1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/mutex.h> 24 #include <linux/log2.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/amd-iommu.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 39 struct mm_struct; 40 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_dbgmgr.h" 44 #include "kfd_iommu.h" 45 #include "kfd_svm.h" 46 47 /* 48 * List of struct kfd_process (field kfd_process). 49 * Unique/indexed by mm_struct* 50 */ 51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 52 static DEFINE_MUTEX(kfd_processes_mutex); 53 54 DEFINE_SRCU(kfd_processes_srcu); 55 56 /* For process termination handling */ 57 static struct workqueue_struct *kfd_process_wq; 58 59 /* Ordered, single-threaded workqueue for restoring evicted 60 * processes. Restoring multiple processes concurrently under memory 61 * pressure can lead to processes blocking each other from validating 62 * their BOs and result in a live-lock situation where processes 63 * remain evicted indefinitely. 64 */ 65 static struct workqueue_struct *kfd_restore_wq; 66 67 static struct kfd_process *find_process(const struct task_struct *thread); 68 static void kfd_process_ref_release(struct kref *ref); 69 static struct kfd_process *create_process(const struct task_struct *thread); 70 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep); 71 72 static void evict_process_worker(struct work_struct *work); 73 static void restore_process_worker(struct work_struct *work); 74 75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); 76 77 struct kfd_procfs_tree { 78 struct kobject *kobj; 79 }; 80 81 static struct kfd_procfs_tree procfs; 82 83 /* 84 * Structure for SDMA activity tracking 85 */ 86 struct kfd_sdma_activity_handler_workarea { 87 struct work_struct sdma_activity_work; 88 struct kfd_process_device *pdd; 89 uint64_t sdma_activity_counter; 90 }; 91 92 struct temp_sdma_queue_list { 93 uint64_t __user *rptr; 94 uint64_t sdma_val; 95 unsigned int queue_id; 96 struct list_head list; 97 }; 98 99 static void kfd_sdma_activity_worker(struct work_struct *work) 100 { 101 struct kfd_sdma_activity_handler_workarea *workarea; 102 struct kfd_process_device *pdd; 103 uint64_t val; 104 struct mm_struct *mm; 105 struct queue *q; 106 struct qcm_process_device *qpd; 107 struct device_queue_manager *dqm; 108 int ret = 0; 109 struct temp_sdma_queue_list sdma_q_list; 110 struct temp_sdma_queue_list *sdma_q, *next; 111 112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 113 sdma_activity_work); 114 115 pdd = workarea->pdd; 116 if (!pdd) 117 return; 118 dqm = pdd->dev->dqm; 119 qpd = &pdd->qpd; 120 if (!dqm || !qpd) 121 return; 122 /* 123 * Total SDMA activity is current SDMA activity + past SDMA activity 124 * Past SDMA count is stored in pdd. 125 * To get the current activity counters for all active SDMA queues, 126 * we loop over all SDMA queues and get their counts from user-space. 127 * 128 * We cannot call get_user() with dqm_lock held as it can cause 129 * a circular lock dependency situation. To read the SDMA stats, 130 * we need to do the following: 131 * 132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 133 * with dqm_lock/dqm_unlock(). 134 * 2. Call get_user() for each node in temporary list without dqm_lock. 135 * Save the SDMA count for each node and also add the count to the total 136 * SDMA count counter. 137 * Its possible, during this step, a few SDMA queue nodes got deleted 138 * from the qpd->queues_list. 139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 140 * If any node got deleted, its SDMA count would be captured in the sdma 141 * past activity counter. So subtract the SDMA counter stored in step 2 142 * for this node from the total SDMA count. 143 */ 144 INIT_LIST_HEAD(&sdma_q_list.list); 145 146 /* 147 * Create the temp list of all SDMA queues 148 */ 149 dqm_lock(dqm); 150 151 list_for_each_entry(q, &qpd->queues_list, list) { 152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 154 continue; 155 156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 157 if (!sdma_q) { 158 dqm_unlock(dqm); 159 goto cleanup; 160 } 161 162 INIT_LIST_HEAD(&sdma_q->list); 163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 164 sdma_q->queue_id = q->properties.queue_id; 165 list_add_tail(&sdma_q->list, &sdma_q_list.list); 166 } 167 168 /* 169 * If the temp list is empty, then no SDMA queues nodes were found in 170 * qpd->queues_list. Return the past activity count as the total sdma 171 * count 172 */ 173 if (list_empty(&sdma_q_list.list)) { 174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 175 dqm_unlock(dqm); 176 return; 177 } 178 179 dqm_unlock(dqm); 180 181 /* 182 * Get the usage count for each SDMA queue in temp_list. 183 */ 184 mm = get_task_mm(pdd->process->lead_thread); 185 if (!mm) 186 goto cleanup; 187 188 kthread_use_mm(mm); 189 190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 191 val = 0; 192 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 193 if (ret) { 194 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 195 sdma_q->queue_id); 196 } else { 197 sdma_q->sdma_val = val; 198 workarea->sdma_activity_counter += val; 199 } 200 } 201 202 kthread_unuse_mm(mm); 203 mmput(mm); 204 205 /* 206 * Do a second iteration over qpd_queues_list to check if any SDMA 207 * nodes got deleted while fetching SDMA counter. 208 */ 209 dqm_lock(dqm); 210 211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 212 213 list_for_each_entry(q, &qpd->queues_list, list) { 214 if (list_empty(&sdma_q_list.list)) 215 break; 216 217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 219 continue; 220 221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 223 (sdma_q->queue_id == q->properties.queue_id)) { 224 list_del(&sdma_q->list); 225 kfree(sdma_q); 226 break; 227 } 228 } 229 } 230 231 dqm_unlock(dqm); 232 233 /* 234 * If temp list is not empty, it implies some queues got deleted 235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 236 * count for each node from the total SDMA count. 237 */ 238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 239 workarea->sdma_activity_counter -= sdma_q->sdma_val; 240 list_del(&sdma_q->list); 241 kfree(sdma_q); 242 } 243 244 return; 245 246 cleanup: 247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 248 list_del(&sdma_q->list); 249 kfree(sdma_q); 250 } 251 } 252 253 /** 254 * @kfd_get_cu_occupancy - Collect number of waves in-flight on this device 255 * by current process. Translates acquired wave count into number of compute units 256 * that are occupied. 