1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mutex.h> 25 #include <linux/log2.h> 26 #include <linux/sched.h> 27 #include <linux/sched/mm.h> 28 #include <linux/sched/task.h> 29 #include <linux/mmu_context.h> 30 #include <linux/slab.h> 31 #include <linux/amd-iommu.h> 32 #include <linux/notifier.h> 33 #include <linux/compat.h> 34 #include <linux/mman.h> 35 #include <linux/file.h> 36 #include <linux/pm_runtime.h> 37 #include "amdgpu_amdkfd.h" 38 #include "amdgpu.h" 39 40 struct mm_struct; 41 42 #include "kfd_priv.h" 43 #include "kfd_device_queue_manager.h" 44 #include "kfd_iommu.h" 45 #include "kfd_svm.h" 46 47 /* 48 * List of struct kfd_process (field kfd_process). 49 * Unique/indexed by mm_struct* 50 */ 51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 52 static DEFINE_MUTEX(kfd_processes_mutex); 53 54 DEFINE_SRCU(kfd_processes_srcu); 55 56 /* For process termination handling */ 57 static struct workqueue_struct *kfd_process_wq; 58 59 /* Ordered, single-threaded workqueue for restoring evicted 60 * processes. Restoring multiple processes concurrently under memory 61 * pressure can lead to processes blocking each other from validating 62 * their BOs and result in a live-lock situation where processes 63 * remain evicted indefinitely. 64 */ 65 static struct workqueue_struct *kfd_restore_wq; 66 67 static struct kfd_process *find_process(const struct task_struct *thread, 68 bool ref); 69 static void kfd_process_ref_release(struct kref *ref); 70 static struct kfd_process *create_process(const struct task_struct *thread); 71 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep); 72 73 static void evict_process_worker(struct work_struct *work); 74 static void restore_process_worker(struct work_struct *work); 75 76 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); 77 78 struct kfd_procfs_tree { 79 struct kobject *kobj; 80 }; 81 82 static struct kfd_procfs_tree procfs; 83 84 /* 85 * Structure for SDMA activity tracking 86 */ 87 struct kfd_sdma_activity_handler_workarea { 88 struct work_struct sdma_activity_work; 89 struct kfd_process_device *pdd; 90 uint64_t sdma_activity_counter; 91 }; 92 93 struct temp_sdma_queue_list { 94 uint64_t __user *rptr; 95 uint64_t sdma_val; 96 unsigned int queue_id; 97 struct list_head list; 98 }; 99 100 static void kfd_sdma_activity_worker(struct work_struct *work) 101 { 102 struct kfd_sdma_activity_handler_workarea *workarea; 103 struct kfd_process_device *pdd; 104 uint64_t val; 105 struct mm_struct *mm; 106 struct queue *q; 107 struct qcm_process_device *qpd; 108 struct device_queue_manager *dqm; 109 int ret = 0; 110 struct temp_sdma_queue_list sdma_q_list; 111 struct temp_sdma_queue_list *sdma_q, *next; 112 113 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 114 sdma_activity_work); 115 116 pdd = workarea->pdd; 117 if (!pdd) 118 return; 119 dqm = pdd->dev->dqm; 120 qpd = &pdd->qpd; 121 if (!dqm || !qpd) 122 return; 123 /* 124 * Total SDMA activity is current SDMA activity + past SDMA activity 125 * Past SDMA count is stored in pdd. 126 * To get the current activity counters for all active SDMA queues, 127 * we loop over all SDMA queues and get their counts from user-space. 128 * 129 * We cannot call get_user() with dqm_lock held as it can cause 130 * a circular lock dependency situation. To read the SDMA stats, 131 * we need to do the following: 132 * 133 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 134 * with dqm_lock/dqm_unlock(). 135 * 2. Call get_user() for each node in temporary list without dqm_lock. 136 * Save the SDMA count for each node and also add the count to the total 137 * SDMA count counter. 138 * Its possible, during this step, a few SDMA queue nodes got deleted 139 * from the qpd->queues_list. 140 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 141 * If any node got deleted, its SDMA count would be captured in the sdma 142 * past activity counter. So subtract the SDMA counter stored in step 2 143 * for this node from the total SDMA count. 