1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/mutex.h> 24 #include <linux/log2.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/amd-iommu.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 39 struct mm_struct; 40 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_dbgmgr.h" 44 #include "kfd_iommu.h" 45 46 /* 47 * List of struct kfd_process (field kfd_process). 48 * Unique/indexed by mm_struct* 49 */ 50 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 51 static DEFINE_MUTEX(kfd_processes_mutex); 52 53 DEFINE_SRCU(kfd_processes_srcu); 54 55 /* For process termination handling */ 56 static struct workqueue_struct *kfd_process_wq; 57 58 /* Ordered, single-threaded workqueue for restoring evicted 59 * processes. Restoring multiple processes concurrently under memory 60 * pressure can lead to processes blocking each other from validating 61 * their BOs and result in a live-lock situation where processes 62 * remain evicted indefinitely. 63 */ 64 static struct workqueue_struct *kfd_restore_wq; 65 66 static struct kfd_process *find_process(const struct task_struct *thread); 67 static void kfd_process_ref_release(struct kref *ref); 68 static struct kfd_process *create_process(const struct task_struct *thread); 69 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep); 70 71 static void evict_process_worker(struct work_struct *work); 72 static void restore_process_worker(struct work_struct *work); 73 74 struct kfd_procfs_tree { 75 struct kobject *kobj; 76 }; 77 78 static struct kfd_procfs_tree procfs; 79 80 /* 81 * Structure for SDMA activity tracking 82 */ 83 struct kfd_sdma_activity_handler_workarea { 84 struct work_struct sdma_activity_work; 85 struct kfd_process_device *pdd; 86 uint64_t sdma_activity_counter; 87 }; 88 89 struct temp_sdma_queue_list { 90 uint64_t __user *rptr; 91 uint64_t sdma_val; 92 unsigned int queue_id; 93 struct list_head list; 94 }; 95 96 static void kfd_sdma_activity_worker(struct work_struct *work) 97 { 98 struct kfd_sdma_activity_handler_workarea *workarea; 99 struct kfd_process_device *pdd; 100 uint64_t val; 101 struct mm_struct *mm; 102 struct queue *q; 103 struct qcm_process_device *qpd; 104 struct device_queue_manager *dqm; 105 int ret = 0; 106 struct temp_sdma_queue_list sdma_q_list; 107 struct temp_sdma_queue_list *sdma_q, *next; 108 109 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 110 sdma_activity_work); 111 if (!workarea) 112 return; 113 114 pdd = workarea->pdd; 115 if (!pdd) 116 return; 117 dqm = pdd->dev->dqm; 118 qpd = &pdd->qpd; 119 if (!dqm || !qpd) 120 return; 121 /* 122 * Total SDMA activity is current SDMA activity + past SDMA activity 123 * Past SDMA count is stored in pdd. 124 * To get the current activity counters for all active SDMA queues, 125 * we loop over all SDMA queues and get their counts from user-space. 126 * 127 * We cannot call get_user() with dqm_lock held as it can cause 128 * a circular lock dependency situation. To read the SDMA stats, 129 * we need to do the following: 130 * 131 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 132 * with dqm_lock/dqm_unlock(). 133 * 2. Call get_user() for each node in temporary list without dqm_lock. 134 * Save the SDMA count for each node and also add the count to the total 135 * SDMA count counter. 136 * Its possible, during this step, a few SDMA queue nodes got deleted 137 * from the qpd->queues_list. 138 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 139 * If any node got deleted, its SDMA count would be captured in the sdma 140 * past activity counter. So subtract the SDMA counter stored in step 2 141 * for this node from the total SDMA count. 142 */ 143 INIT_LIST_HEAD(&sdma_q_list.list); 144 145 /* 146 * Create the temp list of all SDMA queues 147 */ 148 dqm_lock(dqm); 149 150 list_for_each_entry(q, &qpd->queues_list, list) { 151 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 152 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 153 continue; 154 155 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 156 if (!sdma_q) { 157 dqm_unlock(dqm); 158 goto cleanup; 159 } 160 161 INIT_LIST_HEAD(&sdma_q->list); 162 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 163 sdma_q->queue_id = q->properties.queue_id; 164 list_add_tail(&sdma_q->list, &sdma_q_list.list); 165 } 166 167 /* 168 * If the temp list is empty, then no SDMA queues nodes were found in 169 * qpd->queues_list. Return the past activity count as the total sdma 170 * count 171 */ 172 if (list_empty(&sdma_q_list.list)) { 173 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 174 dqm_unlock(dqm); 175 return; 176 } 177 178 dqm_unlock(dqm); 179 180 /* 181 * Get the usage count for each SDMA queue in temp_list. 182 */ 183 mm = get_task_mm(pdd->process->lead_thread); 184 if (!mm) 185 goto cleanup; 186 187 kthread_use_mm(mm); 188 189 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 190 val = 0; 191 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 192 if (ret) { 193 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 194 sdma_q->queue_id); 195 } else { 196 sdma_q->sdma_val = val; 197 workarea->sdma_activity_counter += val; 198 } 199 } 200 201 kthread_unuse_mm(mm); 202 mmput(mm); 203 204 /* 205 * Do a second iteration over qpd_queues_list to check if any SDMA 206 * nodes got deleted while fetching SDMA counter. 207 */ 208 dqm_lock(dqm); 209 210 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 211 212 list_for_each_entry(q, &qpd->queues_list, list) { 213 if (list_empty(&sdma_q_list.list)) 214 break; 215 216 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 217 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 218 continue; 219 220 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 221 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 222 (sdma_q->queue_id == q->properties.queue_id)) { 223 list_del(&sdma_q->list); 224 kfree(sdma_q); 225 break; 226 } 227 } 228 } 229 230 dqm_unlock(dqm); 231 232 /* 233 * If temp list is not empty, it implies some queues got deleted 234 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 235 * count for each node from the total SDMA count. 