257 * 258 * @atr: Handle of attribute that allows reporting of wave count. The attribute 259 * handle encapsulates GPU device it is associated with, thereby allowing collection 260 * of waves in flight, etc 261 * 262 * @buffer: Handle of user provided buffer updated with wave count 263 * 264 * Return: Number of bytes written to user buffer or an error value 265 */ 266 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 267 { 268 int cu_cnt; 269 int wave_cnt; 270 int max_waves_per_cu; 271 struct kfd_dev *dev = NULL; 272 struct kfd_process *proc = NULL; 273 struct kfd_process_device *pdd = NULL; 274 275 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 276 dev = pdd->dev; 277 if (dev->kfd2kgd->get_cu_occupancy == NULL) 278 return -EINVAL; 279 280 cu_cnt = 0; 281 proc = pdd->process; 282 if (pdd->qpd.queue_count == 0) { 283 pr_debug("Gpu-Id: %d has no active queues for process %d\n", 284 dev->id, proc->pasid); 285 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 286 } 287 288 /* Collect wave count from device if it supports */ 289 wave_cnt = 0; 290 max_waves_per_cu = 0; 291 dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt, 292 &max_waves_per_cu); 293 294 /* Translate wave count to number of compute units */ 295 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 296 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 297 } 298 299 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 300 char *buffer) 301 { 302 if (strcmp(attr->name, "pasid") == 0) { 303 struct kfd_process *p = container_of(attr, struct kfd_process, 304 attr_pasid); 305 306 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 307 } else if (strncmp(attr->name, "vram_", 5) == 0) { 308 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 309 attr_vram); 310 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage)); 311 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 312 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 313 attr_sdma); 314 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 315 316 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work, 317 kfd_sdma_activity_worker); 318 319 sdma_activity_work_handler.pdd = pdd; 320 sdma_activity_work_handler.sdma_activity_counter = 0; 321 322 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 323 324 flush_work(&sdma_activity_work_handler.sdma_activity_work); 325 326 return snprintf(buffer, PAGE_SIZE, "%llu\n", 327 (sdma_activity_work_handler.sdma_activity_counter)/ 328 SDMA_ACTIVITY_DIVISOR); 329 } else { 330 pr_err("Invalid attribute"); 331 return -EINVAL; 332 } 333 334 return 0; 335 } 336 337 static void kfd_procfs_kobj_release(struct kobject *kobj) 338 { 339 kfree(kobj); 340 } 341 342 static const struct sysfs_ops kfd_procfs_ops = { 343 .show = kfd_procfs_show, 344 }; 345 346 static struct kobj_type procfs_type = { 347 .release = kfd_procfs_kobj_release, 348 .sysfs_ops = &kfd_procfs_ops, 349 }; 350 351 void kfd_procfs_init(void) 352 { 353 int ret = 0; 354 355 procfs.kobj = kfd_alloc_struct(procfs.kobj); 356 if (!procfs.kobj) 357 return; 358 359 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 360 &kfd_device->kobj, "proc"); 361 if (ret) { 362 pr_warn("Could not create procfs proc folder"); 363 /* If we fail to create the procfs, clean up */ 364 kfd_procfs_shutdown(); 365 } 366 } 367 368 void kfd_procfs_shutdown(void) 369 { 370 if (procfs.kobj) { 371 kobject_del(procfs.kobj); 372 kobject_put(procfs.kobj); 373 procfs.kobj = NULL; 374 } 375 } 376 377 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 378 struct attribute *attr, char *buffer) 379 { 380 struct queue *q = container_of(kobj, struct queue, kobj); 381 382 if (!strcmp(attr->name, "size")) 383 return snprintf(buffer, PAGE_SIZE, "%llu", 384 q->properties.queue_size); 385 else if (!strcmp(attr->name, "type")) 386 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 387 else if (!strcmp(attr->name, "gpuid")) 388 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 389 else 390 pr_err("Invalid attribute"); 391 392 return 0; 393 } 394 395 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 396 struct attribute *attr, char *buffer) 397 { 398 if (strcmp(attr->name, "evicted_ms") == 0) { 399 struct kfd_process_device *pdd = container_of(attr, 400 struct kfd_process_device, 401 attr_evict); 402 uint64_t evict_jiffies; 403 404 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 405 406 return snprintf(buffer, 407 PAGE_SIZE, 408 "%llu\n", 409 jiffies64_to_msecs(evict_jiffies)); 410 411 /* Sysfs handle that gets CU occupancy is per device */ 412 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 413 return kfd_get_cu_occupancy(attr, buffer); 414 } else { 415 pr_err("Invalid attribute"); 416 } 417 418 return 0; 419 } 420 421 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, 422 struct attribute *attr, char *buf) 423 { 424 struct kfd_process_device *pdd; 425 426 if (!strcmp(attr->name, "faults")) { 427 pdd = container_of(attr, struct kfd_process_device, 428 attr_faults); 429 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); 430 } 431 if (!strcmp(attr->name, "page_in")) { 432 pdd = container_of(attr, struct kfd_process_device, 433 attr_page_in); 434 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); 435 } 436 if (!strcmp(attr->name, "page_out")) { 437 pdd = container_of(attr, struct kfd_process_device, 438 attr_page_out); 439 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); 440 } 441 return 0; 442 } 443 444 static struct attribute attr_queue_size = { 445 .name = "size", 446 .mode = KFD_SYSFS_FILE_MODE 447 }; 448 449 static struct attribute attr_queue_type = { 450 .name = "type", 451 .mode = KFD_SYSFS_FILE_MODE 452 }; 453 454 static struct attribute attr_queue_gpuid = { 455 .name = "gpuid", 456 .mode = KFD_SYSFS_FILE_MODE 457 }; 458 459 static struct attribute *procfs_queue_attrs[] = { 460 &attr_queue_size, 461 &attr_queue_type, 462 &attr_queue_gpuid, 463 NULL 464 }; 465 466 static const struct sysfs_ops procfs_queue_ops = { 467 .show = kfd_procfs_queue_show, 468 }; 469 470 static struct kobj_type procfs_queue_type = { 471 .sysfs_ops = &procfs_queue_ops, 472 .default_attrs = procfs_queue_attrs, 473 }; 474 475 static const struct sysfs_ops procfs_stats_ops = { 476 .show = kfd_procfs_stats_show, 477 }; 478 479 static struct kobj_type procfs_stats_type = { 480 .sysfs_ops = &procfs_stats_ops, 481 .release = kfd_procfs_kobj_release, 482 }; 483 484 static const struct sysfs_ops sysfs_counters_ops = { 485 .show = kfd_sysfs_counters_show, 486 }; 487 488 static struct kobj_type sysfs_counters_type = { 489 .sysfs_ops = &sysfs_counters_ops, 490 .release = kfd_procfs_kobj_release, 491 }; 492 493 int kfd_procfs_add_queue(struct queue *q) 494 { 495 struct kfd_process *proc; 496 int ret; 497 498 if (!q || !q->process) 499 return -EINVAL; 500 proc = q->process; 501 502 /* Create proc/<pid>/queues/<queue id> folder */ 503 if (!proc->kobj_queues) 504 return -EFAULT; 505 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 506 proc->kobj_queues, "%u", q->properties.queue_id); 507 if (ret < 0) { 508 pr_warn("Creating proc/<pid>/queues/%u failed", 509 q->properties.queue_id); 510 kobject_put(&q->kobj); 511 return ret; 512 } 513 514 return 0; 515 } 516 517 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, 518 char *name) 519 { 520 int ret; 521 