xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/mutex.h>
24 #include <linux/log2.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/amd-iommu.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 
39 struct mm_struct;
40 
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_dbgmgr.h"
44 #include "kfd_iommu.h"
45 
46 /*
47  * List of struct kfd_process (field kfd_process).
48  * Unique/indexed by mm_struct*
49  */
50 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
51 static DEFINE_MUTEX(kfd_processes_mutex);
52 
53 DEFINE_SRCU(kfd_processes_srcu);
54 
55 /* For process termination handling */
56 static struct workqueue_struct *kfd_process_wq;
57 
58 /* Ordered, single-threaded workqueue for restoring evicted
59  * processes. Restoring multiple processes concurrently under memory
60  * pressure can lead to processes blocking each other from validating
61  * their BOs and result in a live-lock situation where processes
62  * remain evicted indefinitely.
63  */
64 static struct workqueue_struct *kfd_restore_wq;
65 
66 static struct kfd_process *find_process(const struct task_struct *thread);
67 static void kfd_process_ref_release(struct kref *ref);
68 static struct kfd_process *create_process(const struct task_struct *thread);
69 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
70 
71 static void evict_process_worker(struct work_struct *work);
72 static void restore_process_worker(struct work_struct *work);
73 
74 struct kfd_procfs_tree {
75 	struct kobject *kobj;
76 };
77 
78 static struct kfd_procfs_tree procfs;
79 
80 /*
81  * Structure for SDMA activity tracking
82  */
83 struct kfd_sdma_activity_handler_workarea {
84 	struct work_struct sdma_activity_work;
85 	struct kfd_process_device *pdd;
86 	uint64_t sdma_activity_counter;
87 };
88 
89 struct temp_sdma_queue_list {
90 	uint64_t rptr;
91 	uint64_t sdma_val;
92 	unsigned int queue_id;
93 	struct list_head list;
94 };
95 
96 static void kfd_sdma_activity_worker(struct work_struct *work)
97 {
98 	struct kfd_sdma_activity_handler_workarea *workarea;
99 	struct kfd_process_device *pdd;
100 	uint64_t val;
101 	struct mm_struct *mm;
102 	struct queue *q;
103 	struct qcm_process_device *qpd;
104 	struct device_queue_manager *dqm;
105 	int ret = 0;
106 	struct temp_sdma_queue_list sdma_q_list;
107 	struct temp_sdma_queue_list *sdma_q, *next;
108 
109 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
110 				sdma_activity_work);
111 	if (!workarea)
112 		return;
113 
114 	pdd = workarea->pdd;
115 	if (!pdd)
116 		return;
117 	dqm = pdd->dev->dqm;
118 	qpd = &pdd->qpd;
119 	if (!dqm || !qpd)
120 		return;
121 	/*
122 	 * Total SDMA activity is current SDMA activity + past SDMA activity
123 	 * Past SDMA count is stored in pdd.
124 	 * To get the current activity counters for all active SDMA queues,
125 	 * we loop over all SDMA queues and get their counts from user-space.
126 	 *
127 	 * We cannot call get_user() with dqm_lock held as it can cause
128 	 * a circular lock dependency situation. To read the SDMA stats,
129 	 * we need to do the following:
130 	 *
131 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
132 	 *    with dqm_lock/dqm_unlock().
133 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
134 	 *    Save the SDMA count for each node and also add the count to the total
135 	 *    SDMA count counter.
136 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
137 	 *    from the qpd->queues_list.
138 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
139 	 *    If any node got deleted, its SDMA count would be captured in the sdma
140 	 *    past activity counter. So subtract the SDMA counter stored in step 2
141 	 *    for this node from the total SDMA count.
142 	 */
143 	INIT_LIST_HEAD(&sdma_q_list.list);
144 
145 	/*
146 	 * Create the temp list of all SDMA queues
147 	 */
148 	dqm_lock(dqm);
149 
150 	list_for_each_entry(q, &qpd->queues_list, list) {
151 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
152 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
153 			continue;
154 
155 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
156 		if (!sdma_q) {
157 			dqm_unlock(dqm);
158 			goto cleanup;
159 		}
160 
161 		INIT_LIST_HEAD(&sdma_q->list);
162 		sdma_q->rptr = (uint64_t)q->properties.read_ptr;
163 		sdma_q->queue_id = q->properties.queue_id;
164 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
165 	}
166 
167 	/*
168 	 * If the temp list is empty, then no SDMA queues nodes were found in
169 	 * qpd->queues_list. Return the past activity count as the total sdma
170 	 * count
171 	 */
172 	if (list_empty(&sdma_q_list.list)) {
173 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
174 		dqm_unlock(dqm);
175 		return;
176 	}
177 
178 	dqm_unlock(dqm);
179 
180 	/*
181 	 * Get the usage count for each SDMA queue in temp_list.
182 	 */
183 	mm = get_task_mm(pdd->process->lead_thread);
184 	if (!mm)
185 		goto cleanup;
186 
187 	kthread_use_mm(mm);
188 
189 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
190 		val = 0;
191 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
192 		if (ret) {
193 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
194 				 sdma_q->queue_id);
195 		} else {
196 			sdma_q->sdma_val = val;
197 			workarea->sdma_activity_counter += val;
198 		}
199 	}
200 
201 	kthread_unuse_mm(mm);
202 	mmput(mm);
203 
204 	/*
205 	 * Do a second iteration over qpd_queues_list to check if any SDMA
206 	 * nodes got deleted while fetching SDMA counter.
207 	 */
208 	dqm_lock(dqm);
209 
210 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
211 
212 	list_for_each_entry(q, &qpd->queues_list, list) {
213 		if (list_empty(&sdma_q_list.list))
214 			break;
215 
216 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
217 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
218 			continue;
219 
220 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
221 			if (((uint64_t)q->properties.read_ptr == sdma_q->rptr) &&
222 			     (sdma_q->queue_id == q->properties.queue_id)) {
223 				list_del(&sdma_q->list);
224 				kfree(sdma_q);
225 				break;
226 			}
227 		}
228 	}
229 
230 	dqm_unlock(dqm);
231 
232 	/*
233 	 * If temp list is not empty, it implies some queues got deleted
234 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
235 	 * count for each node from the total SDMA count.
