
1939 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1940 	} else
1941 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1942 }
1943 
1944 static void restore_process_worker(struct work_struct *work)
1945 {
1946 	struct delayed_work *dwork;
1947 	struct kfd_process *p;
1948 	int ret = 0;
1949 
1950 	dwork = to_delayed_work(work);
1951 
1952 	/* Process termination destroys this worker thread. So during the
1953 	 * lifetime of this thread, kfd_process p will be valid
1954 	 */
1955 	p = container_of(dwork, struct kfd_process, restore_work);
1956 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1957 
1958 	/* Setting last_restore_timestamp before successful restoration.
1959 	 * Otherwise this would have to be set by KGD (restore_process_bos)
1960 	 * before KFD BOs are unreserved. If not, the process can be evicted
1961 	 * again before the timestamp is set.
1962 	 * If restore fails, the timestamp will be set again in the next
1963 	 * attempt. This would mean that the minimum GPU quanta would be
1964 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1965 	 * functions)
1966 	 */
1967 
1968 	p->last_restore_timestamp = get_jiffies_64();
1969 	/* VMs may not have been acquired yet during debugging. */
1970 	if (p->kgd_process_info)
1971 		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1972 							     &p->ef);
1973 	if (ret) {
1974 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1975 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1976 		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1977 				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1978 		WARN(!ret, "reschedule restore work failed\n");
1979 		return;
1980 	}
1981 
1982 	ret = kfd_process_restore_queues(p);
1983 	if (!ret)
1984 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1985 	else
1986 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1987 }
1988 
1989 void kfd_suspend_all_processes(void)
1990 {
1991 	struct kfd_process *p;
1992 	unsigned int temp;
1993 	int idx = srcu_read_lock(&kfd_processes_srcu);
1994 
1995 	WARN(debug_evictions, "Evicting all processes");
1996 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1997 		cancel_delayed_work_sync(&p->eviction_work);
1998 		flush_delayed_work(&p->restore_work);
1999 
2000 		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2001 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
2002 		dma_fence_signal(p->ef);
2003 		dma_fence_put(p->ef);
2004 		p->ef = NULL;
2005 	}
2006 	srcu_read_unlock(&kfd_processes_srcu, idx);
2007 }
2008 
2009 int kfd_resume_all_processes(void)
2010 {
2011 	struct kfd_process *p;
2012 	unsigned int temp;
2013 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2014 
2015 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2016 		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
2017 			pr_err("Restore process %d failed during resume\n",
2018 			       p->pasid);
2019 			ret = -EFAULT;
2020 		}
2021 	}
2022 	srcu_read_unlock(&kfd_processes_srcu, idx);
2023 	return ret;
2024 }
2025 
2026 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2027 			  struct vm_area_struct *vma)
2028 {
2029 	struct kfd_process_device *pdd;
2030 	struct qcm_process_device *qpd;
2031 
2032 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2033 		pr_err("Incorrect CWSR mapping size.\n");
2034 		return -EINVAL;
2035 	}
2036 
2037 	pdd = kfd_get_process_device_data(dev, process);
2038 	if (!pdd)
2039 		return -EINVAL;
2040 	qpd = &pdd->qpd;
2041 
2042 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2043 					get_order(KFD_CWSR_TBA_TMA_SIZE));
2044 	if (!qpd->cwsr_kaddr) {
2045 		pr_err("Error allocating per process CWSR buffer.\n");
2046 		return -ENOMEM;
2047 	}
2048 
2049 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2050 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2051 	/* Mapping pages to user process */
2052 	return remap_pfn_range(vma, vma->vm_start,
2053 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2054 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2055 }
2056 
2057 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
2058 {
2059 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
2060 	uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
2061 	struct kfd_node *dev = pdd->dev;
2062 	uint32_t xcc_mask = dev->xcc_mask;
2063 	int xcc = 0;
2064 
2065 	/*
2066 	 * It can be that we race and lose here, but that is extremely unlikely
2067 	 * and the worst thing which could happen is that we flush the changes
2068 	 * into the TLB once more which is harmless.
2069 	 */
2070 	if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq)
2071 		return;
2072 
2073 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2074 		/* Nothing to flush until a VMID is assigned, which
2075 		 * only happens when the first queue is created.