522 if (!kobj || !attr || !name) 523 return; 524 525 attr->name = name; 526 attr->mode = KFD_SYSFS_FILE_MODE; 527 sysfs_attr_init(attr); 528 529 ret = sysfs_create_file(kobj, attr); 530 if (ret) 531 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); 532 } 533 534 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) 535 { 536 int ret; 537 int i; 538 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 539 540 if (!p || !p->kobj) 541 return; 542 543 /* 544 * Create sysfs files for each GPU: 545 * - proc/<pid>/stats_<gpuid>/ 546 * - proc/<pid>/stats_<gpuid>/evicted_ms 547 * - proc/<pid>/stats_<gpuid>/cu_occupancy 548 */ 549 for (i = 0; i < p->n_pdds; i++) { 550 struct kfd_process_device *pdd = p->pdds[i]; 551 552 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 553 "stats_%u", pdd->dev->id); 554 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); 555 if (!pdd->kobj_stats) 556 return; 557 558 ret = kobject_init_and_add(pdd->kobj_stats, 559 &procfs_stats_type, 560 p->kobj, 561 stats_dir_filename); 562 563 if (ret) { 564 pr_warn("Creating KFD proc/stats_%s folder failed", 565 stats_dir_filename); 566 kobject_put(pdd->kobj_stats); 567 pdd->kobj_stats = NULL; 568 return; 569 } 570 571 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, 572 "evicted_ms"); 573 /* Add sysfs file to report compute unit occupancy */ 574 if (pdd->dev->kfd2kgd->get_cu_occupancy) 575 kfd_sysfs_create_file(pdd->kobj_stats, 576 &pdd->attr_cu_occupancy, 577 "cu_occupancy"); 578 } 579 } 580 581 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) 582 { 583 int ret = 0; 584 int i; 585 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; 586 587 if (!p || !p->kobj) 588 return; 589 590 /* 591 * Create sysfs files for each GPU which supports SVM 592 * - proc/<pid>/counters_<gpuid>/ 593 * - proc/<pid>/counters_<gpuid>/faults 594 * - proc/<pid>/counters_<gpuid>/page_in 595 * - proc/<pid>/counters_<gpuid>/page_out 596 */ 597 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 598 struct kfd_process_device *pdd = p->pdds[i]; 599 struct kobject *kobj_counters; 600 601 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, 602 "counters_%u", pdd->dev->id); 603 kobj_counters = kfd_alloc_struct(kobj_counters); 604 if (!kobj_counters) 605 return; 606 607 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, 608 p->kobj, counters_dir_filename); 609 if (ret) { 610 pr_warn("Creating KFD proc/%s folder failed", 611 counters_dir_filename); 612 kobject_put(kobj_counters); 613 return; 614 } 615 616 pdd->kobj_counters = kobj_counters; 617 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, 618 "faults"); 619 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, 620 "page_in"); 621 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, 622 "page_out"); 623 } 624 } 625 626 static void kfd_procfs_add_sysfs_files(struct kfd_process *p) 627 { 628 int i; 629 630 if (!p || !p->kobj) 631 return; 632 633 /* 634 * Create sysfs files for each GPU: 635 * - proc/<pid>/vram_<gpuid> 636 * - proc/<pid>/sdma_<gpuid> 637 */ 638 for (i = 0; i < p->n_pdds; i++) { 639 struct kfd_process_device *pdd = p->pdds[i]; 640 641 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 642 pdd->dev->id); 643 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, 644 pdd->vram_filename); 645 646 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 647 pdd->dev->id); 648 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, 649 pdd->sdma_filename); 650 } 651 } 652 653 void kfd_procfs_del_queue(struct queue *q) 654 { 655 if (!q) 656 return; 657 658 kobject_del(&q->kobj); 659 kobject_put(&q->kobj); 660 } 661 662 int kfd_process_create_wq(void) 663 { 664 if (!kfd_process_wq) 665 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 666 if (!kfd_restore_wq) 667 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0); 668 669 if (!kfd_process_wq || !kfd_restore_wq) { 670 kfd_process_destroy_wq(); 671 return -ENOMEM; 672 } 673 674 return 0; 675 } 676 677 void kfd_process_destroy_wq(void) 678 { 679 if (kfd_process_wq) { 680 destroy_workqueue(kfd_process_wq); 681 kfd_process_wq = NULL; 682 } 683 if (kfd_restore_wq) { 684 destroy_workqueue(kfd_restore_wq); 685 kfd_restore_wq = NULL; 686 } 687 } 688 689 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 690 struct kfd_process_device *pdd, void *kptr) 691 { 692 struct kfd_dev *dev = pdd->dev; 693 694 if (kptr) { 695 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(dev->kgd, mem); 696 kptr = NULL; 697 } 698 699 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->drm_priv); 700 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, pdd->drm_priv, 701 NULL); 702 } 703 704 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 705 * This function should be only called right after the process 706 * is created and when kfd_processes_mutex is still being held 707 * to avoid concurrency. Because of that exclusiveness, we do 708 * not need to take p->mutex. 709 */ 710 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 711 uint64_t gpu_va, uint32_t size, 712 uint32_t flags, struct kgd_mem **mem, void **kptr) 713 { 714 struct kfd_dev *kdev = pdd->dev; 715 int err; 716 717 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size, 718 pdd->drm_priv, mem, NULL, flags); 719 if (err) 720 goto err_alloc_mem; 721 722 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, *mem, 723 pdd->drm_priv, NULL); 724 if (err) 725 goto err_map_mem; 726 727 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, *mem, true); 728 if (err) { 729 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 730 goto sync_memory_failed; 731 } 732 733 if (kptr) { 734 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd, 735 (struct kgd_mem *)*mem, kptr, NULL); 736 if (err) { 737 pr_debug("Map GTT BO to kernel failed\n"); 738 goto sync_memory_failed; 739 } 740 } 741 742 return err; 743 744 sync_memory_failed: 745 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->kgd, *mem, pdd->drm_priv); 746 747 err_map_mem: 748 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, *mem, pdd->drm_priv, 749 NULL); 750 err_alloc_mem: 751 *mem = NULL; 752 *kptr = NULL; 753 return err; 754 } 755 756 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 757 * process for IB usage The memory reserved is for KFD to submit 758 * IB to AMDGPU from kernel. If the memory is reserved 759 * successfully, ib_kaddr will have the CPU/kernel 760 * address. Check ib_kaddr before accessing the memory. 