xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/mutex.h>
24 #include <linux/log2.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/amd-iommu.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 
39 struct mm_struct;
40 
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_dbgmgr.h"
44 #include "kfd_iommu.h"
45 #include "kfd_svm.h"
46 
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 static DEFINE_MUTEX(kfd_processes_mutex);
53 
54 DEFINE_SRCU(kfd_processes_srcu);
55 
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58 
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66 
67 static struct kfd_process *find_process(const struct task_struct *thread);
68 static void kfd_process_ref_release(struct kref *ref);
69 static struct kfd_process *create_process(const struct task_struct *thread);
70 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
71 
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74 
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76 
77 struct kfd_procfs_tree {
78 	struct kobject *kobj;
79 };
80 
81 static struct kfd_procfs_tree procfs;
82 
83 /*
84  * Structure for SDMA activity tracking
85  */
86 struct kfd_sdma_activity_handler_workarea {
87 	struct work_struct sdma_activity_work;
88 	struct kfd_process_device *pdd;
89 	uint64_t sdma_activity_counter;
90 };
91 
92 struct temp_sdma_queue_list {
93 	uint64_t __user *rptr;
94 	uint64_t sdma_val;
95 	unsigned int queue_id;
96 	struct list_head list;
97 };
98 
99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101 	struct kfd_sdma_activity_handler_workarea *workarea;
102 	struct kfd_process_device *pdd;
103 	uint64_t val;
104 	struct mm_struct *mm;
105 	struct queue *q;
106 	struct qcm_process_device *qpd;
107 	struct device_queue_manager *dqm;
108 	int ret = 0;
109 	struct temp_sdma_queue_list sdma_q_list;
110 	struct temp_sdma_queue_list *sdma_q, *next;
111 
112 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 				sdma_activity_work);
114 
115 	pdd = workarea->pdd;
116 	if (!pdd)
117 		return;
118 	dqm = pdd->dev->dqm;
119 	qpd = &pdd->qpd;
120 	if (!dqm || !qpd)
121 		return;
122 	/*
123 	 * Total SDMA activity is current SDMA activity + past SDMA activity
124 	 * Past SDMA count is stored in pdd.
125 	 * To get the current activity counters for all active SDMA queues,
126 	 * we loop over all SDMA queues and get their counts from user-space.
127 	 *
128 	 * We cannot call get_user() with dqm_lock held as it can cause
129 	 * a circular lock dependency situation. To read the SDMA stats,
130 	 * we need to do the following:
131 	 *
132 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 	 *    with dqm_lock/dqm_unlock().
134 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 	 *    Save the SDMA count for each node and also add the count to the total
136 	 *    SDMA count counter.
137 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
138 	 *    from the qpd->queues_list.
139 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 	 *    If any node got deleted, its SDMA count would be captured in the sdma
141 	 *    past activity counter. So subtract the SDMA counter stored in step 2
142 	 *    for this node from the total SDMA count.
143 	 */
144 	INIT_LIST_HEAD(&sdma_q_list.list);
145 
146 	/*
147 	 * Create the temp list of all SDMA queues
148 	 */
149 	dqm_lock(dqm);
150 
151 	list_for_each_entry(q, &qpd->queues_list, list) {
152 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 			continue;
155 
156 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 		if (!sdma_q) {
158 			dqm_unlock(dqm);
159 			goto cleanup;
160 		}
161 
162 		INIT_LIST_HEAD(&sdma_q->list);
163 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 		sdma_q->queue_id = q->properties.queue_id;
165 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 	}
167 
168 	/*
169 	 * If the temp list is empty, then no SDMA queues nodes were found in
170 	 * qpd->queues_list. Return the past activity count as the total sdma
171 	 * count
172 	 */
173 	if (list_empty(&sdma_q_list.list)) {
174 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 		dqm_unlock(dqm);
176 		return;
177 	}
178 
179 	dqm_unlock(dqm);
180 
181 	/*
182 	 * Get the usage count for each SDMA queue in temp_list.
183 	 */
184 	mm = get_task_mm(pdd->process->lead_thread);
185 	if (!mm)
186 		goto cleanup;
187 
188 	kthread_use_mm(mm);
189 
190 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 		val = 0;
192 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 		if (ret) {
194 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 				 sdma_q->queue_id);
196 		} else {
197 			sdma_q->sdma_val = val;
198 			workarea->sdma_activity_counter += val;
199 		}
200 	}
201 
202 	kthread_unuse_mm(mm);
203 	mmput(mm);
204 
205 	/*
206 	 * Do a second iteration over qpd_queues_list to check if any SDMA
207 	 * nodes got deleted while fetching SDMA counter.
208 	 */
209 	dqm_lock(dqm);
210 
211 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212 
213 	list_for_each_entry(q, &qpd->queues_list, list) {
214 		if (list_empty(&sdma_q_list.list))
215 			break;
216 
217 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 			continue;
220 
221 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 			     (sdma_q->queue_id == q->properties.queue_id)) {
224 				list_del(&sdma_q->list);
225 				kfree(sdma_q);
226 				break;
227 			}
228 		}
229 	}
230 
231 	dqm_unlock(dqm);
232 
233 	/*
234 	 * If temp list is not empty, it implies some queues got deleted
235 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 	 * count for each node from the total SDMA count.
237 	 */
238 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 		list_del(&sdma_q->list);
241 		kfree(sdma_q);
242 	}
243 
244 	return;
245 
246 cleanup:
247 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 		list_del(&sdma_q->list);
249 		kfree(sdma_q);
250 	}
251 }
252 
253 /**
254  * @kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255  * by current process. Translates acquired wave count into number of compute units
256  * that are occupied.
