1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/mutex.h> 24 #include <linux/log2.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/amd-iommu.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 39 struct mm_struct; 40 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_dbgmgr.h" 44 #include "kfd_iommu.h" 45 #include "kfd_svm.h" 46 47 /* 48 * List of struct kfd_process (field kfd_process). 49 * Unique/indexed by mm_struct* 50 */ 51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 52 static DEFINE_MUTEX(kfd_processes_mutex); 53 54 DEFINE_SRCU(kfd_processes_srcu); 55 56 /* For process termination handling */ 57 static struct workqueue_struct *kfd_process_wq; 58 59 /* Ordered, single-threaded workqueue for restoring evicted 60 * processes. Restoring multiple processes concurrently under memory 61 * pressure can lead to processes blocking each other from validating 62 * their BOs and result in a live-lock situation where processes 63 * remain evicted indefinitely. 64 */ 65 static struct workqueue_struct *kfd_restore_wq; 66 67 static struct kfd_process *find_process(const struct task_struct *thread); 68 static void kfd_process_ref_release(struct kref *ref); 69 static struct kfd_process *create_process(const struct task_struct *thread); 70 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep); 71 72 static void evict_process_worker(struct work_struct *work); 73 static void restore_process_worker(struct work_struct *work); 74 75 struct kfd_procfs_tree { 76 struct kobject *kobj; 77 }; 78 79 static struct kfd_procfs_tree procfs; 80 81 /* 82 * Structure for SDMA activity tracking 83 */ 84 struct kfd_sdma_activity_handler_workarea { 85 struct work_struct sdma_activity_work; 86 struct kfd_process_device *pdd; 87 uint64_t sdma_activity_counter; 88 }; 89 90 struct temp_sdma_queue_list { 91 uint64_t __user *rptr; 92 uint64_t sdma_val; 93 unsigned int queue_id; 94 struct list_head list; 95 }; 96 97 static void kfd_sdma_activity_worker(struct work_struct *work) 98 { 99 struct kfd_sdma_activity_handler_workarea *workarea; 100 struct kfd_process_device *pdd; 101 uint64_t val; 102 struct mm_struct *mm; 103 struct queue *q; 104 struct qcm_process_device *qpd; 105 struct device_queue_manager *dqm; 106 int ret = 0; 107 struct temp_sdma_queue_list sdma_q_list; 108 struct temp_sdma_queue_list *sdma_q, *next; 109 110 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 111 sdma_activity_work); 112 113 pdd = workarea->pdd; 114 if (!pdd) 115 return; 116 dqm = pdd->dev->dqm; 117 qpd = &pdd->qpd; 118 if (!dqm || !qpd) 119 return; 120 /* 121 * Total SDMA activity is current SDMA activity + past SDMA activity 122 * Past SDMA count is stored in pdd. 123 * To get the current activity counters for all active SDMA queues, 124 * we loop over all SDMA queues and get their counts from user-space. 125 * 126 * We cannot call get_user() with dqm_lock held as it can cause 127 * a circular lock dependency situation. To read the SDMA stats, 128 * we need to do the following: 129 * 130 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 131 * with dqm_lock/dqm_unlock(). 132 * 2. Call get_user() for each node in temporary list without dqm_lock. 133 * Save the SDMA count for each node and also add the count to the total 134 * SDMA count counter. 135 * Its possible, during this step, a few SDMA queue nodes got deleted 136 * from the qpd->queues_list. 137 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 138 * If any node got deleted, its SDMA count would be captured in the sdma 139 * past activity counter. So subtract the SDMA counter stored in step 2 140 * for this node from the total SDMA count. 141 */ 142 INIT_LIST_HEAD(&sdma_q_list.list); 143 144 /* 145 * Create the temp list of all SDMA queues 146 */ 147 dqm_lock(dqm); 148 149 list_for_each_entry(q, &qpd->queues_list, list) { 150 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 151 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 152 continue; 153 154 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 155 if (!sdma_q) { 156 dqm_unlock(dqm); 157 goto cleanup; 158 } 159 160 INIT_LIST_HEAD(&sdma_q->list); 161 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 162 sdma_q->queue_id = q->properties.queue_id; 163 list_add_tail(&sdma_q->list, &sdma_q_list.list); 164 } 165 166 /* 167 * If the temp list is empty, then no SDMA queues nodes were found in 168 * qpd->queues_list. Return the past activity count as the total sdma 169 * count 170 */ 171 if (list_empty(&sdma_q_list.list)) { 172 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 173 dqm_unlock(dqm); 174 return; 175 } 176 177 dqm_unlock(dqm); 178 179 /* 180 * Get the usage count for each SDMA queue in temp_list. 181 */ 182 mm = get_task_mm(pdd->process->lead_thread); 183 if (!mm) 184 goto cleanup; 185 186 kthread_use_mm(mm); 187 188 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 189 val = 0; 190 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 191 if (ret) { 192 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 193 sdma_q->queue_id); 194 } else { 195 sdma_q->sdma_val = val; 196 workarea->sdma_activity_counter += val; 197 } 198 } 199 200 kthread_unuse_mm(mm); 201 mmput(mm); 202 203 /* 204 * Do a second iteration over qpd_queues_list to check if any SDMA 205 * nodes got deleted while fetching SDMA counter. 206 */ 207 dqm_lock(dqm); 208 209 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 210 211 list_for_each_entry(q, &qpd->queues_list, list) { 212 if (list_empty(&sdma_q_list.list)) 213 break; 214 215 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 216 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 217 continue; 218 219 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 220 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 221 (sdma_q->queue_id == q->properties.queue_id)) { 222 list_del(&sdma_q->list); 223 kfree(sdma_q); 224 break; 225 } 226 } 227 } 228 229 dqm_unlock(dqm); 230 231 /* 232 * If temp list is not empty, it implies some queues got deleted 233 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 234 * count for each node from the total SDMA count. 235 */ 236 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 237 workarea->sdma_activity_counter -= sdma_q->sdma_val; 238 list_del(&sdma_q->list); 239 kfree(sdma_q); 240 } 241 242 return; 243 244 cleanup: 245 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 246 list_del(&sdma_q->list); 247 kfree(sdma_q); 248 } 249 } 250 251 /** 252 * @kfd_get_cu_occupancy - Collect number of waves in-flight on this device 253 * by current process. Translates acquired wave count into number of compute units 254 * that are occupied. 