236 	 */
237 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
238 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
239 		list_del(&sdma_q->list);
240 		kfree(sdma_q);
241 	}
242 
243 	return;
244 
245 cleanup:
246 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
247 		list_del(&sdma_q->list);
248 		kfree(sdma_q);
249 	}
250 }
251 
252 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
253 			       char *buffer)
254 {
255 	if (strcmp(attr->name, "pasid") == 0) {
256 		struct kfd_process *p = container_of(attr, struct kfd_process,
257 						     attr_pasid);
258 
259 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
260 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
261 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
262 							      attr_vram);
263 		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
264 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
265 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
266 							      attr_sdma);
267 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
268 
269 		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
270 					kfd_sdma_activity_worker);
271 
272 		sdma_activity_work_handler.pdd = pdd;
273 
274 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
275 
276 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
277 
278 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
279 				(sdma_activity_work_handler.sdma_activity_counter)/
280 				 SDMA_ACTIVITY_DIVISOR);
281 	} else {
282 		pr_err("Invalid attribute");
283 		return -EINVAL;
284 	}
285 
286 	return 0;
287 }
288 
289 static void kfd_procfs_kobj_release(struct kobject *kobj)
290 {
291 	kfree(kobj);
292 }
293 
294 static const struct sysfs_ops kfd_procfs_ops = {
295 	.show = kfd_procfs_show,
296 };
297 
298 static struct kobj_type procfs_type = {
299 	.release = kfd_procfs_kobj_release,
300 	.sysfs_ops = &kfd_procfs_ops,
301 };
302 
303 void kfd_procfs_init(void)
304 {
305 	int ret = 0;
306 
307 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
308 	if (!procfs.kobj)
309 		return;
310 
311 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
312 				   &kfd_device->kobj, "proc");
313 	if (ret) {
314 		pr_warn("Could not create procfs proc folder");
315 		/* If we fail to create the procfs, clean up */
316 		kfd_procfs_shutdown();
317 	}
318 }
319 
320 void kfd_procfs_shutdown(void)
321 {
322 	if (procfs.kobj) {
323 		kobject_del(procfs.kobj);
324 		kobject_put(procfs.kobj);
325 		procfs.kobj = NULL;
326 	}
327 }
328 
329 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
330 				     struct attribute *attr, char *buffer)
331 {
332 	struct queue *q = container_of(kobj, struct queue, kobj);
333 
334 	if (!strcmp(attr->name, "size"))
335 		return snprintf(buffer, PAGE_SIZE, "%llu",
336 				q->properties.queue_size);
337 	else if (!strcmp(attr->name, "type"))
338 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
339 	else if (!strcmp(attr->name, "gpuid"))
340 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
341 	else
342 		pr_err("Invalid attribute");
343 
344 	return 0;
345 }
346 
347 static struct attribute attr_queue_size = {
348 	.name = "size",
349 	.mode = KFD_SYSFS_FILE_MODE
350 };
351 
352 static struct attribute attr_queue_type = {
353 	.name = "type",
354 	.mode = KFD_SYSFS_FILE_MODE
355 };
356 
357 static struct attribute attr_queue_gpuid = {
358 	.name = "gpuid",
359 	.mode = KFD_SYSFS_FILE_MODE
360 };
361 
362 static struct attribute *procfs_queue_attrs[] = {
363 	&attr_queue_size,
364 	&attr_queue_type,
365 	&attr_queue_gpuid,
366 	NULL
367 };
368 
369 static const struct sysfs_ops procfs_queue_ops = {
370 	.show = kfd_procfs_queue_show,
371 };
372 
373 static struct kobj_type procfs_queue_type = {
374 	.sysfs_ops = &procfs_queue_ops,
375 	.default_attrs = procfs_queue_attrs,
376 };
377 
378 int kfd_procfs_add_queue(struct queue *q)
379 {
380 	struct kfd_process *proc;
381 	int ret;
382 
383 	if (!q || !q->process)
384 		return -EINVAL;
385 	proc = q->process;
386 
387 	/* Create proc/<pid>/queues/<queue id> folder */
388 	if (!proc->kobj_queues)
389 		return -EFAULT;
390 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
391 			proc->kobj_queues, "%u", q->properties.queue_id);
392 	if (ret < 0) {
393 		pr_warn("Creating proc/<pid>/queues/%u failed",
394 			q->properties.queue_id);
395 		kobject_put(&q->kobj);
396 		return ret;
397 	}
398 
399 	return 0;
400 }
401 
402 static int kfd_sysfs_create_file(struct kfd_process *p, struct attribute *attr,
403 				 char *name)
404 {
405 	int ret = 0;
406 
407 	if (!p || !attr || !name)
408 		return -EINVAL;
409 
410 	attr->name = name;
411 	attr->mode = KFD_SYSFS_FILE_MODE;
412 	sysfs_attr_init(attr);
413 
414 	ret = sysfs_create_file(p->kobj, attr);
415 
416 	return ret;
417 }
418 
419 static int kfd_procfs_add_sysfs_files(struct kfd_process *p)
420 {
421 	int ret = 0;
422 	struct kfd_process_device *pdd;
423 
424 	if (!p)
425 		return -EINVAL;
426 
427 	if (!p->kobj)
428 		return -EFAULT;
429 
430 	/*
431 	 * Create sysfs files for each GPU:
432 	 * - proc/<pid>/vram_<gpuid>
433 	 * - proc/<pid>/sdma_<gpuid>
434 	 */
435 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