761 */ 762 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 763 { 764 struct qcm_process_device *qpd = &pdd->qpd; 765 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 766 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 767 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 768 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 769 struct kgd_mem *mem; 770 void *kaddr; 771 int ret; 772 773 if (qpd->ib_kaddr || !qpd->ib_base) 774 return 0; 775 776 /* ib_base is only set for dGPU */ 777 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 778 &mem, &kaddr); 779 if (ret) 780 return ret; 781 782 qpd->ib_mem = mem; 783 qpd->ib_kaddr = kaddr; 784 785 return 0; 786 } 787 788 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) 789 { 790 struct qcm_process_device *qpd = &pdd->qpd; 791 792 if (!qpd->ib_kaddr || !qpd->ib_base) 793 return; 794 795 kfd_process_free_gpuvm(qpd->ib_mem, pdd, qpd->ib_kaddr); 796 } 797 798 struct kfd_process *kfd_create_process(struct file *filep) 799 { 800 struct kfd_process *process; 801 struct task_struct *thread = current; 802 int ret; 803 804 if (!thread->mm) 805 return ERR_PTR(-EINVAL); 806 807 /* Only the pthreads threading model is supported. */ 808 if (thread->group_leader->mm != thread->mm) 809 return ERR_PTR(-EINVAL); 810 811 /* 812 * take kfd processes mutex before starting of process creation 813 * so there won't be a case where two threads of the same process 814 * create two kfd_process structures 815 */ 816 mutex_lock(&kfd_processes_mutex); 817 818 /* A prior open of /dev/kfd could have already created the process. */ 819 process = find_process(thread); 820 if (process) { 821 pr_debug("Process already found\n"); 822 } else { 823 process = create_process(thread); 824 if (IS_ERR(process)) 825 goto out; 826 827 ret = kfd_process_init_cwsr_apu(process, filep); 828 if (ret) 829 goto out_destroy; 830 831 if (!procfs.kobj) 832 goto out; 833 834 process->kobj = kfd_alloc_struct(process->kobj); 835 if (!process->kobj) { 836 pr_warn("Creating procfs kobject failed"); 837 goto out; 838 } 839 ret = kobject_init_and_add(process->kobj, &procfs_type, 840 procfs.kobj, "%d", 841 (int)process->lead_thread->pid); 842 if (ret) { 843 pr_warn("Creating procfs pid directory failed"); 844 kobject_put(process->kobj); 845 goto out; 846 } 847 848 kfd_sysfs_create_file(process->kobj, &process->attr_pasid, 849 "pasid"); 850 851 process->kobj_queues = kobject_create_and_add("queues", 852 process->kobj); 853 if (!process->kobj_queues) 854 pr_warn("Creating KFD proc/queues folder failed"); 855 856 kfd_procfs_add_sysfs_stats(process); 857 kfd_procfs_add_sysfs_files(process); 858 kfd_procfs_add_sysfs_counters(process); 859 } 860 out: 861 if (!IS_ERR(process)) 862 kref_get(&process->ref); 863 mutex_unlock(&kfd_processes_mutex); 864 865 return process; 866 867 out_destroy: 868 hash_del_rcu(&process->kfd_processes); 869 mutex_unlock(&kfd_processes_mutex); 870 synchronize_srcu(&kfd_processes_srcu); 871 /* kfd_process_free_notifier will trigger the cleanup */ 872 mmu_notifier_put(&process->mmu_notifier); 873 return ERR_PTR(ret); 874 } 875 876 struct kfd_process *kfd_get_process(const struct task_struct *thread) 877 { 878 struct kfd_process *process; 879 880 if (!thread->mm) 881 return ERR_PTR(-EINVAL); 882 883 /* Only the pthreads threading model is supported. */ 884 if (thread->group_leader->mm != thread->mm) 885 return ERR_PTR(-EINVAL); 886 887 process = find_process(thread); 888 if (!process) 889 return ERR_PTR(-EINVAL); 890 891 return process; 892 } 893 894 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 895 { 896 struct kfd_process *process; 897 898 hash_for_each_possible_rcu(kfd_processes_table, process, 899 kfd_processes, (uintptr_t)mm) 900 if (process->mm == mm) 901 return process; 902 903 return NULL; 904 } 905 906 static struct kfd_process *find_process(const struct task_struct *thread) 907 { 908 struct kfd_process *p; 909 int idx; 910 911 idx = srcu_read_lock(&kfd_processes_srcu); 912 p = find_process_by_mm(thread->mm); 913 srcu_read_unlock(&kfd_processes_srcu, idx); 914 915 return p; 916 } 917 918 void kfd_unref_process(struct kfd_process *p) 919 { 920 kref_put(&p->ref, kfd_process_ref_release); 921 } 922 923 924 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 925 { 926 struct kfd_process *p = pdd->process; 927 void *mem; 928 int id; 929 int i; 930 931 /* 932 * Remove all handles from idr and release appropriate 933 * local memory object 934 */ 935 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 936 937 for (i = 0; i < p->n_pdds; i++) { 938 struct kfd_process_device *peer_pdd = p->pdds[i]; 939 940 if (!peer_pdd->drm_priv) 941 continue; 942 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 943 peer_pdd->dev->kgd, mem, peer_pdd->drm_priv); 944 } 945 946 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem, 947 pdd->drm_priv, NULL); 948 kfd_process_device_remove_obj_handle(pdd, id); 949 } 950 } 951 952 /* 953 * Just kunmap and unpin signal BO here. It will be freed in 954 * kfd_process_free_outstanding_kfd_bos() 955 */ 956 static void kfd_process_kunmap_signal_bo(struct kfd_process *p) 957 { 958 struct kfd_process_device *pdd; 959 struct kfd_dev *kdev; 960 void *mem; 961 962 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); 963 if (!kdev) 964 return; 965 966 mutex_lock(&p->mutex); 967 968 pdd = kfd_get_process_device_data(kdev, p); 969 if (!pdd) 970 goto out; 971 972 mem = kfd_process_device_translate_handle( 973 pdd, GET_IDR_HANDLE(p->signal_handle)); 974 if (!mem) 975 goto out; 976 977 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(kdev->kgd, mem); 978 979 out: 980 mutex_unlock(&p->mutex); 981 } 982 983 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 984 { 985 int i; 986 987 for (i = 0; i < p->n_pdds; i++) 988 kfd_process_device_free_bos(p->pdds[i]); 989 } 990 991 static void kfd_process_destroy_pdds(struct kfd_process *p) 992 { 993 int i; 994 995 for (i = 0; i < p->n_pdds; i++) { 996 struct kfd_process_device *pdd = p->pdds[i]; 997 998 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 999 pdd->dev->id, p->pasid); 1000 1001 kfd_process_device_destroy_cwsr_dgpu(pdd); 1002 kfd_process_device_destroy_ib_mem(pdd); 1003 1004 if (pdd->drm_file) { 1005 amdgpu_amdkfd_gpuvm_release_process_vm( 1006 pdd->dev->kgd, pdd->drm_priv); 1007 fput(pdd->drm_file); 1008 } 1009 1010 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 1011 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 1012 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1013 1014 kfree(pdd->qpd.doorbell_bitmap); 1015 idr_destroy(&pdd->alloc_idr); 1016 1017 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index); 1018 1019 /* 1020 * before destroying pdd, make sure to report availability 1021 * for auto suspend 1022 */ 1023 if (pdd->runtime_inuse) { 1024 pm_runtime_mark_last_busy(pdd->dev->ddev->dev); 1025 pm_runtime_put_autosuspend(pdd->dev->ddev->dev); 1026 pdd->runtime_inuse = false; 1027 } 1028 1029 kfree(pdd); 1030 p->pdds[i] = NULL; 1031 } 1032 p->n_pdds = 0; 1033 } 1034 1035 static void kfd_process_remove_sysfs(struct kfd_process *p) 1036 { 1037 struct kfd_process_device *pdd; 1038 int i; 1039 1040 if (!p->kobj) 1041 return; 1042 1043 sysfs_remove_file(p->kobj, &p->attr_pasid); 1044 kobject_del(p->kobj_queues); 1045 kobject_put(p->kobj_queues); 1046 p->kobj_queues = NULL; 1047 1048 for (i = 