255 * 256 * @atr: Handle of attribute that allows reporting of wave count. The attribute 257 * handle encapsulates GPU device it is associated with, thereby allowing collection 258 * of waves in flight, etc 259 * 260 * @buffer: Handle of user provided buffer updated with wave count 261 * 262 * Return: Number of bytes written to user buffer or an error value 263 */ 264 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 265 { 266 int cu_cnt; 267 int wave_cnt; 268 int max_waves_per_cu; 269 struct kfd_dev *dev = NULL; 270 struct kfd_process *proc = NULL; 271 struct kfd_process_device *pdd = NULL; 272 273 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 274 dev = pdd->dev; 275 if (dev->kfd2kgd->get_cu_occupancy == NULL) 276 return -EINVAL; 277 278 cu_cnt = 0; 279 proc = pdd->process; 280 if (pdd->qpd.queue_count == 0) { 281 pr_debug("Gpu-Id: %d has no active queues for process %d\n", 282 dev->id, proc->pasid); 283 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 284 } 285 286 /* Collect wave count from device if it supports */ 287 wave_cnt = 0; 288 max_waves_per_cu = 0; 289 dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt, 290 &max_waves_per_cu); 291 292 /* Translate wave count to number of compute units */ 293 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 294 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 295 } 296 297 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 298 char *buffer) 299 { 300 if (strcmp(attr->name, "pasid") == 0) { 301 struct kfd_process *p = container_of(attr, struct kfd_process, 302 attr_pasid); 303 304 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 305 } else if (strncmp(attr->name, "vram_", 5) == 0) { 306 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 307 attr_vram); 308 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage)); 309 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 310 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 311 attr_sdma); 312 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 313 314 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work, 315 kfd_sdma_activity_worker); 316 317 sdma_activity_work_handler.pdd = pdd; 318 sdma_activity_work_handler.sdma_activity_counter = 0; 319 320 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 321 322 flush_work(&sdma_activity_work_handler.sdma_activity_work); 323 324 return snprintf(buffer, PAGE_SIZE, "%llu\n", 325 (sdma_activity_work_handler.sdma_activity_counter)/ 326 SDMA_ACTIVITY_DIVISOR); 327 } else { 328 pr_err("Invalid attribute"); 329 return -EINVAL; 330 } 331 332 return 0; 333 } 334 335 static void kfd_procfs_kobj_release(struct kobject *kobj) 336 { 337 kfree(kobj); 338 } 339 340 static const struct sysfs_ops kfd_procfs_ops = { 341 .show = kfd_procfs_show, 342 }; 343 344 static struct kobj_type procfs_type = { 345 .release = kfd_procfs_kobj_release, 346 .sysfs_ops = &kfd_procfs_ops, 347 }; 348 349 void kfd_procfs_init(void) 350 { 351 int ret = 0; 352 353 procfs.kobj = kfd_alloc_struct(procfs.kobj); 354 if (!procfs.kobj) 355 return; 356 357 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 358 &kfd_device->kobj, "proc"); 359 if (ret) { 360 pr_warn("Could not create procfs proc folder"); 361 /* If we fail to create the procfs, clean up */ 362 kfd_procfs_shutdown(); 363 } 364 } 365 366 void kfd_procfs_shutdown(void) 367 { 368 if (procfs.kobj) { 369 kobject_del(procfs.kobj); 370 kobject_put(procfs.kobj); 371 procfs.kobj = NULL; 372 } 373 } 374 375 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 376 struct attribute *attr, char *buffer) 377 { 378 struct queue *q = container_of(kobj, struct queue, kobj); 379 380 if (!strcmp(attr->name, "size")) 381 return snprintf(buffer, PAGE_SIZE, "%llu", 382 q->properties.queue_size); 383 else if (!strcmp(attr->name, "type")) 384 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 385 else if (!strcmp(attr->name, "gpuid")) 386 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 387 else 388 pr_err("Invalid attribute"); 389 390 return 0; 391 } 392 393 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 394 struct attribute *attr, char *buffer) 395 { 396 if (strcmp(attr->name, "evicted_ms") == 0) { 397 struct kfd_process_device *pdd = container_of(attr, 398 struct kfd_process_device, 399 attr_evict); 400 uint64_t evict_jiffies; 401 402 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 403 404 return snprintf(buffer, 405 PAGE_SIZE, 406 "%llu\n", 407 jiffies64_to_msecs(evict_jiffies)); 408 409 /* Sysfs handle that gets CU occupancy is per device */ 410 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 411 return kfd_get_cu_occupancy(attr, buffer); 412 } else { 413 pr_err("Invalid attribute"); 414 } 415 416 return 0; 417 } 418 419 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, 420 struct attribute *attr, char *buf) 421 { 422 struct kfd_process_device *pdd; 423 424 if (!strcmp(attr->name, "faults")) { 425 pdd = container_of(attr, struct kfd_process_device, 426 attr_faults); 427 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); 428 } 429 if (!strcmp(attr->name, "page_in")) { 430 pdd = container_of(attr, struct kfd_process_device, 431 attr_page_in); 432 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); 433 } 434 if (!strcmp(attr->name, "page_out")) { 435 pdd = container_of(attr, struct kfd_process_device, 436 attr_page_out); 437 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); 438 } 439 return 0; 440 } 441 442 static struct attribute attr_queue_size = { 443 .name = "size", 444 .mode = KFD_SYSFS_FILE_MODE 445 }; 446 447 static struct attribute attr_queue_type = { 448 .name = "type", 449 .mode = KFD_SYSFS_FILE_MODE 450 }; 451 452 static struct attribute attr_queue_gpuid = { 453 .name = "gpuid", 454 .mode = KFD_SYSFS_FILE_MODE 455 }; 456 457 static struct attribute *procfs_queue_attrs[] = { 458 &attr_queue_size, 459 &attr_queue_type, 460 &attr_queue_gpuid, 461 NULL 462 }; 463 464 static const struct sysfs_ops procfs_queue_ops = { 465 .show = kfd_procfs_queue_show, 466 }; 467 468 static struct kobj_type procfs_queue_type = { 469 .sysfs_ops = &procfs_queue_ops, 470 .default_attrs = procfs_queue_attrs, 471 }; 472 473 static const struct sysfs_ops procfs_stats_ops = { 474 .show = kfd_procfs_stats_show, 475 }; 476 477 static struct kobj_type procfs_stats_type = { 478 .sysfs_ops = &procfs_stats_ops, 479 .release = kfd_procfs_kobj_release, 480 }; 481 482 static const struct sysfs_ops sysfs_counters_ops = { 483 .show = kfd_sysfs_counters_show, 484 }; 485 486 static struct kobj_type sysfs_counters_type = { 487 .sysfs_ops = &sysfs_counters_ops, 488 .release = kfd_procfs_kobj_release, 489 }; 490 491 int kfd_procfs_add_queue(struct queue *q) 492 { 493 struct kfd_process *proc; 494 int ret; 495 496 if (!q || !q->process) 497 return -EINVAL; 498 proc = q->process; 499 500 /* Create