1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/mutex.h>
24 #include <linux/log2.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/amd-iommu.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 
39 struct mm_struct;
40 
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_dbgmgr.h"
44 #include "kfd_iommu.h"
45 
46 /*
47  * List of struct kfd_process (field kfd_process).
48  * Unique/indexed by mm_struct*
49  */
50 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
51 static DEFINE_MUTEX(kfd_processes_mutex);
52 
53 DEFINE_SRCU(kfd_processes_srcu);
54 
55 /* For process termination handling */
56 static struct workqueue_struct *kfd_process_wq;
57 
58 /* Ordered, single-threaded workqueue for restoring evicted
59  * processes. Restoring multiple processes concurrently under memory
60  * pressure can lead to processes blocking each other from validating
61  * their BOs and result in a live-lock situation where processes
62  * remain evicted indefinitely.
63  */
64 static struct workqueue_struct *kfd_restore_wq;
65 
66 static struct kfd_process *find_process(const struct task_struct *thread);
67 static void kfd_process_ref_release(struct kref *ref);
68 static struct kfd_process *create_process(const struct task_struct *thread);
69 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
70 
71 static void evict_process_worker(struct work_struct *work);
72 static void restore_process_worker(struct work_struct *work);
73 
74 struct kfd_procfs_tree {
75 	struct kobject *kobj;
76 };
77 
78 static struct kfd_procfs_tree procfs;
79 
80 /*
81  * Structure for SDMA activity tracking
82  */
83 struct kfd_sdma_activity_handler_workarea {
84 	struct work_struct sdma_activity_work;
85 	struct kfd_process_device *pdd;
86 	uint64_t sdma_activity_counter;
87 };
88 
89 struct temp_sdma_queue_list {
90 	uint64_t __user *rptr;
91 	uint64_t sdma_val;
92 	unsigned int queue_id;
93 	struct list_head list;
94 };
95 
96 static void kfd_sdma_activity_worker(struct work_struct *work)
97 {
98 	struct kfd_sdma_activity_handler_workarea *workarea;
99 	struct kfd_process_device *pdd;
100 	uint64_t val;
101 	struct mm_struct *mm;
102 	struct queue *q;
103 	struct qcm_process_device *qpd;
104 	struct device_queue_manager *dqm;
105 	int ret = 0;
106 	struct temp_sdma_queue_list sdma_q_list;
107 	struct temp_sdma_queue_list *sdma_q, *next;
108 
109 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
110 				sdma_activity_work);
111 	if (!workarea)
112 		return;
113 
114 	pdd = workarea->pdd;
115 	if (!pdd)
116 		return;
117 	dqm = pdd->dev->dqm;
118 	qpd = &pdd->qpd;
119 	if (!dqm || !qpd)
120 		return;
121 	/*
122 	 * Total SDMA activity is current SDMA activity + past SDMA activity
123 	 * Past SDMA count is stored in pdd.
124 	 * To get the current activity counters for all active SDMA queues,
125 	 * we loop over all SDMA queues and get their counts from user-space.
126 	 *
127 	 * We cannot call get_user() with dqm_lock held as it can cause
128 	 * a circular lock dependency situation. To read the SDMA stats,
129 	 * we need to do the following:
130 	 *
131 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
132 	 *    with dqm_lock/dqm_unlock().
133 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
134 	 *    Save the SDMA count for each node and also add the count to the total
135 	 *    SDMA count counter.
136 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
137 	 *    from the qpd->queues_list.
138 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
139 	 *    If any node got deleted, its SDMA count would be captured in the sdma
140 	 *    past activity counter. So subtract the SDMA counter stored in step 2
141 	 *    for this node from the total SDMA count.
142 	 */
143 	INIT_LIST_HEAD(&sdma_q_list.list);
144 
145 	/*
146 	 * Create the temp list of all SDMA queues
147 	 */
148 	dqm_lock(dqm);
149 
150 	list_for_each_entry(q, &qpd->queues_list, list) {
151 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
152 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
153 			continue;
154 
155 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
156 		if (!sdma_q) {
157 			dqm_unlock(dqm);
158 			goto cleanup;
159 		}
160 
161 		INIT_LIST_HEAD(&sdma_q->list);
162 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
163 		sdma_q->queue_id = q->properties.queue_id;
164 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
165 	}
166 
167 	/*
168 	 * If the temp list is empty, then no SDMA queues nodes were found in
169 	 * qpd->queues_list. Return the past activity count as the total sdma
170 	 * count
171 	 */
172 	if (list_empty(&sdma_q_list.list)) {
173 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
174 		dqm_unlock(dqm);
175 		return;
176 	}
177 
178 	dqm_unlock(dqm);
179 
180 	/*
181 	 * Get the usage count for each SDMA queue in temp_list.
182 	 */
183 	mm = get_task_mm(pdd->process->lead_thread);
184 	if (!mm)
185 		goto cleanup;
186 
187 	kthread_use_mm(mm);
188 
189 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
190 		val = 0;
191 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
192 		if (ret) {
193 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
194 				 sdma_q->queue_id);
195 		} else {
196 			sdma_q->sdma_val = val;
197 			workarea->sdma_activity_counter += val;
198 		}
199 	}
200 
201 	kthread_unuse_mm(mm);
202 	mmput(mm);
203 
204 	/*
205 	 * Do a second iteration over qpd_queues_list to check if any SDMA
206 	 * nodes got deleted while fetching SDMA counter.
207 	 */
208 	dqm_lock(dqm);
209 
210 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
211 
212 	list_for_each_entry(q, &qpd->queues_list, list) {
213 		if (list_empty(&sdma_q_list.list))
214 			break;
215 
216 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
217 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
218 			continue;
219 
220 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
221 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
222 			     (sdma_q->queue_id == q->properties.queue_id)) {
223 				list_del(&sdma_q->list);
224 				kfree(sdma_q);
225 				break;
226 			}
227 		}
228 	}
229 
230 	dqm_unlock(dqm);
231 
232 	/*
233 	 * If temp list is not empty, it implies some queues got deleted
234 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
235 	 * count for each node from the total SDMA count.
236 	 */
237 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
238 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
239 		list_del(&sdma_q->list);
240 		kfree(sdma_q);
241 	}
242 
243 	return;
244 
245 cleanup:
246 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
247 		list_del(&sdma_q->list);
248 		kfree(sdma_q);
249 	}
250 }
251 
252 /**
253  * @kfd_get_cu_occupancy() - Collect number of waves in-flight on this device
254  * by current process. Translates acquired wave count into number of compute units
255  * that are occupied.