257  *
258  * @atr: Handle of attribute that allows reporting of wave count. The attribute
259  * handle encapsulates GPU device it is associated with, thereby allowing collection
260  * of waves in flight, etc
261  *
262  * @buffer: Handle of user provided buffer updated with wave count
263  *
264  * Return: Number of bytes written to user buffer or an error value
265  */
266 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
267 {
268 	int cu_cnt;
269 	int wave_cnt;
270 	int max_waves_per_cu;
271 	struct kfd_dev *dev = NULL;
272 	struct kfd_process *proc = NULL;
273 	struct kfd_process_device *pdd = NULL;
274 
275 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
276 	dev = pdd->dev;
277 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
278 		return -EINVAL;
279 
280 	cu_cnt = 0;
281 	proc = pdd->process;
282 	if (pdd->qpd.queue_count == 0) {
283 		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
284 			 dev->id, proc->pasid);
285 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
286 	}
287 
288 	/* Collect wave count from device if it supports */
289 	wave_cnt = 0;
290 	max_waves_per_cu = 0;
291 	dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt,
292 			&max_waves_per_cu);
293 
294 	/* Translate wave count to number of compute units */
295 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
296 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
297 }
298 
299 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
300 			       char *buffer)
301 {
302 	if (strcmp(attr->name, "pasid") == 0) {
303 		struct kfd_process *p = container_of(attr, struct kfd_process,
304 						     attr_pasid);
305 
306 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
307 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
308 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
309 							      attr_vram);
310 		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
311 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
312 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
313 							      attr_sdma);
314 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
315 
316 		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
317 					kfd_sdma_activity_worker);
318 
319 		sdma_activity_work_handler.pdd = pdd;
320 		sdma_activity_work_handler.sdma_activity_counter = 0;
321 
322 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
323 
324 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
325 
326 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
327 				(sdma_activity_work_handler.sdma_activity_counter)/
328 				 SDMA_ACTIVITY_DIVISOR);
329 	} else {
330 		pr_err("Invalid attribute");
331 		return -EINVAL;
332 	}
333 
334 	return 0;
335 }
336 
337 static void kfd_procfs_kobj_release(struct kobject *kobj)
338 {
339 	kfree(kobj);
340 }
341 
342 static const struct sysfs_ops kfd_procfs_ops = {
343 	.show = kfd_procfs_show,
344 };
345 
346 static struct kobj_type procfs_type = {
347 	.release = kfd_procfs_kobj_release,
348 	.sysfs_ops = &kfd_procfs_ops,
349 };
350 
351 void kfd_procfs_init(void)
352 {
353 	int ret = 0;
354 
355 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
356 	if (!procfs.kobj)
357 		return;
358 
359 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
360 				   &kfd_device->kobj, "proc");
361 	if (ret) {
362 		pr_warn("Could not create procfs proc folder");
363 		/* If we fail to create the procfs, clean up */
364 		kfd_procfs_shutdown();
365 	}
366 }
367 
368 void kfd_procfs_shutdown(void)
369 {
370 	if (procfs.kobj) {
371 		kobject_del(procfs.kobj);
372 		kobject_put(procfs.kobj);
373 		procfs.kobj = NULL;
374 	}
375 }
376 
377 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
378 				     struct attribute *attr, char *buffer)
379 {
380 	struct queue *q = container_of(kobj, struct queue, kobj);
381 
382 	if (!strcmp(attr->name, "size"))
383 		return snprintf(buffer, PAGE_SIZE, "%llu",
384 				q->properties.queue_size);
385 	else if (!strcmp(attr->name, "type"))
386 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
387 	else if (!strcmp(attr->name, "gpuid"))
388 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
389 	else
390 		pr_err("Invalid attribute");
391 
392 	return 0;
393 }
394 
395 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
396 				     struct attribute *attr, char *buffer)
397 {
398 	if (strcmp(attr->name, "evicted_ms") == 0) {
399 		struct kfd_process_device *pdd = container_of(attr,
400 				struct kfd_process_device,
401 				attr_evict);
402 		uint64_t evict_jiffies;
403 
404 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
405 
406 		return snprintf(buffer,
407 				PAGE_SIZE,
408 				"%llu\n",
409 				jiffies64_to_msecs(evict_jiffies));
410 
411 	/* Sysfs handle that gets CU occupancy is per device */
412 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
413 		return kfd_get_cu_occupancy(attr, buffer);
414 	} else {
415 		pr_err("Invalid attribute");
416 	}
417 
418 	return 0;
419 }
420 
421 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
422 				       struct attribute *attr, char *buf)
423 {
424 	struct kfd_process_device *pdd;
425 
426 	if (!strcmp(attr->name, "faults")) {
427 		pdd = container_of(attr, struct kfd_process_device,
428 				   attr_faults);
429 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
430 	}
431 	if (!strcmp(attr->name, "page_in")) {
432 		pdd = container_of(attr, struct kfd_process_device,
433 				   attr_page_in);
434 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
435 	}
436 	if (!strcmp(attr->name, "page_out")) {
437 		pdd = container_of(attr, struct kfd_process_device,
438 				   attr_page_out);
439 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
440 	}
441 	return 0;
442 }
443 
444 static struct attribute attr_queue_size = {
445 	.name = "size",
446 	.mode = KFD_SYSFS_FILE_MODE
447 };
448 
449 static struct attribute attr_queue_type = {
450 	.name = "type",
451 	.mode = KFD_SYSFS_FILE_MODE
452 };
453 
454 static struct attribute attr_queue_gpuid = {
455 	.name = "gpuid",
456 	.mode = KFD_SYSFS_FILE_MODE
457 };
458 
459 static struct attribute *procfs_queue_attrs[] = {
460 	&attr_queue_size,
461 	&attr_queue_type,
462 	&attr_queue_gpuid,
463 	NULL
464 };
465 
466 static const struct sysfs_ops procfs_queue_ops = {
467 	.show = kfd_procfs_queue_show,
468 };
469 
470 static struct kobj_type procfs_queue_type = {
471 	.sysfs_ops = &procfs_queue_ops,
472 	.default_attrs = procfs_queue_attrs,
473 };
474 
475 static const struct sysfs_ops procfs_stats_ops = {
476 	.show = kfd_procfs_stats_show,
477 };
478 
479 static struct kobj_type procfs_stats_type = {
480 	.sysfs_ops = &procfs_stats_ops,
481 	.release = kfd_procfs_kobj_release,
482 };
483 
484 static const struct sysfs_ops sysfs_counters_ops = {
485 	.show = kfd_sysfs_counters_show,
486 };
487 
488 static struct kobj_type sysfs_counters_type = {
489 	.sysfs_ops = &sysfs_counters_ops,
490 	.release = kfd_procfs_kobj_release,
491 };
492 
493 int kfd_procfs_add_queue(struct queue *q)
494 {
495 	struct kfd_process *proc;
496 	int ret;
497 
498 	if (!q || !q->process)
499 		return -EINVAL;
500 	proc = q->process;
501 
502 	/* Create proc/<pid>/queues/<queue id> folder */
503 	if (!proc->kobj_queues)
504 		return -EFAULT;