144 */ 145 INIT_LIST_HEAD(&sdma_q_list.list); 146 147 /* 148 * Create the temp list of all SDMA queues 149 */ 150 dqm_lock(dqm); 151 152 list_for_each_entry(q, &qpd->queues_list, list) { 153 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 154 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 155 continue; 156 157 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 158 if (!sdma_q) { 159 dqm_unlock(dqm); 160 goto cleanup; 161 } 162 163 INIT_LIST_HEAD(&sdma_q->list); 164 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 165 sdma_q->queue_id = q->properties.queue_id; 166 list_add_tail(&sdma_q->list, &sdma_q_list.list); 167 } 168 169 /* 170 * If the temp list is empty, then no SDMA queues nodes were found in 171 * qpd->queues_list. Return the past activity count as the total sdma 172 * count 173 */ 174 if (list_empty(&sdma_q_list.list)) { 175 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 176 dqm_unlock(dqm); 177 return; 178 } 179 180 dqm_unlock(dqm); 181 182 /* 183 * Get the usage count for each SDMA queue in temp_list. 184 */ 185 mm = get_task_mm(pdd->process->lead_thread); 186 if (!mm) 187 goto cleanup; 188 189 kthread_use_mm(mm); 190 191 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 192 val = 0; 193 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 194 if (ret) { 195 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 196 sdma_q->queue_id); 197 } else { 198 sdma_q->sdma_val = val; 199 workarea->sdma_activity_counter += val; 200 } 201 } 202 203 kthread_unuse_mm(mm); 204 mmput(mm); 205 206 /* 207 * Do a second iteration over qpd_queues_list to check if any SDMA 208 * nodes got deleted while fetching SDMA counter. 209 */ 210 dqm_lock(dqm); 211 212 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 213 214 list_for_each_entry(q, &qpd->queues_list, list) { 215 if (list_empty(&sdma_q_list.list)) 216 break; 217 218 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 219 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 220 continue; 221 222 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 223 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 224 (sdma_q->queue_id == q->properties.queue_id)) { 225 list_del(&sdma_q->list); 226 kfree(sdma_q); 227 break; 228 } 229 } 230 } 231 232 dqm_unlock(dqm); 233 234 /* 235 * If temp list is not empty, it implies some queues got deleted 236 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 237 * count for each node from the total SDMA count. 238 */ 239 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 240 workarea->sdma_activity_counter -= sdma_q->sdma_val; 241 list_del(&sdma_q->list); 242 kfree(sdma_q); 243 } 244 245 return; 246 247 cleanup: 248 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 249 list_del(&sdma_q->list); 250 kfree(sdma_q); 251 } 252 } 253 254 /** 255 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device 256 * by current process. Translates acquired wave count into number of compute units 257 * that are occupied. 258 * 259 * @attr: Handle of attribute that allows reporting of wave count. The attribute 260 * handle encapsulates GPU device it is associated with, thereby allowing collection 261 * of waves in flight, etc 262 * @buffer: Handle of user provided buffer updated with wave count 263 * 264 * Return: Number of bytes written to user buffer or an error value 265 */ 266 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 267 { 268 int cu_cnt; 269 int wave_cnt; 270 int max_waves_per_cu; 271 struct kfd_dev *dev = NULL; 272 struct kfd_process *proc = NULL; 273 struct kfd_process_device *pdd = NULL; 274 275 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 276 dev = pdd->dev; 277 if (dev->kfd2kgd->get_cu_occupancy == NULL) 278 return -EINVAL; 279 280 cu_cnt = 0; 281 proc = pdd->process; 282 if (pdd->qpd.queue_count == 0) { 283 pr_debug("Gpu-Id: %d has no active queues for process %d\n", 284 dev->id, proc->pasid); 285 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 286 } 287 288 /* Collect wave count from device if it supports */ 289 wave_cnt = 0; 290 max_waves_per_cu = 0; 291 dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt, 292 &max_waves_per_cu); 293 294 /* Translate wave count to number of compute units */ 295 