1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/compat.h>
34 #include <linux/mman.h>
35 #include <linux/file.h>
36 #include <linux/pm_runtime.h>
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu.h"
39 
40 struct mm_struct;
41 
42 #include "kfd_priv.h"
43 #include "kfd_device_queue_manager.h"
44 #include "kfd_iommu.h"
45 #include "kfd_svm.h"
46 
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 static DEFINE_MUTEX(kfd_processes_mutex);
53 
54 DEFINE_SRCU(kfd_processes_srcu);
55 
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58 
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66 
67 static struct kfd_process *find_process(const struct task_struct *thread,
68 					bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
72 
73 static void evict_process_worker(struct work_struct *work);
74 static void restore_process_worker(struct work_struct *work);
75 
76 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
77 
78 struct kfd_procfs_tree {
79 	struct kobject *kobj;
80 };
81 
82 static struct kfd_procfs_tree procfs;
83 
84 /*
85  * Structure for SDMA activity tracking
86  */
87 struct kfd_sdma_activity_handler_workarea {
88 	struct work_struct sdma_activity_work;
89 	struct kfd_process_device *pdd;
90 	uint64_t sdma_activity_counter;
91 };
92 
93 struct temp_sdma_queue_list {
94 	uint64_t __user *rptr;
95 	uint64_t sdma_val;
96 	unsigned int queue_id;
97 	struct list_head list;
98 };
99 
100 static void kfd_sdma_activity_worker(struct work_struct *work)
101 {
102 	struct kfd_sdma_activity_handler_workarea *workarea;
103 	struct kfd_process_device *pdd;
104 	uint64_t val;
105 	struct mm_struct *mm;
106 	struct queue *q;
107 	struct qcm_process_device *qpd;
108 	struct device_queue_manager *dqm;
109 	int ret = 0;
110 	struct temp_sdma_queue_list sdma_q_list;
111 	struct temp_sdma_queue_list *sdma_q, *next;
112 
113 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
114 				sdma_activity_work);
115 
116 	pdd = workarea->pdd;
117 	if (!pdd)
118 		return;
119 	dqm = pdd->dev->dqm;
120 	qpd = &pdd->qpd;
121 	if (!dqm || !qpd)
122 		return;
123 	/*
124 	 * Total SDMA activity is current SDMA activity + past SDMA activity
125 	 * Past SDMA count is stored in pdd.
126 	 * To get the current activity counters for all active SDMA queues,
127 	 * we loop over all SDMA queues and get their counts from user-space.
128 	 *
129 	 * We cannot call get_user() with dqm_lock held as it can cause
130 	 * a circular lock dependency situation. To read the SDMA stats,
131 	 * we need to do the following:
132 	 *
133 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
134 	 *    with dqm_lock/dqm_unlock().
135 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
136 	 *    Save the SDMA count for each node and also add the count to the total
137 	 *    SDMA count counter.
138 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
139 	 *    from the qpd->queues_list.
140 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
141 	 *    If any node got deleted, its SDMA count would be captured in the sdma
142 	 *    past activity counter. So subtract the SDMA counter stored in step 2
143 	 *    for this node from the total SDMA count.
144 	 */
145 	INIT_LIST_HEAD(&sdma_q_list.list);
146 
147 	/*
148 	 * Create the temp list of all SDMA queues
149 	 */
150 	dqm_lock(dqm);
151 
152 	list_for_each_entry(q, &qpd->queues_list, list) {
153 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
154 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
155 			continue;
156 
157 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
158 		if (!sdma_q) {
159 			dqm_unlock(dqm);
160 			goto cleanup;
161 		}
162 
163 		INIT_LIST_HEAD(&sdma_q->list);
164 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
165 		sdma_q->queue_id = q->properties.queue_id;
166 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
167 	}
168 
169 	/*
170 	 * If the temp list is empty, then no SDMA queues nodes were found in
171 	 * qpd->queues_list. Return the past activity count as the total sdma
172 	 * count
173 	 */
174 	if (list_empty(&sdma_q_list.list)) {
175 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
176 		dqm_unlock(dqm);
177 		return;
178 	}
179 
180 	dqm_unlock(dqm);
181 
182 	/*
183 	 * Get the usage count for each SDMA queue in temp_list.
184 	 */
185 	mm = get_task_mm(pdd->process->lead_thread);
186 	if (!mm)
187 		goto cleanup;
188 
189 	kthread_use_mm(mm);
190 
191 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
192 		val = 0;
193 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
194 		if (ret) {
195 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
196 				 sdma_q->queue_id);
197 		} else {
198 			sdma_q->sdma_val = val;
199 			workarea->sdma_activity_counter += val;
200 		}
201 	}
202 
203 	kthread_unuse_mm(mm);
204 	mmput(mm);
205 
206 	/*
207 	 * Do a second iteration over qpd_queues_list to check if any SDMA
208 	 * nodes got deleted while fetching SDMA counter.
209 	 */
210 	dqm_lock(dqm);
211 
212 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
213 
214 	list_for_each_entry(q, &qpd->queues_list, list) {
215 		if (list_empty(&sdma_q_list.list))
216 			break;
217 
218 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
219 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
220 			continue;
221 
222 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
223 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
224 			     (sdma_q->queue_id == q->properties.queue_id)) {
225 				list_del(&sdma_q->list);
226 				kfree(sdma_q);
227 				break;
228 			}
229 		}
230 	}
231 
232 	dqm_unlock(dqm);
233 
234 	/*
235 	 * If temp list is not empty, it implies some queues got deleted
236 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
237 	 * count for each node from the total SDMA count.
238 	 */
239 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
240 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
241 		list_del(&sdma_q->list);
242 		kfree(sdma_q);
243 	}
244 
245 	return;
246 
247 cleanup:
248 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
249 		list_del(&sdma_q->list);
250 		kfree(sdma_q);
251 	}
252 }
253 
254 /**
255  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
256  * by current process. Translates acquired wave count into number of compute units
257  * that are occupied.
