1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/mutex.h> 24 #include <linux/log2.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/amd-iommu.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 39 struct mm_struct; 40 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_dbgmgr.h" 44 #include "kfd_iommu.h" 45 46 /* 47 * List of struct kfd_process (field kfd_process). 48 * Unique/indexed by mm_struct* 49 */ 50 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 51 static DEFINE_MUTEX(kfd_processes_mutex); 52 53 DEFINE_SRCU(kfd_processes_srcu); 54 55 /* For process termination handling */ 56 static struct workqueue_struct *kfd_process_wq; 57 58 /* Ordered, single-threaded workqueue for restoring evicted 59 * processes. Restoring multiple processes concurrently under memory 60 * pressure can lead to processes blocking each other from validating 61 * their BOs and result in a live-lock situation where processes 62 * remain evicted indefinitely. 63 */ 64 static struct workqueue_struct *kfd_restore_wq; 65 66 static struct kfd_process *find_process(const struct task_struct *thread); 67 static void kfd_process_ref_release(struct kref *ref); 68 static struct kfd_process *create_process(const struct task_struct *thread); 69 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep); 70 71 static void evict_process_worker(struct work_struct *work); 72 static void restore_process_worker(struct work_struct *work); 73 74 struct kfd_procfs_tree { 75 struct kobject *kobj; 76 }; 77 78 static struct kfd_procfs_tree procfs; 79 80 /* 81 * Structure for SDMA activity tracking 82 */ 83 struct kfd_sdma_activity_handler_workarea { 84 struct work_struct sdma_activity_work; 85 struct kfd_process_device *pdd; 86 uint64_t sdma_activity_counter; 87 }; 88 89 struct temp_sdma_queue_list { 90 uint64_t __user *rptr; 91 uint64_t sdma_val; 92 unsigned int queue_id; 93 struct list_head list; 94 }; 95 96 static void kfd_sdma_activity_worker(struct work_struct *work) 97 { 98 struct kfd_sdma_activity_handler_workarea *workarea; 99 struct kfd_process_device *pdd; 100 uint64_t val; 101 struct mm_struct *mm; 102 struct queue *q; 103 struct qcm_process_device *qpd; 104 struct device_queue_manager *dqm; 105 int ret = 0; 106 struct temp_sdma_queue_list sdma_q_list; 107 struct temp_sdma_queue_list *sdma_q, *next; 108 109 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 110 sdma_activity_work); 111 if (!workarea) 112 return; 113 114 pdd = workarea->pdd; 115 if (!pdd) 116 return; 117 dqm = pdd->dev->dqm; 118 qpd = &pdd->qpd; 119 if (!dqm || !qpd) 120 return; 121 /* 122 * Total SDMA activity is current SDMA activity + past SDMA activity 123 * Past SDMA count is stored in pdd. 124 * To get the current activity counters for all active SDMA queues, 125 * we loop over all SDMA queues and get their counts from user-space. 126 * 127 * We cannot call get_user() with dqm_lock held as it can cause 128 * a circular lock dependency situation. To read the SDMA stats, 129 * we need to do the following: 130 * 131 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 132 * with dqm_lock/dqm_unlock(). 133 * 2. Call get_user() for each node in temporary list without dqm_lock. 134 * Save the SDMA count for each node and also add the count to the total 135 * SDMA count counter. 136 * Its possible, during this step, a few SDMA queue nodes got deleted 137 * from the qpd->queues_list. 138 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 139 * If any node got deleted, its SDMA count would be captured in the sdma 140 * past activity counter. So subtract the SDMA counter stored in step 2 141 * for this node from the total SDMA count. 142 */ 143 INIT_LIST_HEAD(&sdma_q_list.list); 144 145 /* 146 * Create the temp list of all SDMA queues 147 */ 148 dqm_lock(dqm); 149 150 list_for_each_entry(q, &qpd->queues_list, list) { 151 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 152 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 153 continue; 154 155 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 156 if (!sdma_q) { 157 dqm_unlock(dqm); 158 goto cleanup; 159 } 160 161 INIT_LIST_HEAD(&sdma_q->list); 162 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 163 sdma_q->queue_id = q->properties.queue_id; 164 list_add_tail(&sdma_q->list, &sdma_q_list.list); 165 } 166 167 /* 168 * If the temp list is empty, then no SDMA queues nodes were found in 169 * qpd->queues_list. Return the past activity count as the total sdma 170 * count 171 */ 172 if (list_empty(&sdma_q_list.list)) { 173 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 174 dqm_unlock(dqm); 175 return; 176 } 177 178 dqm_unlock(dqm); 179 180 /* 181 * Get the usage count for each SDMA queue in temp_list. 182 */ 183 mm = get_task_mm(pdd->process->lead_thread); 184 if (!mm) 185 goto cleanup; 186 187 kthread_use_mm(mm); 188 189 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 190 val = 0; 191 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 192 if (ret) { 193 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 194 sdma_q->queue_id); 195 } else { 196 sdma_q->sdma_val = val; 197 workarea->sdma_activity_counter += val; 198 } 199 } 200 201 kthread_unuse_mm(mm); 202 mmput(mm); 203 204 /* 205 * Do a second iteration over qpd_queues_list to check if any SDMA 206 * nodes got deleted while fetching SDMA counter. 207 */ 208 dqm_lock(dqm); 209 210 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 211 212 list_for_each_entry(q, &qpd->queues_list, list) { 213 if (list_empty(&sdma_q_list.list)) 214 break; 215 216 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 217 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 218 continue; 219 220 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 221 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 222 (sdma_q->queue_id == q->properties.queue_id)) { 223 list_del(&sdma_q->list); 224 kfree(sdma_q); 225 break; 226 } 227 } 228 } 229 230 dqm_unlock(dqm); 231 232 /* 233 * If temp list is not empty, it implies some queues got deleted 234 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 235 * count for each node from the total SDMA count. 