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 296 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 297 } 298 299 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 300 char *buffer) 301 { 302 if (strcmp(attr->name, "pasid") == 0) { 303 struct kfd_process *p = container_of(attr, struct kfd_process, 304 attr_pasid); 305 306 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 307 } else if (strncmp(attr->name, "vram_", 5) == 0) { 308 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 309 attr_vram); 310 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage)); 311 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 312 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 313 attr_sdma); 314 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 315 316 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work, 317 kfd_sdma_activity_worker); 318 319 sdma_activity_work_handler.pdd = pdd; 320 sdma_activity_work_handler.sdma_activity_counter = 0; 321 322 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 323 324 flush_work(&sdma_activity_work_handler.sdma_activity_work); 325 326 return snprintf(buffer, PAGE_SIZE, "%llu\n", 327 (sdma_activity_work_handler.sdma_activity_counter)/ 328 SDMA_ACTIVITY_DIVISOR); 329 } else { 330 pr_err("Invalid attribute"); 331 return -EINVAL; 332 } 333 334 return 0; 335 } 336 337 static void kfd_procfs_kobj_release(struct kobject *kobj) 338 { 339 kfree(kobj); 340 } 341 342 static const struct sysfs_ops kfd_procfs_ops = { 343 .show = kfd_procfs_show, 344 }; 345 346 static struct kobj_type procfs_type = { 347 .release = kfd_procfs_kobj_release, 348 .sysfs_ops = &kfd_procfs_ops, 349 }; 350 351 void kfd_procfs_init(void) 352 { 353 int ret = 0; 354 355 procfs.kobj = kfd_alloc_struct(procfs.kobj); 356 if (!procfs.kobj) 357 return; 358 359 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 360 &kfd_device->kobj, "proc"); 361 if (ret) { 362 pr_warn("Could not create procfs proc folder"); 363 /* If we fail to create the procfs, clean up */ 364 kfd_procfs_shutdown(); 365 } 366 } 367 368 void kfd_procfs_shutdown(void) 369 { 370 if (procfs.kobj) { 371 kobject_del(procfs.kobj); 372 kobject_put(procfs.kobj); 373 procfs.kobj = NULL; 374 } 375 } 376 377 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 378 struct attribute *attr, char *buffer) 379 { 380 struct queue *q = container_of(kobj, struct queue, kobj); 381 382 if (!strcmp(attr->name, "size")) 383 return snprintf(buffer, PAGE_SIZE, "%llu", 384 q->properties.queue_size); 385 else if (!strcmp(attr->name, "type")) 386 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 387 else if (!strcmp(attr->name, "gpuid")) 388 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 389 else 390 pr_err("Invalid attribute"); 391 392 return 0; 393 } 394 395 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 396 struct attribute *attr, char *buffer) 397 { 398 if (strcmp(attr->name, "evicted_ms") == 0) { 399 struct kfd_process_device *pdd = container_of(attr, 400 struct kfd_process_device, 401 attr_evict); 402 uint64_t evict_jiffies; 403 404 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 405 406 return snprintf(buffer, 407 PAGE_SIZE, 408 "%llu\n", 409 jiffies64_to_msecs(evict_jiffies)); 410 411 /* Sysfs handle that gets CU occupancy is per device */ 412 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 413 return kfd_get_cu_occupancy(attr, buffer); 414 } else { 415 pr_err("Invalid attribute"); 416 } 417 418 return 0; 419 } 420 421 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, 422 struct attribute *attr, char *buf) 423 { 424 struct kfd_process_device *pdd; 425 426 if (!strcmp(attr->name, "faults")) { 427 pdd = container_of(attr, struct kfd_process_device, 428 attr_faults); 429 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); 430 } 431 if (!strcmp(attr->name, "page_in")) { 432 pdd = container_of(attr, struct kfd_process_device, 433 attr_page_in); 434 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); 435 } 436 if (!strcmp(attr->name, "page_out")) { 437 pdd = container_of(attr, struct kfd_process_device, 438 attr_page_out); 439 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); 