258  *
259  * @attr: Handle of attribute that allows reporting of wave count. The attribute
260  * handle encapsulates GPU device it is associated with, thereby allowing collection
261  * of waves in flight, etc
262  * @buffer: Handle of user provided buffer updated with wave count
263  *
264  * Return: Number of bytes written to user buffer or an error value
265  */
266 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
267 {
268 	int cu_cnt;
269 	int wave_cnt;
270 	int max_waves_per_cu;
271 	struct kfd_dev *dev = NULL;
272 	struct kfd_process *proc = NULL;
273 	struct kfd_process_device *pdd = NULL;
274 
275 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
276 	dev = pdd->dev;
277 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
278 		return -EINVAL;
279 
280 	cu_cnt = 0;
281 	proc = pdd->process;
282 	if (pdd->qpd.queue_count == 0) {
283 		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
284 			 dev->id, proc->pasid);
285 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
286 	}
287 
288 	/* Collect wave count from device if it supports */
289 	wave_cnt = 0;
290 	max_waves_per_cu = 0;
291 	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
292 			&max_waves_per_cu);
293 
294 	/* Translate wave count to number of compute units */
295 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
296 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
297 }
298 
299 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
300 			       char *buffer)
301 {
302 	if (strcmp(attr->name, "pasid") == 0) {
303 		struct kfd_process *p = container_of(attr, struct kfd_process,
304 						     attr_pasid);
305 
306 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
307 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
308 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
309 							      attr_vram);
310 		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
311 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
312 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
313 							      attr_sdma);
314 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
315 
316 		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
317 					kfd_sdma_activity_worker);
318 
319 		sdma_activity_work_handler.pdd = pdd;
320 		sdma_activity_work_handler.sdma_activity_counter = 0;
321 
322 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
323 
324 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
325 
326 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
327 				(sdma_activity_work_handler.sdma_activity_counter)/
328 				 SDMA_ACTIVITY_DIVISOR);
329 	} else {
330 		pr_err("Invalid attribute");
331 		return -EINVAL;
332 	}
333 
334 	return 0;
335 }
336 
337 static void kfd_procfs_kobj_release(struct kobject *kobj)
338 {
339 	kfree(kobj);
340 }
341 
342 static const struct sysfs_ops kfd_procfs_ops = {
343 	.show = kfd_procfs_show,
344 };
345 
346 static struct kobj_type procfs_type = {
347 	.release = kfd_procfs_kobj_release,
348 	.sysfs_ops = &kfd_procfs_ops,
349 };
350 
351 void kfd_procfs_init(void)
352 {
353 	int ret = 0;
354 
355 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
356 	if (!procfs.kobj)
357 		return;
358 
359 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
360 				   &kfd_device->kobj, "proc");
361 	if (ret) {
362 		pr_warn("Could not create procfs proc folder");
363 		/* If we fail to create the procfs, clean up */
364 		kfd_procfs_shutdown();
365 	}
366 }
367 
368 void kfd_procfs_shutdown(void)
369 {
370 	if (procfs.kobj) {
371 		kobject_del(procfs.kobj);
372 		kobject_put(procfs.kobj);
373 		procfs.kobj = NULL;
374 	}
375 }
376 
377 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
378 				     struct attribute *attr, char *buffer)
379 {
380 	struct queue *q = container_of(kobj, struct queue, kobj);
381 
382 	if (!strcmp(attr->name, "size"))
383 		return snprintf(buffer, PAGE_SIZE, "%llu",
384 				q->properties.queue_size);
385 	else if (!strcmp(attr->name, "type"))
386 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
387 	else if (!strcmp(attr->name, "gpuid"))
388 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
389 	else
390 		pr_err("Invalid attribute");
391 
392 	return 0;
393 }
394 
395 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
396 				     struct attribute *attr, char *buffer)
397 {
398 	if (strcmp(attr->name, "evicted_ms") == 0) {
399 		struct kfd_process_device *pdd = container_of(attr,
400 				struct kfd_process_device,
401 				attr_evict);
402 		uint64_t evict_jiffies;
403 
404 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
405 
406 		return snprintf(buffer,
407 				PAGE_SIZE,
408 				"%llu\n",
409 				jiffies64_to_msecs(evict_jiffies));
410 
411 	/* Sysfs handle that gets CU occupancy is per device */
412 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
413 		return kfd_get_cu_occupancy(attr, buffer);
414 	} else {
415 		pr_err("Invalid attribute");
416 	}
417 
418 	return 0;
419 }
420 
421 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
422 				       struct attribute *attr, char *buf)
423 {
424 	struct kfd_process_device *pdd;
425 
426 	if (!strcmp(attr->name, "faults")) {
427 		pdd = container_of(attr, struct kfd_process_device,
428 				   attr_faults);
429 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
430 	}
431 	if (!strcmp(attr->name, "page_in")) {
432 		pdd = container_of(attr, struct kfd_process_device,
433 				   attr_page_in);
434 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
435 	}
436 	if (!strcmp(attr->name, "page_out")) {
437 		pdd = container_of(attr, struct kfd_process_device,
438 				   attr_page_out);
439 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
440 	}
441 	return 0;
442 }
443 
444 static struct attribute attr_queue_size = {
445 	.name = "size",
446 	.mode = KFD_SYSFS_FILE_MODE
447 };
448 
449 static struct attribute attr_queue_type = {
450 	.name = "type",
451 	.mode = KFD_SYSFS_FILE_MODE
452 };
453 
454 static struct attribute attr_queue_gpuid = {
455 	.name = "gpuid",
456 	.mode = KFD_SYSFS_FILE_MODE
457 };
458 
459 static struct attribute *procfs_queue_attrs[] = {
460 	&attr_queue_size,
461 	&attr_queue_type,
462 	&attr_queue_gpuid,
463 	NULL
464 };
465 ATTRIBUTE_GROUPS(procfs_queue);
466 
467 static const struct sysfs_ops procfs_queue_ops = {
468 	.show = kfd_procfs_queue_show,
469 };
470 
471 static struct kobj_type procfs_queue_type = {
472 	.sysfs_ops = &procfs_queue_ops,
473 	.default_groups = procfs_queue_groups,
474 };
475 
476 static const struct sysfs_ops procfs_stats_ops = {
477 	.show = kfd_procfs_stats_show,
478 };
479 
480 static struct kobj_type procfs_stats_type = {
481 	.sysfs_ops = &procfs_stats_ops,
482 	.release = kfd_procfs_kobj_release,
483 };
484 
485 static const struct sysfs_ops sysfs_counters_ops = {
486 	.show = kfd_sysfs_counters_show,
487 };
488 
489 static struct kobj_type sysfs_counters_type = {
490 	.sysfs_ops = &sysfs_counters_ops,
491 	.release = kfd_procfs_kobj_release,
492 };
493 
494 int kfd_procfs_add_queue(struct queue *q)
495 {
496 	struct kfd_process *proc;
497 	int ret;
498 
499 	if (!q || !q->process)
500 		return -EINVAL;
501 	proc = q->process;
502 
503 	/* Create proc/<pid>/queues/<queue id> folder */