0; i < p->n_pdds; i++) { 1049 pdd = p->pdds[i]; 1050 1051 sysfs_remove_file(p->kobj, &pdd->attr_vram); 1052 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 1053 1054 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 1055 if (pdd->dev->kfd2kgd->get_cu_occupancy) 1056 sysfs_remove_file(pdd->kobj_stats, 1057 &pdd->attr_cu_occupancy); 1058 kobject_del(pdd->kobj_stats); 1059 kobject_put(pdd->kobj_stats); 1060 pdd->kobj_stats = NULL; 1061 } 1062 1063 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 1064 pdd = p->pdds[i]; 1065 1066 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); 1067 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); 1068 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); 1069 kobject_del(pdd->kobj_counters); 1070 kobject_put(pdd->kobj_counters); 1071 pdd->kobj_counters = NULL; 1072 } 1073 1074 kobject_del(p->kobj); 1075 kobject_put(p->kobj); 1076 p->kobj = NULL; 1077 } 1078 1079 /* No process locking is needed in this function, because the process 1080 * is not findable any more. We must assume that no other thread is 1081 * using it any more, otherwise we couldn't safely free the process 1082 * structure in the end. 1083 */ 1084 static void kfd_process_wq_release(struct work_struct *work) 1085 { 1086 struct kfd_process *p = container_of(work, struct kfd_process, 1087 release_work); 1088 1089 kfd_process_remove_sysfs(p); 1090 kfd_iommu_unbind_process(p); 1091 1092 kfd_process_kunmap_signal_bo(p); 1093 kfd_process_free_outstanding_kfd_bos(p); 1094 svm_range_list_fini(p); 1095 1096 kfd_process_destroy_pdds(p); 1097 dma_fence_put(p->ef); 1098 1099 kfd_event_free_process(p); 1100 1101 kfd_pasid_free(p->pasid); 1102 mutex_destroy(&p->mutex); 1103 1104 put_task_struct(p->lead_thread); 1105 1106 kfree(p); 1107 } 1108 1109 static void kfd_process_ref_release(struct kref *ref) 1110 { 1111 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1112 1113 INIT_WORK(&p->release_work, kfd_process_wq_release); 1114 queue_work(kfd_process_wq, &p->release_work); 1115 } 1116 1117 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1118 { 1119 int idx = srcu_read_lock(&kfd_processes_srcu); 1120 struct kfd_process *p = find_process_by_mm(mm); 1121 1122 srcu_read_unlock(&kfd_processes_srcu, idx); 1123 1124 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1125 } 1126 1127 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1128 { 1129 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1130 } 1131 1132 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1133 struct mm_struct *mm) 1134 { 1135 struct kfd_process *p; 1136 int i; 1137 1138 /* 1139 * The kfd_process structure can not be free because the 1140 * mmu_notifier srcu is read locked 1141 */ 1142 p = container_of(mn, struct kfd_process, mmu_notifier); 1143 if (WARN_ON(p->mm != mm)) 1144 return; 1145 1146 mutex_lock(&kfd_processes_mutex); 1147 hash_del_rcu(&p->kfd_processes); 1148 mutex_unlock(&kfd_processes_mutex); 1149 synchronize_srcu(&kfd_processes_srcu); 1150 1151 cancel_delayed_work_sync(&p->eviction_work); 1152 cancel_delayed_work_sync(&p->restore_work); 1153 cancel_delayed_work_sync(&p->svms.restore_work); 1154 1155 mutex_lock(&p->mutex); 1156 1157 /* Iterate over all process device data structures and if the 1158 * pdd is in debug mode, we should first force unregistration, 1159 * then we will be able to destroy the queues 1160 */ 1161 for (i = 0; i < p->n_pdds; i++) { 1162 struct kfd_dev *dev = p->pdds[i]->dev; 1163 1164 mutex_lock(kfd_get_dbgmgr_mutex()); 1165 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) { 1166 if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) { 1167 kfd_dbgmgr_destroy(dev->dbgmgr); 1168 dev->dbgmgr = NULL; 1169 } 1170 } 1171 mutex_unlock(kfd_get_dbgmgr_mutex()); 1172 } 1173 1174 kfd_process_dequeue_from_all_devices(p); 1175 pqm_uninit(&p->pqm); 1176 1177 /* Indicate to other users that MM is no longer valid */ 1178 p->mm = NULL; 1179 /* Signal the eviction fence after user mode queues are 1180 * destroyed. This allows any BOs to be freed without 1181 * triggering pointless evictions or waiting for fences. 1182 */ 1183 dma_fence_signal(p->ef); 1184 1185 mutex_unlock(&p->mutex); 1186 1187 mmu_notifier_put(&p->mmu_notifier); 1188 } 1189 1190 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1191 .release = kfd_process_notifier_release, 1192 .alloc_notifier = kfd_process_alloc_notifier, 1193 .free_notifier = kfd_process_free_notifier, 1194 }; 1195 1196 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1197 { 1198 unsigned long offset; 1199 int i; 1200 1201 for (i = 0; i < p->n_pdds; i++) { 1202 struct kfd_dev *dev = p->pdds[i]->dev; 1203 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1204 1205 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1206 continue; 1207 1208 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1209 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1210 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1211 MAP_SHARED, offset); 1212 1213 if (IS_ERR_VALUE(qpd->tba_addr)) { 1214 int err = qpd->tba_addr; 1215 1216 pr_err("Failure to set tba address. error %d.\n", err); 1217 qpd->tba_addr = 0; 1218 qpd->cwsr_kaddr = NULL; 1219 return err; 1220 } 1221 1222 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1223 1224 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1225 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1226 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1227 } 1228 1229 return 0; 1230 } 1231 1232 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1233 { 1234 struct kfd_dev *dev = pdd->dev; 1235 struct qcm_process_device *qpd = &pdd->qpd; 1236 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1237 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1238 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1239 struct kgd_mem *mem; 1240 void *kaddr; 1241 int ret; 1242 1243 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1244 return 0; 1245 1246 /* cwsr_base is only set for dGPU */ 1247 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1248 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr); 1249 if (ret) 1250 return ret; 1251 1252 qpd->cwsr_mem = mem; 1253 qpd->cwsr_kaddr = kaddr; 1254 qpd->tba_addr = qpd->cwsr_base; 1255 1256 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1257 1258 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1259 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1260 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1261 1262 return 0; 1263 } 1264 1265 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) 1266 { 1267 struct kfd_dev *dev = pdd->dev; 1268 struct qcm_process_device *qpd = &pdd->qpd; 1269 1270 if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) 1271 return; 1272 1273 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, qpd->cwsr_kaddr); 1274 } 1275 1276 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1277 uint64_t tba_addr, 1278 uint64_t tma_addr) 1279 { 1280 if (qpd->cwsr_kaddr) { 1281 /* KFD trap handler is bound, record as second-level TBA/TMA 1282 * in first-level TMA. First-level trap will jump to second. 