440 } 441 return 0; 442 } 443 444 static struct attribute attr_queue_size = { 445 .name = "size", 446 .mode = KFD_SYSFS_FILE_MODE 447 }; 448 449 static struct attribute attr_queue_type = { 450 .name = "type", 451 .mode = KFD_SYSFS_FILE_MODE 452 }; 453 454 static struct attribute attr_queue_gpuid = { 455 .name = "gpuid", 456 .mode = KFD_SYSFS_FILE_MODE 457 }; 458 459 static struct attribute *procfs_queue_attrs[] = { 460 &attr_queue_size, 461 &attr_queue_type, 462 &attr_queue_gpuid, 463 NULL 464 }; 465 ATTRIBUTE_GROUPS(procfs_queue); 466 467 static const struct sysfs_ops procfs_queue_ops = { 468 .show = kfd_procfs_queue_show, 469 }; 470 471 static struct kobj_type procfs_queue_type = { 472 .sysfs_ops = &procfs_queue_ops, 473 .default_groups = procfs_queue_groups, 474 }; 475 476 static const struct sysfs_ops procfs_stats_ops = { 477 .show = kfd_procfs_stats_show, 478 }; 479 480 static struct kobj_type procfs_stats_type = { 481 .sysfs_ops = &procfs_stats_ops, 482 .release = kfd_procfs_kobj_release, 483 }; 484 485 static const struct sysfs_ops sysfs_counters_ops = { 486 .show = kfd_sysfs_counters_show, 487 }; 488 489 static struct kobj_type sysfs_counters_type = { 490 .sysfs_ops = &sysfs_counters_ops, 491 .release = kfd_procfs_kobj_release, 492 }; 493 494 int kfd_procfs_add_queue(struct queue *q) 495 { 496 struct kfd_process *proc; 497 int ret; 498 499 if (!q || !q->process) 500 return -EINVAL; 501 proc = q->process; 502 503 /* Create proc/<pid>/queues/<queue id> folder */ 504 if (!proc->kobj_queues) 505 return -EFAULT; 506 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 507 proc->kobj_queues, "%u", q->properties.queue_id); 508 if (ret < 0) { 509 pr_warn("Creating proc/<pid>/queues/%u failed", 510 q->properties.queue_id); 511 kobject_put(&q->kobj); 512 return ret; 513 } 514 515 return 0; 516 } 517 518 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, 519 char *name) 520 { 521 int ret; 522 523 if (!kobj || !attr || !name) 524 return; 525 526 attr->name = name; 527 attr->mode = KFD_SYSFS_FILE_MODE; 528 sysfs_attr_init(attr); 529 530 ret = sysfs_create_file(kobj, attr); 531 if (ret) 532 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); 533 } 534 535 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) 536 { 537 int ret; 538 int i; 539 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 540 541 if (!p || !p->kobj) 542 return; 543 544 /* 545 * Create sysfs files for each GPU: 546 * - proc/<pid>/stats_<gpuid>/ 547 * - proc/<pid>/stats_<gpuid>/evicted_ms 548 * - proc/<pid>/stats_<gpuid>/cu_occupancy 549 */ 550 for (i = 0; i < p->n_pdds; i++) { 551 struct kfd_process_device *pdd = p->pdds[i]; 552 553 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 554 "stats_%u", pdd->dev->id); 555 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); 556 if (!pdd->kobj_stats) 557 return; 558 559 ret = kobject_init_and_add(pdd->kobj_stats, 560 &procfs_stats_type, 561 p->kobj, 562 stats_dir_filename); 563 564 if (ret) { 565 pr_warn("Creating KFD proc/stats_%s folder failed", 566 stats_dir_filename); 567 kobject_put(pdd->kobj_stats); 568 pdd->kobj_stats = NULL; 569 return; 570 } 571 572 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, 573 "evicted_ms"); 574 /* Add sysfs file to report compute unit occupancy */ 575 if (pdd->dev->kfd2kgd->get_cu_occupancy) 576 kfd_sysfs_create_file(pdd->kobj_stats, 577 &pdd->attr_cu_occupancy, 578 "cu_occupancy"); 579 } 580 } 581 582 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) 583 { 584 int ret = 0; 585 int i; 586 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; 587 588 if (!p || !p->kobj) 589 return; 590 591 /* 592 * Create sysfs files for each GPU which supports SVM 593 * - proc/<pid>/counters_<gpuid>/ 594 * - proc/<pid>/counters_<gpuid>/faults 595 * - proc/<pid>/counters_<gpuid>/page_in 596 * - proc/<pid>/counters_<gpuid>/page_out 597 */ 598 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 599 struct kfd_process_device *pdd = p->pdds[i]; 600 struct kobject *kobj_counters; 601 602 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, 603 "counters_%u", pdd->dev->id); 