236 */ 237 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 238 workarea->sdma_activity_counter -= sdma_q->sdma_val; 239 list_del(&sdma_q->list); 240 kfree(sdma_q); 241 } 242 243 return; 244 245 cleanup: 246 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 247 list_del(&sdma_q->list); 248 kfree(sdma_q); 249 } 250 } 251 252 /** 253 * @kfd_get_cu_occupancy() - Collect number of waves in-flight on this device 254 * by current process. Translates acquired wave count into number of compute units 255 * that are occupied. 256 * 257 * @atr: Handle of attribute that allows reporting of wave count. The attribute 258 * handle encapsulates GPU device it is associated with, thereby allowing collection 259 * of waves in flight, etc 260 * 261 * @buffer: Handle of user provided buffer updated with wave count 262 * 263 * Return: Number of bytes written to user buffer or an error value 264 */ 265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 266 { 267 int cu_cnt; 268 int wave_cnt; 269 int max_waves_per_cu; 270 struct kfd_dev *dev = NULL; 271 struct kfd_process *proc = NULL; 272 struct kfd_process_device *pdd = NULL; 273 274 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 275 dev = pdd->dev; 276 if (dev->kfd2kgd->get_cu_occupancy == NULL) 277 return -EINVAL; 278 279 cu_cnt = 0; 280 proc = pdd->process; 281 if (pdd->qpd.queue_count == 0) { 282 pr_debug("Gpu-Id: %d has no active queues for process %d\n", 283 dev->id, proc->pasid); 284 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 285 } 286 287 /* Collect wave count from device if it supports */ 288 wave_cnt = 0; 289 max_waves_per_cu = 0; 290 dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt, 291 &max_waves_per_cu); 292 293 /* Translate wave count to number of compute units */ 294 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 295 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 296 } 297 298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 299 char *buffer) 300 { 301 if (strcmp(attr->name, "pasid") == 0) { 302 struct kfd_process *p = container_of(attr, struct kfd_process, 303 attr_pasid); 304 305 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 306 } else if (strncmp(attr->name, "vram_", 5) == 0) { 307 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 308 attr_vram); 309 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage)); 310 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 311 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 312 attr_sdma); 313 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 314 315 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work, 316 kfd_sdma_activity_worker); 317 318 sdma_activity_work_handler.pdd = pdd; 319 sdma_activity_work_handler.sdma_activity_counter = 0; 320 321 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 322 323 flush_work(&sdma_activity_work_handler.sdma_activity_work); 324 325 return snprintf(buffer, PAGE_SIZE, "%llu\n", 326 (sdma_activity_work_handler.sdma_activity_counter)/ 327 SDMA_ACTIVITY_DIVISOR); 328 } else { 329 pr_err("Invalid attribute"); 330 return -EINVAL; 331 } 332 333 return 0; 334 } 335 336 static void kfd_procfs_kobj_release(struct kobject *kobj) 337 { 338 kfree(kobj); 339 } 340 341 static const struct sysfs_ops kfd_procfs_ops = { 342 .show = kfd_procfs_show, 343 }; 344 345 static struct kobj_type procfs_type = { 346 .release = kfd_procfs_kobj_release, 347 .sysfs_ops = &kfd_procfs_ops, 348 }; 349 350 void kfd_procfs_init(void) 351 { 352 int ret = 0; 353 354 procfs.kobj = kfd_alloc_struct(procfs.kobj); 355 if (!procfs.kobj) 356 return; 357 358 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 359 &kfd_device->kobj, "proc"); 360 if (ret) { 361 pr_warn("Could not create procfs proc folder"); 362 /* If we fail to create the procfs, clean up */ 363 kfd_procfs_shutdown(); 364 } 365 } 366 367 void kfd_procfs_shutdown(void) 368 { 369 if (procfs.kobj) { 370 kobject_del(procfs.kobj); 371 kobject_put(procfs.kobj); 372 procfs.kobj = NULL; 373 } 374 } 375 376 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 377 struct attribute *attr, char *buffer) 378 { 379 struct queue *q = container_of(kobj, struct queue, kobj); 380 381 if (!strcmp(attr->name, "size")) 382 return snprintf(buffer, PAGE_SIZE, "%llu", 383 q->properties.queue_size); 384 else if (!strcmp(attr->name, "type")) 385 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 386 else if (!strcmp(attr->name, "gpuid")) 387 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 388 else 389 pr_err("Invalid attribute"); 390 391 return 0; 392 } 393 394 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 395 struct attribute *attr, char *buffer) 396 { 397 if (strcmp(attr->name, "evicted_ms") == 0) { 398 struct kfd_process_device *pdd = container_of(attr, 399 struct kfd_process_device, 400 attr_evict); 401 uint64_t evict_jiffies; 402 403 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 404 405 return snprintf(buffer, 406 PAGE_SIZE, 407 "%llu\n", 408 jiffies64_to_msecs(evict_jiffies)); 409 410 /* Sysfs handle that gets CU occupancy is per device */ 411 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 412 return kfd_get_cu_occupancy(attr, buffer); 413 } else { 414 pr_err("Invalid attribute"); 415 } 416 417 return 0; 418 } 419 420 static struct attribute attr_queue_size = { 421 .name = "size", 422 .mode = KFD_SYSFS_FILE_MODE 423 }; 424 425 static struct attribute attr_queue_type = { 426 .name = "type", 427 .mode = KFD_SYSFS_FILE_MODE 428 }; 429 430 static struct attribute attr_queue_gpuid = { 431 .name = "gpuid", 432 .mode = KFD_SYSFS_FILE_MODE 433 }; 434 435 static struct attribute *procfs_queue_attrs[] = { 436 &attr_queue_size, 437 &attr_queue_type, 438 &attr_queue_gpuid, 439 NULL 440 }; 441 442 static const struct sysfs_ops procfs_queue_ops = { 443 .show = kfd_procfs_queue_show, 444 }; 445 446 static struct kobj_type procfs_queue_type = { 447 .sysfs_ops = &procfs_queue_ops, 448 .default_attrs = procfs_queue_attrs, 449 }; 450 451 static const struct sysfs_ops procfs_stats_ops = { 452 .show = kfd_procfs_stats_show, 453 }; 454 455 static struct attribute *procfs_stats_attrs[] = { 456 NULL 457 }; 458 459 static struct kobj_type procfs_stats_type = { 460 .sysfs_ops = &procfs_stats_ops, 461 .default_attrs = procfs_stats_attrs, 462 }; 463 464 int kfd_procfs_add_queue(struct queue *q) 465 { 466 struct kfd_process *proc; 467 int ret; 468 469 if (!q || !q->process) 470 return -EINVAL; 471 proc = q->process; 472 473 /* Create proc/<pid>/queues/<queue id> folder */ 474 if (!proc->kobj_queues) 475 return -EFAULT; 476 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 477 proc->kobj_queues, "%u", q->properties.queue_id); 478 if (ret < 0) { 479 pr_warn("Creating proc/<pid>/queues/%u failed", 480 q->properties.queue_id); 481 kobject_put(&q->kobj); 482 return ret; 483 } 484 485 return 0; 486 } 487 488 static int kfd_sysfs_create_file(struct kfd_process *p, struct attribute *attr, 489 char *name) 490 { 491 int ret = 0; 492 493 if (!p || !attr || !name) 494 return -EINVAL; 495 496 attr->name = name; 497 attr->mode = KFD_SYSFS_FILE_MODE; 498 sysfs_attr_init(attr); 499 500 ret = sysfs_create_file(p->kobj, attr); 501 502 return ret; 503 } 504 505 static int kfd_procfs_add_sysfs_stats(struct kfd_process *p) 506 { 507 int ret = 0; 508 struct kfd_process_device *pdd; 509 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 510 511 if (!p) 512 return -EINVAL; 513 514 if (!p->kobj) 515 return -EFAULT; 516 517 /* 518 * Create sysfs files for each GPU: 519 * - proc/<pid>/stats_<gpuid>/ 520 * - proc/<pid>/stats_<gpuid>/evicted_ms 521 * - proc/<pid>/stats_<gpuid>/cu_occupancy 522 */ 523 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 524 struct kobject *kobj_stats; 525 526 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 527 "stats_%u", pdd->dev->id); 528 kobj_stats = kfd_alloc_struct(kobj_stats); 529 if (!kobj_stats) 530 return -ENOMEM; 531 532 ret = kobject_init_and_add(kobj_stats, 533 &procfs_stats_type, 534 p->kobj, 535 stats_dir_filename); 536 537 if (ret) { 538 pr_warn("Creating KFD proc/stats_%s folder failed", 539 stats_dir_filename); 540 kobject_put(kobj_stats); 541 goto err; 542 } 543 544 pdd->kobj_stats = kobj_stats; 545 pdd->attr_evict.name = "evicted_ms"; 546 pdd->attr_evict.mode = KFD_SYSFS_FILE_MODE; 547 sysfs_attr_init(&pdd->attr_evict); 548 ret = sysfs_create_file(kobj_stats, &pdd->attr_evict); 549 if (ret) 550 pr_warn("Creating eviction stats for gpuid %d failed", 551 (int)pdd->dev->id); 552 553 /* Add sysfs file to report compute unit occupancy */ 554 if (pdd->dev->kfd2kgd->get_cu_occupancy != NULL) { 555 pdd->attr_cu_occupancy.name = "cu_occupancy"; 556 pdd->attr_cu_occupancy.mode = KFD_SYSFS_FILE_MODE; 557 sysfs_attr_init(&pdd->attr_cu_occupancy); 558 ret = sysfs_create_file(kobj_stats, 559 &pdd->attr_cu_occupancy); 560 if (ret) 561 pr_warn("Creating %s failed for gpuid: %d", 562 pdd->attr_cu_occupancy.name, 563 (int)pdd->dev->id); 564 } 565 } 566 err: 567 return ret; 568 } 569 570 571 static int kfd_procfs_add_sysfs_files(struct kfd_process *p) 572 { 573 int ret = 0; 574 struct kfd_process_device *pdd; 575 576 if (!p) 577 return -EINVAL; 578 579 if (!p->kobj) 580 return -EFAULT; 581 582 /* 583 * Create sysfs files for each GPU: 584 * - proc/<pid>/vram_<gpuid> 585 * - proc/<pid>/sdma_<gpuid> 586 */ 587 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 588 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 589 pdd->dev->id); 590 ret = kfd_sysfs_create_file(p, &pdd->attr_vram, pdd->vram_filename); 591 if (ret) 592 pr_warn("Creating vram usage for gpu id %d failed", 593 (int)pdd->dev->id); 594 595 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 596 pdd->dev->id); 597 ret = kfd_sysfs_create_file(p, &pdd->attr_sdma, pdd->sdma_filename); 598 if (ret) 599 pr_warn("Creating sdma usage for gpu id %d failed", 600 (int)pdd->dev->id); 601 } 602 603 return ret; 604 } 605 606 void kfd_procfs_del_queue(struct queue *q) 607 { 608 if (!q) 609 return; 610 611 kobject_del(&q->kobj); 612 kobject_put(&q->kobj); 613 } 614 615 int kfd_process_create_wq(void) 616 { 617 if (!kfd_process_wq) 618 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 619 if (!kfd_restore_wq) 620 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0); 621 622 if (!kfd_process_wq || !kfd_restore_wq) { 623 kfd_process_destroy_wq(); 624 return -ENOMEM; 625 } 626 627 return 0; 628 } 629 630 void kfd_process_destroy_wq(void) 631 { 632 if (kfd_process_wq) { 633 destroy_workqueue(kfd_process_wq); 634 kfd_process_wq = NULL; 635 } 636 if (kfd_restore_wq) { 637 destroy_workqueue(kfd_restore_wq); 638 kfd_restore_wq = NULL; 639 } 640 } 641 642 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 643 struct kfd_process_device *pdd) 644 { 645 struct kfd_dev *dev = pdd->dev; 646 647 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->vm); 648 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, NULL); 649 } 650 651 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 652 * This function should be only called right after the process 653 * is created and when kfd_processes_mutex is still being held 654 * to avoid concurrency. Because of that exclusiveness, we do 655 * not need to take p->mutex. 656 */ 657 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 658 uint64_t gpu_va, uint32_t size, 659 uint32_t flags, void **kptr) 660 { 661 struct kfd_dev *kdev = pdd->dev; 662 struct kgd_mem *mem = NULL; 663 int handle; 664 int err; 665 666 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size, 667 pdd->vm, &mem, NULL, flags); 668 if (err) 669 goto err_alloc_mem; 670 671 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->vm); 672 if (err) 673 goto err_map_mem; 674 675 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true); 676 if (err) { 677 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 678 goto sync_memory_failed; 679 } 680 681 /* Create an obj handle so kfd_process_device_remove_obj_handle 682 * will take care of the bo removal when the process finishes. 683 * We do not need to take p->mutex, because the process is just 684 * created and the ioctls have not had the chance to run. 685 */ 686 handle = kfd_process_device_create_obj_handle(pdd, mem); 687 688 if (handle < 0) { 689 err = handle; 690 goto free_gpuvm; 691 } 692 693 if (kptr) { 694 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd, 695 (struct kgd_mem *)mem, kptr, NULL); 696 if (err) { 697 pr_debug("Map GTT BO to kernel failed\n"); 698 goto free_obj_handle; 699 } 700 } 701 702 return err; 703 704 free_obj_handle: 705 kfd_process_device_remove_obj_handle(pdd, handle); 706 free_gpuvm: 707 sync_memory_failed: 708 kfd_process_free_gpuvm(mem, pdd); 709 return err; 710 711 err_map_mem: 712 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, NULL); 713 err_alloc_mem: 714 *kptr = NULL; 715 return err; 716 } 717 718 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 719 * process for IB usage The memory reserved is for KFD to submit 720 * IB to AMDGPU from kernel. If the memory is reserved 721 * successfully, ib_kaddr will have the CPU/kernel 722 * address. Check ib_kaddr before accessing the memory. 