1283 */ 1284 uint64_t *tma = 1285 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1286 tma[0] = tba_addr; 1287 tma[1] = tma_addr; 1288 } else { 1289 /* No trap handler bound, bind as first-level TBA/TMA. */ 1290 qpd->tba_addr = tba_addr; 1291 qpd->tma_addr = tma_addr; 1292 } 1293 } 1294 1295 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1296 { 1297 int i; 1298 1299 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1300 * boot time retry setting. Mixing processes with different 1301 * XNACK/retry settings can hang the GPU. 1302 * 1303 * Different GPUs can have different noretry settings depending 1304 * on HW bugs or limitations. We need to find at least one 1305 * XNACK mode for this process that's compatible with all GPUs. 1306 * Fortunately GPUs with retry enabled (noretry=0) can run code 1307 * built for XNACK-off. On GFXv9 it may perform slower. 1308 * 1309 * Therefore applications built for XNACK-off can always be 1310 * supported and will be our fallback if any GPU does not 1311 * support retry. 1312 */ 1313 for (i = 0; i < p->n_pdds; i++) { 1314 struct kfd_dev *dev = p->pdds[i]->dev; 1315 1316 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1317 * support the SVM APIs and don't need to be considered 1318 * for the XNACK mode selection. 1319 */ 1320 if (dev->device_info->asic_family < CHIP_VEGA10) 1321 continue; 1322 /* Aldebaran can always support XNACK because it can support 1323 * per-process XNACK mode selection. But let the dev->noretry 1324 * setting still influence the default XNACK mode. 1325 */ 1326 if (supported && 1327 dev->device_info->asic_family == CHIP_ALDEBARAN) 1328 continue; 1329 1330 /* GFXv10 and later GPUs do not support shader preemption 1331 * during page faults. This can lead to poor QoS for queue 1332 * management and memory-manager-related preemptions or 1333 * even deadlocks. 1334 */ 1335 if (dev->device_info->asic_family >= CHIP_NAVI10) 1336 return false; 1337 1338 if (dev->noretry) 1339 return false; 1340 } 1341 1342 return true; 1343 } 1344 1345 /* 1346 * On return the kfd_process is fully operational and will be freed when the 1347 * mm is released 1348 */ 1349 static struct kfd_process *create_process(const struct task_struct *thread) 1350 { 1351 struct kfd_process *process; 1352 struct mmu_notifier *mn; 1353 int err = -ENOMEM; 1354 1355 process = kzalloc(sizeof(*process), GFP_KERNEL); 1356 if (!process) 1357 goto err_alloc_process; 1358 1359 kref_init(&process->ref); 1360 mutex_init(&process->mutex); 1361 process->mm = thread->mm; 1362 process->lead_thread = thread->group_leader; 1363 process->n_pdds = 0; 1364 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1365 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1366 process->last_restore_timestamp = get_jiffies_64(); 1367 kfd_event_init_process(process); 1368 process->is_32bit_user_mode = in_compat_syscall(); 1369 1370 process->pasid = kfd_pasid_alloc(); 1371 if (process->pasid == 0) 1372 goto err_alloc_pasid; 1373 1374 err = pqm_init(&process->pqm, process); 1375 if (err != 0) 1376 goto err_process_pqm_init; 1377 1378 /* init process apertures*/ 1379 err = kfd_init_apertures(process); 1380 if (err != 0) 1381 goto err_init_apertures; 1382 1383 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1384 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1385 1386 err = svm_range_list_init(process); 1387 if (err) 1388 goto err_init_svm_range_list; 1389 1390 /* alloc_notifier needs to find the process in the hash table */ 1391 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1392 (uintptr_t)process->mm); 1393 1394 /* MMU notifier registration must be the last call that can fail 1395 * because after this point we cannot unwind the process creation. 1396 * After this point, mmu_notifier_put will trigger the cleanup by 1397 * dropping the last process reference in the free_notifier. 1398 */ 1399 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1400 if (IS_ERR(mn)) { 1401 err = PTR_ERR(mn); 1402 goto err_register_notifier; 1403 } 1404 BUG_ON(mn != &process->mmu_notifier); 1405 1406 get_task_struct(process->lead_thread); 1407 1408 return process; 1409 1410 err_register_notifier: 1411 hash_del_rcu(&process->kfd_processes); 1412 svm_range_list_fini(process); 1413 err_init_svm_range_list: 1414 kfd_process_free_outstanding_kfd_bos(process); 1415 kfd_process_destroy_pdds(process); 1416 err_init_apertures: 1417 pqm_uninit(&process->pqm); 1418 err_process_pqm_init: 1419 kfd_pasid_free(process->pasid); 1420 err_alloc_pasid: 1421 mutex_destroy(&process->mutex); 1422 kfree(process); 1423 err_alloc_process: 1424 return ERR_PTR(err); 1425 } 1426 1427 static int init_doorbell_bitmap(struct qcm_process_device *qpd, 1428 struct kfd_dev *dev) 1429 { 1430 unsigned int i; 1431 int range_start = dev->shared_resources.non_cp_doorbells_start; 1432 int range_end = dev->shared_resources.non_cp_doorbells_end; 1433 1434 if (!KFD_IS_SOC15(dev->device_info->asic_family)) 1435 return 0; 1436 1437 qpd->doorbell_bitmap = 1438 kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, 1439 BITS_PER_BYTE), GFP_KERNEL); 1440 if (!qpd->doorbell_bitmap) 1441 return -ENOMEM; 1442 1443 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */ 1444 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end); 1445 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", 1446 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1447 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET); 1448 1449 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) { 1450 if (i >= range_start && i <= range_end) { 1451 set_bit(i, qpd->doorbell_bitmap); 1452 set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1453 qpd->doorbell_bitmap); 1454 } 1455 } 1456 1457 return 0; 1458 } 1459 1460 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 1461 struct kfd_process *p) 1462 { 1463 int i; 1464 1465 for (i = 0; i < p->n_pdds; i++) 1466 if (p->pdds[i]->dev == dev) 1467 return p->pdds[i]; 1468 1469 return NULL; 1470 } 1471 1472 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 1473 struct kfd_process *p) 1474 { 1475 struct kfd_process_device *pdd = NULL; 1476 1477 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1478 return NULL; 1479 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1480 if (!pdd) 1481 return NULL; 1482 1483 if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) { 1484 pr_err("Failed to alloc doorbell for pdd\n"); 1485 goto err_free_pdd; 1486 } 1487 1488 if (init_doorbell_bitmap(&pdd->qpd, dev)) { 1489 pr_err("Failed to init doorbell for process\n"); 1490 goto err_free_pdd; 1491 } 1492 1493 pdd->dev = dev; 1494 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1495 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1496 pdd->qpd.dqm = dev->dqm; 1497 pdd->qpd.pqm = &p->pqm; 1498 pdd->qpd.evicted = 0; 1499 pdd->qpd.mapped_gws_queue = false; 1500 pdd->process = p; 1501 pdd->bound = PDD_UNBOUND; 1502 pdd->already_dequeued = false; 1503 pdd->runtime_inuse = false; 1504 pdd->vram_usage = 0; 1505 pdd->sdma_past_activity_counter = 0; 1506 atomic64_set(&pdd->evict_duration_counter, 0); 1507 p->pdds[p->n_pdds++] = pdd; 1508 1509 /* Init idr used for memory handle translation */ 1510 idr_init(&pdd->alloc_idr); 1511 1512 return pdd; 1513 1514 err_free_pdd: 1515 kfree(pdd); 1516 return NULL; 1517 } 1518 1519 /** 1520 * kfd_process_device_init_vm - Initialize a VM for a process-device 1521 * 1522 * @pdd: The process-device 1523 * @drm_file: Optional pointer to a DRM file descriptor 1524 * 1525 * If @drm_file is specified, it will be used to acquire the VM from 1526 * that file descriptor. If successful, the @pdd takes ownership of 1527 * the file descriptor. 