proc/<pid>/queues/<queue id> folder */ 501 if (!proc->kobj_queues) 502 return -EFAULT; 503 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 504 proc->kobj_queues, "%u", q->properties.queue_id); 505 if (ret < 0) { 506 pr_warn("Creating proc/<pid>/queues/%u failed", 507 q->properties.queue_id); 508 kobject_put(&q->kobj); 509 return ret; 510 } 511 512 return 0; 513 } 514 515 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, 516 char *name) 517 { 518 int ret; 519 520 if (!kobj || !attr || !name) 521 return; 522 523 attr->name = name; 524 attr->mode = KFD_SYSFS_FILE_MODE; 525 sysfs_attr_init(attr); 526 527 ret = sysfs_create_file(kobj, attr); 528 if (ret) 529 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); 530 } 531 532 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) 533 { 534 int ret; 535 int i; 536 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 537 538 if (!p || !p->kobj) 539 return; 540 541 /* 542 * Create sysfs files for each GPU: 543 * - proc/<pid>/stats_<gpuid>/ 544 * - proc/<pid>/stats_<gpuid>/evicted_ms 545 * - proc/<pid>/stats_<gpuid>/cu_occupancy 546 */ 547 for (i = 0; i < p->n_pdds; i++) { 548 struct kfd_process_device *pdd = p->pdds[i]; 549 550 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 551 "stats_%u", pdd->dev->id); 552 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); 553 if (!pdd->kobj_stats) 554 return; 555 556 ret = kobject_init_and_add(pdd->kobj_stats, 557 &procfs_stats_type, 558 p->kobj, 559 stats_dir_filename); 560 561 if (ret) { 562 pr_warn("Creating KFD proc/stats_%s folder failed", 563 stats_dir_filename); 564 kobject_put(pdd->kobj_stats); 565 pdd->kobj_stats = NULL; 566 return; 567 } 568 569 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, 570 "evicted_ms"); 571 /* Add sysfs file to report compute unit occupancy */ 572 if (pdd->dev->kfd2kgd->get_cu_occupancy) 573 kfd_sysfs_create_file(pdd->kobj_stats, 574 &pdd->attr_cu_occupancy, 575 "cu_occupancy"); 576 } 577 } 578 579 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) 580 { 581 int ret = 0; 582 int i; 583 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; 584 585 if (!p || !p->kobj) 586 return; 587 588 /* 589 * Create sysfs files for each GPU which supports SVM 590 * - proc/<pid>/counters_<gpuid>/ 591 * - proc/<pid>/counters_<gpuid>/faults 592 * - proc/<pid>/counters_<gpuid>/page_in 593 * - proc/<pid>/counters_<gpuid>/page_out 594 */ 595 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 596 struct kfd_process_device *pdd = p->pdds[i]; 597 struct kobject *kobj_counters; 598 599 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, 600 "counters_%u", pdd->dev->id); 601 kobj_counters = kfd_alloc_struct(kobj_counters); 602 if (!kobj_counters) 603 return; 604 605 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, 606 p->kobj, counters_dir_filename); 607 if (ret) { 608 pr_warn("Creating KFD proc/%s folder failed", 609 counters_dir_filename); 610 kobject_put(kobj_counters); 611 return; 612 } 613 614 pdd->kobj_counters = kobj_counters; 615 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, 616 "faults"); 617 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, 618 "page_in"); 619 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, 620 "page_out"); 621 } 622 } 623 624 static void kfd_procfs_add_sysfs_files(struct kfd_process *p) 625 { 626 int i; 627 628 if (!p || !p->kobj) 629 return; 630 631 /* 632 * Create sysfs files for each GPU: 633 * - proc/<pid>/vram_<gpuid> 634 * - proc/<pid>/sdma_<gpuid> 635 */ 636 for (i = 0; i < p->n_pdds; i++) { 637 struct kfd_process_device *pdd = p->pdds[i]; 638 639 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 640 pdd->dev->id); 641 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, 642 pdd->vram_filename); 643 644 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 645 pdd->dev->id); 646 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, 647 pdd->sdma_filename); 648 } 649 } 650 651 void kfd_procfs_del_queue(struct queue *q) 652 { 653 if (!q) 654 return; 655 656 kobject_del(&q->kobj); 657 kobject_put(&q->kobj); 658 } 659 660 int kfd_process_create_wq(void) 661 { 662 if (!kfd_process_wq) 663 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 664 if (!kfd_restore_wq) 665 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0); 666 667 if (!kfd_process_wq || !kfd_restore_wq) { 668 kfd_process_destroy_wq(); 669 return -ENOMEM; 670 } 671 672 return 0; 673 } 674 675 void kfd_process_destroy_wq(void) 676 { 677 if (kfd_process_wq) { 678 destroy_workqueue(kfd_process_wq); 679 kfd_process_wq = NULL; 680 } 681 if (kfd_restore_wq) { 682 destroy_workqueue(kfd_restore_wq); 683 kfd_restore_wq = NULL; 684 } 685 } 686 687 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 688 struct kfd_process_device *pdd) 689 { 690 struct kfd_dev *dev = pdd->dev; 691 692 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->drm_priv); 693 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, pdd->drm_priv, 694 NULL); 695 } 696 697 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 698 * This function should be only called right after the process 699 * is created and when kfd_processes_mutex is still being held 700 * to avoid concurrency. Because of that exclusiveness, we do 701 * not need to take p->mutex. 702 */ 703 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 704 uint64_t gpu_va, uint32_t size, 705 uint32_t flags, void **kptr) 706 { 707 struct kfd_dev *kdev = pdd->dev; 708 struct kgd_mem *mem = NULL; 709 int handle; 710 int err; 711 712 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size, 713 pdd->drm_priv, &mem, NULL, flags); 714 if (err) 715 goto err_alloc_mem; 716 717 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, 718 pdd->drm_priv, NULL); 719 if (err) 720 goto err_map_mem; 721 722 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true); 723 if (err) { 724 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 725 goto sync_memory_failed; 726 } 727 728 /* Create an obj handle so kfd_process_device_remove_obj_handle 729 * will take care of the bo removal when the process finishes. 730 * We do not need to take p->mutex, because the process is just 731 * created and the ioctls have not had the chance to run. 732 */ 733 handle = kfd_process_device_create_obj_handle(pdd, mem); 734 735 if (handle < 0) { 736 err = handle; 737 goto free_gpuvm; 738 } 739 740 if (kptr) { 741 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd, 742 (struct kgd_mem *)mem, kptr, NULL); 743 if (err) { 744 pr_debug("Map GTT BO to kernel failed\n"); 745 goto free_obj_handle; 746 } 747 } 748 749 return err; 750 751 free_obj_handle: 752 kfd_process_device_remove_obj_handle(pdd, handle); 753 free_gpuvm: 754 sync_memory_failed: 755 kfd_process_free_gpuvm(mem, pdd); 756 return err; 757 758 err_map_mem: 759 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, pdd->drm_priv, 760 NULL); 761 err_alloc_mem: 762 *kptr = NULL; 763 return err; 764 } 765 766 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 767 * process for IB usage The memory reserved is for KFD to submit 768 * IB to AMDGPU from kernel. If the memory is reserved 769 * successfully, ib_kaddr will have the CPU/kernel 770 * address. Check ib_kaddr before accessing the memory. 