436 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
437 			 pdd->dev->id);
438 		ret = kfd_sysfs_create_file(p, &pdd->attr_vram, pdd->vram_filename);
439 		if (ret)
440 			pr_warn("Creating vram usage for gpu id %d failed",
441 				(int)pdd->dev->id);
442 
443 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
444 			 pdd->dev->id);
445 		ret = kfd_sysfs_create_file(p, &pdd->attr_sdma, pdd->sdma_filename);
446 		if (ret)
447 			pr_warn("Creating sdma usage for gpu id %d failed",
448 				(int)pdd->dev->id);
449 	}
450 
451 	return ret;
452 }
453 
454 
455 void kfd_procfs_del_queue(struct queue *q)
456 {
457 	if (!q)
458 		return;
459 
460 	kobject_del(&q->kobj);
461 	kobject_put(&q->kobj);
462 }
463 
464 int kfd_process_create_wq(void)
465 {
466 	if (!kfd_process_wq)
467 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
468 	if (!kfd_restore_wq)
469 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
470 
471 	if (!kfd_process_wq || !kfd_restore_wq) {
472 		kfd_process_destroy_wq();
473 		return -ENOMEM;
474 	}
475 
476 	return 0;
477 }
478 
479 void kfd_process_destroy_wq(void)
480 {
481 	if (kfd_process_wq) {
482 		destroy_workqueue(kfd_process_wq);
483 		kfd_process_wq = NULL;
484 	}
485 	if (kfd_restore_wq) {
486 		destroy_workqueue(kfd_restore_wq);
487 		kfd_restore_wq = NULL;
488 	}
489 }
490 
491 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
492 			struct kfd_process_device *pdd)
493 {
494 	struct kfd_dev *dev = pdd->dev;
495 
496 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->vm);
497 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, NULL);
498 }
499 
500 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
501  *	This function should be only called right after the process
502  *	is created and when kfd_processes_mutex is still being held
503  *	to avoid concurrency. Because of that exclusiveness, we do
504  *	not need to take p->mutex.
505  */
506 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
507 				   uint64_t gpu_va, uint32_t size,
508 				   uint32_t flags, void **kptr)
509 {
510 	struct kfd_dev *kdev = pdd->dev;
511 	struct kgd_mem *mem = NULL;
512 	int handle;
513 	int err;
514 
515 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
516 						 pdd->vm, &mem, NULL, flags);
517 	if (err)
518 		goto err_alloc_mem;
519 
520 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->vm);
521 	if (err)
522 		goto err_map_mem;
523 
524 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true);
525 	if (err) {
526 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
527 		goto sync_memory_failed;
528 	}
529 
530 	/* Create an obj handle so kfd_process_device_remove_obj_handle
531 	 * will take care of the bo removal when the process finishes.
532 	 * We do not need to take p->mutex, because the process is just
533 	 * created and the ioctls have not had the chance to run.
534 	 */
535 	handle = kfd_process_device_create_obj_handle(pdd, mem);
536 
537 	if (handle < 0) {
538 		err = handle;
539 		goto free_gpuvm;
540 	}
541 
542 	if (kptr) {
543 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd,
544 				(struct kgd_mem *)mem, kptr, NULL);
545 		if (err) {
546 			pr_debug("Map GTT BO to kernel failed\n");
547 			goto free_obj_handle;
548 		}
549 	}
550 
551 	return err;
552 
553 free_obj_handle:
554 	kfd_process_device_remove_obj_handle(pdd, handle);
555 free_gpuvm:
556 sync_memory_failed:
557 	kfd_process_free_gpuvm(mem, pdd);
558 	return err;
559 
560 err_map_mem:
561 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, NULL);
562 err_alloc_mem:
563 	*kptr = NULL;
564 	return err;
565 }
566 
567 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
568  *	process for IB usage The memory reserved is for KFD to submit
569  *	IB to AMDGPU from kernel.  If the memory is reserved
570  *	successfully, ib_kaddr will have the CPU/kernel
571  *	address. Check ib_kaddr before accessing the memory.
572  */
573 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
574 {
575 	struct qcm_process_device *qpd = &pdd->qpd;
576 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
577 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
578 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
579 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
580 	void *kaddr;
581 	int ret;
582 
583 	if (qpd->ib_kaddr || !qpd->ib_base)
584 		return 0;
585 
586 	/* ib_base is only set for dGPU */
587 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
588 				      &kaddr);
589 	if (ret)
590 		return ret;
591 
592 	qpd->ib_kaddr = kaddr;
593 
594 	return 0;
595 }
596 
597 struct kfd_process *kfd_create_process(struct file *filep)
598 {
599 	struct kfd_process *process;
600 	struct task_struct *thread = current;
601 	int ret;
602 
603 	if (!thread->mm)
604 		return ERR_PTR(-EINVAL);
605 
606 	/* Only the pthreads threading model is supported. */
607 	if (thread->group_leader->mm != thread->mm)
608 		return ERR_PTR(-EINVAL);
609 
610 	/*
611 	 * take kfd processes mutex before starting of process creation
612 	 * so there won't be a case where two threads of the same process
613 	 * create two kfd_process structures
614 	 */
615 	mutex_lock(&kfd_processes_mutex);
616 
617 	/* A prior open of /dev/kfd could have already created the process. */