256  *
257  * @atr: Handle of attribute that allows reporting of wave count. The attribute
258  * handle encapsulates GPU device it is associated with, thereby allowing collection
259  * of waves in flight, etc
260  *
261  * @buffer: Handle of user provided buffer updated with wave count
262  *
263  * Return: Number of bytes written to user buffer or an error value
264  */
265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267 	int cu_cnt;
268 	int wave_cnt;
269 	int max_waves_per_cu;
270 	struct kfd_dev *dev = NULL;
271 	struct kfd_process *proc = NULL;
272 	struct kfd_process_device *pdd = NULL;
273 
274 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275 	dev = pdd->dev;
276 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
277 		return -EINVAL;
278 
279 	cu_cnt = 0;
280 	proc = pdd->process;
281 	if (pdd->qpd.queue_count == 0) {
282 		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283 			 dev->id, proc->pasid);
284 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285 	}
286 
287 	/* Collect wave count from device if it supports */
288 	wave_cnt = 0;
289 	max_waves_per_cu = 0;
290 	dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt,
291 			&max_waves_per_cu);
292 
293 	/* Translate wave count to number of compute units */
294 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296 }
297 
298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299 			       char *buffer)
300 {
301 	if (strcmp(attr->name, "pasid") == 0) {
302 		struct kfd_process *p = container_of(attr, struct kfd_process,
303 						     attr_pasid);
304 
305 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
307 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308 							      attr_vram);
309 		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
311 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312 							      attr_sdma);
313 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314 
315 		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316 					kfd_sdma_activity_worker);
317 
318 		sdma_activity_work_handler.pdd = pdd;
319 		sdma_activity_work_handler.sdma_activity_counter = 0;
320 
321 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322 
323 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
324 
325 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
326 				(sdma_activity_work_handler.sdma_activity_counter)/
327 				 SDMA_ACTIVITY_DIVISOR);
328 	} else {
329 		pr_err("Invalid attribute");
330 		return -EINVAL;
331 	}
332 
333 	return 0;
334 }
335 
336 static void kfd_procfs_kobj_release(struct kobject *kobj)
337 {
338 	kfree(kobj);
339 }
340 
341 static const struct sysfs_ops kfd_procfs_ops = {
342 	.show = kfd_procfs_show,
343 };
344 
345 static struct kobj_type procfs_type = {
346 	.release = kfd_procfs_kobj_release,
347 	.sysfs_ops = &kfd_procfs_ops,
348 };
349 
350 void kfd_procfs_init(void)
351 {
352 	int ret = 0;
353 
354 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
355 	if (!procfs.kobj)
356 		return;
357 
358 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359 				   &kfd_device->kobj, "proc");
360 	if (ret) {
361 		pr_warn("Could not create procfs proc folder");
362 		/* If we fail to create the procfs, clean up */
363 		kfd_procfs_shutdown();
364 	}
365 }
366 
367 void kfd_procfs_shutdown(void)
368 {
369 	if (procfs.kobj) {
370 		kobject_del(procfs.kobj);
371 		kobject_put(procfs.kobj);
372 		procfs.kobj = NULL;
373 	}
374 }
375 
376 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377 				     struct attribute *attr, char *buffer)
378 {
379 	struct queue *q = container_of(kobj, struct queue, kobj);
380 
381 	if (!strcmp(attr->name, "size"))
382 		return snprintf(buffer, PAGE_SIZE, "%llu",
383 				q->properties.queue_size);
384 	else if (!strcmp(attr->name, "type"))
385 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386 	else if (!strcmp(attr->name, "gpuid"))
387 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388 	else
389 		pr_err("Invalid attribute");
390 
391 	return 0;
392 }
393 
394 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395 				     struct attribute *attr, char *buffer)
396 {
397 	if (strcmp(attr->name, "evicted_ms") == 0) {
398 		struct kfd_process_device *pdd = container_of(attr,
399 				struct kfd_process_device,
400 				attr_evict);
401 		uint64_t evict_jiffies;
402 
403 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404 
405 		return snprintf(buffer,
406 				PAGE_SIZE,
407 				"%llu\n",
408 				jiffies64_to_msecs(evict_jiffies));
409 
410 	/* Sysfs handle that gets CU occupancy is per device */
411 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
412 		return kfd_get_cu_occupancy(attr, buffer);
413 	} else {
414 		pr_err("Invalid attribute");
415 	}
416 
417 	return 0;
418 }
419 
420 static struct attribute attr_queue_size = {
421 	.name = "size",
422 	.mode = KFD_SYSFS_FILE_MODE
423 };
424 
425 static struct attribute attr_queue_type = {
426 	.name = "type",
427 	.mode = KFD_SYSFS_FILE_MODE
428 };
429 
430 static struct attribute attr_queue_gpuid = {
431 	.name = "gpuid",
432 	.mode = KFD_SYSFS_FILE_MODE
433 };
434 
435 static struct attribute *procfs_queue_attrs[] = {
436 	&attr_queue_size,
437 	&attr_queue_type,
438 	&attr_queue_gpuid,
439 	NULL
440 };
441 
442 static const struct sysfs_ops procfs_queue_ops = {
443 	.show = kfd_procfs_queue_show,
444 };
445 
446 static struct kobj_type procfs_queue_type = {
447 	.sysfs_ops = &procfs_queue_ops,
448 	.default_attrs = procfs_queue_attrs,
449 };
450 
451 static const struct sysfs_ops procfs_stats_ops = {
452 	.show = kfd_procfs_stats_show,
453 };
454 
455 static struct attribute *procfs_stats_attrs[] = {
456 	NULL
457 };
458 
459 static struct kobj_type procfs_stats_type = {
460 	.sysfs_ops = &procfs_stats_ops,
461 	.default_attrs = procfs_stats_attrs,
462 };
463 
464 int kfd_procfs_add_queue(struct queue *q)
465 {
466 	struct kfd_process *proc;
467 	int ret;
468 
469 	if (!q || !q->process)
470 		return -EINVAL;
471 	proc = q->process;
472 
473 	/* Create proc/<pid>/queues/<queue id> folder */
474 	if (!proc->kobj_queues)
475 		return -EFAULT;
476 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
477 			proc->kobj_queues, "%u", q->properties.queue_id);
478 	if (ret < 0) {
479 		pr_warn("Creating proc/<pid>/queues/%u failed",
480 			q->properties.queue_id);
481 		kobject_put(&q->kobj);
482 		return ret;
483 	}
484 
485 	return 0;
486 }
487 
488 static int kfd_sysfs_create_file(struct kfd_process *p, struct attribute *attr,
489 				 char *name)
490 {