771 */ 772 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 773 { 774 struct qcm_process_device *qpd = &pdd->qpd; 775 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 776 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 777 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 778 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 779 void *kaddr; 780 int ret; 781 782 if (qpd->ib_kaddr || !qpd->ib_base) 783 return 0; 784 785 /* ib_base is only set for dGPU */ 786 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 787 &kaddr); 788 if (ret) 789 return ret; 790 791 qpd->ib_kaddr = kaddr; 792 793 return 0; 794 } 795 796 struct kfd_process *kfd_create_process(struct file *filep) 797 { 798 struct kfd_process *process; 799 struct task_struct *thread = current; 800 int ret; 801 802 if (!thread->mm) 803 return ERR_PTR(-EINVAL); 804 805 /* Only the pthreads threading model is supported. */ 806 if (thread->group_leader->mm != thread->mm) 807 return ERR_PTR(-EINVAL); 808 809 /* 810 * take kfd processes mutex before starting of process creation 811 * so there won't be a case where two threads of the same process 812 * create two kfd_process structures 813 */ 814 mutex_lock(&kfd_processes_mutex); 815 816 /* A prior open of /dev/kfd could have already created the process. */ 817 process = find_process(thread); 818 if (process) { 819 pr_debug("Process already found\n"); 820 } else { 821 process = create_process(thread); 822 if (IS_ERR(process)) 823 goto out; 824 825 ret = kfd_process_init_cwsr_apu(process, filep); 826 if (ret) 827 goto out_destroy; 828 829 if (!procfs.kobj) 830 goto out; 831 832 process->kobj = kfd_alloc_struct(process->kobj); 833 if (!process->kobj) { 834 pr_warn("Creating procfs kobject failed"); 835 goto out; 836 } 837 ret = kobject_init_and_add(process->kobj, &procfs_type, 838 procfs.kobj, "%d", 839 (int)process->lead_thread->pid); 840 if (ret) { 841 pr_warn("Creating procfs pid directory failed"); 842 kobject_put(process->kobj); 843 goto out; 844 } 845 846 kfd_sysfs_create_file(process->kobj, &process->attr_pasid, 847 "pasid"); 848 849 process->kobj_queues = kobject_create_and_add("queues", 850 process->kobj); 851 if (!process->kobj_queues) 852 pr_warn("Creating KFD proc/queues folder failed"); 853 854 kfd_procfs_add_sysfs_stats(process); 855 kfd_procfs_add_sysfs_files(process); 856 kfd_procfs_add_sysfs_counters(process); 857 } 858 out: 859 if (!IS_ERR(process)) 860 kref_get(&process->ref); 861 mutex_unlock(&kfd_processes_mutex); 862 863 return process; 864 865 out_destroy: 866 hash_del_rcu(&process->kfd_processes); 867 mutex_unlock(&kfd_processes_mutex); 868 synchronize_srcu(&kfd_processes_srcu); 869 /* kfd_process_free_notifier will trigger the cleanup */ 870 mmu_notifier_put(&process->mmu_notifier); 871 return ERR_PTR(ret); 872 } 873 874 struct kfd_process *kfd_get_process(const struct task_struct *thread) 875 { 876 struct kfd_process *process; 877 878 if (!thread->mm) 879 return ERR_PTR(-EINVAL); 880 881 /* Only the pthreads threading model is supported. */ 882 if (thread->group_leader->mm != thread->mm) 883 return ERR_PTR(-EINVAL); 884 885 process = find_process(thread); 886 if (!process) 887 return ERR_PTR(-EINVAL); 888 889 return process; 890 } 891 892 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 893 { 894 struct kfd_process *process; 895 896 hash_for_each_possible_rcu(kfd_processes_table, process, 897 kfd_processes, (uintptr_t)mm) 898 if (process->mm == mm) 899 return process; 900 901 return NULL; 902 } 903 904 static struct kfd_process *find_process(const struct task_struct *thread) 905 { 906 struct kfd_process *p; 907 int idx; 908 909 idx = srcu_read_lock(&kfd_processes_srcu); 910 p = find_process_by_mm(thread->mm); 911 srcu_read_unlock(&kfd_processes_srcu, idx); 912 913 return p; 914 } 915 916 void kfd_unref_process(struct kfd_process *p) 917 { 918 kref_put(&p->ref, kfd_process_ref_release); 919 } 920 921 922 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 923 { 924 struct kfd_process *p = pdd->process; 925 void *mem; 926 int id; 927 int i; 928 929 /* 930 * Remove all handles from idr and release appropriate 931 * local memory object 932 */ 933 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 934 935 for (i = 0; i < p->n_pdds; i++) { 936 struct kfd_process_device *peer_pdd = p->pdds[i]; 937 938 if (!peer_pdd->drm_priv) 939 continue; 940 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 941 peer_pdd->dev->kgd, mem, peer_pdd->drm_priv); 942 } 943 944 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem, 945 pdd->drm_priv, NULL); 946 kfd_process_device_remove_obj_handle(pdd, id); 947 } 948 } 949 950 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 951 { 952 int i; 953 954 for (i = 0; i < p->n_pdds; i++) 955 kfd_process_device_free_bos(p->pdds[i]); 956 } 957 958 static void kfd_process_destroy_pdds(struct kfd_process *p) 959 { 960 int i; 961 962 for (i = 0; i < p->n_pdds; i++) { 963 struct kfd_process_device *pdd = p->pdds[i]; 964 965 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 966 pdd->dev->id, p->pasid); 967 968 if (pdd->drm_file) { 969 amdgpu_amdkfd_gpuvm_release_process_vm( 970 pdd->dev->kgd, pdd->drm_priv); 971 fput(pdd->drm_file); 972 } 973 974 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 975 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 976 get_order(KFD_CWSR_TBA_TMA_SIZE)); 977 978 kfree(pdd->qpd.doorbell_bitmap); 979 idr_destroy(&pdd->alloc_idr); 980 981 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index); 982 983 /* 984 * before destroying pdd, make sure to report availability 985 * for auto suspend 986 */ 987 if (pdd->runtime_inuse) { 988 pm_runtime_mark_last_busy(pdd->dev->ddev->dev); 989 pm_runtime_put_autosuspend(pdd->dev->ddev->dev); 990 pdd->runtime_inuse = false; 991 } 992 993 kfree(pdd); 994 p->pdds[i] = NULL; 995 } 996 p->n_pdds = 0; 997 } 998 999 static void kfd_process_remove_sysfs(struct kfd_process *p) 1000 { 1001 struct kfd_process_device *pdd; 1002 int i; 1003 1004 if (!p->kobj) 1005 return; 1006 1007 sysfs_remove_file(p->kobj, &p->attr_pasid); 1008 kobject_del(p->kobj_queues); 1009 kobject_put(p->kobj_queues); 1010 p->kobj_queues = NULL; 1011 1012 for (i = 0; i < p->n_pdds; i++) { 1013 pdd = p->pdds[i]; 1014 1015 sysfs_remove_file(p->kobj, &pdd->attr_vram); 1016 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 1017 1018 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 1019 if (pdd->dev->kfd2kgd->get_cu_occupancy) 1020 sysfs_remove_file(pdd->kobj_stats, 1021 &pdd->attr_cu_occupancy); 1022 kobject_del(pdd->kobj_stats); 1023 kobject_put(pdd->kobj_stats); 1024 pdd->kobj_stats = NULL; 1025 } 1026 1027 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 1028 pdd = p->pdds[i]; 1029 1030 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); 1031 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); 1032 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); 1033 kobject_del(pdd->kobj_counters); 1034 kobject_put(pdd->kobj_counters); 1035 pdd->kobj_counters = NULL; 1036 } 1037 1038 kobject_del(p->kobj); 1039 kobject_put(p->kobj); 1040 p->kobj = NULL; 1041 } 1042 1043 /* No process locking is needed in this function, because the process 1044 * is not findable any more. We must assume that no other thread is 1045 * using it any more, otherwise we couldn't safely free the process 1046 * structure in the end. 1047 */ 1048 static void kfd_process_wq_release(struct work_struct *work) 1049 { 1050 struct kfd_process *p = container_of(work, struct kfd_process, 1051 release_work); 1052 kfd_process_remove_sysfs(p); 1053 kfd_iommu_unbind_process(p); 1054 1055 kfd_process_free_outstanding_kfd_bos(p); 1056 svm_range_list_fini(p); 1057 1058 kfd_process_destroy_pdds(p); 1059 dma_fence_put(p->ef); 1060 1061 kfd_event_free_process(p); 1062 1063 kfd_pasid_free(p->pasid); 1064 mutex_destroy(&p->mutex); 1065 1066 put_task_struct(p->lead_thread); 1067 1068 kfree(p); 1069 } 1070 1071 static void kfd_process_ref_release(struct kref *ref) 1072 { 1073 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1074 1075 INIT_WORK(&p->release_work, kfd_process_wq_release); 1076 queue_work(kfd_process_wq, &p->release_work); 1077 } 1078 1079 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1080 { 1081 int idx = srcu_read_lock(&kfd_processes_srcu); 1082 struct kfd_process *p = find_process_by_mm(mm); 1083 1084 srcu_read_unlock(&kfd_processes_srcu, idx); 1085 1086 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1087 } 1088 1089 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1090 { 1091 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1092 } 1093 1094 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1095 struct mm_struct *mm) 1096 { 1097 struct kfd_process *p; 1098 int i; 1099 1100 /* 1101 * The kfd_process structure can not be free because the 1102 * mmu_notifier srcu is read locked 1103 */ 1104 p = container_of(mn, struct kfd_process, mmu_notifier); 1105 if (WARN_ON(p->mm != mm)) 1106 return; 1107 1108 mutex_lock(&kfd_processes_mutex); 1109 hash_del_rcu(&p->kfd_processes); 1110 mutex_unlock(&kfd_processes_mutex); 1111 synchronize_srcu(&kfd_processes_srcu); 1112 1113 cancel_delayed_work_sync(&p->eviction_work); 1114 cancel_delayed_work_sync(&p->restore_work); 1115 cancel_delayed_work_sync(&p->svms.restore_work); 1116 1117 mutex_lock(&p->mutex); 1118 1119 /* Iterate over all process device data structures and if the 1120 * pdd is in debug mode, we should first force unregistration, 1121 * then we will be able to destroy the queues 1122 */ 1123 for (i = 0; i < p->n_pdds; i++) { 1124 struct kfd_dev *dev = p->pdds[i]->dev; 1125 1126 mutex_lock(kfd_get_dbgmgr_mutex()); 1127 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) { 1128 if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) { 1129 kfd_dbgmgr_destroy(dev->dbgmgr); 1130 dev->dbgmgr = NULL; 1131 } 1132 } 1133 mutex_unlock(kfd_get_dbgmgr_mutex()); 1134 } 1135 1136 kfd_process_dequeue_from_all_devices(p); 1137 pqm_uninit(&p->pqm); 1138 1139 /* Indicate to other users that MM is no longer valid */ 1140 p->mm = NULL; 1141 /* Signal the eviction fence after user mode queues are 1142 * destroyed. This allows any BOs to be freed without 1143 * triggering pointless evictions or waiting for fences. 1144 */ 1145 dma_fence_signal(p->ef); 1146 1147 mutex_unlock(&p->mutex); 1148 1149 mmu_notifier_put(&p->mmu_notifier); 1150 } 1151 1152 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1153 .release = kfd_process_notifier_release, 1154 .alloc_notifier = kfd_process_alloc_notifier, 1155 .free_notifier = kfd_process_free_notifier, 1156 }; 1157 1158 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1159 { 1160 unsigned long offset; 1161 int i; 1162 1163 for (i = 0; i < p->n_pdds; i++) { 1164 struct kfd_dev *dev = p->pdds[i]->dev; 1165 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1166 1167 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1168 continue; 1169 1170 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1171 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1172 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1173 MAP_SHARED, offset); 1174 1175 if (IS_ERR_VALUE(qpd->tba_addr)) { 1176 int err = qpd->tba_addr; 1177 1178 pr_err("Failure to set tba address. error %d.\n", err); 1179 qpd->tba_addr = 0; 1180 qpd->cwsr_kaddr = NULL; 1181 return err; 1182 } 1183 1184 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1185 1186 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1187 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1188 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1189 } 1190 1191 return 0; 1192 } 1193 1194 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1195 { 1196 struct kfd_dev *dev = pdd->dev; 1197 struct qcm_process_device *qpd = &pdd->qpd; 1198 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1199 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1200 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1201 void *kaddr; 1202 int ret; 1203 1204 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1205 return 0; 1206 1207 /* cwsr_base is only set for dGPU */ 1208 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1209 KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr); 1210 if (ret) 1211 return ret; 1212 1213 qpd->cwsr_kaddr = kaddr; 1214 qpd->tba_addr = qpd->cwsr_base; 1215 1216 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1217 1218 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1219 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1220 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1221 1222 return 0; 1223 } 1224 1225 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1226 uint64_t tba_addr, 1227 uint64_t tma_addr) 1228 { 1229 if (qpd->cwsr_kaddr) { 1230 /* KFD trap handler is bound, record as second-level TBA/TMA 1231 * in first-level TMA. First-level trap will jump to second. 