505 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506 			proc->kobj_queues, "%u", q->properties.queue_id);
507 	if (ret < 0) {
508 		pr_warn("Creating proc/<pid>/queues/%u failed",
509 			q->properties.queue_id);
510 		kobject_put(&q->kobj);
511 		return ret;
512 	}
513 
514 	return 0;
515 }
516 
517 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518 				 char *name)
519 {
520 	int ret;
521 
522 	if (!kobj || !attr || !name)
523 		return;
524 
525 	attr->name = name;
526 	attr->mode = KFD_SYSFS_FILE_MODE;
527 	sysfs_attr_init(attr);
528 
529 	ret = sysfs_create_file(kobj, attr);
530 	if (ret)
531 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532 }
533 
534 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535 {
536 	int ret;
537 	int i;
538 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539 
540 	if (!p || !p->kobj)
541 		return;
542 
543 	/*
544 	 * Create sysfs files for each GPU:
545 	 * - proc/<pid>/stats_<gpuid>/
546 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
547 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
548 	 */
549 	for (i = 0; i < p->n_pdds; i++) {
550 		struct kfd_process_device *pdd = p->pdds[i];
551 
552 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553 				"stats_%u", pdd->dev->id);
554 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555 		if (!pdd->kobj_stats)
556 			return;
557 
558 		ret = kobject_init_and_add(pdd->kobj_stats,
559 					   &procfs_stats_type,
560 					   p->kobj,
561 					   stats_dir_filename);
562 
563 		if (ret) {
564 			pr_warn("Creating KFD proc/stats_%s folder failed",
565 				stats_dir_filename);
566 			kobject_put(pdd->kobj_stats);
567 			pdd->kobj_stats = NULL;
568 			return;
569 		}
570 
571 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572 				      "evicted_ms");
573 		/* Add sysfs file to report compute unit occupancy */
574 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
575 			kfd_sysfs_create_file(pdd->kobj_stats,
576 					      &pdd->attr_cu_occupancy,
577 					      "cu_occupancy");
578 	}
579 }
580 
581 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582 {
583 	int ret = 0;
584 	int i;
585 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586 
587 	if (!p || !p->kobj)
588 		return;
589 
590 	/*
591 	 * Create sysfs files for each GPU which supports SVM
592 	 * - proc/<pid>/counters_<gpuid>/
593 	 * - proc/<pid>/counters_<gpuid>/faults
594 	 * - proc/<pid>/counters_<gpuid>/page_in
595 	 * - proc/<pid>/counters_<gpuid>/page_out
596 	 */
597 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598 		struct kfd_process_device *pdd = p->pdds[i];
599 		struct kobject *kobj_counters;
600 
601 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602 			"counters_%u", pdd->dev->id);
603 		kobj_counters = kfd_alloc_struct(kobj_counters);
604 		if (!kobj_counters)
605 			return;
606 
607 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608 					   p->kobj, counters_dir_filename);
609 		if (ret) {
610 			pr_warn("Creating KFD proc/%s folder failed",
611 				counters_dir_filename);
612 			kobject_put(kobj_counters);
613 			return;
614 		}
615 
616 		pdd->kobj_counters = kobj_counters;
617 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618 				      "faults");
619 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620 				      "page_in");
621 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622 				      "page_out");
623 	}
624 }
625 
626 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627 {
628 	int i;
629 
630 	if (!p || !p->kobj)
631 		return;
632 
633 	/*
634 	 * Create sysfs files for each GPU:
635 	 * - proc/<pid>/vram_<gpuid>
636 	 * - proc/<pid>/sdma_<gpuid>
637 	 */
638 	for (i = 0; i < p->n_pdds; i++) {
639 		struct kfd_process_device *pdd = p->pdds[i];
640 
641 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642 			 pdd->dev->id);
643 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644 				      pdd->vram_filename);
645 
646 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647 			 pdd->dev->id);
648 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649 					    pdd->sdma_filename);
650 	}
651 }
652 
653 void kfd_procfs_del_queue(struct queue *q)
654 {
655 	if (!q)
656 		return;
657 
658 	kobject_del(&q->kobj);
659 	kobject_put(&q->kobj);
660 }
661 
662 int kfd_process_create_wq(void)
663 {
664 	if (!kfd_process_wq)
665 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666 	if (!kfd_restore_wq)
667 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
668 
669 	if (!kfd_process_wq || !kfd_restore_wq) {
670 		kfd_process_destroy_wq();
671 		return -ENOMEM;
672 	}
673 
674 	return 0;
675 }
676 
677 void kfd_process_destroy_wq(void)
678 {
679 	if (kfd_process_wq) {
680 		destroy_workqueue(kfd_process_wq);
681 		kfd_process_wq = NULL;
682 	}
683 	if (kfd_restore_wq) {
684 		destroy_workqueue(kfd_restore_wq);
685 		kfd_restore_wq = NULL;
686 	}
687 }
688 
689 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
690 			struct kfd_process_device *pdd, void *kptr)
691 {
692 	struct kfd_dev *dev = pdd->dev;
693 
694 	if (kptr) {
695 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(dev->kgd, mem);
696 		kptr = NULL;
697 	}
698 
699 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->drm_priv);
700 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, pdd->drm_priv,
701 					       NULL);
702 }
703 
704 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
705  *	This function should be only called right after the process
706  *	is created and when kfd_processes_mutex is still being held
707  *	to avoid concurrency. Because of that exclusiveness, we do
708  *	not need to take p->mutex.
709  */
710 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
711 				   uint64_t gpu_va, uint32_t size,
712 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
713 {
714 	struct kfd_dev *kdev = pdd->dev;
715 	int err;
716 
717 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
718 						 pdd->drm_priv, mem, NULL, flags);
719 	if (err)
720 		goto err_alloc_mem;
721 
722 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, *mem,
723 			pdd->drm_priv, NULL);
724 	if (err)
725 		goto err_map_mem;
726 
727 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, *mem, true);
728 	if (err) {
729 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
730 		goto sync_memory_failed;
731 	}
732 
733 	if (kptr) {
734 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd,
735 				(struct kgd_mem *)*mem, kptr, NULL);
736 		if (err) {
737 			pr_debug("Map GTT BO to kernel failed\n");
738 			goto sync_memory_failed;
739 		}
740 	}
741 
742 	return err;
743 
744 sync_memory_failed:
745 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->kgd, *mem, pdd->drm_priv);
746 
747 err_map_mem:
748 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, *mem, pdd->drm_priv,
749 					       NULL);
750 err_alloc_mem:
751 	*mem = NULL;
752 	*kptr = NULL;
753 	return err;
754 }
755 
756 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
757  *	process for IB usage The memory reserved is for KFD to submit
758  *	IB to AMDGPU from kernel.  If the memory is reserved
759  *	successfully, ib_kaddr will have the CPU/kernel
760  *	address. Check ib_kaddr before accessing the memory.