491 	int ret = 0;
492 
493 	if (!p || !attr || !name)
494 		return -EINVAL;
495 
496 	attr->name = name;
497 	attr->mode = KFD_SYSFS_FILE_MODE;
498 	sysfs_attr_init(attr);
499 
500 	ret = sysfs_create_file(p->kobj, attr);
501 
502 	return ret;
503 }
504 
505 static int kfd_procfs_add_sysfs_stats(struct kfd_process *p)
506 {
507 	int ret = 0;
508 	struct kfd_process_device *pdd;
509 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
510 
511 	if (!p)
512 		return -EINVAL;
513 
514 	if (!p->kobj)
515 		return -EFAULT;
516 
517 	/*
518 	 * Create sysfs files for each GPU:
519 	 * - proc/<pid>/stats_<gpuid>/
520 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
521 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
522 	 */
523 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
524 		struct kobject *kobj_stats;
525 
526 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
527 				"stats_%u", pdd->dev->id);
528 		kobj_stats = kfd_alloc_struct(kobj_stats);
529 		if (!kobj_stats)
530 			return -ENOMEM;
531 
532 		ret = kobject_init_and_add(kobj_stats,
533 						&procfs_stats_type,
534 						p->kobj,
535 						stats_dir_filename);
536 
537 		if (ret) {
538 			pr_warn("Creating KFD proc/stats_%s folder failed",
539 					stats_dir_filename);
540 			kobject_put(kobj_stats);
541 			goto err;
542 		}
543 
544 		pdd->kobj_stats = kobj_stats;
545 		pdd->attr_evict.name = "evicted_ms";
546 		pdd->attr_evict.mode = KFD_SYSFS_FILE_MODE;
547 		sysfs_attr_init(&pdd->attr_evict);
548 		ret = sysfs_create_file(kobj_stats, &pdd->attr_evict);
549 		if (ret)
550 			pr_warn("Creating eviction stats for gpuid %d failed",
551 					(int)pdd->dev->id);
552 
553 		/* Add sysfs file to report compute unit occupancy */
554 		if (pdd->dev->kfd2kgd->get_cu_occupancy != NULL) {
555 			pdd->attr_cu_occupancy.name = "cu_occupancy";
556 			pdd->attr_cu_occupancy.mode = KFD_SYSFS_FILE_MODE;
557 			sysfs_attr_init(&pdd->attr_cu_occupancy);
558 			ret = sysfs_create_file(kobj_stats,
559 						&pdd->attr_cu_occupancy);
560 			if (ret)
561 				pr_warn("Creating %s failed for gpuid: %d",
562 					pdd->attr_cu_occupancy.name,
563 					(int)pdd->dev->id);
564 		}
565 	}
566 err:
567 	return ret;
568 }
569 
570 
571 static int kfd_procfs_add_sysfs_files(struct kfd_process *p)
572 {
573 	int ret = 0;
574 	struct kfd_process_device *pdd;
575 
576 	if (!p)
577 		return -EINVAL;
578 
579 	if (!p->kobj)
580 		return -EFAULT;
581 
582 	/*
583 	 * Create sysfs files for each GPU:
584 	 * - proc/<pid>/vram_<gpuid>
585 	 * - proc/<pid>/sdma_<gpuid>
586 	 */
587 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
588 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
589 			 pdd->dev->id);
590 		ret = kfd_sysfs_create_file(p, &pdd->attr_vram, pdd->vram_filename);
591 		if (ret)
592 			pr_warn("Creating vram usage for gpu id %d failed",
593 				(int)pdd->dev->id);
594 
595 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
596 			 pdd->dev->id);
597 		ret = kfd_sysfs_create_file(p, &pdd->attr_sdma, pdd->sdma_filename);
598 		if (ret)
599 			pr_warn("Creating sdma usage for gpu id %d failed",
600 				(int)pdd->dev->id);
601 	}
602 
603 	return ret;
604 }
605 
606 void kfd_procfs_del_queue(struct queue *q)
607 {
608 	if (!q)
609 		return;
610 
611 	kobject_del(&q->kobj);
612 	kobject_put(&q->kobj);
613 }
614 
615 int kfd_process_create_wq(void)
616 {
617 	if (!kfd_process_wq)
618 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
619 	if (!kfd_restore_wq)
620 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
621 
622 	if (!kfd_process_wq || !kfd_restore_wq) {
623 		kfd_process_destroy_wq();
624 		return -ENOMEM;
625 	}
626 
627 	return 0;
628 }
629 
630 void kfd_process_destroy_wq(void)
631 {
632 	if (kfd_process_wq) {
633 		destroy_workqueue(kfd_process_wq);
634 		kfd_process_wq = NULL;
635 	}
636 	if (kfd_restore_wq) {
637 		destroy_workqueue(kfd_restore_wq);
638 		kfd_restore_wq = NULL;
639 	}
640 }
641 
642 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
643 			struct kfd_process_device *pdd)
644 {
645 	struct kfd_dev *dev = pdd->dev;
646 
647 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->vm);
648 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, NULL);
649 }
650 
651 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
652  *	This function should be only called right after the process
653  *	is created and when kfd_processes_mutex is still being held
654  *	to avoid concurrency. Because of that exclusiveness, we do
655  *	not need to take p->mutex.
656  */
657 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
658 				   uint64_t gpu_va, uint32_t size,
659 				   uint32_t flags, void **kptr)
660 {
661 	struct kfd_dev *kdev = pdd->dev;
662 	struct kgd_mem *mem = NULL;
663 	int handle;
664 	int err;
665 
666 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
667 						 pdd->vm, &mem, NULL, flags);
668 	if (err)
669 		goto err_alloc_mem;
670 
671 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->vm);
672 	if (err)
673 		goto err_map_mem;
674 
675 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true);
676 	if (err) {
677 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
678 		goto sync_memory_failed;
679 	}
680 
681 	/* Create an obj handle so kfd_process_device_remove_obj_handle
682 	 * will take care of the bo removal when the process finishes.
683 	 * We do not need to take p->mutex, because the process is just
684 	 * created and the ioctls have not had the chance to run.
685 	 */
686 	handle = kfd_process_device_create_obj_handle(pdd, mem);
687 
688 	if (handle < 0) {
689 		err = handle;
690 		goto free_gpuvm;
691 	}
692 
693 	if (kptr) {
694 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd,
695 				(struct kgd_mem *)mem, kptr, NULL);
696 		if (err) {
697 			pr_debug("Map GTT BO to kernel failed\n");
698 			goto free_obj_handle;
699 		}
700 	}
701 
702 	return err;
703 
704 free_obj_handle:
705 	kfd_process_device_remove_obj_handle(pdd, handle);
706 free_gpuvm:
707 sync_memory_failed:
708 	kfd_process_free_gpuvm(mem, pdd);
709 	return err;
710 
711 err_map_mem:
712 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, NULL);
713 err_alloc_mem:
714 	*kptr = NULL;
715 	return err;
716 }
717 
718 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
719  *	process for IB usage The memory reserved is for KFD to submit
720  *	IB to AMDGPU from kernel.  If the memory is reserved
721  *	successfully, ib_kaddr will have the CPU/kernel
722  *	address. Check ib_kaddr before accessing the memory.