723 */ 724 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 725 { 726 struct qcm_process_device *qpd = &pdd->qpd; 727 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 728 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 729 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 730 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 731 void *kaddr; 732 int ret; 733 734 if (qpd->ib_kaddr || !qpd->ib_base) 735 return 0; 736 737 /* ib_base is only set for dGPU */ 738 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 739 &kaddr); 740 if (ret) 741 return ret; 742 743 qpd->ib_kaddr = kaddr; 744 745 return 0; 746 } 747 748 struct kfd_process *kfd_create_process(struct file *filep) 749 { 750 struct kfd_process *process; 751 struct task_struct *thread = current; 752 int ret; 753 754 if (!thread->mm) 755 return ERR_PTR(-EINVAL); 756 757 /* Only the pthreads threading model is supported. */ 758 if (thread->group_leader->mm != thread->mm) 759 return ERR_PTR(-EINVAL); 760 761 /* 762 * take kfd processes mutex before starting of process creation 763 * so there won't be a case where two threads of the same process 764 * create two kfd_process structures 765 */ 766 mutex_lock(&kfd_processes_mutex); 767 768 /* A prior open of /dev/kfd could have already created the process. */ 769 process = find_process(thread); 770 if (process) { 771 pr_debug("Process already found\n"); 772 } else { 773 process = create_process(thread); 774 if (IS_ERR(process)) 775 goto out; 776 777 ret = kfd_process_init_cwsr_apu(process, filep); 778 if (ret) 779 goto out_destroy; 780 781 if (!procfs.kobj) 782 goto out; 783 784 process->kobj = kfd_alloc_struct(process->kobj); 785 if (!process->kobj) { 786 pr_warn("Creating procfs kobject failed"); 787 goto out; 788 } 789 ret = kobject_init_and_add(process->kobj, &procfs_type, 790 procfs.kobj, "%d", 791 (int)process->lead_thread->pid); 792 if (ret) { 793 pr_warn("Creating procfs pid directory failed"); 794 kobject_put(process->kobj); 795 goto out; 796 } 797 798 process->attr_pasid.name = "pasid"; 799 process->attr_pasid.mode = KFD_SYSFS_FILE_MODE; 800 sysfs_attr_init(&process->attr_pasid); 801 ret = sysfs_create_file(process->kobj, &process->attr_pasid); 802 if (ret) 803 pr_warn("Creating pasid for pid %d failed", 804 (int)process->lead_thread->pid); 805 806 process->kobj_queues = kobject_create_and_add("queues", 807 process->kobj); 808 if (!process->kobj_queues) 809 pr_warn("Creating KFD proc/queues folder failed"); 810 811 ret = kfd_procfs_add_sysfs_stats(process); 812 if (ret) 813 pr_warn("Creating sysfs stats dir for pid %d failed", 814 (int)process->lead_thread->pid); 815 816 ret = kfd_procfs_add_sysfs_files(process); 817 if (ret) 818 pr_warn("Creating sysfs usage file for pid %d failed", 819 (int)process->lead_thread->pid); 820 } 821 out: 822 if (!IS_ERR(process)) 823 kref_get(&process->ref); 824 mutex_unlock(&kfd_processes_mutex); 825 826 return process; 827 828 out_destroy: 829 hash_del_rcu(&process->kfd_processes); 830 mutex_unlock(&kfd_processes_mutex); 831 synchronize_srcu(&kfd_processes_srcu); 832 /* kfd_process_free_notifier will trigger the cleanup */ 833 mmu_notifier_put(&process->mmu_notifier); 834 return ERR_PTR(ret); 835 } 836 837 struct kfd_process *kfd_get_process(const struct task_struct *thread) 838 { 839 struct kfd_process *process; 840 841 if (!thread->mm) 842 return ERR_PTR(-EINVAL); 843 844 /* Only the pthreads threading model is supported. */ 845 if (thread->group_leader->mm != thread->mm) 846 return ERR_PTR(-EINVAL); 847 848 process = find_process(thread); 849 if (!process) 850 return ERR_PTR(-EINVAL); 851 852 return process; 853 } 854 855 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 856 { 857 struct kfd_process *process; 858 859 hash_for_each_possible_rcu(kfd_processes_table, process, 860 kfd_processes, (uintptr_t)mm) 861 if (process->mm == mm) 862 return process; 863 864 return NULL; 865 } 866 867 static struct kfd_process *find_process(const struct task_struct *thread) 868 { 869 struct kfd_process *p; 870 int idx; 871 872 idx = srcu_read_lock(&kfd_processes_srcu); 873 p = find_process_by_mm(thread->mm); 874 srcu_read_unlock(&kfd_processes_srcu, idx); 875 876 return p; 877 } 878 879 void kfd_unref_process(struct kfd_process *p) 880 { 881 kref_put(&p->ref, kfd_process_ref_release); 882 } 883 884 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 885 { 886 struct kfd_process *p = pdd->process; 887 void *mem; 888 int id; 889 890 /* 891 * Remove all handles from idr and release appropriate 892 * local memory object 893 */ 894 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 895 struct kfd_process_device *peer_pdd; 896 897 list_for_each_entry(peer_pdd, &p->per_device_data, 898 per_device_list) { 899 if (!peer_pdd->vm) 900 continue; 901 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 902 peer_pdd->dev->kgd, mem, peer_pdd->vm); 903 } 904 905 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem, NULL); 906 kfd_process_device_remove_obj_handle(pdd, id); 907 } 908 } 909 910 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 911 { 912 struct kfd_process_device *pdd; 913 914 list_for_each_entry(pdd, &p->per_device_data, per_device_list) 915 kfd_process_device_free_bos(pdd); 916 } 917 918 static void kfd_process_destroy_pdds(struct kfd_process *p) 919 { 920 struct kfd_process_device *pdd, *temp; 921 922 list_for_each_entry_safe(pdd, temp, &p->per_device_data, 923 per_device_list) { 924 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 925 pdd->dev->id, p->pasid); 926 927 if (pdd->drm_file) { 928 amdgpu_amdkfd_gpuvm_release_process_vm( 929 pdd->dev->kgd, pdd->vm); 930 fput(pdd->drm_file); 931 } 932 else if (pdd->vm) 933 amdgpu_amdkfd_gpuvm_destroy_process_vm( 934 pdd->dev->kgd, pdd->vm); 935 936 list_del(&pdd->per_device_list); 937 938 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 939 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 940 get_order(KFD_CWSR_TBA_TMA_SIZE)); 941 942 kfree(pdd->qpd.doorbell_bitmap); 943 idr_destroy(&pdd->alloc_idr); 