761  */
762 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
763 {
764 	struct qcm_process_device *qpd = &pdd->qpd;
765 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
766 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
767 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
768 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
769 	struct kgd_mem *mem;
770 	void *kaddr;
771 	int ret;
772 
773 	if (qpd->ib_kaddr || !qpd->ib_base)
774 		return 0;
775 
776 	/* ib_base is only set for dGPU */
777 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
778 				      &mem, &kaddr);
779 	if (ret)
780 		return ret;
781 
782 	qpd->ib_mem = mem;
783 	qpd->ib_kaddr = kaddr;
784 
785 	return 0;
786 }
787 
788 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
789 {
790 	struct qcm_process_device *qpd = &pdd->qpd;
791 
792 	if (!qpd->ib_kaddr || !qpd->ib_base)
793 		return;
794 
795 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, qpd->ib_kaddr);
796 }
797 
798 struct kfd_process *kfd_create_process(struct file *filep)
799 {
800 	struct kfd_process *process;
801 	struct task_struct *thread = current;
802 	int ret;
803 
804 	if (!thread->mm)
805 		return ERR_PTR(-EINVAL);
806 
807 	/* Only the pthreads threading model is supported. */
808 	if (thread->group_leader->mm != thread->mm)
809 		return ERR_PTR(-EINVAL);
810 
811 	/*
812 	 * take kfd processes mutex before starting of process creation
813 	 * so there won't be a case where two threads of the same process
814 	 * create two kfd_process structures
815 	 */
816 	mutex_lock(&kfd_processes_mutex);
817 
818 	/* A prior open of /dev/kfd could have already created the process. */
819 	process = find_process(thread);
820 	if (process) {
821 		pr_debug("Process already found\n");
822 	} else {
823 		process = create_process(thread);
824 		if (IS_ERR(process))
825 			goto out;
826 
827 		ret = kfd_process_init_cwsr_apu(process, filep);
828 		if (ret)
829 			goto out_destroy;
830 
831 		if (!procfs.kobj)
832 			goto out;
833 
834 		process->kobj = kfd_alloc_struct(process->kobj);
835 		if (!process->kobj) {
836 			pr_warn("Creating procfs kobject failed");
837 			goto out;
838 		}
839 		ret = kobject_init_and_add(process->kobj, &procfs_type,
840 					   procfs.kobj, "%d",
841 					   (int)process->lead_thread->pid);
842 		if (ret) {
843 			pr_warn("Creating procfs pid directory failed");
844 			kobject_put(process->kobj);
845 			goto out;
846 		}
847 
848 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
849 				      "pasid");
850 
851 		process->kobj_queues = kobject_create_and_add("queues",
852 							process->kobj);
853 		if (!process->kobj_queues)
854 			pr_warn("Creating KFD proc/queues folder failed");
855 
856 		kfd_procfs_add_sysfs_stats(process);
857 		kfd_procfs_add_sysfs_files(process);
858 		kfd_procfs_add_sysfs_counters(process);
859 	}
860 out:
861 	if (!IS_ERR(process))
862 		kref_get(&process->ref);
863 	mutex_unlock(&kfd_processes_mutex);
864 
865 	return process;
866 
867 out_destroy:
868 	hash_del_rcu(&process->kfd_processes);
869 	mutex_unlock(&kfd_processes_mutex);
870 	synchronize_srcu(&kfd_processes_srcu);
871 	/* kfd_process_free_notifier will trigger the cleanup */
872 	mmu_notifier_put(&process->mmu_notifier);
873 	return ERR_PTR(ret);
874 }
875 
876 struct kfd_process *kfd_get_process(const struct task_struct *thread)
877 {
878 	struct kfd_process *process;
879 
880 	if (!thread->mm)
881 		return ERR_PTR(-EINVAL);
882 
883 	/* Only the pthreads threading model is supported. */
884 	if (thread->group_leader->mm != thread->mm)
885 		return ERR_PTR(-EINVAL);
886 
887 	process = find_process(thread);
888 	if (!process)
889 		return ERR_PTR(-EINVAL);
890 
891 	return process;
892 }
893 
894 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
895 {
896 	struct kfd_process *process;
897 
898 	hash_for_each_possible_rcu(kfd_processes_table, process,
899 					kfd_processes, (uintptr_t)mm)
900 		if (process->mm == mm)
901 			return process;
902 
903 	return NULL;
904 }
905 
906 static struct kfd_process *find_process(const struct task_struct *thread)
907 {
908 	struct kfd_process *p;
909 	int idx;
910 
911 	idx = srcu_read_lock(&kfd_processes_srcu);
912 	p = find_process_by_mm(thread->mm);
913 	srcu_read_unlock(&kfd_processes_srcu, idx);
914 
915 	return p;
916 }
917 
918 void kfd_unref_process(struct kfd_process *p)
919 {
920 	kref_put(&p->ref, kfd_process_ref_release);
921 }
922 
923 
924 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
925 {
926 	struct kfd_process *p = pdd->process;
927 	void *mem;
928 	int id;
929 	int i;
930 
931 	/*
932 	 * Remove all handles from idr and release appropriate
933 	 * local memory object
934 	 */
935 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
936 
937 		for (i = 0; i < p->n_pdds; i++) {
938 			struct kfd_process_device *peer_pdd = p->pdds[i];
939 
940 			if (!peer_pdd->drm_priv)
941 				continue;
942 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
943 				peer_pdd->dev->kgd, mem, peer_pdd->drm_priv);
944 		}
945 
946 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem,
947 						       pdd->drm_priv, NULL);
948 		kfd_process_device_remove_obj_handle(pdd, id);
949 	}
950 }
951 
952 /*
953  * Just kunmap and unpin signal BO here. It will be freed in
954  * kfd_process_free_outstanding_kfd_bos()
955  */
956 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
957 {
958 	struct kfd_process_device *pdd;
959 	struct kfd_dev *kdev;
960 	void *mem;
961 
962 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
963 	if (!kdev)
964 		return;
965 
966 	mutex_lock(&p->mutex);
967 
968 	pdd = kfd_get_process_device_data(kdev, p);
969 	if (!pdd)
970 		goto out;
971 
972 	mem = kfd_process_device_translate_handle(
973 		pdd, GET_IDR_HANDLE(p->signal_handle));
974 	if (!mem)
975 		goto out;
976 
977 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(kdev->kgd, mem);
978 
979 out:
980 	mutex_unlock(&p->mutex);
981 }
982 
983 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
984 {
985 	int i;
986 
987 	for (i = 0; i < p->n_pdds; i++)
988 		kfd_process_device_free_bos(p->pdds[i]);
989 }
990 
991 static void kfd_process_destroy_pdds(struct kfd_process *p)
992 {
993 	int i;
994 
995 	for (i = 0; i < p->n_pdds; i++) {
996 		struct kfd_process_device *pdd = p->pdds[i];
997 
998 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
999 				pdd->dev->id, p->pasid);
1000 
1001 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1002 		kfd_process_device_destroy_ib_mem(pdd);
1003 
1004 		if (pdd->drm_file) {
1005 			amdgpu_amdkfd_gpuvm_release_process_vm(
1006 					pdd->dev->kgd, pdd->drm_priv);
1007 			fput(pdd->drm_file);
1008 		}
1009 
1010 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1011 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1012 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1013 
1014 		kfree(pdd->qpd.doorbell_bitmap);
1015 		idr_destroy(&pdd->alloc_idr);
1016 
1017 		kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
1018 
1019 		/*
1020 		 * before destroying pdd, make sure to report availability
1021 		 * for auto suspend
1022 		 */
1023 		if (pdd->runtime_inuse) {
1024 			pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
1025 			pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
1026 			pdd->runtime_inuse = false;
1027 		}
1028 
1029 		kfree(pdd);
1030 		p->pdds[i] = NULL;
1031 	}
1032 	p->n_pdds = 0;
1033 }
1034 
1035 static void kfd_process_remove_sysfs(struct kfd_process *p)
1036 {
1037 	struct kfd_process_device *pdd;
1038 	int i;
1039 
1040 	if (!p->kobj)
1041 		return;
1042 
1043 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1044 	kobject_del(p->kobj_queues);
1045 	kobject_put(p->kobj_queues);
1046 	p->kobj_queues = NULL;
1047 
1048 	for (i = 0; i < p->n_pdds; i++) {
1049 		pdd = p->pdds[i];
1050 
1051 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1052 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1053 
1054 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1055 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1056 			sysfs_remove_file(pdd->kobj_stats,
1057 					  &pdd->attr_cu_occupancy);
1058 		kobject_del(pdd->kobj_stats);
1059 		kobject_put(pdd->kobj_stats);
1060 		pdd->kobj_stats = NULL;
1061 	}
1062 
1063 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1064 		pdd = p->pdds[i];
1065 
1066 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1067 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1068 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1069 		kobject_del(pdd->kobj_counters);
1070 		kobject_put(pdd->kobj_counters);
1071 		pdd->kobj_counters = NULL;
1072 	}
1073 
1074 	kobject_del(p->kobj);
1075 	kobject_put(p->kobj);
1076 	p->kobj = NULL;
1077 }
1078 
1079 /* No process locking is needed in this function, because the process
1080  * is not findable any more. We must assume that no other thread is
1081  * using it any more, otherwise we couldn't safely free the process
1082  * structure in the end.