504 	if (!proc->kobj_queues)
505 		return -EFAULT;
506 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
507 			proc->kobj_queues, "%u", q->properties.queue_id);
508 	if (ret < 0) {
509 		pr_warn("Creating proc/<pid>/queues/%u failed",
510 			q->properties.queue_id);
511 		kobject_put(&q->kobj);
512 		return ret;
513 	}
514 
515 	return 0;
516 }
517 
518 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
519 				 char *name)
520 {
521 	int ret;
522 
523 	if (!kobj || !attr || !name)
524 		return;
525 
526 	attr->name = name;
527 	attr->mode = KFD_SYSFS_FILE_MODE;
528 	sysfs_attr_init(attr);
529 
530 	ret = sysfs_create_file(kobj, attr);
531 	if (ret)
532 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
533 }
534 
535 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
536 {
537 	int ret;
538 	int i;
539 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
540 
541 	if (!p || !p->kobj)
542 		return;
543 
544 	/*
545 	 * Create sysfs files for each GPU:
546 	 * - proc/<pid>/stats_<gpuid>/
547 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
548 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
549 	 */
550 	for (i = 0; i < p->n_pdds; i++) {
551 		struct kfd_process_device *pdd = p->pdds[i];
552 
553 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
554 				"stats_%u", pdd->dev->id);
555 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
556 		if (!pdd->kobj_stats)
557 			return;
558 
559 		ret = kobject_init_and_add(pdd->kobj_stats,
560 					   &procfs_stats_type,
561 					   p->kobj,
562 					   stats_dir_filename);
563 
564 		if (ret) {
565 			pr_warn("Creating KFD proc/stats_%s folder failed",
566 				stats_dir_filename);
567 			kobject_put(pdd->kobj_stats);
568 			pdd->kobj_stats = NULL;
569 			return;
570 		}
571 
572 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
573 				      "evicted_ms");
574 		/* Add sysfs file to report compute unit occupancy */
575 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
576 			kfd_sysfs_create_file(pdd->kobj_stats,
577 					      &pdd->attr_cu_occupancy,
578 					      "cu_occupancy");
579 	}
580 }
581 
582 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
583 {
584 	int ret = 0;
585 	int i;
586 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
587 
588 	if (!p || !p->kobj)
589 		return;
590 
591 	/*
592 	 * Create sysfs files for each GPU which supports SVM
593 	 * - proc/<pid>/counters_<gpuid>/
594 	 * - proc/<pid>/counters_<gpuid>/faults
595 	 * - proc/<pid>/counters_<gpuid>/page_in
596 	 * - proc/<pid>/counters_<gpuid>/page_out
597 	 */
598 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
599 		struct kfd_process_device *pdd = p->pdds[i];
600 		struct kobject *kobj_counters;
601 
602 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
603 			"counters_%u", pdd->dev->id);
604 		kobj_counters = kfd_alloc_struct(kobj_counters);
605 		if (!kobj_counters)
606 			return;
607 
608 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
609 					   p->kobj, counters_dir_filename);
610 		if (ret) {
611 			pr_warn("Creating KFD proc/%s folder failed",
612 				counters_dir_filename);
613 			kobject_put(kobj_counters);
614 			return;
615 		}
616 
617 		pdd->kobj_counters = kobj_counters;
618 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
619 				      "faults");
620 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
621 				      "page_in");
622 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
623 				      "page_out");
624 	}
625 }
626 
627 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
628 {
629 	int i;
630 
631 	if (!p || !p->kobj)
632 		return;
633 
634 	/*
635 	 * Create sysfs files for each GPU:
636 	 * - proc/<pid>/vram_<gpuid>
637 	 * - proc/<pid>/sdma_<gpuid>
638 	 */
639 	for (i = 0; i < p->n_pdds; i++) {
640 		struct kfd_process_device *pdd = p->pdds[i];
641 
642 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
643 			 pdd->dev->id);
644 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
645 				      pdd->vram_filename);
646 
647 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
648 			 pdd->dev->id);
649 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
650 					    pdd->sdma_filename);
651 	}
652 }
653 
654 void kfd_procfs_del_queue(struct queue *q)
655 {
656 	if (!q)
657 		return;
658 
659 	kobject_del(&q->kobj);
660 	kobject_put(&q->kobj);
661 }
662 
663 int kfd_process_create_wq(void)
664 {
665 	if (!kfd_process_wq)
666 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
667 	if (!kfd_restore_wq)
668 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
669 
670 	if (!kfd_process_wq || !kfd_restore_wq) {
671 		kfd_process_destroy_wq();
672 		return -ENOMEM;
673 	}
674 
675 	return 0;
676 }
677 
678 void kfd_process_destroy_wq(void)
679 {
680 	if (kfd_process_wq) {
681 		destroy_workqueue(kfd_process_wq);
682 		kfd_process_wq = NULL;
683 	}
684 	if (kfd_restore_wq) {
685 		destroy_workqueue(kfd_restore_wq);
686 		kfd_restore_wq = NULL;
687 	}
688 }
689 
690 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
691 			struct kfd_process_device *pdd, void *kptr)
692 {
693 	struct kfd_dev *dev = pdd->dev;
694 
695 	if (kptr) {
696 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(dev->adev, mem);
697 		kptr = NULL;
698 	}
699 
700 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
701 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
702 					       NULL);
703 }
704 
705 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
706  *	This function should be only called right after the process
707  *	is created and when kfd_processes_mutex is still being held
708  *	to avoid concurrency. Because of that exclusiveness, we do
709  *	not need to take p->mutex.
710  */
711 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
712 				   uint64_t gpu_va, uint32_t size,
713 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
714 {
715 	struct kfd_dev *kdev = pdd->dev;
716 	int err;
717 
718 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
719 						 pdd->drm_priv, mem, NULL,
720 						 flags, false);
721 	if (err)
722 		goto err_alloc_mem;
723 
724 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
725 			pdd->drm_priv);
726 	if (err)
727 		goto err_map_mem;
728 
729 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
730 	if (err) {
731 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
732 		goto sync_memory_failed;
733 	}
734 
735 	if (kptr) {
736 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->adev,
737 				(struct kgd_mem *)*mem, kptr, NULL);
738 		if (err) {
739 			pr_debug("Map GTT BO to kernel failed\n");
740 			goto sync_memory_failed;
741 		}
742 	}
743 
744 	return err;
745 
746 sync_memory_failed:
747 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
748 
749 err_map_mem:
750 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
751 					       NULL);
752 err_alloc_mem:
753 	*mem = NULL;
754 	*kptr = NULL;
755 	return err;
756 }
757 
758 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
759  *	process for IB usage The memory reserved is for KFD to submit
760  *	IB to AMDGPU from kernel.  If the memory is reserved
761  *	successfully, ib_kaddr will have the CPU/kernel
762  *	address. Check ib_kaddr before accessing the memory.