723  */
724 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
725 {
726 	struct qcm_process_device *qpd = &pdd->qpd;
727 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
728 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
729 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
730 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
731 	void *kaddr;
732 	int ret;
733 
734 	if (qpd->ib_kaddr || !qpd->ib_base)
735 		return 0;
736 
737 	/* ib_base is only set for dGPU */
738 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
739 				      &kaddr);
740 	if (ret)
741 		return ret;
742 
743 	qpd->ib_kaddr = kaddr;
744 
745 	return 0;
746 }
747 
748 struct kfd_process *kfd_create_process(struct file *filep)
749 {
750 	struct kfd_process *process;
751 	struct task_struct *thread = current;
752 	int ret;
753 
754 	if (!thread->mm)
755 		return ERR_PTR(-EINVAL);
756 
757 	/* Only the pthreads threading model is supported. */
758 	if (thread->group_leader->mm != thread->mm)
759 		return ERR_PTR(-EINVAL);
760 
761 	/*
762 	 * take kfd processes mutex before starting of process creation
763 	 * so there won't be a case where two threads of the same process
764 	 * create two kfd_process structures
765 	 */
766 	mutex_lock(&kfd_processes_mutex);
767 
768 	/* A prior open of /dev/kfd could have already created the process. */
769 	process = find_process(thread);
770 	if (process) {
771 		pr_debug("Process already found\n");
772 	} else {
773 		process = create_process(thread);
774 		if (IS_ERR(process))
775 			goto out;
776 
777 		ret = kfd_process_init_cwsr_apu(process, filep);
778 		if (ret)
779 			goto out_destroy;
780 
781 		if (!procfs.kobj)
782 			goto out;
783 
784 		process->kobj = kfd_alloc_struct(process->kobj);
785 		if (!process->kobj) {
786 			pr_warn("Creating procfs kobject failed");
787 			goto out;
788 		}
789 		ret = kobject_init_and_add(process->kobj, &procfs_type,
790 					   procfs.kobj, "%d",
791 					   (int)process->lead_thread->pid);
792 		if (ret) {
793 			pr_warn("Creating procfs pid directory failed");
794 			kobject_put(process->kobj);
795 			goto out;
796 		}
797 
798 		process->attr_pasid.name = "pasid";
799 		process->attr_pasid.mode = KFD_SYSFS_FILE_MODE;
800 		sysfs_attr_init(&process->attr_pasid);
801 		ret = sysfs_create_file(process->kobj, &process->attr_pasid);
802 		if (ret)
803 			pr_warn("Creating pasid for pid %d failed",
804 					(int)process->lead_thread->pid);
805 
806 		process->kobj_queues = kobject_create_and_add("queues",
807 							process->kobj);
808 		if (!process->kobj_queues)
809 			pr_warn("Creating KFD proc/queues folder failed");
810 
811 		ret = kfd_procfs_add_sysfs_stats(process);
812 		if (ret)
813 			pr_warn("Creating sysfs stats dir for pid %d failed",
814 				(int)process->lead_thread->pid);
815 
816 		ret = kfd_procfs_add_sysfs_files(process);
817 		if (ret)
818 			pr_warn("Creating sysfs usage file for pid %d failed",
819 				(int)process->lead_thread->pid);
820 	}
821 out:
822 	if (!IS_ERR(process))
823 		kref_get(&process->ref);
824 	mutex_unlock(&kfd_processes_mutex);
825 
826 	return process;
827 
828 out_destroy:
829 	hash_del_rcu(&process->kfd_processes);
830 	mutex_unlock(&kfd_processes_mutex);
831 	synchronize_srcu(&kfd_processes_srcu);
832 	/* kfd_process_free_notifier will trigger the cleanup */
833 	mmu_notifier_put(&process->mmu_notifier);
834 	return ERR_PTR(ret);
835 }
836 
837 struct kfd_process *kfd_get_process(const struct task_struct *thread)
838 {
839 	struct kfd_process *process;
840 
841 	if (!thread->mm)
842 		return ERR_PTR(-EINVAL);
843 
844 	/* Only the pthreads threading model is supported. */
845 	if (thread->group_leader->mm != thread->mm)
846 		return ERR_PTR(-EINVAL);
847 
848 	process = find_process(thread);
849 	if (!process)
850 		return ERR_PTR(-EINVAL);
851 
852 	return process;
853 }
854 
855 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
856 {
857 	struct kfd_process *process;
858 
859 	hash_for_each_possible_rcu(kfd_processes_table, process,
860 					kfd_processes, (uintptr_t)mm)
861 		if (process->mm == mm)
862 			return process;
863 
864 	return NULL;
865 }
866 
867 static struct kfd_process *find_process(const struct task_struct *thread)
868 {
869 	struct kfd_process *p;
870 	int idx;
871 
872 	idx = srcu_read_lock(&kfd_processes_srcu);
873 	p = find_process_by_mm(thread->mm);
874 	srcu_read_unlock(&kfd_processes_srcu, idx);
875 
876 	return p;
877 }
878 
879 void kfd_unref_process(struct kfd_process *p)
880 {
881 	kref_put(&p->ref, kfd_process_ref_release);
882 }
883 
884 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
885 {
886 	struct kfd_process *p = pdd->process;
887 	void *mem;
888 	int id;
889 
890 	/*
891 	 * Remove all handles from idr and release appropriate
892 	 * local memory object
893 	 */
894 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
895 		struct kfd_process_device *peer_pdd;
896 
897 		list_for_each_entry(peer_pdd, &p->per_device_data,
898 				    per_device_list) {
899 			if (!peer_pdd->vm)
900 				continue;
901 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
902 				peer_pdd->dev->kgd, mem, peer_pdd->vm);
903 		}
904 
905 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem, NULL);
906 		kfd_process_device_remove_obj_handle(pdd, id);
907 	}
908 }
909 
910 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
911 {
912 	struct kfd_process_device *pdd;
913 
914 	list_for_each_entry(pdd, &p->per_device_data, per_device_list)
915 		kfd_process_device_free_bos(pdd);
916 }
917 
918 static void kfd_process_destroy_pdds(struct kfd_process *p)
919 {
920 	struct kfd_process_device *pdd, *temp;
921 
922 	list_for_each_entry_safe(pdd, temp, &p->per_device_data,
923 				 per_device_list) {
924 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
925 				pdd->dev->id, p->pasid);
926 
927 		if (pdd->drm_file) {
928 			amdgpu_amdkfd_gpuvm_release_process_vm(
929 					pdd->dev->kgd, pdd->vm);
930 			fput(pdd->drm_file);
931 		}
932 		else if (pdd->vm)
933 			amdgpu_amdkfd_gpuvm_destroy_process_vm(
934 				pdd->dev->kgd, pdd->vm);
935 
936 		list_del(&pdd->per_device_list);
937 
938 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
939 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
940 				get_order(KFD_CWSR_TBA_TMA_SIZE));
941 
942 		kfree(pdd->qpd.doorbell_bitmap);
943 		idr_destroy(&pdd->alloc_idr);
944 
945 		kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
946 
947 		/*
948 		 * before destroying pdd, make sure to report availability
949 		 * for auto suspend
950 		 */
951 		if (pdd->runtime_inuse) {
952 			pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
953 			pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
954 			pdd->runtime_inuse = false;
955 		}
956 
957 		kfree(pdd);
958 	}
959 }
960 
961 /* No process locking is needed in this function, because the process
962  * is not findable any more. We must assume that no other thread is
963  * using it any more, otherwise we couldn't safely free the process
964  * structure in the end.