1083  */
1084 static void kfd_process_wq_release(struct work_struct *work)
1085 {
1086 	struct kfd_process *p = container_of(work, struct kfd_process,
1087 					     release_work);
1088 
1089 	kfd_process_remove_sysfs(p);
1090 	kfd_iommu_unbind_process(p);
1091 
1092 	kfd_process_kunmap_signal_bo(p);
1093 	kfd_process_free_outstanding_kfd_bos(p);
1094 	svm_range_list_fini(p);
1095 
1096 	kfd_process_destroy_pdds(p);
1097 	dma_fence_put(p->ef);
1098 
1099 	kfd_event_free_process(p);
1100 
1101 	kfd_pasid_free(p->pasid);
1102 	mutex_destroy(&p->mutex);
1103 
1104 	put_task_struct(p->lead_thread);
1105 
1106 	kfree(p);
1107 }
1108 
1109 static void kfd_process_ref_release(struct kref *ref)
1110 {
1111 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1112 
1113 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1114 	queue_work(kfd_process_wq, &p->release_work);
1115 }
1116 
1117 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1118 {
1119 	int idx = srcu_read_lock(&kfd_processes_srcu);
1120 	struct kfd_process *p = find_process_by_mm(mm);
1121 
1122 	srcu_read_unlock(&kfd_processes_srcu, idx);
1123 
1124 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1125 }
1126 
1127 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1128 {
1129 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1130 }
1131 
1132 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1133 					struct mm_struct *mm)
1134 {
1135 	struct kfd_process *p;
1136 	int i;
1137 
1138 	/*
1139 	 * The kfd_process structure can not be free because the
1140 	 * mmu_notifier srcu is read locked
1141 	 */
1142 	p = container_of(mn, struct kfd_process, mmu_notifier);
1143 	if (WARN_ON(p->mm != mm))
1144 		return;
1145 
1146 	mutex_lock(&kfd_processes_mutex);
1147 	hash_del_rcu(&p->kfd_processes);
1148 	mutex_unlock(&kfd_processes_mutex);
1149 	synchronize_srcu(&kfd_processes_srcu);
1150 
1151 	cancel_delayed_work_sync(&p->eviction_work);
1152 	cancel_delayed_work_sync(&p->restore_work);
1153 	cancel_delayed_work_sync(&p->svms.restore_work);
1154 
1155 	mutex_lock(&p->mutex);
1156 
1157 	/* Iterate over all process device data structures and if the
1158 	 * pdd is in debug mode, we should first force unregistration,
1159 	 * then we will be able to destroy the queues
1160 	 */
1161 	for (i = 0; i < p->n_pdds; i++) {
1162 		struct kfd_dev *dev = p->pdds[i]->dev;
1163 
1164 		mutex_lock(kfd_get_dbgmgr_mutex());
1165 		if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
1166 			if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
1167 				kfd_dbgmgr_destroy(dev->dbgmgr);
1168 				dev->dbgmgr = NULL;
1169 			}
1170 		}
1171 		mutex_unlock(kfd_get_dbgmgr_mutex());
1172 	}
1173 
1174 	kfd_process_dequeue_from_all_devices(p);
1175 	pqm_uninit(&p->pqm);
1176 
1177 	/* Indicate to other users that MM is no longer valid */
1178 	p->mm = NULL;
1179 	/* Signal the eviction fence after user mode queues are
1180 	 * destroyed. This allows any BOs to be freed without
1181 	 * triggering pointless evictions or waiting for fences.
1182 	 */
1183 	dma_fence_signal(p->ef);
1184 
1185 	mutex_unlock(&p->mutex);
1186 
1187 	mmu_notifier_put(&p->mmu_notifier);
1188 }
1189 
1190 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1191 	.release = kfd_process_notifier_release,
1192 	.alloc_notifier = kfd_process_alloc_notifier,
1193 	.free_notifier = kfd_process_free_notifier,
1194 };
1195 
1196 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1197 {
1198 	unsigned long  offset;
1199 	int i;
1200 
1201 	for (i = 0; i < p->n_pdds; i++) {
1202 		struct kfd_dev *dev = p->pdds[i]->dev;
1203 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1204 
1205 		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1206 			continue;
1207 
1208 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1209 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1210 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1211 			MAP_SHARED, offset);
1212 
1213 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1214 			int err = qpd->tba_addr;
1215 
1216 			pr_err("Failure to set tba address. error %d.\n", err);
1217 			qpd->tba_addr = 0;
1218 			qpd->cwsr_kaddr = NULL;
1219 			return err;
1220 		}
1221 
1222 		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1223 
1224 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1225 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1226 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1233 {
1234 	struct kfd_dev *dev = pdd->dev;
1235 	struct qcm_process_device *qpd = &pdd->qpd;
1236 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1237 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1238 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1239 	struct kgd_mem *mem;
1240 	void *kaddr;
1241 	int ret;
1242 
1243 	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1244 		return 0;
1245 
1246 	/* cwsr_base is only set for dGPU */
1247 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1248 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1249 	if (ret)
1250 		return ret;
1251 
1252 	qpd->cwsr_mem = mem;
1253 	qpd->cwsr_kaddr = kaddr;
1254 	qpd->tba_addr = qpd->cwsr_base;
1255 
1256 	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1257 
1258 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1259 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1260 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1261 
1262 	return 0;
1263 }
1264 
1265 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1266 {
1267 	struct kfd_dev *dev = pdd->dev;
1268 	struct qcm_process_device *qpd = &pdd->qpd;
1269 
1270 	if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1271 		return;
1272 
1273 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, qpd->cwsr_kaddr);
1274 }
1275 
1276 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1277 				  uint64_t tba_addr,
1278 				  uint64_t tma_addr)
1279 {
1280 	if (qpd->cwsr_kaddr) {
1281 		/* KFD trap handler is bound, record as second-level TBA/TMA
1282 		 * in first-level TMA. First-level trap will jump to second.
1283 		 */
1284 		uint64_t *tma =
1285 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1286 		tma[0] = tba_addr;
1287 		tma[1] = tma_addr;
1288 	} else {
1289 		/* No trap handler bound, bind as first-level TBA/TMA. */
1290 		qpd->tba_addr = tba_addr;
1291 		qpd->tma_addr = tma_addr;
1292 	}
1293 }
1294 
1295 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1296 {
1297 	int i;
1298 
1299 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1300 	 * boot time retry setting. Mixing processes with different
1301 	 * XNACK/retry settings can hang the GPU.
1302 	 *
1303 	 * Different GPUs can have different noretry settings depending
1304 	 * on HW bugs or limitations. We need to find at least one
1305 	 * XNACK mode for this process that's compatible with all GPUs.