944 945 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index); 946 947 /* 948 * before destroying pdd, make sure to report availability 949 * for auto suspend 950 */ 951 if (pdd->runtime_inuse) { 952 pm_runtime_mark_last_busy(pdd->dev->ddev->dev); 953 pm_runtime_put_autosuspend(pdd->dev->ddev->dev); 954 pdd->runtime_inuse = false; 955 } 956 957 kfree(pdd); 958 } 959 } 960 961 /* No process locking is needed in this function, because the process 962 * is not findable any more. We must assume that no other thread is 963 * using it any more, otherwise we couldn't safely free the process 964 * structure in the end. 965 */ 966 static void kfd_process_wq_release(struct work_struct *work) 967 { 968 struct kfd_process *p = container_of(work, struct kfd_process, 969 release_work); 970 struct kfd_process_device *pdd; 971 972 /* Remove the procfs files */ 973 if (p->kobj) { 974 sysfs_remove_file(p->kobj, &p->attr_pasid); 975 kobject_del(p->kobj_queues); 976 kobject_put(p->kobj_queues); 977 p->kobj_queues = NULL; 978 979 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 980 sysfs_remove_file(p->kobj, &pdd->attr_vram); 981 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 982 sysfs_remove_file(p->kobj, &pdd->attr_evict); 983 if (pdd->dev->kfd2kgd->get_cu_occupancy != NULL) 984 sysfs_remove_file(p->kobj, &pdd->attr_cu_occupancy); 985 kobject_del(pdd->kobj_stats); 986 kobject_put(pdd->kobj_stats); 987 pdd->kobj_stats = NULL; 988 } 989 990 kobject_del(p->kobj); 991 kobject_put(p->kobj); 992 p->kobj = NULL; 993 } 994 995 kfd_iommu_unbind_process(p); 996 997 kfd_process_free_outstanding_kfd_bos(p); 998 999 kfd_process_destroy_pdds(p); 1000 dma_fence_put(p->ef); 1001 1002 kfd_event_free_process(p); 1003 1004 kfd_pasid_free(p->pasid); 1005 mutex_destroy(&p->mutex); 1006 1007 put_task_struct(p->lead_thread); 1008 1009 kfree(p); 1010 } 1011 1012 static void kfd_process_ref_release(struct kref *ref) 1013 { 1014 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1015 1016 INIT_WORK(&p->release_work, kfd_process_wq_release); 1017 queue_work(kfd_process_wq, &p->release_work); 1018 } 1019 1020 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1021 { 1022 int idx = srcu_read_lock(&kfd_processes_srcu); 1023 struct kfd_process *p = find_process_by_mm(mm); 1024 1025 srcu_read_unlock(&kfd_processes_srcu, idx); 1026 1027 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1028 } 1029 1030 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1031 { 1032 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1033 } 1034 1035 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1036 struct mm_struct *mm) 1037 { 1038 struct kfd_process *p; 1039 struct kfd_process_device *pdd = NULL; 1040 1041 /* 1042 * The kfd_process structure can not be free because the 1043 * mmu_notifier srcu is read locked 1044 */ 1045 p = container_of(mn, struct kfd_process, mmu_notifier); 1046 if (WARN_ON(p->mm != mm)) 1047 return; 1048 1049 mutex_lock(&kfd_processes_mutex); 1050 hash_del_rcu(&p->kfd_processes); 1051 mutex_unlock(&kfd_processes_mutex); 1052 synchronize_srcu(&kfd_processes_srcu); 1053 1054 cancel_delayed_work_sync(&p->eviction_work); 1055 cancel_delayed_work_sync(&p->restore_work); 1056 1057 mutex_lock(&p->mutex); 1058 1059 /* Iterate over all process device data structures and if the 1060 * pdd is in debug mode, we should first force unregistration, 1061 * then we will be able to destroy the queues 1062 */ 1063 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 1064 struct kfd_dev *dev = pdd->dev; 1065 1066 mutex_lock(kfd_get_dbgmgr_mutex()); 1067 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) { 1068 if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) { 1069 kfd_dbgmgr_destroy(dev->dbgmgr); 1070 dev->dbgmgr = NULL; 1071 } 1072 } 1073 mutex_unlock(kfd_get_dbgmgr_mutex()); 1074 } 1075 1076 kfd_process_dequeue_from_all_devices(p); 1077 pqm_uninit(&p->pqm); 1078 1079 /* Indicate to other users that MM is no longer valid */ 1080 p->mm = NULL; 1081 /* Signal the eviction fence after user mode queues are 1082 * destroyed. This allows any BOs to be freed without 1083 * triggering pointless evictions or waiting for fences. 1084 */ 1085 dma_fence_signal(p->ef); 1086 1087 mutex_unlock(&p->mutex); 1088 1089 mmu_notifier_put(&p->mmu_notifier); 1090 } 1091 1092 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1093 .release = kfd_process_notifier_release, 1094 .alloc_notifier = kfd_process_alloc_notifier, 1095 .free_notifier = kfd_process_free_notifier, 1096 }; 1097 1098 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1099 { 1100 unsigned long offset; 1101 struct kfd_process_device *pdd; 1102 1103 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 1104 struct kfd_dev *dev = pdd->dev; 1105 struct qcm_process_device *qpd = &pdd->qpd; 1106 1107 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1108 continue; 1109 1110 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1111 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1112 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1113 MAP_SHARED, offset); 1114 1115 if (IS_ERR_VALUE(qpd->tba_addr)) { 1116 int err = qpd->tba_addr; 1117 1118 pr_err("Failure to set tba address. error %d.\n", err); 1119 qpd->tba_addr = 0; 1120 qpd->cwsr_kaddr = NULL; 1121 return err; 1122 } 1123 1124 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1125 1126 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1127 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1128 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1129 } 1130 1131 return 0; 1132 } 1133 1134 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1135 { 1136 struct kfd_dev *dev = pdd->dev; 1137 struct qcm_process_device *qpd = &pdd->qpd; 1138 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1139 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1140 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1141 void *kaddr; 1142 int ret; 1143 1144 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1145 return 0; 1146 1147 /* cwsr_base is only set for dGPU */ 1148 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1149 KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr); 1150 if (ret) 1151 return ret; 1152 1153 qpd->cwsr_kaddr = kaddr; 1154 qpd->tba_addr = qpd->cwsr_base; 1155 1156 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1157 1158 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1159 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1160 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1161 1162 return 0; 1163 } 1164 1165 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1166 uint64_t tba_addr, 1167 uint64_t tma_addr) 1168 { 1169 if (qpd->cwsr_kaddr) { 1170 /* KFD trap handler is bound, record as second-level TBA/TMA 1171 * in first-level TMA. First-level trap will jump to second. 