618 	process = find_process(thread);
619 	if (process) {
620 		pr_debug("Process already found\n");
621 	} else {
622 		process = create_process(thread);
623 		if (IS_ERR(process))
624 			goto out;
625 
626 		ret = kfd_process_init_cwsr_apu(process, filep);
627 		if (ret) {
628 			process = ERR_PTR(ret);
629 			goto out;
630 		}
631 
632 		if (!procfs.kobj)
633 			goto out;
634 
635 		process->kobj = kfd_alloc_struct(process->kobj);
636 		if (!process->kobj) {
637 			pr_warn("Creating procfs kobject failed");
638 			goto out;
639 		}
640 		ret = kobject_init_and_add(process->kobj, &procfs_type,
641 					   procfs.kobj, "%d",
642 					   (int)process->lead_thread->pid);
643 		if (ret) {
644 			pr_warn("Creating procfs pid directory failed");
645 			kobject_put(process->kobj);
646 			goto out;
647 		}
648 
649 		process->attr_pasid.name = "pasid";
650 		process->attr_pasid.mode = KFD_SYSFS_FILE_MODE;
651 		sysfs_attr_init(&process->attr_pasid);
652 		ret = sysfs_create_file(process->kobj, &process->attr_pasid);
653 		if (ret)
654 			pr_warn("Creating pasid for pid %d failed",
655 					(int)process->lead_thread->pid);
656 
657 		process->kobj_queues = kobject_create_and_add("queues",
658 							process->kobj);
659 		if (!process->kobj_queues)
660 			pr_warn("Creating KFD proc/queues folder failed");
661 
662 		ret = kfd_procfs_add_sysfs_files(process);
663 		if (ret)
664 			pr_warn("Creating sysfs usage file for pid %d failed",
665 				(int)process->lead_thread->pid);
666 	}
667 out:
668 	if (!IS_ERR(process))
669 		kref_get(&process->ref);
670 	mutex_unlock(&kfd_processes_mutex);
671 
672 	return process;
673 }
674 
675 struct kfd_process *kfd_get_process(const struct task_struct *thread)
676 {
677 	struct kfd_process *process;
678 
679 	if (!thread->mm)
680 		return ERR_PTR(-EINVAL);
681 
682 	/* Only the pthreads threading model is supported. */
683 	if (thread->group_leader->mm != thread->mm)
684 		return ERR_PTR(-EINVAL);
685 
686 	process = find_process(thread);
687 	if (!process)
688 		return ERR_PTR(-EINVAL);
689 
690 	return process;
691 }
692 
693 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
694 {
695 	struct kfd_process *process;
696 
697 	hash_for_each_possible_rcu(kfd_processes_table, process,
698 					kfd_processes, (uintptr_t)mm)
699 		if (process->mm == mm)
700 			return process;
701 
702 	return NULL;
703 }
704 
705 static struct kfd_process *find_process(const struct task_struct *thread)
706 {
707 	struct kfd_process *p;
708 	int idx;
709 
710 	idx = srcu_read_lock(&kfd_processes_srcu);
711 	p = find_process_by_mm(thread->mm);
712 	srcu_read_unlock(&kfd_processes_srcu, idx);
713 
714 	return p;
715 }
716 
717 void kfd_unref_process(struct kfd_process *p)
718 {
719 	kref_put(&p->ref, kfd_process_ref_release);
720 }
721 
722 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
723 {
724 	struct kfd_process *p = pdd->process;
725 	void *mem;
726 	int id;
727 
728 	/*
729 	 * Remove all handles from idr and release appropriate
730 	 * local memory object
731 	 */
732 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
733 		struct kfd_process_device *peer_pdd;
734 
735 		list_for_each_entry(peer_pdd, &p->per_device_data,
736 				    per_device_list) {
737 			if (!peer_pdd->vm)
738 				continue;
739 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
740 				peer_pdd->dev->kgd, mem, peer_pdd->vm);
741 		}
742 
743 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem, NULL);
744 		kfd_process_device_remove_obj_handle(pdd, id);
745 	}
746 }
747 
748 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
749 {
750 	struct kfd_process_device *pdd;
751 
752 	list_for_each_entry(pdd, &p->per_device_data, per_device_list)
753 		kfd_process_device_free_bos(pdd);
754 }
755 
756 static void kfd_process_destroy_pdds(struct kfd_process *p)
757 {
758 	struct kfd_process_device *pdd, *temp;
759 
760 	list_for_each_entry_safe(pdd, temp, &p->per_device_data,
761 				 per_device_list) {
762 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
763 				pdd->dev->id, p->pasid);
764 
765 		if (pdd->drm_file) {
766 			amdgpu_amdkfd_gpuvm_release_process_vm(
767 					pdd->dev->kgd, pdd->vm);
768 			fput(pdd->drm_file);
769 		}
770 		else if (pdd->vm)
771 			amdgpu_amdkfd_gpuvm_destroy_process_vm(
772 				pdd->dev->kgd, pdd->vm);
773 
774 		list_del(&pdd->per_device_list);
775 
776 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
777 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
778 				get_order(KFD_CWSR_TBA_TMA_SIZE));
779 
780 		kfree(pdd->qpd.doorbell_bitmap);
781 		idr_destroy(&pdd->alloc_idr);
782 
783 		/*
784 		 * before destroying pdd, make sure to report availability
785 		 * for auto suspend
786 		 */
787 		if (pdd->runtime_inuse) {
788 			pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
789 			pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
790 			pdd->runtime_inuse = false;
791 		}
792 
793 		kfree(pdd);
794 	}
795 }
796 
797 /* No process locking is needed in this function, because the process
798  * is not findable any more. We must assume that no other thread is
799  * using it any more, otherwise we couldn't safely free the process
800  * structure in the end.