236 */ 237 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 238 workarea->sdma_activity_counter -= sdma_q->sdma_val; 239 list_del(&sdma_q->list); 240 kfree(sdma_q); 241 } 242 243 return; 244 245 cleanup: 246 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 247 list_del(&sdma_q->list); 248 kfree(sdma_q); 249 } 250 } 251 252 /** 253 * @kfd_get_cu_occupancy() - Collect number of waves in-flight on this device 254 * by current process. Translates acquired wave count into number of compute units 255 * that are occupied. 256 * 257 * @atr: Handle of attribute that allows reporting of wave count. The attribute 258 * handle encapsulates GPU device it is associated with, thereby allowing collection 259 * of waves in flight, etc 260 * 261 * @buffer: Handle of user provided buffer updated with wave count 262 * 263 * Return: Number of bytes written to user buffer or an error value 264 */ 265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 266 { 267 int cu_cnt; 268 int wave_cnt; 269 int max_waves_per_cu; 270 struct kfd_dev *dev = NULL; 271 struct kfd_process *proc = NULL; 272 struct kfd_process_device *pdd = NULL; 273 274 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 275 dev = pdd->dev; 276 if (dev->kfd2kgd->get_cu_occupancy == NULL) 277 return -EINVAL; 278 279 cu_cnt = 0; 280 proc = pdd->process; 281 if (pdd->qpd.queue_count == 0) { 282 pr_debug("Gpu-Id: %d has no active queues for process %d\n", 283 dev->id, proc->pasid); 284 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 285 } 286 287 /* Collect wave count from device if it supports */ 288 wave_cnt = 0; 289 max_waves_per_cu = 0; 290 dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt, 291 &max_waves_per_cu); 292 293 /* Translate wave count to number of compute units */ 294 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 295 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 296 } 297 298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 299 char *buffer) 300 { 301 if (strcmp(attr->name, "pasid") == 0) { 302 struct kfd_process *p = container_of(attr, struct kfd_process, 303 attr_pasid); 304 305 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 306 } else if (strncmp(attr->name, "vram_", 5) == 0) { 307 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 308 attr_vram); 309 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage)); 310 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 311 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 312 attr_sdma); 313 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 314 315 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work, 316 kfd_sdma_activity_worker); 317 318 sdma_activity_work_handler.pdd = pdd; 319 sdma_activity_work_handler.sdma_activity_counter = 0; 320 321 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 322 323 flush_work(&sdma_activity_work_handler.sdma_activity_work); 324 325 return snprintf(buffer, PAGE_SIZE, "%llu\n", 326 (sdma_activity_work_handler.sdma_activity_counter)/ 327 SDMA_ACTIVITY_DIVISOR); 328 } else { 329 pr_err("Invalid attribute"); 330 return -EINVAL; 331 } 332 333 return 0; 334 } 335 336 static void kfd_procfs_kobj_release(struct kobject *kobj) 337 { 338 kfree(kobj); 339 } 340 341 static const struct sysfs_ops kfd_procfs_ops = { 342 .show = kfd_procfs_show, 343 }; 344 345 static struct kobj_type procfs_type = { 346 .release = kfd_procfs_kobj_release, 347 .sysfs_ops = &kfd_procfs_ops, 348 }; 349 350 void kfd_procfs_init(void) 351 { 352 int ret = 0; 353 354 procfs.kobj = kfd_alloc_struct(procfs.kobj); 355 if (!procfs.kobj) 356 return; 357 358 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 359 &kfd_device->kobj, "proc"); 360 if (ret) { 361 pr_warn("Could not create procfs proc folder"); 362 /* If we fail to create the procfs, clean up */ 363 kfd_procfs_shutdown(); 364 } 365 } 366 367 void kfd_procfs_shutdown(void) 368 { 369 if (procfs.kobj) { 370 kobject_del(procfs.kobj); 371 kobject_put(procfs.kobj); 372 procfs.kobj = NULL; 373 } 374 } 375 376 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 377 struct attribute *attr, char *buffer) 378 { 379 struct queue *q = container_of(kobj, struct queue, kobj); 380 381 if (!strcmp(attr->name, "size")) 382 return snprintf(buffer, PAGE_SIZE, "%llu", 383 q->properties.queue_size); 384 else if (!strcmp(attr->name, "type")) 385 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 386 else if (!strcmp(attr->name, "gpuid")) 387 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 388 else 389 pr_err("Invalid attribute"); 390 391 return 0; 392 } 393 394 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 395 struct attribute *attr, char *buffer) 396 { 397 if (strcmp(attr->name, "evicted_ms") == 0) { 398 struct kfd_process_device *pdd = container_of(attr, 399 struct kfd_process_device, 400 attr_evict); 401 uint64_t evict_jiffies; 402 403 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 404 405 return snprintf(buffer, 406 PAGE_SIZE, 407 "%llu\n", 408 jiffies64_to_msecs(evict_jiffies)); 409 410 /* Sysfs handle that gets CU occupancy is per device */ 411 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 412 return kfd_get_cu_occupancy(attr, buffer); 413 } else { 414 pr_err("Invalid attribute"); 415 } 416 417 return 0; 418 } 419 420 static struct attribute attr_queue_size = { 421 .name = "size", 422 .mode = KFD_SYSFS_FILE_MODE 423 }; 424 425 static struct attribute attr_queue_type = { 426 .name = "type", 427 .mode = KFD_SYSFS_FILE_MODE 428 }; 429 430 static struct attribute attr_queue_gpuid = { 431 .name = "gpuid", 432 .mode = KFD_SYSFS_FILE_MODE 433 }; 434 435 static struct attribute *procfs_queue_attrs[] = { 436 &attr_queue_size, 437 &attr_queue_type, 438 &attr_queue_gpuid, 439 NULL 440 }; 441 442 static const struct sysfs_ops procfs_queue_ops = { 443 .show = kfd_procfs_queue_show, 444 }; 445 446 static struct kobj_type procfs_queue_type = { 447 .sysfs_ops = &procfs_queue_ops, 448 .default_attrs = procfs_queue_attrs, 449 }; 450 451 static const struct sysfs_ops procfs_stats_ops = { 452 .show = kfd_procfs_stats_show, 453 }; 454 455 static struct attribute *procfs_stats_attrs[] = { 456 NULL 457 }; 458 459 static struct kobj_type procfs_stats_type = { 460 .sysfs_ops = &procfs_stats_ops, 461 .default_attrs = procfs_stats_attrs, 462 }; 463 464 int kfd_procfs_add_queue(struct queue *q) 465 { 