1172 */ 1173 uint64_t *tma = 1174 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1175 tma[0] = tba_addr; 1176 tma[1] = tma_addr; 1177 } else { 1178 /* No trap handler bound, bind as first-level TBA/TMA. */ 1179 qpd->tba_addr = tba_addr; 1180 qpd->tma_addr = tma_addr; 1181 } 1182 } 1183 1184 /* 1185 * On return the kfd_process is fully operational and will be freed when the 1186 * mm is released 1187 */ 1188 static struct kfd_process *create_process(const struct task_struct *thread) 1189 { 1190 struct kfd_process *process; 1191 struct mmu_notifier *mn; 1192 int err = -ENOMEM; 1193 1194 process = kzalloc(sizeof(*process), GFP_KERNEL); 1195 if (!process) 1196 goto err_alloc_process; 1197 1198 kref_init(&process->ref); 1199 mutex_init(&process->mutex); 1200 process->mm = thread->mm; 1201 process->lead_thread = thread->group_leader; 1202 INIT_LIST_HEAD(&process->per_device_data); 1203 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1204 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1205 process->last_restore_timestamp = get_jiffies_64(); 1206 kfd_event_init_process(process); 1207 process->is_32bit_user_mode = in_compat_syscall(); 1208 1209 process->pasid = kfd_pasid_alloc(); 1210 if (process->pasid == 0) 1211 goto err_alloc_pasid; 1212 1213 err = pqm_init(&process->pqm, process); 1214 if (err != 0) 1215 goto err_process_pqm_init; 1216 1217 /* init process apertures*/ 1218 err = kfd_init_apertures(process); 1219 if (err != 0) 1220 goto err_init_apertures; 1221 1222 /* alloc_notifier needs to find the process in the hash table */ 1223 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1224 (uintptr_t)process->mm); 1225 1226 /* MMU notifier registration must be the last call that can fail 1227 * because after this point we cannot unwind the process creation. 1228 * After this point, mmu_notifier_put will trigger the cleanup by 1229 * dropping the last process reference in the free_notifier. 1230 */ 1231 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1232 if (IS_ERR(mn)) { 1233 err = PTR_ERR(mn); 1234 goto err_register_notifier; 1235 } 1236 BUG_ON(mn != &process->mmu_notifier); 1237 1238 get_task_struct(process->lead_thread); 1239 1240 return process; 1241 1242 err_register_notifier: 1243 hash_del_rcu(&process->kfd_processes); 1244 kfd_process_free_outstanding_kfd_bos(process); 1245 kfd_process_destroy_pdds(process); 1246 err_init_apertures: 1247 pqm_uninit(&process->pqm); 1248 err_process_pqm_init: 1249 kfd_pasid_free(process->pasid); 1250 err_alloc_pasid: 1251 mutex_destroy(&process->mutex); 1252 kfree(process); 1253 err_alloc_process: 1254 return ERR_PTR(err); 1255 } 1256 1257 static int init_doorbell_bitmap(struct qcm_process_device *qpd, 1258 struct kfd_dev *dev) 1259 { 1260 unsigned int i; 1261 int range_start = dev->shared_resources.non_cp_doorbells_start; 1262 int range_end = dev->shared_resources.non_cp_doorbells_end; 1263 1264 if (!KFD_IS_SOC15(dev->device_info->asic_family)) 1265 return 0; 1266 1267 qpd->doorbell_bitmap = 1268 kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, 1269 BITS_PER_BYTE), GFP_KERNEL); 1270 if (!qpd->doorbell_bitmap) 1271 return -ENOMEM; 1272 1273 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */ 1274 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end); 1275 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", 1276 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1277 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET); 1278 1279 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) { 1280 if (i >= range_start && i <= range_end) { 1281 set_bit(i, qpd->doorbell_bitmap); 1282 set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1283 qpd->doorbell_bitmap); 1284 } 1285 } 1286 1287 return 0; 1288 } 1289 1290 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 1291 struct kfd_process *p) 1292 { 1293 struct kfd_process_device *pdd = NULL; 1294 1295 list_for_each_entry(pdd, &p->per_device_data, per_device_list) 1296 if (pdd->dev == dev) 1297 return pdd; 1298 1299 return NULL; 1300 } 1301 1302 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 1303 struct kfd_process *p) 1304 { 1305 struct kfd_process_device *pdd = NULL; 1306 1307 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1308 if (!pdd) 1309 return NULL; 1310 1311 if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) { 1312 pr_err("Failed to alloc doorbell for pdd\n"); 1313 goto err_free_pdd; 1314 } 1315 1316 if (init_doorbell_bitmap(&pdd->qpd, dev)) { 1317 pr_err("Failed to init doorbell for process\n"); 1318 goto err_free_pdd; 1319 } 1320 1321 pdd->dev = dev; 1322 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1323 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1324 pdd->qpd.dqm = dev->dqm; 1325 pdd->qpd.pqm = &p->pqm; 1326 pdd->qpd.evicted = 0; 1327 pdd->qpd.mapped_gws_queue = false; 1328 pdd->process = p; 1329 pdd->bound = PDD_UNBOUND; 1330 pdd->already_dequeued = false; 1331 pdd->runtime_inuse = false; 1332 pdd->vram_usage = 0; 1333 pdd->sdma_past_activity_counter = 0; 1334 atomic64_set(&pdd->evict_duration_counter, 0); 1335 list_add(&pdd->per_device_list, &p->per_device_data); 1336 1337 /* Init idr used for memory handle translation */ 1338 idr_init(&pdd->alloc_idr); 1339 1340 return pdd; 1341 1342 err_free_pdd: 1343 kfree(pdd); 1344 return NULL; 1345 } 1346 1347 /** 1348 * kfd_process_device_init_vm - Initialize a VM for a process-device 1349 * 1350 * @pdd: The process-device 1351 * @drm_file: Optional pointer to a DRM file descriptor 1352 * 1353 * If @drm_file is specified, it will be used to acquire the VM from 1354 * that file descriptor. If successful, the @pdd takes ownership of 1355 * the file descriptor. 1356 * 1357 * If @drm_file is NULL, a new VM is created. 1358 * 1359 * Returns 0 on success, -errno on failure. 