801  */
802 static void kfd_process_wq_release(struct work_struct *work)
803 {
804 	struct kfd_process *p = container_of(work, struct kfd_process,
805 					     release_work);
806 	struct kfd_process_device *pdd;
807 
808 	/* Remove the procfs files */
809 	if (p->kobj) {
810 		sysfs_remove_file(p->kobj, &p->attr_pasid);
811 		kobject_del(p->kobj_queues);
812 		kobject_put(p->kobj_queues);
813 		p->kobj_queues = NULL;
814 
815 		list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
816 			sysfs_remove_file(p->kobj, &pdd->attr_vram);
817 			sysfs_remove_file(p->kobj, &pdd->attr_sdma);
818 		}
819 
820 		kobject_del(p->kobj);
821 		kobject_put(p->kobj);
822 		p->kobj = NULL;
823 	}
824 
825 	kfd_iommu_unbind_process(p);
826 
827 	kfd_process_free_outstanding_kfd_bos(p);
828 
829 	kfd_process_destroy_pdds(p);
830 	dma_fence_put(p->ef);
831 
832 	kfd_event_free_process(p);
833 
834 	kfd_pasid_free(p->pasid);
835 	kfd_free_process_doorbells(p);
836 
837 	mutex_destroy(&p->mutex);
838 
839 	put_task_struct(p->lead_thread);
840 
841 	kfree(p);
842 }
843 
844 static void kfd_process_ref_release(struct kref *ref)
845 {
846 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
847 
848 	INIT_WORK(&p->release_work, kfd_process_wq_release);
849 	queue_work(kfd_process_wq, &p->release_work);
850 }
851 
852 static void kfd_process_free_notifier(struct mmu_notifier *mn)
853 {
854 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
855 }
856 
857 static void kfd_process_notifier_release(struct mmu_notifier *mn,
858 					struct mm_struct *mm)
859 {
860 	struct kfd_process *p;
861 	struct kfd_process_device *pdd = NULL;
862 
863 	/*
864 	 * The kfd_process structure can not be free because the
865 	 * mmu_notifier srcu is read locked
866 	 */
867 	p = container_of(mn, struct kfd_process, mmu_notifier);
868 	if (WARN_ON(p->mm != mm))
869 		return;
870 
871 	mutex_lock(&kfd_processes_mutex);
872 	hash_del_rcu(&p->kfd_processes);
873 	mutex_unlock(&kfd_processes_mutex);
874 	synchronize_srcu(&kfd_processes_srcu);
875 
876 	cancel_delayed_work_sync(&p->eviction_work);
877 	cancel_delayed_work_sync(&p->restore_work);
878 
879 	mutex_lock(&p->mutex);
880 
881 	/* Iterate over all process device data structures and if the
882 	 * pdd is in debug mode, we should first force unregistration,
883 	 * then we will be able to destroy the queues
884 	 */
885 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
886 		struct kfd_dev *dev = pdd->dev;
887 
888 		mutex_lock(kfd_get_dbgmgr_mutex());
889 		if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
890 			if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
891 				kfd_dbgmgr_destroy(dev->dbgmgr);
892 				dev->dbgmgr = NULL;
893 			}
894 		}
895 		mutex_unlock(kfd_get_dbgmgr_mutex());
896 	}
897 
898 	kfd_process_dequeue_from_all_devices(p);
899 	pqm_uninit(&p->pqm);
900 
901 	/* Indicate to other users that MM is no longer valid */
902 	p->mm = NULL;
903 	/* Signal the eviction fence after user mode queues are
904 	 * destroyed. This allows any BOs to be freed without
905 	 * triggering pointless evictions or waiting for fences.
906 	 */
907 	dma_fence_signal(p->ef);
908 
909 	mutex_unlock(&p->mutex);
910 
911 	mmu_notifier_put(&p->mmu_notifier);
912 }
913 
914 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
915 	.release = kfd_process_notifier_release,
916 	.free_notifier = kfd_process_free_notifier,
917 };
918 
919 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
920 {
921 	unsigned long  offset;
922 	struct kfd_process_device *pdd;
923 
924 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
925 		struct kfd_dev *dev = pdd->dev;
926 		struct qcm_process_device *qpd = &pdd->qpd;
927 
928 		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
929 			continue;
930 
931 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
932 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
933 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
934 			MAP_SHARED, offset);
935 
936 		if (IS_ERR_VALUE(qpd->tba_addr)) {
937 			int err = qpd->tba_addr;
938 
939 			pr_err("Failure to set tba address. error %d.\n", err);
940 			qpd->tba_addr = 0;
941 			qpd->cwsr_kaddr = NULL;
942 			return err;
943 		}
944 
945 		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
946 
947 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
948 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
949 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
950 	}
951 
952 	return 0;
953 }
954 
955 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
956 {
957 	struct kfd_dev *dev = pdd->dev;
958 	struct qcm_process_device *qpd = &pdd->qpd;
959 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
960 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
961 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
962 	void *kaddr;
963 	int ret;
964 
965 	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
966 		return 0;
967 
968 	/* cwsr_base is only set for dGPU */
969 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
970 				      KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
971 	if (ret)
972 		return ret;
973 
974 	qpd->cwsr_kaddr = kaddr;
975 	qpd->tba_addr = qpd->cwsr_base;
976 
977 	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
978 
979 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
980 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
981 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
982 
983 	return 0;
984 }
985 
986 /*
987  * On return the kfd_process is fully operational and will be freed when the
988  * mm is released
989  */
990 static struct kfd_process *create_process(const struct task_struct *thread)
991 {
992 	struct kfd_process *process;
993 	int err = -ENOMEM;
994 
995 	process = kzalloc(sizeof(*process), GFP_KERNEL);
996 	if (!process)
997 		goto err_alloc_process;
998 
999 	kref_init(&process->ref);
1000 	mutex_init(&process->mutex);
1001 	process->mm = thread->mm;
1002 	process->lead_thread = thread->group_leader;
1003 	INIT_LIST_HEAD(&process->per_device_data);