466 struct kfd_process *proc; 467 int ret; 468 469 if (!q || !q->process) 470 return -EINVAL; 471 proc = q->process; 472 473 /* Create proc/<pid>/queues/<queue id> folder */ 474 if (!proc->kobj_queues) 475 return -EFAULT; 476 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 477 proc->kobj_queues, "%u", q->properties.queue_id); 478 if (ret < 0) { 479 pr_warn("Creating proc/<pid>/queues/%u failed", 480 q->properties.queue_id); 481 kobject_put(&q->kobj); 482 return ret; 483 } 484 485 return 0; 486 } 487 488 static int kfd_sysfs_create_file(struct kfd_process *p, struct attribute *attr, 489 char *name) 490 { 491 int ret = 0; 492 493 if (!p || !attr || !name) 494 return -EINVAL; 495 496 attr->name = name; 497 attr->mode = KFD_SYSFS_FILE_MODE; 498 sysfs_attr_init(attr); 499 500 ret = sysfs_create_file(p->kobj, attr); 501 502 return ret; 503 } 504 505 static int kfd_procfs_add_sysfs_stats(struct kfd_process *p) 506 { 507 int ret = 0; 508 int i; 509 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 510 511 if (!p) 512 return -EINVAL; 513 514 if (!p->kobj) 515 return -EFAULT; 516 517 /* 518 * Create sysfs files for each GPU: 519 * - proc/<pid>/stats_<gpuid>/ 520 * - proc/<pid>/stats_<gpuid>/evicted_ms 521 * - proc/<pid>/stats_<gpuid>/cu_occupancy 522 */ 523 for (i = 0; i < p->n_pdds; i++) { 524 struct kfd_process_device *pdd = p->pdds[i]; 525 struct kobject *kobj_stats; 526 527 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 528 "stats_%u", pdd->dev->id); 529 kobj_stats = kfd_alloc_struct(kobj_stats); 530 if (!kobj_stats) 531 return -ENOMEM; 532 533 ret = kobject_init_and_add(kobj_stats, 534 &procfs_stats_type, 535 p->kobj, 536 stats_dir_filename); 537 538 if (ret) { 539 pr_warn("Creating KFD proc/stats_%s folder failed", 540 stats_dir_filename); 541 kobject_put(kobj_stats); 542 goto err; 543 } 544 545 pdd->kobj_stats = kobj_stats; 546 pdd->attr_evict.name = "evicted_ms"; 547 pdd->attr_evict.mode = KFD_SYSFS_FILE_MODE; 548 sysfs_attr_init(&pdd->attr_evict); 549 ret = sysfs_create_file(kobj_stats, &pdd->attr_evict); 550 if (ret) 551 pr_warn("Creating eviction stats for gpuid %d failed", 552 (int)pdd->dev->id); 553 554 /* Add sysfs file to report compute unit occupancy */ 555 if (pdd->dev->kfd2kgd->get_cu_occupancy != NULL) { 556 pdd->attr_cu_occupancy.name = "cu_occupancy"; 557 pdd->attr_cu_occupancy.mode = KFD_SYSFS_FILE_MODE; 558 sysfs_attr_init(&pdd->attr_cu_occupancy); 559 ret = sysfs_create_file(kobj_stats, 560 &pdd->attr_cu_occupancy); 561 if (ret) 562 pr_warn("Creating %s failed for gpuid: %d", 563 pdd->attr_cu_occupancy.name, 564 (int)pdd->dev->id); 565 } 566 } 567 err: 568 return ret; 569 } 570 571 572 static int kfd_procfs_add_sysfs_files(struct kfd_process *p) 573 { 574 int ret = 0; 575 int i; 576 577 if (!p) 578 return -EINVAL; 579 580 if (!p->kobj) 581 return -EFAULT; 582 583 /* 584 * Create sysfs files for each GPU: 585 * - proc/<pid>/vram_<gpuid> 586 * - proc/<pid>/sdma_<gpuid> 587 */ 588 for (i = 0; i < p->n_pdds; i++) { 589 struct kfd_process_device *pdd = p->pdds[i]; 590 591 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 592 pdd->dev->id); 593 ret = kfd_sysfs_create_file(p, &pdd->attr_vram, pdd->vram_filename); 594 if (ret) 595 pr_warn("Creating vram usage for gpu id %d failed", 596 (int)pdd->dev->id); 597 598 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 599 pdd->dev->id); 600 ret = kfd_sysfs_create_file(p, &pdd->attr_sdma, pdd->sdma_filename); 601 if (ret) 602 pr_warn("Creating sdma usage for gpu id %d failed", 603 (int)pdd->dev->id); 604 } 605 606 return ret; 607 } 608 609 void kfd_procfs_del_queue(struct queue *q) 610 { 611 if (!q) 612 return; 613 614 kobject_del(&q->kobj); 615 kobject_put(&q->kobj); 616 } 617 618 int kfd_process_create_wq(void) 619 { 620 if (!kfd_process_wq) 621 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 622 if (!kfd_restore_wq) 623 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0); 624 625 if (!kfd_process_wq || !kfd_restore_wq) { 626 kfd_process_destroy_wq(); 627 return -ENOMEM; 628 } 629 630 return 0; 631 } 632 633 void kfd_process_destroy_wq(void) 634 { 635 if (kfd_process_wq) { 636 destroy_workqueue(kfd_process_wq); 637 kfd_process_wq = NULL; 638 } 639 if (kfd_restore_wq) { 640 destroy_workqueue(kfd_restore_wq); 641 kfd_restore_wq = NULL; 642 } 643 } 644 645 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 646 struct kfd_process_device *pdd) 647 { 648 struct kfd_dev *dev = pdd->dev; 649 650 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->vm); 651 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, NULL); 652 } 653 654 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 655 * This function should be only called right after the process 656 * is created and when kfd_processes_mutex is still being held 657 * to avoid concurrency. Because of that exclusiveness, we do 658 * not need to take p->mutex. 659 */ 660 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 661 uint64_t gpu_va, uint32_t size, 662 uint32_t flags, void **kptr) 663 { 664 struct kfd_dev *kdev = pdd->dev; 665 struct kgd_mem *mem = NULL; 666 int handle; 667 int err; 668 669 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size, 670 pdd->vm, &mem, NULL, flags); 671 if (err) 672 goto err_alloc_mem; 673 674 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->vm); 675 if (err) 676 goto err_map_mem; 677 678 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true); 679 if (err) { 680 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 681 goto sync_memory_failed; 682 } 683 684 /* Create an obj handle so kfd_process_device_remove_obj_handle 685 * will take care of the bo removal when the process finishes. 