1360 */ 1361 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1362 struct file *drm_file) 1363 { 1364 struct kfd_process *p; 1365 struct kfd_dev *dev; 1366 int ret; 1367 1368 if (pdd->vm) 1369 return drm_file ? -EBUSY : 0; 1370 1371 p = pdd->process; 1372 dev = pdd->dev; 1373 1374 if (drm_file) 1375 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm( 1376 dev->kgd, drm_file, p->pasid, 1377 &pdd->vm, &p->kgd_process_info, &p->ef); 1378 else 1379 ret = amdgpu_amdkfd_gpuvm_create_process_vm(dev->kgd, p->pasid, 1380 &pdd->vm, &p->kgd_process_info, &p->ef); 1381 if (ret) { 1382 pr_err("Failed to create process VM object\n"); 1383 return ret; 1384 } 1385 1386 amdgpu_vm_set_task_info(pdd->vm); 1387 1388 ret = kfd_process_device_reserve_ib_mem(pdd); 1389 if (ret) 1390 goto err_reserve_ib_mem; 1391 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1392 if (ret) 1393 goto err_init_cwsr; 1394 1395 pdd->drm_file = drm_file; 1396 1397 return 0; 1398 1399 err_init_cwsr: 1400 err_reserve_ib_mem: 1401 kfd_process_device_free_bos(pdd); 1402 if (!drm_file) 1403 amdgpu_amdkfd_gpuvm_destroy_process_vm(dev->kgd, pdd->vm); 1404 pdd->vm = NULL; 1405 1406 return ret; 1407 } 1408 1409 /* 1410 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1411 * to the device. 1412 * Unbinding occurs when the process dies or the device is removed. 1413 * 1414 * Assumes that the process lock is held. 1415 */ 1416 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 1417 struct kfd_process *p) 1418 { 1419 struct kfd_process_device *pdd; 1420 int err; 1421 1422 pdd = kfd_get_process_device_data(dev, p); 1423 if (!pdd) { 1424 pr_err("Process device data doesn't exist\n"); 1425 return ERR_PTR(-ENOMEM); 1426 } 1427 1428 /* 1429 * signal runtime-pm system to auto resume and prevent 1430 * further runtime suspend once device pdd is created until 1431 * pdd is destroyed. 1432 */ 1433 if (!pdd->runtime_inuse) { 1434 err = pm_runtime_get_sync(dev->ddev->dev); 1435 if (err < 0) { 1436 pm_runtime_put_autosuspend(dev->ddev->dev); 1437 return ERR_PTR(err); 1438 } 1439 } 1440 1441 err = kfd_iommu_bind_process_to_device(pdd); 1442 if (err) 1443 goto out; 1444 1445 err = kfd_process_device_init_vm(pdd, NULL); 1446 if (err) 1447 goto out; 1448 1449 /* 1450 * make sure that runtime_usage counter is incremented just once 1451 * per pdd 1452 */ 1453 pdd->runtime_inuse = true; 1454 1455 return pdd; 1456 1457 out: 1458 /* balance runpm reference count and exit with error */ 1459 if (!pdd->runtime_inuse) { 1460 pm_runtime_mark_last_busy(dev->ddev->dev); 1461 pm_runtime_put_autosuspend(dev->ddev->dev); 1462 } 1463 1464 return ERR_PTR(err); 1465 } 1466 1467 struct kfd_process_device *kfd_get_first_process_device_data( 1468 struct kfd_process *p) 1469 { 1470 return list_first_entry(&p->per_device_data, 1471 struct kfd_process_device, 1472 per_device_list); 1473 } 1474 1475 struct kfd_process_device *kfd_get_next_process_device_data( 1476 struct kfd_process *p, 1477 struct kfd_process_device *pdd) 1478 { 1479 if (list_is_last(&pdd->per_device_list, &p->per_device_data)) 1480 return NULL; 1481 return list_next_entry(pdd, per_device_list); 1482 } 1483 1484 bool kfd_has_process_device_data(struct kfd_process *p) 1485 { 1486 return !(list_empty(&p->per_device_data)); 1487 } 1488 1489 /* Create specific handle mapped to mem from process local memory idr 1490 * Assumes that the process lock is held. 1491 */ 1492 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1493 void *mem) 1494 { 1495 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1496 } 1497 1498 /* Translate specific handle from process local memory idr 1499 * Assumes that the process lock is held. 1500 */ 1501 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1502 int handle) 1503 { 1504 if (handle < 0) 1505 return NULL; 1506 1507 return idr_find(&pdd->alloc_idr, handle); 1508 } 1509 1510 /* Remove specific handle from process local memory idr 1511 * Assumes that the process lock is held. 1512 */ 1513 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1514 int handle) 1515 { 1516 if (handle >= 0) 1517 idr_remove(&pdd->alloc_idr, handle); 1518 } 1519 1520 /* This increments the process->ref counter. */ 1521 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) 1522 { 1523 struct kfd_process *p, *ret_p = NULL; 1524 unsigned int temp; 1525 1526 int idx = srcu_read_lock(&kfd_processes_srcu); 1527 1528 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1529 if (p->pasid == pasid) { 1530 kref_get(&p->ref); 1531 ret_p = p; 1532 break; 1533 } 1534 } 1535 1536 srcu_read_unlock(&kfd_processes_srcu, idx); 1537 1538 return ret_p; 1539 } 1540 1541 /* This increments the process->ref counter. */ 1542 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1543 { 1544 struct kfd_process *p; 1545 1546 int idx = srcu_read_lock(&kfd_processes_srcu); 1547 1548 p = find_process_by_mm(mm); 1549 if (p) 1550 kref_get(&p->ref); 1551 1552 srcu_read_unlock(&kfd_processes_srcu, idx); 1553 1554 return p; 1555 } 1556 1557 /* kfd_process_evict_queues - Evict all user queues of a process 1558 * 1559 * Eviction is reference-counted per process-device. This means multiple 1560 * evictions from different sources can be nested safely. 1561 */ 1562 int kfd_process_evict_queues(struct kfd_process *p) 1563 { 1564 struct kfd_process_device *pdd; 1565 int r = 0; 1566 unsigned int n_evicted = 0; 1567 1568 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 1569 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1570 &pdd->qpd); 1571 if (r) { 1572 pr_err("Failed to evict process queues\n"); 1573 goto fail; 1574 } 1575 n_evicted++; 1576 } 1577 1578 return r; 1579 1580 fail: 1581 /* To keep state consistent, roll back partial eviction by 1582 * restoring queues 1583 */ 1584 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 1585 if (n_evicted == 0) 1586 break; 1587 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1588 &pdd->qpd)) 1589 pr_err("Failed to restore queues\n"); 1590 1591 n_evicted--; 1592 } 1593 1594 return r; 1595 } 1596 1597 /* kfd_process_restore_queues - Restore all user queues of a process */ 1598 int kfd_process_restore_queues(struct kfd_process *p) 1599 { 1600 struct kfd_process_device *pdd; 1601 int r, ret = 0; 1602 1603 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 1604 