965  */
966 static void kfd_process_wq_release(struct work_struct *work)
967 {
968 	struct kfd_process *p = container_of(work, struct kfd_process,
969 					     release_work);
970 	struct kfd_process_device *pdd;
971 
972 	/* Remove the procfs files */
973 	if (p->kobj) {
974 		sysfs_remove_file(p->kobj, &p->attr_pasid);
975 		kobject_del(p->kobj_queues);
976 		kobject_put(p->kobj_queues);
977 		p->kobj_queues = NULL;
978 
979 		list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
980 			sysfs_remove_file(p->kobj, &pdd->attr_vram);
981 			sysfs_remove_file(p->kobj, &pdd->attr_sdma);
982 			sysfs_remove_file(p->kobj, &pdd->attr_evict);
983 			if (pdd->dev->kfd2kgd->get_cu_occupancy != NULL)
984 				sysfs_remove_file(p->kobj, &pdd->attr_cu_occupancy);
985 			kobject_del(pdd->kobj_stats);
986 			kobject_put(pdd->kobj_stats);
987 			pdd->kobj_stats = NULL;
988 		}
989 
990 		kobject_del(p->kobj);
991 		kobject_put(p->kobj);
992 		p->kobj = NULL;
993 	}
994 
995 	kfd_iommu_unbind_process(p);
996 
997 	kfd_process_free_outstanding_kfd_bos(p);
998 
999 	kfd_process_destroy_pdds(p);
1000 	dma_fence_put(p->ef);
1001 
1002 	kfd_event_free_process(p);
1003 
1004 	kfd_pasid_free(p->pasid);
1005 	mutex_destroy(&p->mutex);
1006 
1007 	put_task_struct(p->lead_thread);
1008 
1009 	kfree(p);
1010 }
1011 
1012 static void kfd_process_ref_release(struct kref *ref)
1013 {
1014 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1015 
1016 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1017 	queue_work(kfd_process_wq, &p->release_work);
1018 }
1019 
1020 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1021 {
1022 	int idx = srcu_read_lock(&kfd_processes_srcu);
1023 	struct kfd_process *p = find_process_by_mm(mm);
1024 
1025 	srcu_read_unlock(&kfd_processes_srcu, idx);
1026 
1027 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1028 }
1029 
1030 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1031 {
1032 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1033 }
1034 
1035 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1036 					struct mm_struct *mm)
1037 {
1038 	struct kfd_process *p;
1039 	struct kfd_process_device *pdd = NULL;
1040 
1041 	/*
1042 	 * The kfd_process structure can not be free because the
1043 	 * mmu_notifier srcu is read locked
1044 	 */
1045 	p = container_of(mn, struct kfd_process, mmu_notifier);
1046 	if (WARN_ON(p->mm != mm))
1047 		return;
1048 
1049 	mutex_lock(&kfd_processes_mutex);
1050 	hash_del_rcu(&p->kfd_processes);
1051 	mutex_unlock(&kfd_processes_mutex);
1052 	synchronize_srcu(&kfd_processes_srcu);
1053 
1054 	cancel_delayed_work_sync(&p->eviction_work);
1055 	cancel_delayed_work_sync(&p->restore_work);
1056 
1057 	mutex_lock(&p->mutex);
1058 
1059 	/* Iterate over all process device data structures and if the
1060 	 * pdd is in debug mode, we should first force unregistration,
1061 	 * then we will be able to destroy the queues
1062 	 */
1063 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
1064 		struct kfd_dev *dev = pdd->dev;
1065 
1066 		mutex_lock(kfd_get_dbgmgr_mutex());
1067 		if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
1068 			if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
1069 				kfd_dbgmgr_destroy(dev->dbgmgr);
1070 				dev->dbgmgr = NULL;
1071 			}
1072 		}
1073 		mutex_unlock(kfd_get_dbgmgr_mutex());
1074 	}
1075 
1076 	kfd_process_dequeue_from_all_devices(p);
1077 	pqm_uninit(&p->pqm);
1078 
1079 	/* Indicate to other users that MM is no longer valid */
1080 	p->mm = NULL;
1081 	/* Signal the eviction fence after user mode queues are
1082 	 * destroyed. This allows any BOs to be freed without
1083 	 * triggering pointless evictions or waiting for fences.
1084 	 */
1085 	dma_fence_signal(p->ef);
1086 
1087 	mutex_unlock(&p->mutex);
1088 
1089 	mmu_notifier_put(&p->mmu_notifier);
1090 }
1091 
1092 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1093 	.release = kfd_process_notifier_release,
1094 	.alloc_notifier = kfd_process_alloc_notifier,
1095 	.free_notifier = kfd_process_free_notifier,
1096 };
1097 
1098 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1099 {
1100 	unsigned long  offset;
1101 	struct kfd_process_device *pdd;
1102 
1103 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
1104 		struct kfd_dev *dev = pdd->dev;
1105 		struct qcm_process_device *qpd = &pdd->qpd;
1106 
1107 		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1108 			continue;
1109 
1110 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1111 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1112 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1113 			MAP_SHARED, offset);
1114 
1115 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1116 			int err = qpd->tba_addr;
1117 
1118 			pr_err("Failure to set tba address. error %d.\n", err);
1119 			qpd->tba_addr = 0;
1120 			qpd->cwsr_kaddr = NULL;
1121 			return err;
1122 		}
1123 
1124 		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1125 
1126 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1127 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1128 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1129 	}
1130 
1131 	return 0;
1132 }
1133 
1134 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1135 {
1136 	struct kfd_dev *dev = pdd->dev;
1137 	struct qcm_process_device *qpd = &pdd->qpd;
1138 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1139 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1140 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1141 	void *kaddr;
1142 	int ret;
1143 
1144 	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1145 		return 0;
1146 
1147 	/* cwsr_base is only set for dGPU */
1148 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1149 				      KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
1150 	if (ret)
1151 		return ret;
1152 
1153 	qpd->cwsr_kaddr = kaddr;
1154 	qpd->tba_addr = qpd->cwsr_base;
1155 
1156 	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1157 
1158 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1159 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1160 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1161 
1162 	return 0;
1163 }
1164 
1165 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1166 				  uint64_t tba_addr,
1167 				  uint64_t tma_addr)
1168 {
1169 	if (qpd->cwsr_kaddr) {
1170 		/* KFD trap handler is bound, record as second-level TBA/TMA
1171 		 * in first-level TMA. First-level trap will jump to second.