1004 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1005 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1006 	process->last_restore_timestamp = get_jiffies_64();
1007 	kfd_event_init_process(process);
1008 	process->is_32bit_user_mode = in_compat_syscall();
1009 
1010 	process->pasid = kfd_pasid_alloc();
1011 	if (process->pasid == 0)
1012 		goto err_alloc_pasid;
1013 
1014 	if (kfd_alloc_process_doorbells(process) < 0)
1015 		goto err_alloc_doorbells;
1016 
1017 	err = pqm_init(&process->pqm, process);
1018 	if (err != 0)
1019 		goto err_process_pqm_init;
1020 
1021 	/* init process apertures*/
1022 	err = kfd_init_apertures(process);
1023 	if (err != 0)
1024 		goto err_init_apertures;
1025 
1026 	/* Must be last, have to use release destruction after this */
1027 	process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops;
1028 	err = mmu_notifier_register(&process->mmu_notifier, process->mm);
1029 	if (err)
1030 		goto err_register_notifier;
1031 
1032 	get_task_struct(process->lead_thread);
1033 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1034 			(uintptr_t)process->mm);
1035 
1036 	return process;
1037 
1038 err_register_notifier:
1039 	kfd_process_free_outstanding_kfd_bos(process);
1040 	kfd_process_destroy_pdds(process);
1041 err_init_apertures:
1042 	pqm_uninit(&process->pqm);
1043 err_process_pqm_init:
1044 	kfd_free_process_doorbells(process);
1045 err_alloc_doorbells:
1046 	kfd_pasid_free(process->pasid);
1047 err_alloc_pasid:
1048 	mutex_destroy(&process->mutex);
1049 	kfree(process);
1050 err_alloc_process:
1051 	return ERR_PTR(err);
1052 }
1053 
1054 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1055 			struct kfd_dev *dev)
1056 {
1057 	unsigned int i;
1058 	int range_start = dev->shared_resources.non_cp_doorbells_start;
1059 	int range_end = dev->shared_resources.non_cp_doorbells_end;
1060 
1061 	if (!KFD_IS_SOC15(dev->device_info->asic_family))
1062 		return 0;
1063 
1064 	qpd->doorbell_bitmap =
1065 		kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1066 				     BITS_PER_BYTE), GFP_KERNEL);
1067 	if (!qpd->doorbell_bitmap)
1068 		return -ENOMEM;
1069 
1070 	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1071 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1072 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1073 			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1074 			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1075 
1076 	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1077 		if (i >= range_start && i <= range_end) {
1078 			set_bit(i, qpd->doorbell_bitmap);
1079 			set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1080 				qpd->doorbell_bitmap);
1081 		}
1082 	}
1083 
1084 	return 0;
1085 }
1086 
1087 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1088 							struct kfd_process *p)
1089 {
1090 	struct kfd_process_device *pdd = NULL;
1091 
1092 	list_for_each_entry(pdd, &p->per_device_data, per_device_list)
1093 		if (pdd->dev == dev)
1094 			return pdd;
1095 
1096 	return NULL;
1097 }
1098 
1099 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1100 							struct kfd_process *p)
1101 {
1102 	struct kfd_process_device *pdd = NULL;
1103 
1104 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1105 	if (!pdd)
1106 		return NULL;
1107 
1108 	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1109 		pr_err("Failed to init doorbell for process\n");
1110 		kfree(pdd);
1111 		return NULL;
1112 	}
1113 
1114 	pdd->dev = dev;
1115 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1116 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1117 	pdd->qpd.dqm = dev->dqm;
1118 	pdd->qpd.pqm = &p->pqm;
1119 	pdd->qpd.evicted = 0;
1120 	pdd->qpd.mapped_gws_queue = false;
1121 	pdd->process = p;
1122 	pdd->bound = PDD_UNBOUND;
1123 	pdd->already_dequeued = false;
1124 	pdd->runtime_inuse = false;
1125 	pdd->vram_usage = 0;
1126 	pdd->sdma_past_activity_counter = 0;
1127 	list_add(&pdd->per_device_list, &p->per_device_data);
1128 
1129 	/* Init idr used for memory handle translation */
1130 	idr_init(&pdd->alloc_idr);
1131 
1132 	return pdd;
1133 }
1134 
1135 /**
1136  * kfd_process_device_init_vm - Initialize a VM for a process-device
1137  *
1138  * @pdd: The process-device
1139  * @drm_file: Optional pointer to a DRM file descriptor
1140  *
1141  * If @drm_file is specified, it will be used to acquire the VM from
1142  * that file descriptor. If successful, the @pdd takes ownership of
1143  * the file descriptor.
1144  *
1145  * If @drm_file is NULL, a new VM is created.
1146  *
1147  * Returns 0 on success, -errno on failure.
1148  */
1149 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1150 			       struct file *drm_file)
1151 {
1152 	struct kfd_process *p;
1153 	struct kfd_dev *dev;
1154 	int ret;
1155 
1156 	if (pdd->vm)
1157 		return drm_file ? -EBUSY : 0;
1158 
1159 	p = pdd->process;
1160 	dev = pdd->dev;
1161 
1162 	if (drm_file)
1163 		ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1164 			dev->kgd, drm_file, p->pasid,
1165 			&pdd->vm, &p->kgd_process_info, &p->ef);
1166 	else
1167 		ret = amdgpu_amdkfd_gpuvm_create_process_vm(dev->kgd, p->pasid,
1168 			&pdd->vm, &p->kgd_process_info, &p->ef);
1169 	if (ret) {
1170 		pr_err("Failed to create process VM object\n");
1171 		return ret;
1172 	}
1173 
1174 	amdgpu_vm_set_task_info(pdd->vm);
1175 
1176 	ret = kfd_process_device_reserve_ib_mem(pdd);
1177 	if (ret)
1178 		goto err_reserve_ib_mem;
1179 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1180 	if (ret)
1181 		goto err_init_cwsr;
1182 
1183 	pdd->drm_file = drm_file;
1184 
1185 	return 0;
1186 
1187 err_init_cwsr:
1188 err_reserve_ib_mem:
1189 	kfd_process_device_free_bos(pdd);
1190 	if (!drm_file)
1191 		amdgpu_amdkfd_gpuvm_destroy_process_vm(dev->kgd, pdd->vm);
1192 	pdd->vm = NULL;
1193 
1194 	return ret;
1195 }
1196 
1197 /*
1198  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1199  * to the device.
1200  * Unbinding occurs when the process dies or the device is removed.
1201  *
1202  * Assumes that the process lock is held.