2076 		 */
2077 		if (pdd->qpd.vmid)
2078 			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
2079 							pdd->qpd.vmid);
2080 	} else {
2081 		for_each_inst(xcc, xcc_mask)
2082 			amdgpu_amdkfd_flush_gpu_tlb_pasid(
2083 				dev->adev, pdd->process->pasid, type, xcc);
2084 	}
2085 }
2086 
2087 /* assumes caller holds process lock. */
2088 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2089 {
2090 	uint32_t irq_drain_fence[8];
2091 	uint8_t node_id = 0;
2092 	int r = 0;
2093 
2094 	if (!KFD_IS_SOC15(pdd->dev))
2095 		return 0;
2096 
2097 	pdd->process->irq_drain_is_open = true;
2098 
2099 	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2100 	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2101 							KFD_IRQ_FENCE_CLIENTID;
2102 	irq_drain_fence[3] = pdd->process->pasid;
2103 
2104 	/*
2105 	 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2106 	 */
2107 	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2108 		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2109 		irq_drain_fence[3] |= node_id << 16;
2110 	}
2111 
2112 	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2113 	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2114 						     irq_drain_fence)) {
2115 		pdd->process->irq_drain_is_open = false;
2116 		return 0;
2117 	}
2118 
2119 	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2120 				     !READ_ONCE(pdd->process->irq_drain_is_open));
2121 	if (r)
2122 		pdd->process->irq_drain_is_open = false;
2123 
2124 	return r;
2125 }
2126 
2127 void kfd_process_close_interrupt_drain(unsigned int pasid)
2128 {
2129 	struct kfd_process *p;
2130 
2131 	p = kfd_lookup_process_by_pasid(pasid);
2132 
2133 	if (!p)
2134 		return;
2135 
2136 	WRITE_ONCE(p->irq_drain_is_open, false);
2137 	wake_up_all(&p->wait_irq_drain);
2138 	kfd_unref_process(p);
2139 }
2140 
2141 struct send_exception_work_handler_workarea {
2142 	struct work_struct work;
2143 	struct kfd_process *p;
2144 	unsigned int queue_id;
2145 	uint64_t error_reason;
2146 };
2147 
2148 static void send_exception_work_handler(struct work_struct *work)
2149 {
2150 	struct send_exception_work_handler_workarea *workarea;
2151 	struct kfd_process *p;
2152 	struct queue *q;
2153 	struct mm_struct *mm;
2154 	struct kfd_context_save_area_header __user *csa_header;
2155 	uint64_t __user *err_payload_ptr;
2156 	uint64_t cur_err;
2157 	uint32_t ev_id;
2158 
2159 	workarea = container_of(work,
2160 				struct send_exception_work_handler_workarea,
2161 				work);
2162 	p = workarea->p;
2163 
2164 	mm = get_task_mm(p->lead_thread);
2165 
2166 	if (!mm)
2167 		return;
2168 
2169 	kthread_use_mm(mm);
2170 
2171 	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2172 
2173 	if (!q)
2174 		goto out;
2175 
2176 	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2177 
2178 	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2179 	get_user(cur_err, err_payload_ptr);
2180 	cur_err |= workarea->error_reason;
2181 	put_user(cur_err, err_payload_ptr);
2182 	get_user(ev_id, &csa_header->err_event_id);
2183 
2184 	kfd_set_event(p, ev_id);
2185 
2186 out:
2187 	kthread_unuse_mm(mm);
2188 	mmput(mm);
2189 }
2190 
2191 int kfd_send_exception_to_runtime(struct kfd_process *p,
2192 			unsigned int queue_id,
2193 			uint64_t error_reason)
2194 {
2195 	struct send_exception_work_handler_workarea worker;
2196 
2197 	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2198 
2199 	worker.p = p;
2200 	worker.queue_id = queue_id;
2201 	worker.error_reason = error_reason;
2202 
2203 	schedule_work(&worker.work);
2204 	flush_work(&worker.work);
2205 	destroy_work_on_stack(&worker.work);
2206 
2207 	return 0;
2208 }
2209 
2210 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2211 {
2212 	int i;
2213 
2214 	if (gpu_id) {
2215 		for (i = 0; i < p->n_pdds; i++) {
2216 			struct kfd_process_device *pdd = p->pdds[i];
2217 
2218 			if (pdd->user_gpu_id == gpu_id)
2219 				return pdd;
2220 		}
2221 	}
2222 	return NULL;
2223 }
2224 
2225 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2226 {
2227 	int i;
2228 
2229 	if (!actual_gpu_id)
2230 		return 0;
2231 
2232 	for (i = 0; i < p->n_pdds; i++) {
2233 		struct kfd_process_device *pdd = p->pdds[i];
2234 
2235 		if (pdd->dev->id == actual_gpu_id)
2236 			return pdd->user_gpu_id;
2237 	}
2238 	return -EINVAL;
2239 }
2240 
2241 #if defined(CONFIG_DEBUG_FS)
2242 
2243 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2244 {
2245 	struct kfd_process *p;
2246 	unsigned int temp;
2247 	int r = 0;
2248 
2249 	int idx = srcu_read_lock(&kfd_processes_srcu);
2250 
2251 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2252 		seq_printf(m, "Process %d PASID 0x%x:\n",
2253 			   p->lead_thread->tgid, p->pasid);
2254 
2255 		mutex_lock(&p->mutex);
2256 		r = pqm_debugfs_mqds(m, &p->pqm);
2257 		mutex_unlock(&p->mutex);
2258 
2259 		if (r)
2260 			break;
2261 	}
2262 
2263 	srcu_read_unlock(&kfd_processes_srcu, idx);
2264 
2265 	return r;
2266 }
2267 
2268 #endif
2269