763  */
764 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
765 {
766 	struct qcm_process_device *qpd = &pdd->qpd;
767 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
768 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
769 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
770 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
771 	struct kgd_mem *mem;
772 	void *kaddr;
773 	int ret;
774 
775 	if (qpd->ib_kaddr || !qpd->ib_base)
776 		return 0;
777 
778 	/* ib_base is only set for dGPU */
779 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
780 				      &mem, &kaddr);
781 	if (ret)
782 		return ret;
783 
784 	qpd->ib_mem = mem;
785 	qpd->ib_kaddr = kaddr;
786 
787 	return 0;
788 }
789 
790 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
791 {
792 	struct qcm_process_device *qpd = &pdd->qpd;
793 
794 	if (!qpd->ib_kaddr || !qpd->ib_base)
795 		return;
796 
797 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, qpd->ib_kaddr);
798 }
799 
800 struct kfd_process *kfd_create_process(struct file *filep)
801 {
802 	struct kfd_process *process;
803 	struct task_struct *thread = current;
804 	int ret;
805 
806 	if (!thread->mm)
807 		return ERR_PTR(-EINVAL);
808 
809 	/* Only the pthreads threading model is supported. */
810 	if (thread->group_leader->mm != thread->mm)
811 		return ERR_PTR(-EINVAL);
812 
813 	/*
814 	 * take kfd processes mutex before starting of process creation
815 	 * so there won't be a case where two threads of the same process
816 	 * create two kfd_process structures
817 	 */
818 	mutex_lock(&kfd_processes_mutex);
819 
820 	/* A prior open of /dev/kfd could have already created the process. */
821 	process = find_process(thread, false);
822 	if (process) {
823 		pr_debug("Process already found\n");
824 	} else {
825 		process = create_process(thread);
826 		if (IS_ERR(process))
827 			goto out;
828 
829 		ret = kfd_process_init_cwsr_apu(process, filep);
830 		if (ret)
831 			goto out_destroy;
832 
833 		if (!procfs.kobj)
834 			goto out;
835 
836 		process->kobj = kfd_alloc_struct(process->kobj);
837 		if (!process->kobj) {
838 			pr_warn("Creating procfs kobject failed");
839 			goto out;
840 		}
841 		ret = kobject_init_and_add(process->kobj, &procfs_type,
842 					   procfs.kobj, "%d",
843 					   (int)process->lead_thread->pid);
844 		if (ret) {
845 			pr_warn("Creating procfs pid directory failed");
846 			kobject_put(process->kobj);
847 			goto out;
848 		}
849 
850 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
851 				      "pasid");
852 
853 		process->kobj_queues = kobject_create_and_add("queues",
854 							process->kobj);
855 		if (!process->kobj_queues)
856 			pr_warn("Creating KFD proc/queues folder failed");
857 
858 		kfd_procfs_add_sysfs_stats(process);
859 		kfd_procfs_add_sysfs_files(process);
860 		kfd_procfs_add_sysfs_counters(process);
861 	}
862 out:
863 	if (!IS_ERR(process))
864 		kref_get(&process->ref);
865 	mutex_unlock(&kfd_processes_mutex);
866 
867 	return process;
868 
869 out_destroy:
870 	hash_del_rcu(&process->kfd_processes);
871 	mutex_unlock(&kfd_processes_mutex);
872 	synchronize_srcu(&kfd_processes_srcu);
873 	/* kfd_process_free_notifier will trigger the cleanup */
874 	mmu_notifier_put(&process->mmu_notifier);
875 	return ERR_PTR(ret);
876 }
877 
878 struct kfd_process *kfd_get_process(const struct task_struct *thread)
879 {
880 	struct kfd_process *process;
881 
882 	if (!thread->mm)
883 		return ERR_PTR(-EINVAL);
884 
885 	/* Only the pthreads threading model is supported. */
886 	if (thread->group_leader->mm != thread->mm)
887 		return ERR_PTR(-EINVAL);
888 
889 	process = find_process(thread, false);
890 	if (!process)
891 		return ERR_PTR(-EINVAL);
892 
893 	return process;
894 }
895 
896 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
897 {
898 	struct kfd_process *process;
899 
900 	hash_for_each_possible_rcu(kfd_processes_table, process,
901 					kfd_processes, (uintptr_t)mm)
902 		if (process->mm == mm)
903 			return process;
904 
905 	return NULL;
906 }
907 
908 static struct kfd_process *find_process(const struct task_struct *thread,
909 					bool ref)
910 {
911 	struct kfd_process *p;
912 	int idx;
913 
914 	idx = srcu_read_lock(&kfd_processes_srcu);
915 	p = find_process_by_mm(thread->mm);
916 	if (p && ref)
917 		kref_get(&p->ref);
918 	srcu_read_unlock(&kfd_processes_srcu, idx);
919 
920 	return p;
921 }
922 
923 void kfd_unref_process(struct kfd_process *p)
924 {
925 	kref_put(&p->ref, kfd_process_ref_release);
926 }
927 
928 /* This increments the process->ref counter. */
929 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
930 {
931 	struct task_struct *task = NULL;
932 	struct kfd_process *p    = NULL;
933 
934 	if (!pid) {
935 		task = current;
936 		get_task_struct(task);
937 	} else {
938 		task = get_pid_task(pid, PIDTYPE_PID);
939 	}
940 
941 	if (task) {
942 		p = find_process(task, true);
943 		put_task_struct(task);
944 	}
945 
946 	return p;
947 }
948 
949 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
950 {
951 	struct kfd_process *p = pdd->process;
952 	void *mem;
953 	int id;
954 	int i;
955 
956 	/*
957 	 * Remove all handles from idr and release appropriate
958 	 * local memory object
959 	 */
960 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
961 
962 		for (i = 0; i < p->n_pdds; i++) {
963 			struct kfd_process_device *peer_pdd = p->pdds[i];
964 
965 			if (!peer_pdd->drm_priv)
966 				continue;
967 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
968 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
969 		}
970 
971 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
972 						       pdd->drm_priv, NULL);
973 		kfd_process_device_remove_obj_handle(pdd, id);
974 	}
975 }
976 
977 /*
978  * Just kunmap and unpin signal BO here. It will be freed in
979  * kfd_process_free_outstanding_kfd_bos()
980  */
981 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
982 {
983 	struct kfd_process_device *pdd;
984 	struct kfd_dev *kdev;
985 	void *mem;
986 
987 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
988 	if (!kdev)
989 		return;
990 
991 	mutex_lock(&p->mutex);
992 
993 	pdd = kfd_get_process_device_data(kdev, p);
994 	if (!pdd)
995 		goto out;
996 
997 	mem = kfd_process_device_translate_handle(
998 		pdd, GET_IDR_HANDLE(p->signal_handle));
999 	if (!mem)
1000 		goto out;
1001 
1002 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(kdev->adev, mem);
1003 
1004 out:
1005 	mutex_unlock(&p->mutex);
1006 }
1007 
1008 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1009 {
1010 	int i;
1011 
1012 	for (i = 0; i < p->n_pdds; i++)
1013 		kfd_process_device_free_bos(p->pdds[i]);
1014 }
1015 
1016 static void kfd_process_destroy_pdds(struct kfd_process *p)
1017 {
1018 	int i;
1019 
1020 	for (i = 0; i < p->n_pdds; i++) {
1021 		struct kfd_process_device *pdd = p->pdds[i];
1022 
1023 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1024 				pdd->dev->id, p->pasid);
1025 
1026 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1027 		kfd_process_device_destroy_ib_mem(pdd);
1028 
1029 		if (pdd->drm_file) {
1030 			amdgpu_amdkfd_gpuvm_release_process_vm(
1031 					pdd->dev->adev, pdd->drm_priv);
1032 			fput(pdd->drm_file);
1033 		}
1034 
1035 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1036 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1037 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1038 
1039 		bitmap_free(pdd->qpd.doorbell_bitmap);
1040 		idr_destroy(&pdd->alloc_idr);
1041 
1042 		kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
1043 
1044 		if (pdd->dev->shared_resources.enable_mes)
1045 			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1046 						   pdd->proc_ctx_bo);
1047 		/*
1048 		 * before destroying pdd, make sure to report availability
1049 		 * for auto suspend
1050 		 */
1051 		if (pdd->runtime_inuse) {
1052 			pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
1053 			pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
1054 			pdd->runtime_inuse = false;
1055 		}
1056 
1057 		kfree(pdd);
1058 		p->pdds[i] = NULL;
1059 	}
1060 	p->n_pdds = 0;
1061 }
1062 
1063 static void kfd_process_remove_sysfs(struct kfd_process *p)
1064 {
1065 	struct kfd_process_device *pdd;
1066 	int i;
1067 
1068 	if (!p->kobj)
1069 		return;
1070 
1071 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1072 	kobject_del(p->kobj_queues);
1073 	kobject_put(p->kobj_queues);
1074 	p->kobj_queues = NULL;
1075 
1076 	for (i = 0; i < p->n_pdds; i++) {
1077 		pdd = p->pdds[i];
1078 
1079 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1080 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1081 
1082 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1083 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1084 			sysfs_remove_file(pdd->kobj_stats,
1085 					  &pdd->attr_cu_occupancy);
1086 		kobject_del(pdd->kobj_stats);
1087 		kobject_put(pdd->kobj_stats);
1088 		pdd->kobj_stats = NULL;
1089 	}
1090 
1091 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1092 		pdd = p->pdds[i];
1093 
1094 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1095 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1096 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1097 		kobject_del(pdd->kobj_counters);
1098 		kobject_put(pdd->kobj_counters);
1099 		pdd->kobj_counters = NULL;
1100 	}
1101 
1102 	kobject_del(p->kobj);
1103 	kobject_put(p->kobj);
1104 	p->kobj = NULL;
1105 }
1106 
1107 /* No process locking is needed in this function, because the process
1108  * is not findable any more. We must assume that no other thread is
1109  * using it any more, otherwise we couldn't safely free the process
1110  * structure in the end.