686 * We do not need to take p->mutex, because the process is just 687 * created and the ioctls have not had the chance to run. 688 */ 689 handle = kfd_process_device_create_obj_handle(pdd, mem); 690 691 if (handle < 0) { 692 err = handle; 693 goto free_gpuvm; 694 } 695 696 if (kptr) { 697 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd, 698 (struct kgd_mem *)mem, kptr, NULL); 699 if (err) { 700 pr_debug("Map GTT BO to kernel failed\n"); 701 goto free_obj_handle; 702 } 703 } 704 705 return err; 706 707 free_obj_handle: 708 kfd_process_device_remove_obj_handle(pdd, handle); 709 free_gpuvm: 710 sync_memory_failed: 711 kfd_process_free_gpuvm(mem, pdd); 712 return err; 713 714 err_map_mem: 715 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, NULL); 716 err_alloc_mem: 717 *kptr = NULL; 718 return err; 719 } 720 721 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 722 * process for IB usage The memory reserved is for KFD to submit 723 * IB to AMDGPU from kernel. If the memory is reserved 724 * successfully, ib_kaddr will have the CPU/kernel 725 * address. Check ib_kaddr before accessing the memory. 726 */ 727 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 728 { 729 struct qcm_process_device *qpd = &pdd->qpd; 730 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 731 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 732 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 733 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 734 void *kaddr; 735 int ret; 736 737 if (qpd->ib_kaddr || !qpd->ib_base) 738 return 0; 739 740 /* ib_base is only set for dGPU */ 741 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 742 &kaddr); 743 if (ret) 744 return ret; 745 746 qpd->ib_kaddr = kaddr; 747 748 return 0; 749 } 750 751 struct kfd_process *kfd_create_process(struct file *filep) 752 { 753 struct kfd_process *process; 754 struct task_struct *thread = current; 755 int ret; 756 757 if (!thread->mm) 758 return ERR_PTR(-EINVAL); 759 760 /* Only the pthreads threading model is supported. */ 761 if (thread->group_leader->mm != thread->mm) 762 return ERR_PTR(-EINVAL); 763 764 /* 765 * take kfd processes mutex before starting of process creation 766 * so there won't be a case where two threads of the same process 767 * create two kfd_process structures 768 */ 769 mutex_lock(&kfd_processes_mutex); 770 771 /* A prior open of /dev/kfd could have already created the process. */ 772 process = find_process(thread); 773 if (process) { 774 pr_debug("Process already found\n"); 775 } else { 776 process = create_process(thread); 777 if (IS_ERR(process)) 778 goto out; 779 780 ret = kfd_process_init_cwsr_apu(process, filep); 781 if (ret) 782 goto out_destroy; 783 784 if (!procfs.kobj) 785 goto out; 786 787 process->kobj = kfd_alloc_struct(process->kobj); 788 if (!process->kobj) { 789 pr_warn("Creating procfs kobject failed"); 790 goto out; 791 } 792 ret = kobject_init_and_add(process->kobj, &procfs_type, 793 procfs.kobj, "%d", 794 (int)process->lead_thread->pid); 795 if (ret) { 796 pr_warn("Creating procfs pid directory failed"); 797 kobject_put(process->kobj); 798 goto out; 799 } 800 801 process->attr_pasid.name = "pasid"; 802 process->attr_pasid.mode = KFD_SYSFS_FILE_MODE; 803 sysfs_attr_init(&process->attr_pasid); 804 ret = sysfs_create_file(process->kobj, &process->attr_pasid); 805 if (ret) 806 pr_warn("Creating pasid for pid %d failed", 807 (int)process->lead_thread->pid); 808 809 process->kobj_queues = kobject_create_and_add("queues", 810 process->kobj); 811 if (!process->kobj_queues) 812 pr_warn("Creating KFD proc/queues folder failed"); 813 814 ret = kfd_procfs_add_sysfs_stats(process); 815 if (ret) 816 pr_warn("Creating sysfs stats dir for pid %d failed", 817 (int)process->lead_thread->pid); 818 819 ret = kfd_procfs_add_sysfs_files(process); 820 if (ret) 821 pr_warn("Creating sysfs usage file for pid %d failed", 822 (int)process->lead_thread->pid); 823 } 824 out: 825 if (!IS_ERR(process)) 826 kref_get(&process->ref); 827 mutex_unlock(&kfd_processes_mutex); 828 829 return process; 830 831 out_destroy: 832 hash_del_rcu(&process->kfd_processes); 833 mutex_unlock(&kfd_processes_mutex); 834 synchronize_srcu(&kfd_processes_srcu); 835 /* kfd_process_free_notifier will trigger the cleanup */ 836 mmu_notifier_put(&process->mmu_notifier); 837 return ERR_PTR(ret); 838 } 839 840 struct kfd_process *kfd_get_process(const struct task_struct *thread) 841 { 842 struct kfd_process *process; 843 844 if (!thread->mm) 845 return ERR_PTR(-EINVAL); 846 847 /* Only the pthreads threading model is supported. */ 848 if (thread->group_leader->mm != thread->mm) 849 return ERR_PTR(-EINVAL); 850 851 process = find_process(thread); 852 if (!process) 853 return ERR_PTR(-EINVAL); 854 855 return process; 856 } 857 858 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 859 { 860 struct kfd_process *process; 861 862 hash_for_each_possible_rcu(kfd_processes_table, process, 863 kfd_processes, (uintptr_t)mm) 864 if (process->mm == mm) 865 return process; 866 867 return NULL; 868 } 869 870 static struct kfd_process *find_process(const struct task_struct *thread) 871 { 872 struct kfd_process *p; 873 int idx; 874 875 idx = srcu_read_lock(&kfd_processes_srcu); 876 p = find_process_by_mm(thread->mm); 877 srcu_read_unlock(&kfd_processes_srcu, idx); 878 879 return p; 880 } 881 882 void kfd_unref_process(struct kfd_process *p) 883 { 884 kref_put(&p->ref, kfd_process_ref_release); 885 } 886 887 888 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 889 { 890 struct kfd_process *p = pdd->process; 891 void *mem; 892 int id; 893 int i; 894 895 /* 896 * Remove all handles from idr and release appropriate 897 * local memory object 898 */ 899 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 900 901 for (i = 0; i < p->n_pdds; i++) { 902 struct kfd_process_device *peer_pdd = p->pdds[i]; 903 904 if (!peer_pdd->vm) 905 continue; 906 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 907 peer_pdd->dev->kgd, mem, peer_pdd->vm); 908 } 909 910 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem, NULL); 911 kfd_process_device_remove_obj_handle(pdd, id); 912 } 913 } 914 915 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 916 { 917 int i; 918 919 for (i = 0; i < p->n_pdds; i++) 920 kfd_process_device_free_bos(p->pdds[i]); 921 } 922 923 static void kfd_process_destroy_pdds(struct kfd_process *p) 924 { 925 int i; 926 927 for (i = 0; i < p->n_pdds; i++) { 928 struct kfd_process_device *pdd = p->pdds[i]; 929 930 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 931 pdd->dev->id, p->pasid); 932 933 if (pdd->drm_file) { 934 amdgpu_amdkfd_gpuvm_release_process_vm( 935 pdd->dev->kgd, pdd->vm); 936 fput(pdd->drm_file); 937 } 938 else if (pdd->vm) 939 amdgpu_amdkfd_gpuvm_destroy_process_vm( 