1172 		 */
1173 		uint64_t *tma =
1174 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1175 		tma[0] = tba_addr;
1176 		tma[1] = tma_addr;
1177 	} else {
1178 		/* No trap handler bound, bind as first-level TBA/TMA. */
1179 		qpd->tba_addr = tba_addr;
1180 		qpd->tma_addr = tma_addr;
1181 	}
1182 }
1183 
1184 /*
1185  * On return the kfd_process is fully operational and will be freed when the
1186  * mm is released
1187  */
1188 static struct kfd_process *create_process(const struct task_struct *thread)
1189 {
1190 	struct kfd_process *process;
1191 	struct mmu_notifier *mn;
1192 	int err = -ENOMEM;
1193 
1194 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1195 	if (!process)
1196 		goto err_alloc_process;
1197 
1198 	kref_init(&process->ref);
1199 	mutex_init(&process->mutex);
1200 	process->mm = thread->mm;
1201 	process->lead_thread = thread->group_leader;
1202 	INIT_LIST_HEAD(&process->per_device_data);
1203 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1204 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1205 	process->last_restore_timestamp = get_jiffies_64();
1206 	kfd_event_init_process(process);
1207 	process->is_32bit_user_mode = in_compat_syscall();
1208 
1209 	process->pasid = kfd_pasid_alloc();
1210 	if (process->pasid == 0)
1211 		goto err_alloc_pasid;
1212 
1213 	err = pqm_init(&process->pqm, process);
1214 	if (err != 0)
1215 		goto err_process_pqm_init;
1216 
1217 	/* init process apertures*/
1218 	err = kfd_init_apertures(process);
1219 	if (err != 0)
1220 		goto err_init_apertures;
1221 
1222 	/* alloc_notifier needs to find the process in the hash table */
1223 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1224 			(uintptr_t)process->mm);
1225 
1226 	/* MMU notifier registration must be the last call that can fail
1227 	 * because after this point we cannot unwind the process creation.
1228 	 * After this point, mmu_notifier_put will trigger the cleanup by
1229 	 * dropping the last process reference in the free_notifier.
1230 	 */
1231 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1232 	if (IS_ERR(mn)) {
1233 		err = PTR_ERR(mn);
1234 		goto err_register_notifier;
1235 	}
1236 	BUG_ON(mn != &process->mmu_notifier);
1237 
1238 	get_task_struct(process->lead_thread);
1239 
1240 	return process;
1241 
1242 err_register_notifier:
1243 	hash_del_rcu(&process->kfd_processes);
1244 	kfd_process_free_outstanding_kfd_bos(process);
1245 	kfd_process_destroy_pdds(process);
1246 err_init_apertures:
1247 	pqm_uninit(&process->pqm);
1248 err_process_pqm_init:
1249 	kfd_pasid_free(process->pasid);
1250 err_alloc_pasid:
1251 	mutex_destroy(&process->mutex);
1252 	kfree(process);
1253 err_alloc_process:
1254 	return ERR_PTR(err);
1255 }
1256 
1257 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1258 			struct kfd_dev *dev)
1259 {
1260 	unsigned int i;
1261 	int range_start = dev->shared_resources.non_cp_doorbells_start;
1262 	int range_end = dev->shared_resources.non_cp_doorbells_end;
1263 
1264 	if (!KFD_IS_SOC15(dev->device_info->asic_family))
1265 		return 0;
1266 
1267 	qpd->doorbell_bitmap =
1268 		kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1269 				     BITS_PER_BYTE), GFP_KERNEL);
1270 	if (!qpd->doorbell_bitmap)
1271 		return -ENOMEM;
1272 
1273 	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1274 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1275 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1276 			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1277 			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1278 
1279 	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1280 		if (i >= range_start && i <= range_end) {
1281 			set_bit(i, qpd->doorbell_bitmap);
1282 			set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1283 				qpd->doorbell_bitmap);
1284 		}
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1291 							struct kfd_process *p)
1292 {
1293 	struct kfd_process_device *pdd = NULL;
1294 
1295 	list_for_each_entry(pdd, &p->per_device_data, per_device_list)
1296 		if (pdd->dev == dev)
1297 			return pdd;
1298 
1299 	return NULL;
1300 }
1301 
1302 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1303 							struct kfd_process *p)
1304 {
1305 	struct kfd_process_device *pdd = NULL;
1306 
1307 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1308 	if (!pdd)
1309 		return NULL;
1310 
1311 	if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
1312 		pr_err("Failed to alloc doorbell for pdd\n");
1313 		goto err_free_pdd;
1314 	}
1315 
1316 	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1317 		pr_err("Failed to init doorbell for process\n");
1318 		goto err_free_pdd;
1319 	}
1320 
1321 	pdd->dev = dev;
1322 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1323 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1324 	pdd->qpd.dqm = dev->dqm;
1325 	pdd->qpd.pqm = &p->pqm;
1326 	pdd->qpd.evicted = 0;
1327 	pdd->qpd.mapped_gws_queue = false;
1328 	pdd->process = p;
1329 	pdd->bound = PDD_UNBOUND;
1330 	pdd->already_dequeued = false;
1331 	pdd->runtime_inuse = false;
1332 	pdd->vram_usage = 0;
1333 	pdd->sdma_past_activity_counter = 0;
1334 	atomic64_set(&pdd->evict_duration_counter, 0);
1335 	list_add(&pdd->per_device_list, &p->per_device_data);
1336 
1337 	/* Init idr used for memory handle translation */
1338 	idr_init(&pdd->alloc_idr);
1339 
1340 	return pdd;
1341 
1342 err_free_pdd:
1343 	kfree(pdd);
1344 	return NULL;
1345 }
1346 
1347 /**
1348  * kfd_process_device_init_vm - Initialize a VM for a process-device
1349  *
1350  * @pdd: The process-device
1351  * @drm_file: Optional pointer to a DRM file descriptor
1352  *
1353  * If @drm_file is specified, it will be used to acquire the VM from
1354  * that file descriptor. If successful, the @pdd takes ownership of
1355  * the file descriptor.
1356  *
1357  * If @drm_file is NULL, a new VM is created.
1358  *
1359  * Returns 0 on success, -errno on failure.