1203  */
1204 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1205 							struct kfd_process *p)
1206 {
1207 	struct kfd_process_device *pdd;
1208 	int err;
1209 
1210 	pdd = kfd_get_process_device_data(dev, p);
1211 	if (!pdd) {
1212 		pr_err("Process device data doesn't exist\n");
1213 		return ERR_PTR(-ENOMEM);
1214 	}
1215 
1216 	/*
1217 	 * signal runtime-pm system to auto resume and prevent
1218 	 * further runtime suspend once device pdd is created until
1219 	 * pdd is destroyed.
1220 	 */
1221 	if (!pdd->runtime_inuse) {
1222 		err = pm_runtime_get_sync(dev->ddev->dev);
1223 		if (err < 0) {
1224 			pm_runtime_put_autosuspend(dev->ddev->dev);
1225 			return ERR_PTR(err);
1226 		}
1227 	}
1228 
1229 	err = kfd_iommu_bind_process_to_device(pdd);
1230 	if (err)
1231 		goto out;
1232 
1233 	err = kfd_process_device_init_vm(pdd, NULL);
1234 	if (err)
1235 		goto out;
1236 
1237 	/*
1238 	 * make sure that runtime_usage counter is incremented just once
1239 	 * per pdd
1240 	 */
1241 	pdd->runtime_inuse = true;
1242 
1243 	return pdd;
1244 
1245 out:
1246 	/* balance runpm reference count and exit with error */
1247 	if (!pdd->runtime_inuse) {
1248 		pm_runtime_mark_last_busy(dev->ddev->dev);
1249 		pm_runtime_put_autosuspend(dev->ddev->dev);
1250 	}
1251 
1252 	return ERR_PTR(err);
1253 }
1254 
1255 struct kfd_process_device *kfd_get_first_process_device_data(
1256 						struct kfd_process *p)
1257 {
1258 	return list_first_entry(&p->per_device_data,
1259 				struct kfd_process_device,
1260 				per_device_list);
1261 }
1262 
1263 struct kfd_process_device *kfd_get_next_process_device_data(
1264 						struct kfd_process *p,
1265 						struct kfd_process_device *pdd)
1266 {
1267 	if (list_is_last(&pdd->per_device_list, &p->per_device_data))
1268 		return NULL;
1269 	return list_next_entry(pdd, per_device_list);
1270 }
1271 
1272 bool kfd_has_process_device_data(struct kfd_process *p)
1273 {
1274 	return !(list_empty(&p->per_device_data));
1275 }
1276 
1277 /* Create specific handle mapped to mem from process local memory idr
1278  * Assumes that the process lock is held.
1279  */
1280 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1281 					void *mem)
1282 {
1283 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1284 }
1285 
1286 /* Translate specific handle from process local memory idr
1287  * Assumes that the process lock is held.
1288  */
1289 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1290 					int handle)
1291 {
1292 	if (handle < 0)
1293 		return NULL;
1294 
1295 	return idr_find(&pdd->alloc_idr, handle);
1296 }
1297 
1298 /* Remove specific handle from process local memory idr
1299  * Assumes that the process lock is held.
1300  */
1301 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1302 					int handle)
1303 {
1304 	if (handle >= 0)
1305 		idr_remove(&pdd->alloc_idr, handle);
1306 }
1307 
1308 /* This increments the process->ref counter. */
1309 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid)
1310 {
1311 	struct kfd_process *p, *ret_p = NULL;
1312 	unsigned int temp;
1313 
1314 	int idx = srcu_read_lock(&kfd_processes_srcu);
1315 
1316 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1317 		if (p->pasid == pasid) {
1318 			kref_get(&p->ref);
1319 			ret_p = p;
1320 			break;
1321 		}
1322 	}
1323 
1324 	srcu_read_unlock(&kfd_processes_srcu, idx);
1325 
1326 	return ret_p;
1327 }
1328 
1329 /* This increments the process->ref counter. */
1330 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1331 {
1332 	struct kfd_process *p;
1333 
1334 	int idx = srcu_read_lock(&kfd_processes_srcu);
1335 
1336 	p = find_process_by_mm(mm);
1337 	if (p)
1338 		kref_get(&p->ref);
1339 
1340 	srcu_read_unlock(&kfd_processes_srcu, idx);
1341 
1342 	return p;
1343 }
1344 
1345 /* kfd_process_evict_queues - Evict all user queues of a process
1346  *
1347  * Eviction is reference-counted per process-device. This means multiple
1348  * evictions from different sources can be nested safely.