1232 */ 1233 uint64_t *tma = 1234 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1235 tma[0] = tba_addr; 1236 tma[1] = tma_addr; 1237 } else { 1238 /* No trap handler bound, bind as first-level TBA/TMA. */ 1239 qpd->tba_addr = tba_addr; 1240 qpd->tma_addr = tma_addr; 1241 } 1242 } 1243 1244 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1245 { 1246 int i; 1247 1248 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1249 * boot time retry setting. Mixing processes with different 1250 * XNACK/retry settings can hang the GPU. 1251 * 1252 * Different GPUs can have different noretry settings depending 1253 * on HW bugs or limitations. We need to find at least one 1254 * XNACK mode for this process that's compatible with all GPUs. 1255 * Fortunately GPUs with retry enabled (noretry=0) can run code 1256 * built for XNACK-off. On GFXv9 it may perform slower. 1257 * 1258 * Therefore applications built for XNACK-off can always be 1259 * supported and will be our fallback if any GPU does not 1260 * support retry. 1261 */ 1262 for (i = 0; i < p->n_pdds; i++) { 1263 struct kfd_dev *dev = p->pdds[i]->dev; 1264 1265 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1266 * support the SVM APIs and don't need to be considered 1267 * for the XNACK mode selection. 1268 */ 1269 if (dev->device_info->asic_family < CHIP_VEGA10) 1270 continue; 1271 /* Aldebaran can always support XNACK because it can support 1272 * per-process XNACK mode selection. But let the dev->noretry 1273 * setting still influence the default XNACK mode. 1274 */ 1275 if (supported && 1276 dev->device_info->asic_family == CHIP_ALDEBARAN) 1277 continue; 1278 1279 /* GFXv10 and later GPUs do not support shader preemption 1280 * during page faults. This can lead to poor QoS for queue 1281 * management and memory-manager-related preemptions or 1282 * even deadlocks. 1283 */ 1284 if (dev->device_info->asic_family >= CHIP_NAVI10) 1285 return false; 1286 1287 if (dev->noretry) 1288 return false; 1289 } 1290 1291 return true; 1292 } 1293 1294 /* 1295 * On return the kfd_process is fully operational and will be freed when the 1296 * mm is released 1297 */ 1298 static struct kfd_process *create_process(const struct task_struct *thread) 1299 { 1300 struct kfd_process *process; 1301 struct mmu_notifier *mn; 1302 int err = -ENOMEM; 1303 1304 process = kzalloc(sizeof(*process), GFP_KERNEL); 1305 if (!process) 1306 goto err_alloc_process; 1307 1308 kref_init(&process->ref); 1309 mutex_init(&process->mutex); 1310 process->mm = thread->mm; 1311 process->lead_thread = thread->group_leader; 1312 process->n_pdds = 0; 1313 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1314 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1315 process->last_restore_timestamp = get_jiffies_64(); 1316 kfd_event_init_process(process); 1317 process->is_32bit_user_mode = in_compat_syscall(); 1318 1319 process->pasid = kfd_pasid_alloc(); 1320 if (process->pasid == 0) 1321 goto err_alloc_pasid; 1322 1323 err = pqm_init(&process->pqm, process); 1324 if (err != 0) 1325 goto err_process_pqm_init; 1326 1327 /* init process apertures*/ 1328 err = kfd_init_apertures(process); 1329 if (err != 0) 1330 goto err_init_apertures; 1331 1332 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1333 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1334 1335 err = svm_range_list_init(process); 1336 if (err) 1337 goto err_init_svm_range_list; 1338 1339 /* alloc_notifier needs to find the process in the hash table */ 1340 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1341 (uintptr_t)process->mm); 1342 1343 /* MMU notifier registration must be the last call that can fail 1344 * because after this point we cannot unwind the process creation. 1345 * After this point, mmu_notifier_put will trigger the cleanup by 1346 * dropping the last process reference in the free_notifier. 1347 */ 1348 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1349 if (IS_ERR(mn)) { 1350 err = PTR_ERR(mn); 1351 goto err_register_notifier; 1352 } 1353 BUG_ON(mn != &process->mmu_notifier); 1354 1355 get_task_struct(process->lead_thread); 1356 1357 return process; 1358 1359 err_register_notifier: 1360 hash_del_rcu(&process->kfd_processes); 1361 svm_range_list_fini(process); 1362 err_init_svm_range_list: 1363 kfd_process_free_outstanding_kfd_bos(process); 1364 kfd_process_destroy_pdds(process); 1365 err_init_apertures: 1366 pqm_uninit(&process->pqm); 1367 err_process_pqm_init: 1368 kfd_pasid_free(process->pasid); 1369 err_alloc_pasid: 1370 mutex_destroy(&process->mutex); 1371 kfree(process); 1372 err_alloc_process: 1373 return ERR_PTR(err); 1374 } 1375 1376 static int init_doorbell_bitmap(struct qcm_process_device *qpd, 1377 struct kfd_dev *dev) 1378 { 1379 unsigned int i; 1380 int range_start = dev->shared_resources.non_cp_doorbells_start; 1381 int range_end = dev->shared_resources.non_cp_doorbells_end; 1382 1383 if (!KFD_IS_SOC15(dev->device_info->asic_family)) 1384 return 0; 1385 1386 qpd->doorbell_bitmap = 1387 kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, 1388 BITS_PER_BYTE), GFP_KERNEL); 1389 if (!qpd->doorbell_bitmap) 1390 return -ENOMEM; 1391 1392 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */ 1393 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end); 1394 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", 1395 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1396 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET); 1397 1398 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) { 1399 if (i >= range_start && i <= range_end) { 1400 set_bit(i, qpd->doorbell_bitmap); 1401 set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1402 qpd->doorbell_bitmap); 1403 } 1404 } 1405 1406 return 0; 1407 } 1408 1409 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 1410 struct kfd_process *p) 1411 { 1412 int i; 1413 1414 for (i = 0; i < p->n_pdds; i++) 1415 if (p->pdds[i]->dev == dev) 1416 return p->pdds[i]; 1417 1418 return NULL; 1419 } 1420 1421 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 1422 struct kfd_process *p) 1423 { 1424 struct kfd_process_device *pdd = NULL; 1425 1426 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1427 return NULL; 1428 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1429 if (!pdd) 1430 return NULL; 1431 1432 if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) { 1433 pr_err("Failed to alloc doorbell for pdd\n"); 1434 goto err_free_pdd; 1435 } 1436 1437 if (init_doorbell_bitmap(&pdd->qpd, dev)) { 1438 pr_err("Failed to init doorbell for process\n"); 1439 goto err_free_pdd; 1440 } 1441 1442 pdd->dev = dev; 1443 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1444 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1445 pdd->qpd.dqm = dev->dqm; 1446 pdd->qpd.pqm = &p->pqm; 1447 pdd->qpd.evicted = 0; 1448 pdd->qpd.mapped_gws_queue = false; 1449 pdd->process = p; 1450 pdd->bound = PDD_UNBOUND; 1451 pdd->already_dequeued = false; 1452 pdd->runtime_inuse = false; 1453 pdd->vram_usage = 0; 1454 pdd->sdma_past_activity_counter = 0; 1455 atomic64_set(&pdd->evict_duration_counter, 0); 1456 p->pdds[p->n_pdds++] = pdd; 1457 1458 /* Init idr used for memory handle translation */ 1459 idr_init(&pdd->alloc_idr); 1460 1461 return pdd; 1462 1463 err_free_pdd: 1464 kfree(pdd); 1465 return NULL; 1466 } 1467 1468 /** 1469 * kfd_process_device_init_vm - Initialize a VM for a process-device 1470 * 1471 * @pdd: The process-device 1472 * @drm_file: Optional pointer to a DRM file descriptor 1473 * 1474 * If @drm_file is specified, it will be used to acquire the VM from 1475 * that file descriptor. If successful, the @pdd takes ownership of 1476 * the file descriptor. 