1360  */
1361 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1362 			       struct file *drm_file)
1363 {
1364 	struct kfd_process *p;
1365 	struct kfd_dev *dev;
1366 	int ret;
1367 
1368 	if (pdd->vm)
1369 		return drm_file ? -EBUSY : 0;
1370 
1371 	p = pdd->process;
1372 	dev = pdd->dev;
1373 
1374 	if (drm_file)
1375 		ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1376 			dev->kgd, drm_file, p->pasid,
1377 			&pdd->vm, &p->kgd_process_info, &p->ef);
1378 	else
1379 		ret = amdgpu_amdkfd_gpuvm_create_process_vm(dev->kgd, p->pasid,
1380 			&pdd->vm, &p->kgd_process_info, &p->ef);
1381 	if (ret) {
1382 		pr_err("Failed to create process VM object\n");
1383 		return ret;
1384 	}
1385 
1386 	amdgpu_vm_set_task_info(pdd->vm);
1387 
1388 	ret = kfd_process_device_reserve_ib_mem(pdd);
1389 	if (ret)
1390 		goto err_reserve_ib_mem;
1391 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1392 	if (ret)
1393 		goto err_init_cwsr;
1394 
1395 	pdd->drm_file = drm_file;
1396 
1397 	return 0;
1398 
1399 err_init_cwsr:
1400 err_reserve_ib_mem:
1401 	kfd_process_device_free_bos(pdd);
1402 	if (!drm_file)
1403 		amdgpu_amdkfd_gpuvm_destroy_process_vm(dev->kgd, pdd->vm);
1404 	pdd->vm = NULL;
1405 
1406 	return ret;
1407 }
1408 
1409 /*
1410  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1411  * to the device.
1412  * Unbinding occurs when the process dies or the device is removed.
1413  *
1414  * Assumes that the process lock is held.
1415  */
1416 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1417 							struct kfd_process *p)
1418 {
1419 	struct kfd_process_device *pdd;
1420 	int err;
1421 
1422 	pdd = kfd_get_process_device_data(dev, p);
1423 	if (!pdd) {
1424 		pr_err("Process device data doesn't exist\n");
1425 		return ERR_PTR(-ENOMEM);
1426 	}
1427 
1428 	/*
1429 	 * signal runtime-pm system to auto resume and prevent
1430 	 * further runtime suspend once device pdd is created until
1431 	 * pdd is destroyed.
1432 	 */
1433 	if (!pdd->runtime_inuse) {
1434 		err = pm_runtime_get_sync(dev->ddev->dev);
1435 		if (err < 0) {
1436 			pm_runtime_put_autosuspend(dev->ddev->dev);
1437 			return ERR_PTR(err);
1438 		}
1439 	}
1440 
1441 	err = kfd_iommu_bind_process_to_device(pdd);
1442 	if (err)
1443 		goto out;
1444 
1445 	err = kfd_process_device_init_vm(pdd, NULL);
1446 	if (err)
1447 		goto out;
1448 
1449 	/*
1450 	 * make sure that runtime_usage counter is incremented just once
1451 	 * per pdd
1452 	 */
1453 	pdd->runtime_inuse = true;
1454 
1455 	return pdd;
1456 
1457 out:
1458 	/* balance runpm reference count and exit with error */
1459 	if (!pdd->runtime_inuse) {
1460 		pm_runtime_mark_last_busy(dev->ddev->dev);
1461 		pm_runtime_put_autosuspend(dev->ddev->dev);
1462 	}
1463 
1464 	return ERR_PTR(err);
1465 }
1466 
1467 struct kfd_process_device *kfd_get_first_process_device_data(
1468 						struct kfd_process *p)
1469 {
1470 	return list_first_entry(&p->per_device_data,
1471 				struct kfd_process_device,
1472 				per_device_list);
1473 }
1474 
1475 struct kfd_process_device *kfd_get_next_process_device_data(
1476 						struct kfd_process *p,
1477 						struct kfd_process_device *pdd)
1478 {
1479 	if (list_is_last(&pdd->per_device_list, &p->per_device_data))
1480 		return NULL;
1481 	return list_next_entry(pdd, per_device_list);
1482 }
1483 
1484 bool kfd_has_process_device_data(struct kfd_process *p)
1485 {
1486 	return !(list_empty(&p->per_device_data));
1487 }
1488 
1489 /* Create specific handle mapped to mem from process local memory idr
1490  * Assumes that the process lock is held.
1491  */
1492 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1493 					void *mem)
1494 {
1495 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1496 }
1497 
1498 /* Translate specific handle from process local memory idr
1499  * Assumes that the process lock is held.
1500  */
1501 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1502 					int handle)
1503 {
1504 	if (handle < 0)
1505 		return NULL;
1506 
1507 	return idr_find(&pdd->alloc_idr, handle);
1508 }
1509 
1510 /* Remove specific handle from process local memory idr
1511  * Assumes that the process lock is held.
1512  */
1513 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1514 					int handle)
1515 {
1516 	if (handle >= 0)
1517 		idr_remove(&pdd->alloc_idr, handle);
1518 }
1519 
1520 /* This increments the process->ref counter. */
1521 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1522 {
1523 	struct kfd_process *p, *ret_p = NULL;
1524 	unsigned int temp;
1525 
1526 	int idx = srcu_read_lock(&kfd_processes_srcu);
1527 
1528 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1529 		if (p->pasid == pasid) {
1530 			kref_get(&p->ref);
1531 			ret_p = p;
1532 			break;
1533 		}
1534 	}
1535 
1536 	srcu_read_unlock(&kfd_processes_srcu, idx);
1537 
1538 	return ret_p;
1539 }
1540 
1541 /* This increments the process->ref counter. */
1542 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1543 {
1544 	struct kfd_process *p;
1545 
1546 	int idx = srcu_read_lock(&kfd_processes_srcu);
1547 
1548 	p = find_process_by_mm(mm);
1549 	if (p)
1550 		kref_get(&p->ref);
1551 
1552 	srcu_read_unlock(&kfd_processes_srcu, idx);
1553 
1554 	return p;
1555 }
1556 
1557 /* kfd_process_evict_queues - Evict all user queues of a process
1558  *
1559  * Eviction is reference-counted per process-device. This means multiple
1560  * evictions from different sources can be nested safely.