1111  */
1112 static void kfd_process_wq_release(struct work_struct *work)
1113 {
1114 	struct kfd_process *p = container_of(work, struct kfd_process,
1115 					     release_work);
1116 
1117 	kfd_process_remove_sysfs(p);
1118 	kfd_iommu_unbind_process(p);
1119 
1120 	kfd_process_kunmap_signal_bo(p);
1121 	kfd_process_free_outstanding_kfd_bos(p);
1122 	svm_range_list_fini(p);
1123 
1124 	kfd_process_destroy_pdds(p);
1125 	dma_fence_put(p->ef);
1126 
1127 	kfd_event_free_process(p);
1128 
1129 	kfd_pasid_free(p->pasid);
1130 	mutex_destroy(&p->mutex);
1131 
1132 	put_task_struct(p->lead_thread);
1133 
1134 	kfree(p);
1135 }
1136 
1137 static void kfd_process_ref_release(struct kref *ref)
1138 {
1139 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1140 
1141 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1142 	queue_work(kfd_process_wq, &p->release_work);
1143 }
1144 
1145 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1146 {
1147 	int idx = srcu_read_lock(&kfd_processes_srcu);
1148 	struct kfd_process *p = find_process_by_mm(mm);
1149 
1150 	srcu_read_unlock(&kfd_processes_srcu, idx);
1151 
1152 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1153 }
1154 
1155 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1156 {
1157 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1158 }
1159 
1160 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1161 					struct mm_struct *mm)
1162 {
1163 	struct kfd_process *p;
1164 
1165 	/*
1166 	 * The kfd_process structure can not be free because the
1167 	 * mmu_notifier srcu is read locked
1168 	 */
1169 	p = container_of(mn, struct kfd_process, mmu_notifier);
1170 	if (WARN_ON(p->mm != mm))
1171 		return;
1172 
1173 	mutex_lock(&kfd_processes_mutex);
1174 	hash_del_rcu(&p->kfd_processes);
1175 	mutex_unlock(&kfd_processes_mutex);
1176 	synchronize_srcu(&kfd_processes_srcu);
1177 
1178 	cancel_delayed_work_sync(&p->eviction_work);
1179 	cancel_delayed_work_sync(&p->restore_work);
1180 
1181 	mutex_lock(&p->mutex);
1182 
1183 	kfd_process_dequeue_from_all_devices(p);
1184 	pqm_uninit(&p->pqm);
1185 
1186 	/* Indicate to other users that MM is no longer valid */
1187 	p->mm = NULL;
1188 	/* Signal the eviction fence after user mode queues are
1189 	 * destroyed. This allows any BOs to be freed without
1190 	 * triggering pointless evictions or waiting for fences.
1191 	 */
1192 	dma_fence_signal(p->ef);
1193 
1194 	mutex_unlock(&p->mutex);
1195 
1196 	mmu_notifier_put(&p->mmu_notifier);
1197 }
1198 
1199 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1200 	.release = kfd_process_notifier_release,
1201 	.alloc_notifier = kfd_process_alloc_notifier,
1202 	.free_notifier = kfd_process_free_notifier,
1203 };
1204 
1205 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1206 {
1207 	unsigned long  offset;
1208 	int i;
1209 
1210 	for (i = 0; i < p->n_pdds; i++) {
1211 		struct kfd_dev *dev = p->pdds[i]->dev;
1212 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1213 
1214 		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1215 			continue;
1216 
1217 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1218 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1219 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1220 			MAP_SHARED, offset);
1221 
1222 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1223 			int err = qpd->tba_addr;
1224 
1225 			pr_err("Failure to set tba address. error %d.\n", err);
1226 			qpd->tba_addr = 0;
1227 			qpd->cwsr_kaddr = NULL;
1228 			return err;
1229 		}
1230 
1231 		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1232 
1233 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1234 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1235 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1242 {
1243 	struct kfd_dev *dev = pdd->dev;
1244 	struct qcm_process_device *qpd = &pdd->qpd;
1245 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1246 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1247 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1248 	struct kgd_mem *mem;
1249 	void *kaddr;
1250 	int ret;
1251 
1252 	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1253 		return 0;
1254 
1255 	/* cwsr_base is only set for dGPU */
1256 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1257 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1258 	if (ret)
1259 		return ret;
1260 
1261 	qpd->cwsr_mem = mem;
1262 	qpd->cwsr_kaddr = kaddr;
1263 	qpd->tba_addr = qpd->cwsr_base;
1264 
1265 	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1266 
1267 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1268 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1269 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1270 
1271 	return 0;
1272 }
1273 
1274 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1275 {
1276 	struct kfd_dev *dev = pdd->dev;
1277 	struct qcm_process_device *qpd = &pdd->qpd;
1278 
1279 	if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1280 		return;
1281 
1282 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, qpd->cwsr_kaddr);
1283 }
1284 
1285 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1286 				  uint64_t tba_addr,
1287 				  uint64_t tma_addr)
1288 {
1289 	if (qpd->cwsr_kaddr) {
1290 		/* KFD trap handler is bound, record as second-level TBA/TMA
1291 		 * in first-level TMA. First-level trap will jump to second.
1292 		 */
1293 		uint64_t *tma =
1294 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1295 		tma[0] = tba_addr;
1296 		tma[1] = tma_addr;
1297 	} else {
1298 		/* No trap handler bound, bind as first-level TBA/TMA. */
1299 		qpd->tba_addr = tba_addr;
1300 		qpd->tma_addr = tma_addr;
1301 	}
1302 }
1303 
1304 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1305 {
1306 	int i;
1307 
1308 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1309 	 * boot time retry setting. Mixing processes with different
1310 	 * XNACK/retry settings can hang the GPU.
1311 	 *
1312 	 * Different GPUs can have different noretry settings depending
1313 	 * on HW bugs or limitations. We need to find at least one
1314 	 * XNACK mode for this process that's compatible with all GPUs.
1315 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1316 	 * built for XNACK-off. On GFXv9 it may perform slower.
1317 	 *
1318 	 * Therefore applications built for XNACK-off can always be
1319 	 * supported and will be our fallback if any GPU does not
1320 	 * support retry.
1321 	 */
1322 	for (i = 0; i < p->n_pdds; i++) {
1323 		struct kfd_dev *dev = p->pdds[i]->dev;
1324 
1325 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1326 		 * support the SVM APIs and don't need to be considered
1327 		 * for the XNACK mode selection.
1328 		 */
1329 		if (!KFD_IS_SOC15(dev))
1330 			continue;
1331 		/* Aldebaran can always support XNACK because it can support
1332 		 * per-process XNACK mode selection. But let the dev->noretry
1333 		 * setting still influence the default XNACK mode.