1306 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1307 	 * built for XNACK-off. On GFXv9 it may perform slower.
1308 	 *
1309 	 * Therefore applications built for XNACK-off can always be
1310 	 * supported and will be our fallback if any GPU does not
1311 	 * support retry.
1312 	 */
1313 	for (i = 0; i < p->n_pdds; i++) {
1314 		struct kfd_dev *dev = p->pdds[i]->dev;
1315 
1316 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1317 		 * support the SVM APIs and don't need to be considered
1318 		 * for the XNACK mode selection.
1319 		 */
1320 		if (dev->device_info->asic_family < CHIP_VEGA10)
1321 			continue;
1322 		/* Aldebaran can always support XNACK because it can support
1323 		 * per-process XNACK mode selection. But let the dev->noretry
1324 		 * setting still influence the default XNACK mode.
1325 		 */
1326 		if (supported &&
1327 		    dev->device_info->asic_family == CHIP_ALDEBARAN)
1328 			continue;
1329 
1330 		/* GFXv10 and later GPUs do not support shader preemption
1331 		 * during page faults. This can lead to poor QoS for queue
1332 		 * management and memory-manager-related preemptions or
1333 		 * even deadlocks.
1334 		 */
1335 		if (dev->device_info->asic_family >= CHIP_NAVI10)
1336 			return false;
1337 
1338 		if (dev->noretry)
1339 			return false;
1340 	}
1341 
1342 	return true;
1343 }
1344 
1345 /*
1346  * On return the kfd_process is fully operational and will be freed when the
1347  * mm is released
1348  */
1349 static struct kfd_process *create_process(const struct task_struct *thread)
1350 {
1351 	struct kfd_process *process;
1352 	struct mmu_notifier *mn;
1353 	int err = -ENOMEM;
1354 
1355 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1356 	if (!process)
1357 		goto err_alloc_process;
1358 
1359 	kref_init(&process->ref);
1360 	mutex_init(&process->mutex);
1361 	process->mm = thread->mm;
1362 	process->lead_thread = thread->group_leader;
1363 	process->n_pdds = 0;
1364 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1365 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1366 	process->last_restore_timestamp = get_jiffies_64();
1367 	kfd_event_init_process(process);
1368 	process->is_32bit_user_mode = in_compat_syscall();
1369 
1370 	process->pasid = kfd_pasid_alloc();
1371 	if (process->pasid == 0)
1372 		goto err_alloc_pasid;
1373 
1374 	err = pqm_init(&process->pqm, process);
1375 	if (err != 0)
1376 		goto err_process_pqm_init;
1377 
1378 	/* init process apertures*/
1379 	err = kfd_init_apertures(process);
1380 	if (err != 0)
1381 		goto err_init_apertures;
1382 
1383 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1384 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1385 
1386 	err = svm_range_list_init(process);
1387 	if (err)
1388 		goto err_init_svm_range_list;
1389 
1390 	/* alloc_notifier needs to find the process in the hash table */
1391 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1392 			(uintptr_t)process->mm);
1393 
1394 	/* MMU notifier registration must be the last call that can fail
1395 	 * because after this point we cannot unwind the process creation.
1396 	 * After this point, mmu_notifier_put will trigger the cleanup by
1397 	 * dropping the last process reference in the free_notifier.
1398 	 */
1399 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1400 	if (IS_ERR(mn)) {
1401 		err = PTR_ERR(mn);
1402 		goto err_register_notifier;
1403 	}
1404 	BUG_ON(mn != &process->mmu_notifier);
1405 
1406 	get_task_struct(process->lead_thread);
1407 
1408 	return process;
1409 
1410 err_register_notifier:
1411 	hash_del_rcu(&process->kfd_processes);
1412 	svm_range_list_fini(process);
1413 err_init_svm_range_list:
1414 	kfd_process_free_outstanding_kfd_bos(process);
1415 	kfd_process_destroy_pdds(process);
1416 err_init_apertures:
1417 	pqm_uninit(&process->pqm);
1418 err_process_pqm_init:
1419 	kfd_pasid_free(process->pasid);
1420 err_alloc_pasid:
1421 	mutex_destroy(&process->mutex);
1422 	kfree(process);
1423 err_alloc_process:
1424 	return ERR_PTR(err);
1425 }
1426 
1427 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1428 			struct kfd_dev *dev)
1429 {
1430 	unsigned int i;
1431 	int range_start = dev->shared_resources.non_cp_doorbells_start;
1432 	int range_end = dev->shared_resources.non_cp_doorbells_end;
1433 
1434 	if (!KFD_IS_SOC15(dev->device_info->asic_family))
1435 		return 0;
1436 
1437 	qpd->doorbell_bitmap =
1438 		kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1439 				     BITS_PER_BYTE), GFP_KERNEL);
1440 	if (!qpd->doorbell_bitmap)
1441 		return -ENOMEM;
1442 
1443 	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1444 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1445 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1446 			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1447 			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1448 
1449 	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1450 		if (i >= range_start && i <= range_end) {
1451 			set_bit(i, qpd->doorbell_bitmap);
1452 			set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1453 				qpd->doorbell_bitmap);
1454 		}
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1461 							struct kfd_process *p)
1462 {
1463 	int i;
1464 
1465 	for (i = 0; i < p->n_pdds; i++)
1466 		if (p->pdds[i]->dev == dev)
1467 			return p->pdds[i];
1468 
1469 	return NULL;
1470 }
1471 
1472 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1473 							struct kfd_process *p)
1474 {
1475 	struct kfd_process_device *pdd = NULL;
1476 
1477 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1478 		return NULL;
1479 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1480 	if (!pdd)
1481 		return NULL;
1482 
1483 	if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
1484 		pr_err("Failed to alloc doorbell for pdd\n");
1485 		goto err_free_pdd;
1486 	}
1487 
1488 	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1489 		pr_err("Failed to init doorbell for process\n");
1490 		goto err_free_pdd;
1491 	}
1492 
1493 	pdd->dev = dev;
1494 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1495 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1496 	pdd->qpd.dqm = dev->dqm;
1497 	pdd->qpd.pqm = &p->pqm;
1498 	pdd->qpd.evicted = 0;
1499 	pdd->qpd.mapped_gws_queue = false;
1500 	pdd->process = p;
1501 	pdd->bound = PDD_UNBOUND;
1502 	pdd->already_dequeued = false;
1503 	pdd->runtime_inuse = false;
1504 	pdd->vram_usage = 0;
1505 	pdd->sdma_past_activity_counter = 0;
1506 	atomic64_set(&pdd->evict_duration_counter, 0);
1507 	p->pdds[p->n_pdds++] = pdd;
1508 
1509 	/* Init idr used for memory handle translation */
1510 	idr_init(&pdd->alloc_idr);
1511 
1512 	return pdd;
1513 
1514 err_free_pdd:
1515 	kfree(pdd);
1516 	return NULL;
1517 }
1518 
1519 /**
1520  * kfd_process_device_init_vm - Initialize a VM for a process-device
1521  *
1522  * @pdd: The process-device
1523  * @drm_file: Optional pointer to a DRM file descriptor
1524  *
1525  * If @drm_file is specified, it will be used to acquire the VM from
1526  * that file descriptor. If successful, the @pdd takes ownership of
1527  * the file descriptor.