1477 * 1478 * If @drm_file is NULL, a new VM is created. 1479 * 1480 * Returns 0 on success, -errno on failure. 1481 */ 1482 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1483 struct file *drm_file) 1484 { 1485 struct kfd_process *p; 1486 struct kfd_dev *dev; 1487 int ret; 1488 1489 if (!drm_file) 1490 return -EINVAL; 1491 1492 if (pdd->drm_priv) 1493 return -EBUSY; 1494 1495 p = pdd->process; 1496 dev = pdd->dev; 1497 1498 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm( 1499 dev->kgd, drm_file, p->pasid, 1500 &p->kgd_process_info, &p->ef); 1501 if (ret) { 1502 pr_err("Failed to create process VM object\n"); 1503 return ret; 1504 } 1505 pdd->drm_priv = drm_file->private_data; 1506 1507 ret = kfd_process_device_reserve_ib_mem(pdd); 1508 if (ret) 1509 goto err_reserve_ib_mem; 1510 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1511 if (ret) 1512 goto err_init_cwsr; 1513 1514 pdd->drm_file = drm_file; 1515 1516 return 0; 1517 1518 err_init_cwsr: 1519 err_reserve_ib_mem: 1520 kfd_process_device_free_bos(pdd); 1521 pdd->drm_priv = NULL; 1522 1523 return ret; 1524 } 1525 1526 /* 1527 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1528 * to the device. 1529 * Unbinding occurs when the process dies or the device is removed. 1530 * 1531 * Assumes that the process lock is held. 1532 */ 1533 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 1534 struct kfd_process *p) 1535 { 1536 struct kfd_process_device *pdd; 1537 int err; 1538 1539 pdd = kfd_get_process_device_data(dev, p); 1540 if (!pdd) { 1541 pr_err("Process device data doesn't exist\n"); 1542 return ERR_PTR(-ENOMEM); 1543 } 1544 1545 if (!pdd->drm_priv) 1546 return ERR_PTR(-ENODEV); 1547 1548 /* 1549 * signal runtime-pm system to auto resume and prevent 1550 * further runtime suspend once device pdd is created until 1551 * pdd is destroyed. 1552 */ 1553 if (!pdd->runtime_inuse) { 1554 err = pm_runtime_get_sync(dev->ddev->dev); 1555 if (err < 0) { 1556 pm_runtime_put_autosuspend(dev->ddev->dev); 1557 return ERR_PTR(err); 1558 } 1559 } 1560 1561 err = kfd_iommu_bind_process_to_device(pdd); 1562 if (err) 1563 goto out; 1564 1565 /* 1566 * make sure that runtime_usage counter is incremented just once 1567 * per pdd 1568 */ 1569 pdd->runtime_inuse = true; 1570 1571 return pdd; 1572 1573 out: 1574 /* balance runpm reference count and exit with error */ 1575 if (!pdd->runtime_inuse) { 1576 pm_runtime_mark_last_busy(dev->ddev->dev); 1577 pm_runtime_put_autosuspend(dev->ddev->dev); 1578 } 1579 1580 return ERR_PTR(err); 1581 } 1582 1583 /* Create specific handle mapped to mem from process local memory idr 1584 * Assumes that the process lock is held. 1585 */ 1586 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1587 void *mem) 1588 { 1589 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1590 } 1591 1592 /* Translate specific handle from process local memory idr 1593 * Assumes that the process lock is held. 1594 */ 1595 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1596 int handle) 1597 { 1598 if (handle < 0) 1599 return NULL; 1600 1601 return idr_find(&pdd->alloc_idr, handle); 1602 } 1603 1604 /* Remove specific handle from process local memory idr 1605 * Assumes that the process lock is held. 1606 */ 1607 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1608 int handle) 1609 { 1610 if (handle >= 0) 1611 idr_remove(&pdd->alloc_idr, handle); 1612 } 1613 1614 /* This increments the process->ref counter. */ 1615 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) 1616 { 1617 struct kfd_process *p, *ret_p = NULL; 1618 unsigned int temp; 1619 1620 int idx = srcu_read_lock(&kfd_processes_srcu); 1621 1622 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1623 if (p->pasid == pasid) { 1624 kref_get(&p->ref); 1625 ret_p = p; 1626 break; 1627 } 1628 } 1629 1630 srcu_read_unlock(&kfd_processes_srcu, idx); 1631 1632 return ret_p; 1633 } 1634 1635 /* This increments the process->ref counter. */ 1636 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1637 { 1638 struct kfd_process *p; 1639 1640 int idx = srcu_read_lock(&kfd_processes_srcu); 1641 1642 p = find_process_by_mm(mm); 1643 if (p) 1644 kref_get(&p->ref); 1645 1646 srcu_read_unlock(&kfd_processes_srcu, idx); 1647 1648 return p; 1649 } 1650 1651 /* kfd_process_evict_queues - Evict all user queues of a process 1652 * 1653 * Eviction is reference-counted per process-device. This means multiple 1654 * evictions from different sources can be nested safely. 1655 */ 1656 int kfd_process_evict_queues(struct kfd_process *p) 1657 { 1658 int r = 0; 1659 int i; 1660 unsigned int n_evicted = 0; 1661 1662 for (i = 0; i < p->n_pdds; i++) { 1663 struct kfd_process_device *pdd = p->pdds[i]; 1664 1665 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1666 &pdd->qpd); 1667 if (r) { 1668 pr_err("Failed to evict process queues\n"); 1669 goto fail; 1670 } 1671 n_evicted++; 1672 } 1673 1674 return r; 1675 1676 fail: 1677 /* To keep state consistent, roll back partial eviction by 1678 * restoring queues 1679 */ 1680 for (i = 0; i < p->n_pdds; i++) { 1681 struct kfd_process_device *pdd = p->pdds[i]; 1682 1683 if (n_evicted == 0) 1684 break; 1685 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1686 &pdd->qpd)) 1687 pr_err("Failed to restore queues\n"); 1688 1689 n_evicted--; 1690 } 1691 1692 return r; 1693 } 1694 1695 /* kfd_process_restore_queues - Restore all user queues of a process */ 1696 int kfd_process_restore_queues(struct kfd_process *p) 1697 { 1698 int r, ret = 0; 1699 int i; 1700 1701 for (i = 0; i < p->n_pdds; i++) { 1702 struct kfd_process_device *pdd = p->pdds[i]; 1703 1704 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1705 &pdd->qpd); 1706 if (r) { 1707 pr_err("Failed to restore process queues\n"); 1708 if (!ret) 1709 ret = r; 1710 } 1711 } 1712 1713 return ret; 1714 } 1715 1716 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 