940 pdd->dev->kgd, pdd->vm); 941 942 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 943 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 944 get_order(KFD_CWSR_TBA_TMA_SIZE)); 945 946 kfree(pdd->qpd.doorbell_bitmap); 947 idr_destroy(&pdd->alloc_idr); 948 949 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index); 950 951 /* 952 * before destroying pdd, make sure to report availability 953 * for auto suspend 954 */ 955 if (pdd->runtime_inuse) { 956 pm_runtime_mark_last_busy(pdd->dev->ddev->dev); 957 pm_runtime_put_autosuspend(pdd->dev->ddev->dev); 958 pdd->runtime_inuse = false; 959 } 960 961 kfree(pdd); 962 p->pdds[i] = NULL; 963 } 964 p->n_pdds = 0; 965 } 966 967 /* No process locking is needed in this function, because the process 968 * is not findable any more. We must assume that no other thread is 969 * using it any more, otherwise we couldn't safely free the process 970 * structure in the end. 971 */ 972 static void kfd_process_wq_release(struct work_struct *work) 973 { 974 struct kfd_process *p = container_of(work, struct kfd_process, 975 release_work); 976 int i; 977 978 /* Remove the procfs files */ 979 if (p->kobj) { 980 sysfs_remove_file(p->kobj, &p->attr_pasid); 981 kobject_del(p->kobj_queues); 982 kobject_put(p->kobj_queues); 983 p->kobj_queues = NULL; 984 985 for (i = 0; i < p->n_pdds; i++) { 986 struct kfd_process_device *pdd = p->pdds[i]; 987 988 sysfs_remove_file(p->kobj, &pdd->attr_vram); 989 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 990 sysfs_remove_file(p->kobj, &pdd->attr_evict); 991 if (pdd->dev->kfd2kgd->get_cu_occupancy != NULL) 992 sysfs_remove_file(p->kobj, &pdd->attr_cu_occupancy); 993 kobject_del(pdd->kobj_stats); 994 kobject_put(pdd->kobj_stats); 995 pdd->kobj_stats = NULL; 996 } 997 998 kobject_del(p->kobj); 999 kobject_put(p->kobj); 1000 p->kobj = NULL; 1001 } 1002 1003 kfd_iommu_unbind_process(p); 1004 1005 kfd_process_free_outstanding_kfd_bos(p); 1006 1007 kfd_process_destroy_pdds(p); 1008 dma_fence_put(p->ef); 1009 1010 kfd_event_free_process(p); 1011 1012 kfd_pasid_free(p->pasid); 1013 mutex_destroy(&p->mutex); 1014 1015 put_task_struct(p->lead_thread); 1016 1017 kfree(p); 1018 } 1019 1020 static void kfd_process_ref_release(struct kref *ref) 1021 { 1022 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1023 1024 INIT_WORK(&p->release_work, kfd_process_wq_release); 1025 queue_work(kfd_process_wq, &p->release_work); 1026 } 1027 1028 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1029 { 1030 int idx = srcu_read_lock(&kfd_processes_srcu); 1031 struct kfd_process *p = find_process_by_mm(mm); 1032 1033 srcu_read_unlock(&kfd_processes_srcu, idx); 1034 1035 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1036 } 1037 1038 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1039 { 1040 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1041 } 1042 1043 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1044 struct mm_struct *mm) 1045 { 1046 struct kfd_process *p; 1047 int i; 1048 1049 /* 1050 * The kfd_process structure can not be free because the 1051 * mmu_notifier srcu is read locked 1052 */ 1053 p = container_of(mn, struct kfd_process, mmu_notifier); 1054 if (WARN_ON(p->mm != mm)) 1055 return; 1056 1057 mutex_lock(&kfd_processes_mutex); 1058 hash_del_rcu(&p->kfd_processes); 1059 mutex_unlock(&kfd_processes_mutex); 1060 synchronize_srcu(&kfd_processes_srcu); 1061 1062 cancel_delayed_work_sync(&p->eviction_work); 1063 cancel_delayed_work_sync(&p->restore_work); 1064 1065 mutex_lock(&p->mutex); 1066 1067 /* Iterate over all process device data structures and if the 1068 * pdd is in debug mode, we should first force unregistration, 1069 * then we will be able to destroy the queues 1070 */ 1071 for (i = 0; i < p->n_pdds; i++) { 1072 struct kfd_dev *dev = p->pdds[i]->dev; 1073 1074 mutex_lock(kfd_get_dbgmgr_mutex()); 1075 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) { 1076 if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) { 1077 kfd_dbgmgr_destroy(dev->dbgmgr); 1078 dev->dbgmgr = NULL; 1079 } 1080 } 1081 mutex_unlock(kfd_get_dbgmgr_mutex()); 1082 } 1083 1084 kfd_process_dequeue_from_all_devices(p); 1085 pqm_uninit(&p->pqm); 1086 1087 /* Indicate to other users that MM is no longer valid */ 1088 p->mm = NULL; 1089 /* Signal the eviction fence after user mode queues are 1090 * destroyed. This allows any BOs to be freed without 1091 * triggering pointless evictions or waiting for fences. 1092 */ 1093 dma_fence_signal(p->ef); 1094 1095 mutex_unlock(&p->mutex); 1096 1097 mmu_notifier_put(&p->mmu_notifier); 1098 } 1099 1100 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1101 .release = kfd_process_notifier_release, 1102 .alloc_notifier = kfd_process_alloc_notifier, 1103 .free_notifier = kfd_process_free_notifier, 1104 }; 1105 1106 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1107 { 1108 unsigned long offset; 1109 int i; 1110 1111 for (i = 0; i < p->n_pdds; i++) { 1112 struct kfd_dev *dev = p->pdds[i]->dev; 1113 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1114 1115 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1116 continue; 1117 1118 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1119 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1120 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1121 MAP_SHARED, offset); 1122 1123 if (IS_ERR_VALUE(qpd->tba_addr)) { 1124 int err = qpd->tba_addr; 1125 1126 pr_err("Failure to set tba address. error %d.