1528 * 1529 * If @drm_file is NULL, a new VM is created. 1530 * 1531 * Returns 0 on success, -errno on failure. 1532 */ 1533 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1534 struct file *drm_file) 1535 { 1536 struct kfd_process *p; 1537 struct kfd_dev *dev; 1538 int ret; 1539 1540 if (!drm_file) 1541 return -EINVAL; 1542 1543 if (pdd->drm_priv) 1544 return -EBUSY; 1545 1546 p = pdd->process; 1547 dev = pdd->dev; 1548 1549 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm( 1550 dev->kgd, drm_file, p->pasid, 1551 &p->kgd_process_info, &p->ef); 1552 if (ret) { 1553 pr_err("Failed to create process VM object\n"); 1554 return ret; 1555 } 1556 pdd->drm_priv = drm_file->private_data; 1557 1558 ret = kfd_process_device_reserve_ib_mem(pdd); 1559 if (ret) 1560 goto err_reserve_ib_mem; 1561 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1562 if (ret) 1563 goto err_init_cwsr; 1564 1565 pdd->drm_file = drm_file; 1566 1567 return 0; 1568 1569 err_init_cwsr: 1570 err_reserve_ib_mem: 1571 kfd_process_device_free_bos(pdd); 1572 pdd->drm_priv = NULL; 1573 1574 return ret; 1575 } 1576 1577 /* 1578 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1579 * to the device. 1580 * Unbinding occurs when the process dies or the device is removed. 1581 * 1582 * Assumes that the process lock is held. 1583 */ 1584 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 1585 struct kfd_process *p) 1586 { 1587 struct kfd_process_device *pdd; 1588 int err; 1589 1590 pdd = kfd_get_process_device_data(dev, p); 1591 if (!pdd) { 1592 pr_err("Process device data doesn't exist\n"); 1593 return ERR_PTR(-ENOMEM); 1594 } 1595 1596 if (!pdd->drm_priv) 1597 return ERR_PTR(-ENODEV); 1598 1599 /* 1600 * signal runtime-pm system to auto resume and prevent 1601 * further runtime suspend once device pdd is created until 1602 * pdd is destroyed. 1603 */ 1604 if (!pdd->runtime_inuse) { 1605 err = pm_runtime_get_sync(dev->ddev->dev); 1606 if (err < 0) { 1607 pm_runtime_put_autosuspend(dev->ddev->dev); 1608 return ERR_PTR(err); 1609 } 1610 } 1611 1612 err = kfd_iommu_bind_process_to_device(pdd); 1613 if (err) 1614 goto out; 1615 1616 /* 1617 * make sure that runtime_usage counter is incremented just once 1618 * per pdd 1619 */ 1620 pdd->runtime_inuse = true; 1621 1622 return pdd; 1623 1624 out: 1625 /* balance runpm reference count and exit with error */ 1626 if (!pdd->runtime_inuse) { 1627 pm_runtime_mark_last_busy(dev->ddev->dev); 1628 pm_runtime_put_autosuspend(dev->ddev->dev); 1629 } 1630 1631 return ERR_PTR(err); 1632 } 1633 1634 /* Create specific handle mapped to mem from process local memory idr 1635 * Assumes that the process lock is held. 1636 */ 1637 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1638 void *mem) 1639 { 1640 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1641 } 1642 1643 /* Translate specific handle from process local memory idr 1644 * Assumes that the process lock is held. 1645 */ 1646 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1647 int handle) 1648 { 1649 if (handle < 0) 1650 return NULL; 1651 1652 return idr_find(&pdd->alloc_idr, handle); 1653 } 1654 1655 /* Remove specific handle from process local memory idr 1656 * Assumes that the process lock is held. 1657 */ 1658 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1659 int handle) 1660 { 1661 if (handle >= 0) 1662 idr_remove(&pdd->alloc_idr, handle); 1663 } 1664 1665 /* This increments the process->ref counter. */ 1666 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) 1667 { 1668 struct kfd_process *p, *ret_p = NULL; 1669 unsigned int temp; 1670 1671 int idx = srcu_read_lock(&kfd_processes_srcu); 1672 1673 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1674 if (p->pasid == pasid) { 1675 kref_get(&p->ref); 1676 ret_p = p; 1677 break; 1678 } 1679 } 1680 1681 srcu_read_unlock(&kfd_processes_srcu, idx); 1682 1683 return ret_p; 1684 } 1685 1686 /* This increments the process->ref counter. */ 1687 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1688 { 1689 struct kfd_process *p; 1690 1691 int idx = srcu_read_lock(&kfd_processes_srcu); 1692 1693 p = find_process_by_mm(mm); 1694 if (p) 1695 kref_get(&p->ref); 1696 1697 srcu_read_unlock(&kfd_processes_srcu, idx); 1698 1699 return p; 1700 } 1701 1702 /* kfd_process_evict_queues - Evict all user queues of a process 1703 * 1704 * Eviction is reference-counted per process-device. This means multiple 1705 * evictions from different sources can be nested safely. 1706 */ 1707 int kfd_process_evict_queues(struct kfd_process *p) 1708 { 1709 int r = 0; 1710 int i; 1711 unsigned int n_evicted = 0; 1712 1713 for (i = 0; i < p->n_pdds; i++) { 1714 struct kfd_process_device *pdd = p->pdds[i]; 1715 1716 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1717 &pdd->qpd); 1718 /* evict return -EIO if HWS is hang or asic is resetting, in this case 1719 * we would like to set all the queues to be in evicted state to prevent 1720 * them been add back since they actually not be saved right now. 1721 */ 1722 if (r && r != -EIO) { 1723 pr_err("Failed to evict process queues\n"); 1724 goto fail; 1725 } 1726 n_evicted++; 1727 } 1728 1729 return r; 1730 1731 fail: 1732 /* To keep state consistent, roll back partial eviction by 1733 * restoring queues 1734 */ 1735 for (i = 0; i < p->n_pdds; i++) { 1736 struct kfd_process_device *pdd = p->pdds[i]; 1737 1738 if (n_evicted == 0) 1739 break; 1740 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1741 &pdd->qpd)) 1742 pr_err("Failed to restore queues\n"); 1743 1744 n_evicted--; 1745 } 1746 1747 return r; 1748 } 1749 1750 /* kfd_process_restore_queues - Restore all user queues of a process */ 1751 int kfd_process_restore_queues(struct kfd_process *p) 1752 { 1753 int r, ret = 0; 1754 int i; 1755 1756 for (i = 0; i < p->n_pdds; i++) { 1757 struct kfd_process_device *pdd = p->pdds[i]; 1758 1759 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1760 &pdd->qpd); 1761 if (r) { 1762 pr_err("Failed to restore process queues\n"); 1763 if (!ret) 1764 ret = r; 1765 } 1766 } 1767 1768 return ret; 1769 } 1770 1771 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 1772 { 1773 int i; 1774 1775 for (i = 0; i < p->n_pdds; i++) 1776 if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id) 1777 return i; 1778 return -EINVAL; 1779 } 1780 1781 int 1782 kfd_process_gpuid_from_kgd(struct kfd_process *p, struct amdgpu_device *adev, 1783 uint32_t *gpuid, uint32_t *gpuidx) 1784 { 1785 struct kgd_dev *kgd = (struct kgd_dev *)adev; 1786 int i; 1787 1788 for (i = 0; i < p->n_pdds; i++) 1789 if (p->pdds[i] && p->pdds[i]->dev->kgd == kgd) { 1790 *gpuid = p->pdds[i]->dev->id; 1791 *gpuidx = i; 1792 return 0; 1793 } 1794 return -EINVAL; 1795 } 1796 1797 static void evict_process_worker(struct work_struct *work) 1798 { 1799 int ret; 1800 struct kfd_process *p; 1801 struct delayed_work *dwork; 1802 1803 dwork = to_delayed_work(work); 1804 1805 /* Process termination destroys this worker thread. So during the 1806 * lifetime of this thread, kfd_process p will be valid 1807 */ 1808 p = container_of(dwork, struct kfd_process, eviction_work); 1809 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, 1810 "Eviction fence mismatch\n"); 1811 1812 /* Narrow window of overlap between restore and evict work 1813 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos 1814 * unreserves KFD BOs, it is possible to evicted again. But 1815 * restore has few more steps of finish. So lets wait for any 1816 * previous restore work to complete 1817 */ 1818 flush_delayed_work(&p->restore_work); 1819 1820 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1821 ret = kfd_process_evict_queues(p); 1822 if (!ret) { 1823 dma_fence_signal(p->ef); 1824 dma_fence_put(p->ef); 1825 p->ef = NULL; 1826 queue_delayed_work(kfd_restore_wq, &p->restore_work, 1827 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); 1828 1829 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 1830 } else 1831 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 1832 } 1833 1834 static void restore_process_worker(struct work_struct *work) 1835 { 1836 struct delayed_work *dwork; 1837 struct kfd_process *p; 1838 int ret = 0; 1839 1840 dwork = to_delayed_work(work); 1841 1842 /* Process termination destroys this worker thread. So during the 1843 * lifetime of this thread, kfd_process p will be valid 1844 */ 1845 p = container_of(dwork, struct kfd_process, restore_work); 1846 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 1847 1848 /* Setting last_restore_timestamp before successful restoration. 1849 * Otherwise this would have to be set by KGD (restore_process_bos) 1850 * before KFD BOs are unreserved. If not, the process can be evicted 1851 * again before the timestamp is set. 1852 * If restore fails, the timestamp will be set again in the next 1853 * attempt. This would mean that the minimum GPU quanta would be 1854 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 1855 * functions) 1856 */ 1857 1858 p->last_restore_timestamp = get_jiffies_64(); 1859 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info, 1860 &p->ef); 1861 if (ret) { 1862 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 1863 p->pasid, PROCESS_BACK_OFF_TIME_MS); 1864 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work, 1865 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); 1866 WARN(!ret, "reschedule restore work failed\n"); 1867 return; 1868 } 1869 1870 ret = kfd_process_restore_queues(p); 1871 if (!ret) 1872 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 1873 else 1874 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 1875 } 1876 1877 void kfd_suspend_all_processes(void) 1878 { 1879 struct kfd_process *p; 1880 unsigned int temp; 1881 int idx = srcu_read_lock(&kfd_processes_srcu); 1882 1883 WARN(debug_evictions, "Evicting all processes"); 1884 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1885 cancel_delayed_work_sync(&p->eviction_work); 1886 cancel_delayed_work_sync(&p->restore_work); 1887 1888 if (kfd_process_evict_queues(p)) 1889 pr_err("Failed to suspend process 0x%x\n", p->pasid); 1890 dma_fence_signal(p->ef); 1891 dma_fence_put(p->ef); 1892 p->ef = NULL; 1893 } 1894 srcu_read_unlock(&kfd_processes_srcu, idx); 1895 } 1896 1897 int kfd_resume_all_processes(void) 1898 { 1899 struct kfd_process *p; 1900 unsigned int temp; 1901 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 1902 1903 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1904 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) { 1905 pr_err("Restore process %d failed during resume\n", 1906 p->pasid); 1907 ret = -EFAULT; 1908 } 1909 } 1910 srcu_read_unlock(&kfd_processes_srcu, idx); 1911 return ret; 1912 } 1913 1914 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 1915 struct vm_area_struct *vma) 1916 { 1917 struct kfd_process_device *pdd; 1918 struct qcm_process_device *qpd; 1919 1920 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 1921 pr_err("Incorrect CWSR mapping size.\n"); 1922 return -EINVAL; 1923 } 1924 1925 pdd = kfd_get_process_device_data(dev, process); 1926 if (!pdd) 1927 return -EINVAL; 1928 qpd = &pdd->qpd; 1929 1930 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1931 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1932 if (!qpd->cwsr_kaddr) { 1933 pr_err("Error allocating per process CWSR buffer.\n"); 1934 return -ENOMEM; 1935 } 1936 1937 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND 1938 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; 1939 /* Mapping pages to user process */ 1940 return remap_pfn_range(vma, vma->vm_start, 1941 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 1942 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 1943 } 1944 1945 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type) 1946 { 1947 struct kfd_dev *dev = pdd->dev; 1948 1949 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1950 /* Nothing to flush until a VMID is assigned, which 1951 * only happens when the first queue is created. 1952 */ 1953 if (pdd->qpd.vmid) 1954 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd, 1955 pdd->qpd.vmid); 1956 } else { 1957 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd, 1958 pdd->process->pasid, type); 1959 } 1960 } 1961 1962 #if defined(CONFIG_DEBUG_FS) 1963 1964 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 1965 { 1966 struct kfd_process *p; 1967 unsigned int temp; 1968 int r = 0; 1969 1970 int idx = srcu_read_lock(&kfd_processes_srcu); 1971 1972 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1973 seq_printf(m, "Process %d PASID 0x%x:\n", 1974 p->lead_thread->tgid, p->pasid); 1975 1976 mutex_lock(&p->mutex); 1977 r = pqm_debugfs_mqds(m, &p->pqm); 1978 mutex_unlock(&p->mutex); 1979 1980 if (r) 1981 break; 1982 } 1983 1984 srcu_read_unlock(&kfd_processes_srcu, idx); 1985 1986 return r; 1987 } 1988 1989 #endif 1990 1991