1334 		 */
1335 		if (supported && KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2))
1336 			continue;
1337 
1338 		/* GFXv10 and later GPUs do not support shader preemption
1339 		 * during page faults. This can lead to poor QoS for queue
1340 		 * management and memory-manager-related preemptions or
1341 		 * even deadlocks.
1342 		 */
1343 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1344 			return false;
1345 
1346 		if (dev->noretry)
1347 			return false;
1348 	}
1349 
1350 	return true;
1351 }
1352 
1353 /*
1354  * On return the kfd_process is fully operational and will be freed when the
1355  * mm is released
1356  */
1357 static struct kfd_process *create_process(const struct task_struct *thread)
1358 {
1359 	struct kfd_process *process;
1360 	struct mmu_notifier *mn;
1361 	int err = -ENOMEM;
1362 
1363 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1364 	if (!process)
1365 		goto err_alloc_process;
1366 
1367 	kref_init(&process->ref);
1368 	mutex_init(&process->mutex);
1369 	process->mm = thread->mm;
1370 	process->lead_thread = thread->group_leader;
1371 	process->n_pdds = 0;
1372 	process->queues_paused = false;
1373 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1374 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1375 	process->last_restore_timestamp = get_jiffies_64();
1376 	err = kfd_event_init_process(process);
1377 	if (err)
1378 		goto err_event_init;
1379 	process->is_32bit_user_mode = in_compat_syscall();
1380 
1381 	process->pasid = kfd_pasid_alloc();
1382 	if (process->pasid == 0) {
1383 		err = -ENOSPC;
1384 		goto err_alloc_pasid;
1385 	}
1386 
1387 	err = pqm_init(&process->pqm, process);
1388 	if (err != 0)
1389 		goto err_process_pqm_init;
1390 
1391 	/* init process apertures*/
1392 	err = kfd_init_apertures(process);
1393 	if (err != 0)
1394 		goto err_init_apertures;
1395 
1396 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1397 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1398 
1399 	err = svm_range_list_init(process);
1400 	if (err)
1401 		goto err_init_svm_range_list;
1402 
1403 	/* alloc_notifier needs to find the process in the hash table */
1404 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1405 			(uintptr_t)process->mm);
1406 
1407 	/* MMU notifier registration must be the last call that can fail
1408 	 * because after this point we cannot unwind the process creation.
1409 	 * After this point, mmu_notifier_put will trigger the cleanup by
1410 	 * dropping the last process reference in the free_notifier.
1411 	 */
1412 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1413 	if (IS_ERR(mn)) {
1414 		err = PTR_ERR(mn);
1415 		goto err_register_notifier;
1416 	}
1417 	BUG_ON(mn != &process->mmu_notifier);
1418 
1419 	get_task_struct(process->lead_thread);
1420 
1421 	return process;
1422 
1423 err_register_notifier:
1424 	hash_del_rcu(&process->kfd_processes);
1425 	svm_range_list_fini(process);
1426 err_init_svm_range_list:
1427 	kfd_process_free_outstanding_kfd_bos(process);
1428 	kfd_process_destroy_pdds(process);
1429 err_init_apertures:
1430 	pqm_uninit(&process->pqm);
1431 err_process_pqm_init:
1432 	kfd_pasid_free(process->pasid);
1433 err_alloc_pasid:
1434 	kfd_event_free_process(process);
1435 err_event_init:
1436 	mutex_destroy(&process->mutex);
1437 	kfree(process);
1438 err_alloc_process:
1439 	return ERR_PTR(err);
1440 }
1441 
1442 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1443 			struct kfd_dev *dev)
1444 {
1445 	unsigned int i;
1446 	int range_start = dev->shared_resources.non_cp_doorbells_start;
1447 	int range_end = dev->shared_resources.non_cp_doorbells_end;
1448 
1449 	if (!KFD_IS_SOC15(dev))
1450 		return 0;
1451 
1452 	qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1453 					     GFP_KERNEL);
1454 	if (!qpd->doorbell_bitmap)
1455 		return -ENOMEM;
1456 
1457 	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1458 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1459 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1460 			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1461 			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1462 
1463 	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1464 		if (i >= range_start && i <= range_end) {
1465 			__set_bit(i, qpd->doorbell_bitmap);
1466 			__set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1467 				  qpd->doorbell_bitmap);
1468 		}
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1475 							struct kfd_process *p)
1476 {
1477 	int i;
1478 
1479 	for (i = 0; i < p->n_pdds; i++)
1480 		if (p->pdds[i]->dev == dev)
1481 			return p->pdds[i];
1482 
1483 	return NULL;
1484 }
1485 
1486 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1487 							struct kfd_process *p)
1488 {
1489 	struct kfd_process_device *pdd = NULL;
1490 	int retval = 0;
1491 
1492 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1493 		return NULL;
1494 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1495 	if (!pdd)
1496 		return NULL;
1497 
1498 	if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
1499 		pr_err("Failed to alloc doorbell for pdd\n");
1500 		goto err_free_pdd;
1501 	}
1502 
1503 	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1504 		pr_err("Failed to init doorbell for process\n");
1505 		goto err_free_pdd;
1506 	}
1507 
1508 	pdd->dev = dev;
1509 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1510 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1511 	pdd->qpd.dqm = dev->dqm;
1512 	pdd->qpd.pqm = &p->pqm;
1513 	pdd->qpd.evicted = 0;
1514 	pdd->qpd.mapped_gws_queue = false;
1515 	pdd->process = p;
1516 	pdd->bound = PDD_UNBOUND;
1517 	pdd->already_dequeued = false;
1518 	pdd->runtime_inuse = false;
1519 	pdd->vram_usage = 0;
1520 	pdd->sdma_past_activity_counter = 0;
1521 	pdd->user_gpu_id = dev->id;
1522 	atomic64_set(&pdd->evict_duration_counter, 0);
1523 
1524 	if (dev->shared_resources.enable_mes) {
1525 		retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1526 						AMDGPU_MES_PROC_CTX_SIZE,
1527 						&pdd->proc_ctx_bo,
1528 						&pdd->proc_ctx_gpu_addr,
1529 						&pdd->proc_ctx_cpu_ptr,
1530 						false);
1531 		if (retval) {
1532 			pr_err("failed to allocate process context bo\n");
1533 			goto err_free_pdd;
1534 		}
1535 		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1536 	}
1537 
1538 	p->pdds[p->n_pdds++] = pdd;
1539 
1540 	/* Init idr used for memory handle translation */
1541 	idr_init(&pdd->alloc_idr);
1542 
1543 	return pdd;
1544 
1545 err_free_pdd:
1546 	kfree(pdd);
1547 	return NULL;
1548 }
1549 
1550 /**
1551  * kfd_process_device_init_vm - Initialize a VM for a process-device
1552  *
1553  * @pdd: The process-device
1554  * @drm_file: Optional pointer to a DRM file descriptor
1555  *
1556  * If @drm_file is specified, it will be used to acquire the VM from
1557  * that file descriptor. If successful, the @pdd takes ownership of
1558  * the file descriptor.
1559  *
1560  * If @drm_file is NULL, a new VM is created.
1561  *
1562  * Returns 0 on success, -errno on failure.