\n", err); 1127 qpd->tba_addr = 0; 1128 qpd->cwsr_kaddr = NULL; 1129 return err; 1130 } 1131 1132 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1133 1134 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1135 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1136 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1137 } 1138 1139 return 0; 1140 } 1141 1142 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1143 { 1144 struct kfd_dev *dev = pdd->dev; 1145 struct qcm_process_device *qpd = &pdd->qpd; 1146 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1147 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1148 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1149 void *kaddr; 1150 int ret; 1151 1152 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1153 return 0; 1154 1155 /* cwsr_base is only set for dGPU */ 1156 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1157 KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr); 1158 if (ret) 1159 return ret; 1160 1161 qpd->cwsr_kaddr = kaddr; 1162 qpd->tba_addr = qpd->cwsr_base; 1163 1164 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1165 1166 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1167 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1168 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1169 1170 return 0; 1171 } 1172 1173 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1174 uint64_t tba_addr, 1175 uint64_t tma_addr) 1176 { 1177 if (qpd->cwsr_kaddr) { 1178 /* KFD trap handler is bound, record as second-level TBA/TMA 1179 * in first-level TMA. First-level trap will jump to second. 1180 */ 1181 uint64_t *tma = 1182 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1183 tma[0] = tba_addr; 1184 tma[1] = tma_addr; 1185 } else { 1186 /* No trap handler bound, bind as first-level TBA/TMA. */ 1187 qpd->tba_addr = tba_addr; 1188 qpd->tma_addr = tma_addr; 1189 } 1190 } 1191 1192 /* 1193 * On return the kfd_process is fully operational and will be freed when the 1194 * mm is released 1195 */ 1196 static struct kfd_process *create_process(const struct task_struct *thread) 1197 { 1198 struct kfd_process *process; 1199 struct mmu_notifier *mn; 1200 int err = -ENOMEM; 1201 1202 process = kzalloc(sizeof(*process), GFP_KERNEL); 1203 if (!process) 1204 goto err_alloc_process; 1205 1206 kref_init(&process->ref); 1207 mutex_init(&process->mutex); 1208 process->mm = thread->mm; 1209 process->lead_thread = thread->group_leader; 1210 process->n_pdds = 0; 1211 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1212 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1213 process->last_restore_timestamp = get_jiffies_64(); 1214 kfd_event_init_process(process); 1215 process->is_32bit_user_mode = in_compat_syscall(); 1216 1217 process->pasid = kfd_pasid_alloc(); 1218 if (process->pasid == 0) 1219 goto err_alloc_pasid; 1220 1221 err = pqm_init(&process->pqm, process); 1222 if (err != 0) 1223 goto err_process_pqm_init; 1224 1225 /* init process apertures*/ 1226 err = kfd_init_apertures(process); 1227 if (err != 0) 1228 goto err_init_apertures; 1229 1230 /* alloc_notifier needs to find the process in the hash table */ 1231 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1232 (uintptr_t)process->mm); 1233 1234 /* MMU notifier registration must be the last call that can fail 1235 * because after this point we cannot unwind the process creation. 1236 * After this point, mmu_notifier_put will trigger the cleanup by 1237 * dropping the last process reference in the free_notifier. 1238 */ 1239 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1240 if (IS_ERR(mn)) { 1241 err = PTR_ERR(mn); 1242 goto err_register_notifier; 1243 } 1244 BUG_ON(mn != &process->mmu_notifier); 1245 1246 get_task_struct(process->lead_thread); 1247 1248 return process; 1249 1250 err_register_notifier: 1251 hash_del_rcu(&process->kfd_processes); 1252 kfd_process_free_outstanding_kfd_bos(process); 1253 kfd_process_destroy_pdds(process); 1254 err_init_apertures: 1255 pqm_uninit(&process->pqm); 1256 err_process_pqm_init: 1257 kfd_pasid_free(process->pasid); 1258 err_alloc_pasid: 1259 mutex_destroy(&process->mutex); 1260 kfree(process); 1261 err_alloc_process: 1262 return ERR_PTR(err); 1263 } 1264 1265 static int init_doorbell_bitmap(struct qcm_process_device *qpd, 1266 struct kfd_dev *dev) 1267 { 1268 unsigned int i; 1269 int range_start = dev->shared_resources.non_cp_doorbells_start; 1270 int range_end = dev->shared_resources.non_cp_doorbells_end; 1271 1272 if (!KFD_IS_SOC15(dev->device_info->asic_family)) 1273 return 0; 1274 1275 qpd->doorbell_bitmap = 1276 kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, 1277 BITS_PER_BYTE), GFP_KERNEL); 1278 if (!qpd->doorbell_bitmap) 1279 return -ENOMEM; 1280 1281 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */ 1282 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end); 1283 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", 1284 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1285 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET); 1286 1287 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) { 1288 if (i >= range_start && i <= range_end) { 1289 set_bit(i, qpd->doorbell_bitmap); 1290 set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1291 qpd->doorbell_bitmap); 1292 } 1293 } 1294 1295 return 0; 1296 } 1297 1298 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 1299 struct kfd_process *p) 1300 { 1301 int i; 1302 1303 for (i = 0; i < p->n_pdds; i++) 1304 if (p->pdds[i]->dev == dev) 1305 return p->pdds[i]; 1306 1307 return NULL; 1308 } 1309 1310 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 1311 struct kfd_process *p) 1312 { 1313 struct kfd_process_device *pdd = NULL; 1314 1315 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1316 return NULL; 1317 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1318 if (!pdd) 1319 return NULL; 1320 1321 if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) { 1322 pr_err("Failed to alloc doorbell for pdd\n"); 1323 goto err_free_pdd; 1324 } 1325 1326 if (init_doorbell_bitmap(&pdd->qpd, dev)) { 1327 pr_err("Failed to init doorbell for process\n"); 1328 goto err_free_pdd; 1329 } 1330 1331 pdd->dev = dev; 1332 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1333 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1334 pdd->qpd.dqm = dev->dqm; 1335 pdd->qpd.pqm = &p->pqm; 1336 pdd->qpd.evicted = 0; 1337 pdd->qpd.mapped_gws_queue = false; 1338 pdd->process = p; 1339 pdd->bound = PDD_UNBOUND; 1340 pdd->already_dequeued = false; 1341 pdd->runtime_inuse = false; 1342 pdd->vram_usage = 0; 1343 pdd->sdma_past_activity_counter = 0; 1344 atomic64_set(&pdd->evict_duration_counter, 0); 1345 p->pdds[p->n_pdds++] = pdd; 1346 1347 /* Init idr used for memory handle translation */ 1348 idr_init(&pdd->alloc_idr); 1349 1350 return pdd; 1351 1352 err_free_pdd: 1353 kfree(pdd); 1354 return NULL; 1355 } 1356 1357 /** 1358 * kfd_process_device_init_vm - Initialize a VM for a process-device 1359 * 1360 * @pdd: The process-device 1361 * @drm_file: Optional pointer to a DRM file descriptor 1362 * 1363 * If @drm_file is specified, it will be used to acquire the VM from 1364 * that file descriptor. If successful, the @pdd takes ownership of 1365 * the file descriptor. 