1349  */
1350 int kfd_process_evict_queues(struct kfd_process *p)
1351 {
1352 	struct kfd_process_device *pdd;
1353 	int r = 0;
1354 	unsigned int n_evicted = 0;
1355 
1356 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
1357 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1358 							    &pdd->qpd);
1359 		if (r) {
1360 			pr_err("Failed to evict process queues\n");
1361 			goto fail;
1362 		}
1363 		n_evicted++;
1364 	}
1365 
1366 	return r;
1367 
1368 fail:
1369 	/* To keep state consistent, roll back partial eviction by
1370 	 * restoring queues
1371 	 */
1372 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
1373 		if (n_evicted == 0)
1374 			break;
1375 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1376 							      &pdd->qpd))
1377 			pr_err("Failed to restore queues\n");
1378 
1379 		n_evicted--;
1380 	}
1381 
1382 	return r;
1383 }
1384 
1385 /* kfd_process_restore_queues - Restore all user queues of a process */
1386 int kfd_process_restore_queues(struct kfd_process *p)
1387 {
1388 	struct kfd_process_device *pdd;
1389 	int r, ret = 0;
1390 
1391 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
1392 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1393 							      &pdd->qpd);
1394 		if (r) {
1395 			pr_err("Failed to restore process queues\n");
1396 			if (!ret)
1397 				ret = r;
1398 		}
1399 	}
1400 
1401 	return ret;
1402 }
1403 
1404 static void evict_process_worker(struct work_struct *work)
1405 {
1406 	int ret;
1407 	struct kfd_process *p;
1408 	struct delayed_work *dwork;
1409 
1410 	dwork = to_delayed_work(work);
1411 
1412 	/* Process termination destroys this worker thread. So during the
1413 	 * lifetime of this thread, kfd_process p will be valid
1414 	 */
1415 	p = container_of(dwork, struct kfd_process, eviction_work);
1416 	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1417 		  "Eviction fence mismatch\n");
1418 
1419 	/* Narrow window of overlap between restore and evict work
1420 	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1421 	 * unreserves KFD BOs, it is possible to evicted again. But
1422 	 * restore has few more steps of finish. So lets wait for any
1423 	 * previous restore work to complete
1424 	 */
1425 	flush_delayed_work(&p->restore_work);
1426 
1427 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1428 	ret = kfd_process_evict_queues(p);
1429 	if (!ret) {
1430 		dma_fence_signal(p->ef);
1431 		dma_fence_put(p->ef);
1432 		p->ef = NULL;
1433 		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1434 				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1435 
1436 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1437 	} else
1438 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1439 }
1440 
1441 static void restore_process_worker(struct work_struct *work)
1442 {
1443 	struct delayed_work *dwork;
1444 	struct kfd_process *p;
1445 	int ret = 0;
1446 
1447 	dwork = to_delayed_work(work);
1448 
1449 	/* Process termination destroys this worker thread. So during the
1450 	 * lifetime of this thread, kfd_process p will be valid
1451 	 */
1452 	p = container_of(dwork, struct kfd_process, restore_work);
1453 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1454 
1455 	/* Setting last_restore_timestamp before successful restoration.
1456 	 * Otherwise this would have to be set by KGD (restore_process_bos)
1457 	 * before KFD BOs are unreserved. If not, the process can be evicted
1458 	 * again before the timestamp is set.
1459 	 * If restore fails, the timestamp will be set again in the next
1460 	 * attempt. This would mean that the minimum GPU quanta would be
1461 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1462 	 * functions)
1463 	 */
1464 
1465 	p->last_restore_timestamp = get_jiffies_64();
1466 	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1467 						     &p->ef);
1468 	if (ret) {
1469 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1470 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1471 		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1472 				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1473 		WARN(!ret, "reschedule restore work failed\n");
1474 		return;
1475 	}
1476 
1477 	ret = kfd_process_restore_queues(p);
1478 	if (!ret)
1479 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1480 	else
1481 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1482 }
1483 
1484 void kfd_suspend_all_processes(void)
1485 {
1486 	struct kfd_process *p;
1487 	unsigned int temp;
1488 	int idx = srcu_read_lock(&kfd_processes_srcu);
1489 
1490 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1491 		cancel_delayed_work_sync(&p->eviction_work);
1492 		cancel_delayed_work_sync(&p->restore_work);
1493 
1494 		if (kfd_process_evict_queues(p))
1495 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1496 		dma_fence_signal(p->ef);
1497 		dma_fence_put(p->ef);
1498 		p->ef = NULL;
1499 	}
1500 	srcu_read_unlock(&kfd_processes_srcu, idx);
1501 }
1502 
1503 int kfd_resume_all_processes(void)
1504 {
1505 	struct kfd_process *p;
1506 	unsigned int temp;
1507 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1508 
1509 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1510 		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1511 			pr_err("Restore process %d failed during resume\n",
1512 			       p->pasid);
1513 			ret = -EFAULT;
1514 		}
1515 	}
1516 	srcu_read_unlock(&kfd_processes_srcu, idx);
1517 	return ret;
1518 }
1519 
1520 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1521 			  struct vm_area_struct *vma)
1522 {
1523 	struct kfd_process_device *pdd;
1524 	struct qcm_process_device *qpd;
1525 
1526 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1527 		pr_err("Incorrect CWSR mapping size.\n");
1528 		return -EINVAL;
1529 	}
1530 
1531 	pdd = kfd_get_process_device_data(dev, process);
1532 	if (!pdd)
1533 		return -EINVAL;
1534 	qpd = &pdd->qpd;
1535 
1536 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1537 					get_order(KFD_CWSR_TBA_TMA_SIZE));
1538 	if (!qpd->cwsr_kaddr) {
1539 		pr_err("Error allocating per process CWSR buffer.\n");
1540 		return -ENOMEM;
1541 	}
1542 
1543 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1544 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1545 	/* Mapping pages to user process */
1546 	return remap_pfn_range(vma, vma->vm_start,
1547 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1548 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1549 }
1550 
1551 void kfd_flush_tlb(struct kfd_process_device *pdd)
1552 {
1553 	struct kfd_dev *dev = pdd->dev;
1554 
1555 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1556 		/* Nothing to flush until a VMID is assigned, which
1557 		 * only happens when the first queue is created.
1558 		 */
1559 		if (pdd->qpd.vmid)
1560 			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd,
1561 							pdd->qpd.vmid);
1562 	} else {
1563 		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd,
1564 						pdd->process->pasid);
1565 	}
1566 }
1567 
1568 #if defined(CONFIG_DEBUG_FS)
1569 
1570 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1571 {
1572 	struct kfd_process *p;
1573 	unsigned int temp;
1574 	int r = 0;
1575 
1576 	int idx = srcu_read_lock(&kfd_processes_srcu);
1577 
1578 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1579 		seq_printf(m, "Process %d PASID 0x%x:\n",
1580 			   p->lead_thread->tgid, p->pasid);
1581 
1582 		mutex_lock(&p->mutex);
1583 		r = pqm_debugfs_mqds(m, &p->pqm);
1584 		mutex_unlock(&p->mutex);
1585 
1586 		if (r)
1587 			break;
1588 	}
1589 
1590 	srcu_read_unlock(&kfd_processes_srcu, idx);
1591 
1592 	return r;
1593 }
1594 
1595 #endif
1596 
1597