1717 { 1718 int i; 1719 1720 for (i = 0; i < p->n_pdds; i++) 1721 if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id) 1722 return i; 1723 return -EINVAL; 1724 } 1725 1726 int 1727 kfd_process_gpuid_from_kgd(struct kfd_process *p, struct amdgpu_device *adev, 1728 uint32_t *gpuid, uint32_t *gpuidx) 1729 { 1730 struct kgd_dev *kgd = (struct kgd_dev *)adev; 1731 int i; 1732 1733 for (i = 0; i < p->n_pdds; i++) 1734 if (p->pdds[i] && p->pdds[i]->dev->kgd == kgd) { 1735 *gpuid = p->pdds[i]->dev->id; 1736 *gpuidx = i; 1737 return 0; 1738 } 1739 return -EINVAL; 1740 } 1741 1742 static void evict_process_worker(struct work_struct *work) 1743 { 1744 int ret; 1745 struct kfd_process *p; 1746 struct delayed_work *dwork; 1747 1748 dwork = to_delayed_work(work); 1749 1750 /* Process termination destroys this worker thread. So during the 1751 * lifetime of this thread, kfd_process p will be valid 1752 */ 1753 p = container_of(dwork, struct kfd_process, eviction_work); 1754 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, 1755 "Eviction fence mismatch\n"); 1756 1757 /* Narrow window of overlap between restore and evict work 1758 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos 1759 * unreserves KFD BOs, it is possible to evicted again. But 1760 * restore has few more steps of finish. So lets wait for any 1761 * previous restore work to complete 1762 */ 1763 flush_delayed_work(&p->restore_work); 1764 1765 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1766 ret = kfd_process_evict_queues(p); 1767 if (!ret) { 1768 dma_fence_signal(p->ef); 1769 dma_fence_put(p->ef); 1770 p->ef = NULL; 1771 queue_delayed_work(kfd_restore_wq, &p->restore_work, 1772 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); 1773 1774 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 1775 } else 1776 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 1777 } 1778 1779 static void restore_process_worker(struct work_struct *work) 1780 { 1781 struct delayed_work *dwork; 1782 struct kfd_process *p; 1783 int ret = 0; 1784 1785 dwork = to_delayed_work(work); 1786 1787 /* Process termination destroys this worker thread. So during the 1788 * lifetime of this thread, kfd_process p will be valid 1789 */ 1790 p = container_of(dwork, struct kfd_process, restore_work); 1791 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 1792 1793 /* Setting last_restore_timestamp before successful restoration. 1794 * Otherwise this would have to be set by KGD (restore_process_bos) 1795 * before KFD BOs are unreserved. If not, the process can be evicted 1796 * again before the timestamp is set. 1797 * If restore fails, the timestamp will be set again in the next 1798 * attempt. This would mean that the minimum GPU quanta would be 1799 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 1800 * functions) 1801 */ 1802 1803 p->last_restore_timestamp = get_jiffies_64(); 1804 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info, 1805 &p->ef); 1806 if (ret) { 1807 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 1808 p->pasid, PROCESS_BACK_OFF_TIME_MS); 1809 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work, 1810 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); 1811 WARN(!ret, "reschedule restore work failed\n"); 1812 return; 1813 } 1814 1815 ret = kfd_process_restore_queues(p); 1816 if (!ret) 1817 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 1818 else 1819 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 1820 } 1821 1822 void kfd_suspend_all_processes(void) 1823 { 1824 struct kfd_process *p; 1825 unsigned int temp; 1826 int idx = srcu_read_lock(&kfd_processes_srcu); 1827 1828 WARN(debug_evictions, "Evicting all processes"); 1829 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1830 cancel_delayed_work_sync(&p->eviction_work); 1831 cancel_delayed_work_sync(&p->restore_work); 1832 1833 if (kfd_process_evict_queues(p)) 1834 pr_err("Failed to suspend process 0x%x\n", p->pasid); 1835 dma_fence_signal(p->ef); 1836 dma_fence_put(p->ef); 1837 p->ef = NULL; 1838 } 1839 srcu_read_unlock(&kfd_processes_srcu, idx); 1840 } 1841 1842 int kfd_resume_all_processes(void) 1843 { 1844 struct kfd_process *p; 1845 unsigned int temp; 1846 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 1847 1848 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1849 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) { 1850 pr_err("Restore process %d failed during resume\n", 1851 p->pasid); 1852 ret = -EFAULT; 1853 } 1854 } 1855 srcu_read_unlock(&kfd_processes_srcu, idx); 1856 return ret; 1857 } 1858 1859 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 1860 struct vm_area_struct *vma) 1861 { 1862 struct kfd_process_device *pdd; 1863 struct qcm_process_device *qpd; 1864 1865 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 1866 pr_err("Incorrect CWSR mapping size.\n"); 1867 return -EINVAL; 1868 } 1869 1870 pdd = kfd_get_process_device_data(dev, process); 1871 if (!pdd) 1872 return -EINVAL; 1873 qpd = &pdd->qpd; 1874 1875 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1876 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1877 if (!qpd->cwsr_kaddr) { 1878 pr_err("Error allocating per process CWSR buffer.\n"); 1879 return -ENOMEM; 1880 } 1881 1882 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND 1883 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; 1884 /* Mapping pages to user process */ 1885 return remap_pfn_range(vma, vma->vm_start, 1886 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 1887 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 1888 } 1889 1890 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type) 1891 { 1892 struct kfd_dev *dev = pdd->dev; 1893 1894 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1895 /* Nothing to flush until a VMID is assigned, which 1896 * only happens when the first queue is created. 1897 */ 1898 if (pdd->qpd.vmid) 1899 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd, 1900 pdd->qpd.vmid); 1901 } else { 1902 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd, 1903 pdd->process->pasid, type); 1904 } 1905 } 1906 1907 #if defined(CONFIG_DEBUG_FS) 1908 1909 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 1910 { 1911 struct kfd_process *p; 1912 unsigned int temp; 1913 int r = 0; 1914 1915 int idx = srcu_read_lock(&kfd_processes_srcu); 1916 1917 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1918 seq_printf(m, "Process %d PASID 0x%x:\n", 1919 p->lead_thread->tgid, p->pasid); 1920 1921 mutex_lock(&p->mutex); 1922 r = pqm_debugfs_mqds(m, &p->pqm); 1923 mutex_unlock(&p->mutex); 1924 1925 if (r) 1926 break; 1927 } 1928 1929 srcu_read_unlock(&kfd_processes_srcu, idx); 1930 1931 return r; 1932 } 1933 1934 #endif 1935 1936