1366 * 1367 * If @drm_file is NULL, a new VM is created. 1368 * 1369 * Returns 0 on success, -errno on failure. 1370 */ 1371 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1372 struct file *drm_file) 1373 { 1374 struct kfd_process *p; 1375 struct kfd_dev *dev; 1376 int ret; 1377 1378 if (pdd->vm) 1379 return drm_file ? -EBUSY : 0; 1380 1381 p = pdd->process; 1382 dev = pdd->dev; 1383 1384 if (drm_file) 1385 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm( 1386 dev->kgd, drm_file, p->pasid, 1387 &pdd->vm, &p->kgd_process_info, &p->ef); 1388 else 1389 ret = amdgpu_amdkfd_gpuvm_create_process_vm(dev->kgd, p->pasid, 1390 &pdd->vm, &p->kgd_process_info, &p->ef); 1391 if (ret) { 1392 pr_err("Failed to create process VM object\n"); 1393 return ret; 1394 } 1395 1396 amdgpu_vm_set_task_info(pdd->vm); 1397 1398 ret = kfd_process_device_reserve_ib_mem(pdd); 1399 if (ret) 1400 goto err_reserve_ib_mem; 1401 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1402 if (ret) 1403 goto err_init_cwsr; 1404 1405 pdd->drm_file = drm_file; 1406 1407 return 0; 1408 1409 err_init_cwsr: 1410 err_reserve_ib_mem: 1411 kfd_process_device_free_bos(pdd); 1412 if (!drm_file) 1413 amdgpu_amdkfd_gpuvm_destroy_process_vm(dev->kgd, pdd->vm); 1414 pdd->vm = NULL; 1415 1416 return ret; 1417 } 1418 1419 /* 1420 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1421 * to the device. 1422 * Unbinding occurs when the process dies or the device is removed. 1423 * 1424 * Assumes that the process lock is held. 1425 */ 1426 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 1427 struct kfd_process *p) 1428 { 1429 struct kfd_process_device *pdd; 1430 int err; 1431 1432 pdd = kfd_get_process_device_data(dev, p); 1433 if (!pdd) { 1434 pr_err("Process device data doesn't exist\n"); 1435 return ERR_PTR(-ENOMEM); 1436 } 1437 1438 /* 1439 * signal runtime-pm system to auto resume and prevent 1440 * further runtime suspend once device pdd is created until 1441 * pdd is destroyed. 1442 */ 1443 if (!pdd->runtime_inuse) { 1444 err = pm_runtime_get_sync(dev->ddev->dev); 1445 if (err < 0) { 1446 pm_runtime_put_autosuspend(dev->ddev->dev); 1447 return ERR_PTR(err); 1448 } 1449 } 1450 1451 err = kfd_iommu_bind_process_to_device(pdd); 1452 if (err) 1453 goto out; 1454 1455 err = kfd_process_device_init_vm(pdd, NULL); 1456 if (err) 1457 goto out; 1458 1459 /* 1460 * make sure that runtime_usage counter is incremented just once 1461 * per pdd 1462 */ 1463 pdd->runtime_inuse = true; 1464 1465 return pdd; 1466 1467 out: 1468 /* balance runpm reference count and exit with error */ 1469 if (!pdd->runtime_inuse) { 1470 pm_runtime_mark_last_busy(dev->ddev->dev); 1471 pm_runtime_put_autosuspend(dev->ddev->dev); 1472 } 1473 1474 return ERR_PTR(err); 1475 } 1476 1477 /* Create specific handle mapped to mem from process local memory idr 1478 * Assumes that the process lock is held. 1479 */ 1480 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1481 void *mem) 1482 { 1483 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1484 } 1485 1486 /* Translate specific handle from process local memory idr 1487 * Assumes that the process lock is held. 1488 */ 1489 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1490 int handle) 1491 { 1492 if (handle < 0) 1493 return NULL; 1494 1495 return idr_find(&pdd->alloc_idr, handle); 1496 } 1497 1498 /* Remove specific handle from process local memory idr 1499 * Assumes that the process lock is held. 1500 */ 1501 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1502 int handle) 1503 { 1504 if (handle >= 0) 1505 idr_remove(&pdd->alloc_idr, handle); 1506 } 1507 1508 /* This increments the process->ref counter. */ 1509 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) 1510 { 1511 struct kfd_process *p, *ret_p = NULL; 1512 unsigned int temp; 1513 1514 int idx = srcu_read_lock(&kfd_processes_srcu); 1515 1516 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1517 if (p->pasid == pasid) { 1518 kref_get(&p->ref); 1519 ret_p = p; 1520 break; 1521 } 1522 } 1523 1524 srcu_read_unlock(&kfd_processes_srcu, idx); 1525 1526 return ret_p; 1527 } 1528 1529 /* This increments the process->ref counter. */ 1530 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1531 { 1532 struct kfd_process *p; 1533 1534 int idx = srcu_read_lock(&kfd_processes_srcu); 1535 1536 p = find_process_by_mm(mm); 1537 if (p) 1538 kref_get(&p->ref); 1539 1540 srcu_read_unlock(&kfd_processes_srcu, idx); 1541 1542 return p; 1543 } 1544 1545 /* kfd_process_evict_queues - Evict all user queues of a process 1546 * 1547 * Eviction is reference-counted per process-device. This means multiple 1548 * evictions from different sources can be nested safely. 1549 */ 1550 int kfd_process_evict_queues(struct kfd_process *p) 1551 { 1552 int r = 0; 1553 int i; 1554 unsigned int n_evicted = 0; 1555 1556 for (i = 0; i < p->n_pdds; i++) { 1557 struct kfd_process_device *pdd = p->pdds[i]; 1558 1559 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1560 &pdd->qpd); 1561 if (r) { 1562 pr_err("Failed to evict process queues\n"); 1563 goto fail; 1564 } 1565 n_evicted++; 1566 } 1567 1568 return r; 1569 1570 fail: 1571 /* To keep state consistent, roll back partial eviction by 1572 * restoring queues 1573 */ 1574 for (i = 0; i < p->n_pdds; i++) { 1575 struct kfd_process_device *pdd = p->pdds[i]; 1576 1577 if (n_evicted == 0) 1578 break; 1579 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1580 &pdd->qpd)) 1581 pr_err("Failed to restore queues\n"); 1582 1583 n_evicted--; 1584 } 1585 1586 return r; 1587 } 1588 1589 /* kfd_process_restore_queues - Restore all user queues of a process */ 1590 int kfd_process_restore_queues(struct kfd_process *p) 1591 { 1592 int r, ret = 0; 1593 int i; 1594 1595 for (i = 0; i < p->n_pdds; i++) { 1596 struct kfd_process_device *pdd = p->pdds[i]; 1597 1598 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1599 &pdd->qpd); 1600 if (r) { 1601 pr_err("Failed to