1528  *
1529  * If @drm_file is NULL, a new VM is created.
1530  *
1531  * Returns 0 on success, -errno on failure.
1532  */
1533 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1534 			       struct file *drm_file)
1535 {
1536 	struct kfd_process *p;
1537 	struct kfd_dev *dev;
1538 	int ret;
1539 
1540 	if (!drm_file)
1541 		return -EINVAL;
1542 
1543 	if (pdd->drm_priv)
1544 		return -EBUSY;
1545 
1546 	p = pdd->process;
1547 	dev = pdd->dev;
1548 
1549 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1550 		dev->kgd, drm_file, p->pasid,
1551 		&p->kgd_process_info, &p->ef);
1552 	if (ret) {
1553 		pr_err("Failed to create process VM object\n");
1554 		return ret;
1555 	}
1556 	pdd->drm_priv = drm_file->private_data;
1557 
1558 	ret = kfd_process_device_reserve_ib_mem(pdd);
1559 	if (ret)
1560 		goto err_reserve_ib_mem;
1561 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1562 	if (ret)
1563 		goto err_init_cwsr;
1564 
1565 	pdd->drm_file = drm_file;
1566 
1567 	return 0;
1568 
1569 err_init_cwsr:
1570 err_reserve_ib_mem:
1571 	kfd_process_device_free_bos(pdd);
1572 	pdd->drm_priv = NULL;
1573 
1574 	return ret;
1575 }
1576 
1577 /*
1578  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1579  * to the device.
1580  * Unbinding occurs when the process dies or the device is removed.
1581  *
1582  * Assumes that the process lock is held.
1583  */
1584 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1585 							struct kfd_process *p)
1586 {
1587 	struct kfd_process_device *pdd;
1588 	int err;
1589 
1590 	pdd = kfd_get_process_device_data(dev, p);
1591 	if (!pdd) {
1592 		pr_err("Process device data doesn't exist\n");
1593 		return ERR_PTR(-ENOMEM);
1594 	}
1595 
1596 	if (!pdd->drm_priv)
1597 		return ERR_PTR(-ENODEV);
1598 
1599 	/*
1600 	 * signal runtime-pm system to auto resume and prevent
1601 	 * further runtime suspend once device pdd is created until
1602 	 * pdd is destroyed.
1603 	 */
1604 	if (!pdd->runtime_inuse) {
1605 		err = pm_runtime_get_sync(dev->ddev->dev);
1606 		if (err < 0) {
1607 			pm_runtime_put_autosuspend(dev->ddev->dev);
1608 			return ERR_PTR(err);
1609 		}
1610 	}
1611 
1612 	err = kfd_iommu_bind_process_to_device(pdd);
1613 	if (err)
1614 		goto out;
1615 
1616 	/*
1617 	 * make sure that runtime_usage counter is incremented just once
1618 	 * per pdd
1619 	 */
1620 	pdd->runtime_inuse = true;
1621 
1622 	return pdd;
1623 
1624 out:
1625 	/* balance runpm reference count and exit with error */
1626 	if (!pdd->runtime_inuse) {
1627 		pm_runtime_mark_last_busy(dev->ddev->dev);
1628 		pm_runtime_put_autosuspend(dev->ddev->dev);
1629 	}
1630 
1631 	return ERR_PTR(err);
1632 }
1633 
1634 /* Create specific handle mapped to mem from process local memory idr
1635  * Assumes that the process lock is held.
1636  */
1637 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1638 					void *mem)
1639 {
1640 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1641 }
1642 
1643 /* Translate specific handle from process local memory idr
1644  * Assumes that the process lock is held.
1645  */
1646 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1647 					int handle)
1648 {
1649 	if (handle < 0)
1650 		return NULL;
1651 
1652 	return idr_find(&pdd->alloc_idr, handle);
1653 }
1654 
1655 /* Remove specific handle from process local memory idr
1656  * Assumes that the process lock is held.
1657  */
1658 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1659 					int handle)
1660 {
1661 	if (handle >= 0)
1662 		idr_remove(&pdd->alloc_idr, handle);
1663 }
1664 
1665 /* This increments the process->ref counter. */
1666 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1667 {
1668 	struct kfd_process *p, *ret_p = NULL;
1669 	unsigned int temp;
1670 
1671 	int idx = srcu_read_lock(&kfd_processes_srcu);
1672 
1673 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1674 		if (p->pasid == pasid) {
1675 			kref_get(&p->ref);
1676 			ret_p = p;
1677 			break;
1678 		}
1679 	}
1680 
1681 	srcu_read_unlock(&kfd_processes_srcu, idx);
1682 
1683 	return ret_p;
1684 }
1685 
1686 /* This increments the process->ref counter. */
1687 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1688 {
1689 	struct kfd_process *p;
1690 
1691 	int idx = srcu_read_lock(&kfd_processes_srcu);
1692 
1693 	p = find_process_by_mm(mm);
1694 	if (p)
1695 		kref_get(&p->ref);
1696 
1697 	srcu_read_unlock(&kfd_processes_srcu, idx);
1698 
1699 	return p;
1700 }
1701 
1702 /* kfd_process_evict_queues - Evict all user queues of a process
1703  *
1704  * Eviction is reference-counted per process-device. This means multiple
1705  * evictions from different sources can be nested safely.
1706  */
1707 int kfd_process_evict_queues(struct kfd_process *p)
1708 {
1709 	int r = 0;
1710 	int i;
1711 	unsigned int n_evicted = 0;
1712 
1713 	for (i = 0; i < p->n_pdds; i++) {
1714 		struct kfd_process_device *pdd = p->pdds[i];
1715 
1716 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1717 							    &pdd->qpd);
1718 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1719 		 * we would like to set all the queues to be in evicted state to prevent
1720 		 * them been add back since they actually not be saved right now.