1563  */
1564 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1565 			       struct file *drm_file)
1566 {
1567 	struct kfd_process *p;
1568 	struct kfd_dev *dev;
1569 	int ret;
1570 
1571 	if (!drm_file)
1572 		return -EINVAL;
1573 
1574 	if (pdd->drm_priv)
1575 		return -EBUSY;
1576 
1577 	p = pdd->process;
1578 	dev = pdd->dev;
1579 
1580 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1581 		dev->adev, drm_file, p->pasid,
1582 		&p->kgd_process_info, &p->ef);
1583 	if (ret) {
1584 		pr_err("Failed to create process VM object\n");
1585 		return ret;
1586 	}
1587 	pdd->drm_priv = drm_file->private_data;
1588 	atomic64_set(&pdd->tlb_seq, 0);
1589 
1590 	ret = kfd_process_device_reserve_ib_mem(pdd);
1591 	if (ret)
1592 		goto err_reserve_ib_mem;
1593 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1594 	if (ret)
1595 		goto err_init_cwsr;
1596 
1597 	pdd->drm_file = drm_file;
1598 
1599 	return 0;
1600 
1601 err_init_cwsr:
1602 err_reserve_ib_mem:
1603 	kfd_process_device_free_bos(pdd);
1604 	pdd->drm_priv = NULL;
1605 
1606 	return ret;
1607 }
1608 
1609 /*
1610  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1611  * to the device.
1612  * Unbinding occurs when the process dies or the device is removed.
1613  *
1614  * Assumes that the process lock is held.
1615  */
1616 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1617 							struct kfd_process *p)
1618 {
1619 	struct kfd_process_device *pdd;
1620 	int err;
1621 
1622 	pdd = kfd_get_process_device_data(dev, p);
1623 	if (!pdd) {
1624 		pr_err("Process device data doesn't exist\n");
1625 		return ERR_PTR(-ENOMEM);
1626 	}
1627 
1628 	if (!pdd->drm_priv)
1629 		return ERR_PTR(-ENODEV);
1630 
1631 	/*
1632 	 * signal runtime-pm system to auto resume and prevent
1633 	 * further runtime suspend once device pdd is created until
1634 	 * pdd is destroyed.
1635 	 */
1636 	if (!pdd->runtime_inuse) {
1637 		err = pm_runtime_get_sync(dev->ddev->dev);
1638 		if (err < 0) {
1639 			pm_runtime_put_autosuspend(dev->ddev->dev);
1640 			return ERR_PTR(err);
1641 		}
1642 	}
1643 
1644 	err = kfd_iommu_bind_process_to_device(pdd);
1645 	if (err)
1646 		goto out;
1647 
1648 	/*
1649 	 * make sure that runtime_usage counter is incremented just once
1650 	 * per pdd
1651 	 */
1652 	pdd->runtime_inuse = true;
1653 
1654 	return pdd;
1655 
1656 out:
1657 	/* balance runpm reference count and exit with error */
1658 	if (!pdd->runtime_inuse) {
1659 		pm_runtime_mark_last_busy(dev->ddev->dev);
1660 		pm_runtime_put_autosuspend(dev->ddev->dev);
1661 	}
1662 
1663 	return ERR_PTR(err);
1664 }
1665 
1666 /* Create specific handle mapped to mem from process local memory idr
1667  * Assumes that the process lock is held.
1668  */
1669 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1670 					void *mem)
1671 {
1672 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1673 }
1674 
1675 /* Translate specific handle from process local memory idr
1676  * Assumes that the process lock is held.
1677  */
1678 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1679 					int handle)
1680 {
1681 	if (handle < 0)
1682 		return NULL;
1683 
1684 	return idr_find(&pdd->alloc_idr, handle);
1685 }
1686 
1687 /* Remove specific handle from process local memory idr
1688  * Assumes that the process lock is held.
1689  */
1690 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1691 					int handle)
1692 {
1693 	if (handle >= 0)
1694 		idr_remove(&pdd->alloc_idr, handle);
1695 }
1696 
1697 /* This increments the process->ref counter. */
1698 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1699 {
1700 	struct kfd_process *p, *ret_p = NULL;
1701 	unsigned int temp;
1702 
1703 	int idx = srcu_read_lock(&kfd_processes_srcu);
1704 
1705 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1706 		if (p->pasid == pasid) {
1707 			kref_get(&p->ref);
1708 			ret_p = p;
1709 			break;
1710 		}
1711 	}
1712 
1713 	srcu_read_unlock(&kfd_processes_srcu, idx);
1714 
1715 	return ret_p;
1716 }
1717 
1718 /* This increments the process->ref counter. */
1719 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1720 {
1721 	struct kfd_process *p;
1722 
1723 	int idx = srcu_read_lock(&kfd_processes_srcu);
1724 
1725 	p = find_process_by_mm(mm);
1726 	if (p)
1727 		kref_get(&p->ref);
1728 
1729 	srcu_read_unlock(&kfd_processes_srcu, idx);
1730 
1731 	return p;
1732 }
1733 
1734 /* kfd_process_evict_queues - Evict all user queues of a process
1735  *
1736  * Eviction is reference-counted per process-device. This means multiple
1737  * evictions from different sources can be nested safely.
1738  */
1739 int kfd_process_evict_queues(struct kfd_process *p)
1740 {
1741 	int r = 0;
1742 	int i;
1743 	unsigned int n_evicted = 0;
1744 
1745 	for (i = 0; i < p->n_pdds; i++) {
1746 		struct kfd_process_device *pdd = p->pdds[i];
1747 
1748 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1749 							    &pdd->qpd);
1750 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1751 		 * we would like to set all the queues to be in evicted state to prevent
1752 		 * them been add back since they actually not be saved right now.