restore process queues\n"); 1602 if (!ret) 1603 ret = r; 1604 } 1605 } 1606 1607 return ret; 1608 } 1609 1610 static void evict_process_worker(struct work_struct *work) 1611 { 1612 int ret; 1613 struct kfd_process *p; 1614 struct delayed_work *dwork; 1615 1616 dwork = to_delayed_work(work); 1617 1618 /* Process termination destroys this worker thread. So during the 1619 * lifetime of this thread, kfd_process p will be valid 1620 */ 1621 p = container_of(dwork, struct kfd_process, eviction_work); 1622 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, 1623 "Eviction fence mismatch\n"); 1624 1625 /* Narrow window of overlap between restore and evict work 1626 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos 1627 * unreserves KFD BOs, it is possible to evicted again. But 1628 * restore has few more steps of finish. So lets wait for any 1629 * previous restore work to complete 1630 */ 1631 flush_delayed_work(&p->restore_work); 1632 1633 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1634 ret = kfd_process_evict_queues(p); 1635 if (!ret) { 1636 dma_fence_signal(p->ef); 1637 dma_fence_put(p->ef); 1638 p->ef = NULL; 1639 queue_delayed_work(kfd_restore_wq, &p->restore_work, 1640 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); 1641 1642 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 1643 } else 1644 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 1645 } 1646 1647 static void restore_process_worker(struct work_struct *work) 1648 { 1649 struct delayed_work *dwork; 1650 struct kfd_process *p; 1651 int ret = 0; 1652 1653 dwork = to_delayed_work(work); 1654 1655 /* Process termination destroys this worker thread. So during the 1656 * lifetime of this thread, kfd_process p will be valid 1657 */ 1658 p = container_of(dwork, struct kfd_process, restore_work); 1659 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 1660 1661 /* Setting last_restore_timestamp before successful restoration. 1662 * Otherwise this would have to be set by KGD (restore_process_bos) 1663 * before KFD BOs are unreserved. If not, the process can be evicted 1664 * again before the timestamp is set. 1665 * If restore fails, the timestamp will be set again in the next 1666 * attempt. This would mean that the minimum GPU quanta would be 1667 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 1668 * functions) 1669 */ 1670 1671 p->last_restore_timestamp = get_jiffies_64(); 1672 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info, 1673 &p->ef); 1674 if (ret) { 1675 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 1676 p->pasid, PROCESS_BACK_OFF_TIME_MS); 1677 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work, 1678 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); 1679 WARN(!ret, "reschedule restore work failed\n"); 1680 return; 1681 } 1682 1683 ret = kfd_process_restore_queues(p); 1684 if (!ret) 1685 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 1686 else 1687 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 1688 } 1689 1690 void kfd_suspend_all_processes(void) 1691 { 1692 struct kfd_process *p; 1693 unsigned int temp; 1694 int idx = srcu_read_lock(&kfd_processes_srcu); 1695 1696 WARN(debug_evictions, "Evicting all processes"); 1697 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1698 cancel_delayed_work_sync(&p->eviction_work); 1699 cancel_delayed_work_sync(&p->restore_work); 1700 1701 if (kfd_process_evict_queues(p)) 1702 pr_err("Failed to suspend process 0x%x\n", p->pasid); 1703 dma_fence_signal(p->ef); 1704 dma_fence_put(p->ef); 1705 p->ef = NULL; 1706 } 1707 srcu_read_unlock(&kfd_processes_srcu, idx); 1708 } 1709 1710 int kfd_resume_all_processes(void) 1711 { 1712 struct kfd_process *p; 1713 unsigned int temp; 1714 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 1715 1716 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1717 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) { 1718 pr_err("Restore process %d failed during resume\n", 1719 p->pasid); 1720 ret = -EFAULT; 1721 } 1722 } 1723 srcu_read_unlock(&kfd_processes_srcu, idx); 1724 return ret; 1725 } 1726 1727 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 1728 struct vm_area_struct *vma) 1729 { 1730 struct kfd_process_device *pdd; 1731 struct qcm_process_device *qpd; 1732 1733 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 1734 pr_err("Incorrect CWSR mapping size.\n"); 1735 return -EINVAL; 1736 } 1737 1738 pdd = kfd_get_process_device_data(dev, process); 1739 if (!pdd) 1740 return -EINVAL; 1741 qpd = &pdd->qpd; 1742 1743 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1744 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1745 if (!qpd->cwsr_kaddr) { 1746 pr_err("Error allocating per process CWSR buffer.\n"); 1747 return -ENOMEM; 1748 } 1749 1750 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND 1751 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; 1752 /* Mapping pages to user process */ 1753 return remap_pfn_range(vma, vma->vm_start, 1754 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 1755 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 1756 } 1757 1758 void kfd_flush_tlb(struct kfd_process_device *pdd) 1759 { 1760 struct kfd_dev *dev = pdd->dev; 1761 1762 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1763 /* Nothing to flush until a VMID is assigned, which 1764 * only happens when the first queue is created. 1765 */ 1766 if (pdd->qpd.vmid) 1767 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd, 1768 pdd->qpd.vmid); 1769 } else { 1770 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd, 1771 pdd->process->pasid); 1772 } 1773 } 1774 1775 #if defined(CONFIG_DEBUG_FS) 1776 1777 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 1778 { 1779 struct kfd_process *p; 1780 unsigned int temp; 1781 int r = 0; 1782 1783 int idx = srcu_read_lock(&kfd_processes_srcu); 1784 1785 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1786 seq_printf(m, "Process %d PASID 0x%x:\n", 1787 p->lead_thread->tgid, p->pasid); 1788 1789 mutex_lock(&p->mutex); 1790 r = pqm_debugfs_mqds(m, &p->pqm); 1791 mutex_unlock(&p->mutex); 1792 1793 if (r) 1794 break; 1795 } 1796 1797 srcu_read_unlock(&kfd_processes_srcu, idx); 1798 1799 return r; 1800 } 1801 1802 #endif 1803 1804