1721 		 */
1722 		if (r && r != -EIO) {
1723 			pr_err("Failed to evict process queues\n");
1724 			goto fail;
1725 		}
1726 		n_evicted++;
1727 	}
1728 
1729 	return r;
1730 
1731 fail:
1732 	/* To keep state consistent, roll back partial eviction by
1733 	 * restoring queues
1734 	 */
1735 	for (i = 0; i < p->n_pdds; i++) {
1736 		struct kfd_process_device *pdd = p->pdds[i];
1737 
1738 		if (n_evicted == 0)
1739 			break;
1740 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1741 							      &pdd->qpd))
1742 			pr_err("Failed to restore queues\n");
1743 
1744 		n_evicted--;
1745 	}
1746 
1747 	return r;
1748 }
1749 
1750 /* kfd_process_restore_queues - Restore all user queues of a process */
1751 int kfd_process_restore_queues(struct kfd_process *p)
1752 {
1753 	int r, ret = 0;
1754 	int i;
1755 
1756 	for (i = 0; i < p->n_pdds; i++) {
1757 		struct kfd_process_device *pdd = p->pdds[i];
1758 
1759 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1760 							      &pdd->qpd);
1761 		if (r) {
1762 			pr_err("Failed to restore process queues\n");
1763 			if (!ret)
1764 				ret = r;
1765 		}
1766 	}
1767 
1768 	return ret;
1769 }
1770 
1771 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1772 {
1773 	int i;
1774 
1775 	for (i = 0; i < p->n_pdds; i++)
1776 		if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id)
1777 			return i;
1778 	return -EINVAL;
1779 }
1780 
1781 int
1782 kfd_process_gpuid_from_kgd(struct kfd_process *p, struct amdgpu_device *adev,
1783 			   uint32_t *gpuid, uint32_t *gpuidx)
1784 {
1785 	struct kgd_dev *kgd = (struct kgd_dev *)adev;
1786 	int i;
1787 
1788 	for (i = 0; i < p->n_pdds; i++)
1789 		if (p->pdds[i] && p->pdds[i]->dev->kgd == kgd) {
1790 			*gpuid = p->pdds[i]->dev->id;
1791 			*gpuidx = i;
1792 			return 0;
1793 		}
1794 	return -EINVAL;
1795 }
1796 
1797 static void evict_process_worker(struct work_struct *work)
1798 {
1799 	int ret;
1800 	struct kfd_process *p;
1801 	struct delayed_work *dwork;
1802 
1803 	dwork = to_delayed_work(work);
1804 
1805 	/* Process termination destroys this worker thread. So during the
1806 	 * lifetime of this thread, kfd_process p will be valid
1807 	 */
1808 	p = container_of(dwork, struct kfd_process, eviction_work);
1809 	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1810 		  "Eviction fence mismatch\n");
1811 
1812 	/* Narrow window of overlap between restore and evict work
1813 	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1814 	 * unreserves KFD BOs, it is possible to evicted again. But
1815 	 * restore has few more steps of finish. So lets wait for any
1816 	 * previous restore work to complete
1817 	 */
1818 	flush_delayed_work(&p->restore_work);
1819 
1820 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1821 	ret = kfd_process_evict_queues(p);
1822 	if (!ret) {
1823 		dma_fence_signal(p->ef);
1824 		dma_fence_put(p->ef);
1825 		p->ef = NULL;
1826 		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1827 				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1828 
1829 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1830 	} else
1831 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1832 }
1833 
1834 static void restore_process_worker(struct work_struct *work)
1835 {
1836 	struct delayed_work *dwork;
1837 	struct kfd_process *p;
1838 	int ret = 0;
1839 
1840 	dwork = to_delayed_work(work);
1841 
1842 	/* Process termination destroys this worker thread. So during the
1843 	 * lifetime of this thread, kfd_process p will be valid
1844 	 */
1845 	p = container_of(dwork, struct kfd_process, restore_work);
1846 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1847 
1848 	/* Setting last_restore_timestamp before successful restoration.
1849 	 * Otherwise this would have to be set by KGD (restore_process_bos)
1850 	 * before KFD BOs are unreserved. If not, the process can be evicted
1851 	 * again before the timestamp is set.
1852 	 * If restore fails, the timestamp will be set again in the next
1853 	 * attempt. This would mean that the minimum GPU quanta would be
1854 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1855 	 * functions)
1856 	 */
1857 
1858 	p->last_restore_timestamp = get_jiffies_64();
1859 	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1860 						     &p->ef);
1861 	if (ret) {
1862 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1863 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1864 		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1865 				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1866 		WARN(!ret, "reschedule restore work failed\n");
1867 		return;
1868 	}
1869 
1870 	ret = kfd_process_restore_queues(p);
1871 	if (!ret)
1872 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1873 	else
1874 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1875 }
1876 
1877 void kfd_suspend_all_processes(void)
1878 {
1879 	struct kfd_process *p;
1880 	unsigned int temp;
1881 	int idx = srcu_read_lock(&kfd_processes_srcu);
1882 
1883 	WARN(debug_evictions, "Evicting all processes");
1884 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1885 		cancel_delayed_work_sync(&p->eviction_work);
1886 		cancel_delayed_work_sync(&p->restore_work);
1887 
1888 		if (kfd_process_evict_queues(p))
1889 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1890 		dma_fence_signal(p->ef);
1891 		dma_fence_put(p->ef);
1892 		p->ef = NULL;
1893 	}
1894 	srcu_read_unlock(&kfd_processes_srcu, idx);
1895 }
1896 
1897 int kfd_resume_all_processes(void)
1898 {
1899 	struct kfd_process *p;
1900 	unsigned int temp;
1901 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1902 
1903 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1904 		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1905 			pr_err("Restore process %d failed during resume\n",
1906 			       p->pasid);
1907 			ret = -EFAULT;
1908 		}
1909 	}
1910 	srcu_read_unlock(&kfd_processes_srcu, idx);
1911 	return ret;
1912 }
1913 
1914 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1915 			  struct vm_area_struct *vma)
1916 {
1917 	struct kfd_process_device *pdd;
1918 	struct qcm_process_device *qpd;
1919 
1920 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1921 		pr_err("Incorrect CWSR mapping size.\n");
1922 		return -EINVAL;
1923 	}
1924 
1925 	pdd = kfd_get_process_device_data(dev, process);
1926 	if (!pdd)
1927 		return -EINVAL;
1928 	qpd = &pdd->qpd;
1929 
1930 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1931 					get_order(KFD_CWSR_TBA_TMA_SIZE));
1932 	if (!qpd->cwsr_kaddr) {
1933 		pr_err("Error allocating per process CWSR buffer.\n");
1934 		return -ENOMEM;
1935 	}
1936 
1937 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1938 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1939 	/* Mapping pages to user process */
1940 	return remap_pfn_range(vma, vma->vm_start,
1941 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1942 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1943 }
1944 
1945 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1946 {
1947 	struct kfd_dev *dev = pdd->dev;
1948 
1949 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1950 		/* Nothing to flush until a VMID is assigned, which
1951 		 * only happens when the first queue is created.
1952 		 */
1953 		if (pdd->qpd.vmid)
1954 			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd,
1955 							pdd->qpd.vmid);
1956 	} else {
1957 		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd,
1958 					pdd->process->pasid, type);
1959 	}
1960 }
1961 
1962 #if defined(CONFIG_DEBUG_FS)
1963 
1964 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1965 {
1966 	struct kfd_process *p;
1967 	unsigned int temp;
1968 	int r = 0;
1969 
1970 	int idx = srcu_read_lock(&kfd_processes_srcu);
1971 
1972 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1973 		seq_printf(m, "Process %d PASID 0x%x:\n",
1974 			   p->lead_thread->tgid, p->pasid);
1975 
1976 		mutex_lock(&p->mutex);
1977 		r = pqm_debugfs_mqds(m, &p->pqm);
1978 		mutex_unlock(&p->mutex);
1979 
1980 		if (r)
1981 			break;
1982 	}
1983 
1984 	srcu_read_unlock(&kfd_processes_srcu, idx);
1985 
1986 	return r;
1987 }
1988 
1989 #endif
1990 
1991