1753 		 */
1754 		if (r && r != -EIO) {
1755 			pr_err("Failed to evict process queues\n");
1756 			goto fail;
1757 		}
1758 		n_evicted++;
1759 	}
1760 
1761 	return r;
1762 
1763 fail:
1764 	/* To keep state consistent, roll back partial eviction by
1765 	 * restoring queues
1766 	 */
1767 	for (i = 0; i < p->n_pdds; i++) {
1768 		struct kfd_process_device *pdd = p->pdds[i];
1769 
1770 		if (n_evicted == 0)
1771 			break;
1772 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1773 							      &pdd->qpd))
1774 			pr_err("Failed to restore queues\n");
1775 
1776 		n_evicted--;
1777 	}
1778 
1779 	return r;
1780 }
1781 
1782 /* kfd_process_restore_queues - Restore all user queues of a process */
1783 int kfd_process_restore_queues(struct kfd_process *p)
1784 {
1785 	int r, ret = 0;
1786 	int i;
1787 
1788 	for (i = 0; i < p->n_pdds; i++) {
1789 		struct kfd_process_device *pdd = p->pdds[i];
1790 
1791 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1792 							      &pdd->qpd);
1793 		if (r) {
1794 			pr_err("Failed to restore process queues\n");
1795 			if (!ret)
1796 				ret = r;
1797 		}
1798 	}
1799 
1800 	return ret;
1801 }
1802 
1803 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1804 {
1805 	int i;
1806 
1807 	for (i = 0; i < p->n_pdds; i++)
1808 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1809 			return i;
1810 	return -EINVAL;
1811 }
1812 
1813 int
1814 kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev,
1815 			   uint32_t *gpuid, uint32_t *gpuidx)
1816 {
1817 	int i;
1818 
1819 	for (i = 0; i < p->n_pdds; i++)
1820 		if (p->pdds[i] && p->pdds[i]->dev->adev == adev) {
1821 			*gpuid = p->pdds[i]->user_gpu_id;
1822 			*gpuidx = i;
1823 			return 0;
1824 		}
1825 	return -EINVAL;
1826 }
1827 
1828 static void evict_process_worker(struct work_struct *work)
1829 {
1830 	int ret;
1831 	struct kfd_process *p;
1832 	struct delayed_work *dwork;
1833 
1834 	dwork = to_delayed_work(work);
1835 
1836 	/* Process termination destroys this worker thread. So during the
1837 	 * lifetime of this thread, kfd_process p will be valid
1838 	 */
1839 	p = container_of(dwork, struct kfd_process, eviction_work);
1840 	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1841 		  "Eviction fence mismatch\n");
1842 
1843 	/* Narrow window of overlap between restore and evict work
1844 	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1845 	 * unreserves KFD BOs, it is possible to evicted again. But
1846 	 * restore has few more steps of finish. So lets wait for any
1847 	 * previous restore work to complete
1848 	 */
1849 	flush_delayed_work(&p->restore_work);
1850 
1851 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1852 	ret = kfd_process_evict_queues(p);
1853 	if (!ret) {
1854 		dma_fence_signal(p->ef);
1855 		dma_fence_put(p->ef);
1856 		p->ef = NULL;
1857 		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1858 				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1859 
1860 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1861 	} else
1862 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1863 }
1864 
1865 static void restore_process_worker(struct work_struct *work)
1866 {
1867 	struct delayed_work *dwork;
1868 	struct kfd_process *p;
1869 	int ret = 0;
1870 
1871 	dwork = to_delayed_work(work);
1872 
1873 	/* Process termination destroys this worker thread. So during the
1874 	 * lifetime of this thread, kfd_process p will be valid
1875 	 */
1876 	p = container_of(dwork, struct kfd_process, restore_work);
1877 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1878 
1879 	/* Setting last_restore_timestamp before successful restoration.
1880 	 * Otherwise this would have to be set by KGD (restore_process_bos)
1881 	 * before KFD BOs are unreserved. If not, the process can be evicted
1882 	 * again before the timestamp is set.
1883 	 * If restore fails, the timestamp will be set again in the next
1884 	 * attempt. This would mean that the minimum GPU quanta would be
1885 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1886 	 * functions)
1887 	 */
1888 
1889 	p->last_restore_timestamp = get_jiffies_64();
1890 	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1891 						     &p->ef);
1892 	if (ret) {
1893 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1894 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1895 		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1896 				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1897 		WARN(!ret, "reschedule restore work failed\n");
1898 		return;
1899 	}
1900 
1901 	ret = kfd_process_restore_queues(p);
1902 	if (!ret)
1903 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1904 	else
1905 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1906 }
1907 
1908 void kfd_suspend_all_processes(void)
1909 {
1910 	struct kfd_process *p;
1911 	unsigned int temp;
1912 	int idx = srcu_read_lock(&kfd_processes_srcu);
1913 
1914 	WARN(debug_evictions, "Evicting all processes");
1915 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1916 		cancel_delayed_work_sync(&p->eviction_work);
1917 		cancel_delayed_work_sync(&p->restore_work);
1918 
1919 		if (kfd_process_evict_queues(p))
1920 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1921 		dma_fence_signal(p->ef);
1922 		dma_fence_put(p->ef);
1923 		p->ef = NULL;
1924 	}
1925 	srcu_read_unlock(&kfd_processes_srcu, idx);
1926 }
1927 
1928 int kfd_resume_all_processes(void)
1929 {
1930 	struct kfd_process *p;
1931 	unsigned int temp;
1932 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1933 
1934 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1935 		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1936 			pr_err("Restore process %d failed during resume\n",
1937 			       p->pasid);
1938 			ret = -EFAULT;
1939 		}
1940 	}
1941 	srcu_read_unlock(&kfd_processes_srcu, idx);
1942 	return ret;
1943 }
1944 
1945 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1946 			  struct vm_area_struct *vma)
1947 {
1948 	struct kfd_process_device *pdd;
1949 	struct qcm_process_device *qpd;
1950 
1951 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1952 		pr_err("Incorrect CWSR mapping size.\n");
1953 		return -EINVAL;
1954 	}
1955 
1956 	pdd = kfd_get_process_device_data(dev, process);
1957 	if (!pdd)
1958 		return -EINVAL;
1959 	qpd = &pdd->qpd;
1960 
1961 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1962 					get_order(KFD_CWSR_TBA_TMA_SIZE));
1963 	if (!qpd->cwsr_kaddr) {
1964 		pr_err("Error allocating per process CWSR buffer.\n");
1965 		return -ENOMEM;
1966 	}
1967 
1968 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1969 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1970 	/* Mapping pages to user process */
1971 	return remap_pfn_range(vma, vma->vm_start,
1972 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1973 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1974 }
1975 
1976 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1977 {
1978 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1979 	uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
1980 	struct kfd_dev *dev = pdd->dev;
1981 
1982 	/*
1983 	 * It can be that we race and lose here, but that is extremely unlikely
1984 	 * and the worst thing which could happen is that we flush the changes
1985 	 * into the TLB once more which is harmless.
1986 	 */
1987 	if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq)
1988 		return;
1989 
1990 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1991 		/* Nothing to flush until a VMID is assigned, which
1992 		 * only happens when the first queue is created.
1993 		 */
1994 		if (pdd->qpd.vmid)
1995 			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
1996 							pdd->qpd.vmid);
1997 	} else {
1998 		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->adev,
1999 					pdd->process->pasid, type);
2000 	}
2001 }
2002 
2003 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2004 {
2005 	int i;
2006 
2007 	if (gpu_id) {
2008 		for (i = 0; i < p->n_pdds; i++) {
2009 			struct kfd_process_device *pdd = p->pdds[i];
2010 
2011 			if (pdd->user_gpu_id == gpu_id)
2012 				return pdd;
2013 		}
2014 	}
2015 	return NULL;
2016 }
2017 
2018 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2019 {
2020 	int i;
2021 
2022 	if (!actual_gpu_id)
2023 		return 0;
2024 
2025 	for (i = 0; i < p->n_pdds; i++) {
2026 		struct kfd_process_device *pdd = p->pdds[i];
2027 
2028 		if (pdd->dev->id == actual_gpu_id)
2029 			return pdd->user_gpu_id;
2030 	}
2031 	return -EINVAL;
2032 }
2033 
2034 #if defined(CONFIG_DEBUG_FS)
2035 
2036 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2037 {
2038 	struct kfd_process *p;
2039 	unsigned int temp;
2040 	int r = 0;
2041 
2042 	int idx = srcu_read_lock(&kfd_processes_srcu);
2043 
2044 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2045 		seq_printf(m, "Process %d PASID 0x%x:\n",
2046 			   p->lead_thread->tgid, p->pasid);
2047 
2048 		mutex_lock(&p->mutex);
2049 		r = pqm_debugfs_mqds(m, &p->pqm);
2050 		mutex_unlock(&p->mutex);
2051 
2052 		if (r)
2053 			break;
2054 	}
2055 
2056 	srcu_read_unlock(&kfd_processes_srcu, idx);
2057 
2058 	return r;
2059 }
2060 
2061 #endif
2062 
2063