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1605 &pdd->qpd); 1606 if (r) { 1607 pr_err("Failed to restore process queues\n"); 1608 if (!ret) 1609 ret = r; 1610 } 1611 } 1612 1613 return ret; 1614 } 1615 1616 static void evict_process_worker(struct work_struct *work) 1617 { 1618 int ret; 1619 struct kfd_process *p; 1620 struct delayed_work *dwork; 1621 1622 dwork = to_delayed_work(work); 1623 1624 /* Process termination destroys this worker thread. So during the 1625 * lifetime of this thread, kfd_process p will be valid 1626 */ 1627 p = container_of(dwork, struct kfd_process, eviction_work); 1628 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, 1629 "Eviction fence mismatch\n"); 1630 1631 /* Narrow window of overlap between restore and evict work 1632 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos 1633 * unreserves KFD BOs, it is possible to evicted again. But 1634 * restore has few more steps of finish. So lets wait for any 1635 * previous restore work to complete 1636 */ 1637 flush_delayed_work(&p->restore_work); 1638 1639 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1640 ret = kfd_process_evict_queues(p); 1641 if (!ret) { 1642 dma_fence_signal(p->ef); 1643 dma_fence_put(p->ef); 1644 p->ef = NULL; 1645 queue_delayed_work(kfd_restore_wq, &p->restore_work, 1646 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); 1647 1648 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 1649 } else 1650 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 1651 } 1652 1653 static void restore_process_worker(struct work_struct *work) 1654 { 1655 struct delayed_work *dwork; 1656 struct kfd_process *p; 1657 int ret = 0; 1658 1659 dwork = to_delayed_work(work); 1660 1661 /* Process termination destroys this worker thread. So during the 1662 * lifetime of this thread, kfd_process p will be valid 1663 */ 1664 p = container_of(dwork, struct kfd_process, restore_work); 1665 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 1666 1667 /* Setting last_restore_timestamp before successful restoration. 1668 * Otherwise this would have to be set by KGD (restore_process_bos) 1669 * before KFD BOs are unreserved. If not, the process can be evicted 1670 * again before the timestamp is set. 1671 * If restore fails, the timestamp will be set again in the next 1672 * attempt. This would mean that the minimum GPU quanta would be 1673 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 1674 * functions) 1675 */ 1676 1677 p->last_restore_timestamp = get_jiffies_64(); 1678 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info, 1679 &p->ef); 1680 if (ret) { 1681 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 1682 p->pasid, PROCESS_BACK_OFF_TIME_MS); 1683 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work, 1684 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); 1685 WARN(!ret, "reschedule restore work failed\n"); 1686 return; 1687 } 1688 1689 ret = kfd_process_restore_queues(p); 1690 if (!ret) 1691 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 1692 else 1693 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 1694 } 1695 1696 void kfd_suspend_all_processes(void) 1697 { 1698 struct kfd_process *p; 1699 unsigned int temp; 1700 int idx = srcu_read_lock(&kfd_processes_srcu); 1701 1702 WARN(debug_evictions, "Evicting all processes"); 1703 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1704 cancel_delayed_work_sync(&p->eviction_work); 1705 cancel_delayed_work_sync(&p->restore_work); 1706 1707 if (kfd_process_evict_queues(p)) 1708 pr_err("Failed to suspend process 0x%x\n", p->pasid); 1709 dma_fence_signal(p->ef); 1710 dma_fence_put(p->ef); 1711 p->ef = NULL; 1712 } 1713 srcu_read_unlock(&kfd_processes_srcu, idx); 1714 } 1715 1716 int kfd_resume_all_processes(void) 1717 { 1718 struct kfd_process *p; 1719 unsigned int temp; 1720 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 1721 1722 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1723 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) { 1724 pr_err("Restore process %d failed during resume\n", 1725 p->pasid); 1726 ret = -EFAULT; 1727 } 1728 } 1729 srcu_read_unlock(&kfd_processes_srcu, idx); 1730 return ret; 1731 } 1732 1733 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 1734 struct vm_area_struct *vma) 1735 { 1736 struct kfd_process_device *pdd; 1737 struct qcm_process_device *qpd; 1738 1739 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 1740 pr_err("Incorrect CWSR mapping size.\n"); 1741 return -EINVAL; 1742 } 1743 1744 pdd = kfd_get_process_device_data(dev, process); 1745 if (!pdd) 1746 return -EINVAL; 1747 qpd = &pdd->qpd; 1748 1749 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1750 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1751 if (!qpd->cwsr_kaddr) { 1752 pr_err("Error allocating per process CWSR buffer.\n"); 1753 return -ENOMEM; 1754 } 1755 1756 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND 1757 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; 1758 /* Mapping pages to user process */ 1759 return remap_pfn_range(vma, vma->vm_start, 1760 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 1761 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 1762 } 1763 1764 void kfd_flush_tlb(struct kfd_process_device *pdd) 1765 { 1766 struct kfd_dev *dev = pdd->dev; 1767 1768 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1769 /* Nothing to flush until a VMID is assigned, which 1770 * only happens when the first queue is created. 1771 */ 1772 if (pdd->qpd.vmid) 1773 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd, 1774 pdd->qpd.vmid); 1775 } else { 1776 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd, 1777 pdd->process->pasid); 1778 } 1779 } 1780 1781 #if defined(CONFIG_DEBUG_FS) 1782 1783 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 1784 { 1785 struct kfd_process *p; 1786 unsigned int temp; 1787 int r = 0; 1788 1789 int idx = srcu_read_lock(&kfd_processes_srcu); 1790 1791 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1792 seq_printf(m, "Process %d PASID 0x%x:\n", 1793 p->lead_thread->tgid, p->pasid); 1794 1795 mutex_lock(&p->mutex); 1796 r = pqm_debugfs_mqds(m, &p->pqm); 1797 mutex_unlock(&p->mutex); 1798 1799 if (r) 1800 break; 1801 } 1802 1803 srcu_read_unlock(&kfd_processes_srcu, idx); 1804 1805 return r; 1806 } 1807 1808 #endif 1809 1810