1561  */
1562 int kfd_process_evict_queues(struct kfd_process *p)
1563 {
1564 	struct kfd_process_device *pdd;
1565 	int r = 0;
1566 	unsigned int n_evicted = 0;
1567 
1568 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
1569 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1570 							    &pdd->qpd);
1571 		if (r) {
1572 			pr_err("Failed to evict process queues\n");
1573 			goto fail;
1574 		}
1575 		n_evicted++;
1576 	}
1577 
1578 	return r;
1579 
1580 fail:
1581 	/* To keep state consistent, roll back partial eviction by
1582 	 * restoring queues
1583 	 */
1584 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
1585 		if (n_evicted == 0)
1586 			break;
1587 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1588 							      &pdd->qpd))
1589 			pr_err("Failed to restore queues\n");
1590 
1591 		n_evicted--;
1592 	}
1593 
1594 	return r;
1595 }
1596 
1597 /* kfd_process_restore_queues - Restore all user queues of a process */
1598 int kfd_process_restore_queues(struct kfd_process *p)
1599 {
1600 	struct kfd_process_device *pdd;
1601 	int r, ret = 0;
1602 
1603 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
1604 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1605 							      &pdd->qpd);
1606 		if (r) {
1607 			pr_err("Failed to restore process queues\n");
1608 			if (!ret)
1609 				ret = r;
1610 		}
1611 	}
1612 
1613 	return ret;
1614 }
1615 
1616 static void evict_process_worker(struct work_struct *work)
1617 {
1618 	int ret;
1619 	struct kfd_process *p;
1620 	struct delayed_work *dwork;
1621 
1622 	dwork = to_delayed_work(work);
1623 
1624 	/* Process termination destroys this worker thread. So during the
1625 	 * lifetime of this thread, kfd_process p will be valid
1626 	 */
1627 	p = container_of(dwork, struct kfd_process, eviction_work);
1628 	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1629 		  "Eviction fence mismatch\n");
1630 
1631 	/* Narrow window of overlap between restore and evict work
1632 	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1633 	 * unreserves KFD BOs, it is possible to evicted again. But
1634 	 * restore has few more steps of finish. So lets wait for any
1635 	 * previous restore work to complete
1636 	 */
1637 	flush_delayed_work(&p->restore_work);
1638 
1639 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1640 	ret = kfd_process_evict_queues(p);
1641 	if (!ret) {
1642 		dma_fence_signal(p->ef);
1643 		dma_fence_put(p->ef);
1644 		p->ef = NULL;
1645 		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1646 				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1647 
1648 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1649 	} else
1650 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1651 }
1652 
1653 static void restore_process_worker(struct work_struct *work)
1654 {
1655 	struct delayed_work *dwork;
1656 	struct kfd_process *p;
1657 	int ret = 0;
1658 
1659 	dwork = to_delayed_work(work);
1660 
1661 	/* Process termination destroys this worker thread. So during the
1662 	 * lifetime of this thread, kfd_process p will be valid
1663 	 */
1664 	p = container_of(dwork, struct kfd_process, restore_work);
1665 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1666 
1667 	/* Setting last_restore_timestamp before successful restoration.
1668 	 * Otherwise this would have to be set by KGD (restore_process_bos)
1669 	 * before KFD BOs are unreserved. If not, the process can be evicted
1670 	 * again before the timestamp is set.
1671 	 * If restore fails, the timestamp will be set again in the next
1672 	 * attempt. This would mean that the minimum GPU quanta would be
1673 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1674 	 * functions)
1675 	 */
1676 
1677 	p->last_restore_timestamp = get_jiffies_64();
1678 	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1679 						     &p->ef);
1680 	if (ret) {
1681 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1682 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1683 		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1684 				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1685 		WARN(!ret, "reschedule restore work failed\n");
1686 		return;
1687 	}
1688 
1689 	ret = kfd_process_restore_queues(p);
1690 	if (!ret)
1691 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1692 	else
1693 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1694 }
1695 
1696 void kfd_suspend_all_processes(void)
1697 {
1698 	struct kfd_process *p;
1699 	unsigned int temp;
1700 	int idx = srcu_read_lock(&kfd_processes_srcu);
1701 
1702 	WARN(debug_evictions, "Evicting all processes");
1703 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1704 		cancel_delayed_work_sync(&p->eviction_work);
1705 		cancel_delayed_work_sync(&p->restore_work);
1706 
1707 		if (kfd_process_evict_queues(p))
1708 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1709 		dma_fence_signal(p->ef);
1710 		dma_fence_put(p->ef);
1711 		p->ef = NULL;
1712 	}
1713 	srcu_read_unlock(&kfd_processes_srcu, idx);
1714 }
1715 
1716 int kfd_resume_all_processes(void)
1717 {
1718 	struct kfd_process *p;
1719 	unsigned int temp;
1720 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1721 
1722 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1723 		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1724 			pr_err("Restore process %d failed during resume\n",
1725 			       p->pasid);
1726 			ret = -EFAULT;
1727 		}
1728 	}
1729 	srcu_read_unlock(&kfd_processes_srcu, idx);
1730 	return ret;
1731 }
1732 
1733 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1734 			  struct vm_area_struct *vma)
1735 {
1736 	struct kfd_process_device *pdd;
1737 	struct qcm_process_device *qpd;
1738 
1739 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1740 		pr_err("Incorrect CWSR mapping size.\n");
1741 		return -EINVAL;
1742 	}
1743 
1744 	pdd = kfd_get_process_device_data(dev, process);
1745 	if (!pdd)
1746 		return -EINVAL;
1747 	qpd = &pdd->qpd;
1748 
1749 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1750 					get_order(KFD_CWSR_TBA_TMA_SIZE));
1751 	if (!qpd->cwsr_kaddr) {
1752 		pr_err("Error allocating per process CWSR buffer.\n");
1753 		return -ENOMEM;
1754 	}
1755 
1756 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1757 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1758 	/* Mapping pages to user process */
1759 	return remap_pfn_range(vma, vma->vm_start,
1760 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1761 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1762 }
1763 
1764 void kfd_flush_tlb(struct kfd_process_device *pdd)
1765 {
1766 	struct kfd_dev *dev = pdd->dev;
1767 
1768 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1769 		/* Nothing to flush until a VMID is assigned, which
1770 		 * only happens when the first queue is created.
1771 		 */
1772 		if (pdd->qpd.vmid)
1773 			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd,
1774 							pdd->qpd.vmid);
1775 	} else {
1776 		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd,
1777 						pdd->process->pasid);
1778 	}
1779 }
1780 
1781 #if defined(CONFIG_DEBUG_FS)
1782 
1783 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1784 {
1785 	struct kfd_process *p;
1786 	unsigned int temp;
1787 	int r = 0;
1788 
1789 	int idx = srcu_read_lock(&kfd_processes_srcu);
1790 
1791 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1792 		seq_printf(m, "Process %d PASID 0x%x:\n",
1793 			   p->lead_thread->tgid, p->pasid);
1794 
1795 		mutex_lock(&p->mutex);
1796 		r = pqm_debugfs_mqds(m, &p->pqm);
1797 		mutex_unlock(&p->mutex);
1798 
1799 		if (r)
1800 			break;
1801 	}
1802 
1803 	srcu_read_unlock(&kfd_processes_srcu, idx);
1804 
1805 	return r;
1806 }
1807 
1808 #endif
1809 
1810