604 kobj_counters = kfd_alloc_struct(kobj_counters); 605 if (!kobj_counters) 606 return; 607 608 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, 609 p->kobj, counters_dir_filename); 610 if (ret) { 611 pr_warn("Creating KFD proc/%s folder failed", 612 counters_dir_filename); 613 kobject_put(kobj_counters); 614 return; 615 } 616 617 pdd->kobj_counters = kobj_counters; 618 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, 619 "faults"); 620 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, 621 "page_in"); 622 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, 623 "page_out"); 624 } 625 } 626 627 static void kfd_procfs_add_sysfs_files(struct kfd_process *p) 628 { 629 int i; 630 631 if (!p || !p->kobj) 632 return; 633 634 /* 635 * Create sysfs files for each GPU: 636 * - proc/<pid>/vram_<gpuid> 637 * - proc/<pid>/sdma_<gpuid> 638 */ 639 for (i = 0; i < p->n_pdds; i++) { 640 struct kfd_process_device *pdd = p->pdds[i]; 641 642 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 643 pdd->dev->id); 644 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, 645 pdd->vram_filename); 646 647 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 648 pdd->dev->id); 649 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, 650 pdd->sdma_filename); 651 } 652 } 653 654 void kfd_procfs_del_queue(struct queue *q) 655 { 656 if (!q) 657 return; 658 659 kobject_del(&q->kobj); 660 kobject_put(&q->kobj); 661 } 662 663 int kfd_process_create_wq(void) 664 { 665 if (!kfd_process_wq) 666 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 667 if (!kfd_restore_wq) 668 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0); 669 670 if (!kfd_process_wq || !kfd_restore_wq) { 671 kfd_process_destroy_wq(); 672 return -ENOMEM; 673 } 674 675 return 0; 676 } 677 678 void kfd_process_destroy_wq(void) 679 { 680 if (kfd_process_wq) { 681 destroy_workqueue(kfd_process_wq); 682 kfd_process_wq = NULL; 683 } 684 if (kfd_restore_wq) { 685 destroy_workqueue(kfd_restore_wq); 686 kfd_restore_wq = NULL; 687 } 688 } 689 690 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 691 struct kfd_process_device *pdd, void *kptr) 692 { 693 struct kfd_dev *dev = pdd->dev; 694 695 if (kptr) { 696 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(dev->adev, mem); 697 kptr = NULL; 698 } 699 700 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv); 701 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv, 702 NULL); 703 } 704 705 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 706 * This function should be only called right after the process 707 * is created and when kfd_processes_mutex is still being held 708 * to avoid concurrency. Because of that exclusiveness, we do 709 * not need to take p->mutex. 710 */ 711 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 712 uint64_t gpu_va, uint32_t size, 713 uint32_t flags, struct kgd_mem **mem, void **kptr) 714 { 715 struct kfd_dev *kdev = pdd->dev; 716 int err; 717 718 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size, 719 pdd->drm_priv, mem, NULL, 720 flags, false); 721 if (err) 722 goto err_alloc_mem; 723 724 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem, 725 pdd->drm_priv, NULL); 726 if (err) 727 goto err_map_mem; 728 729 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true); 730 if (err) { 731 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 732 goto sync_memory_failed; 733 } 734 735 if (kptr) { 736 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->adev, 737 (struct kgd_mem *)*mem, kptr, NULL); 738 if (err) { 739 pr_debug("Map GTT BO to kernel failed\n"); 740 goto sync_memory_failed; 741 } 742 } 743 744 return err; 745 746 sync_memory_failed: 747 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv); 748 749 err_map_mem: 750 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv, 751 NULL); 752 err_alloc_mem: 753 *mem = NULL; 754 *kptr = NULL; 755 return err; 756 } 757 758 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 759 * process for IB usage The memory reserved is for KFD to submit 760 * IB to AMDGPU from kernel. If the memory is reserved 761 * successfully, ib_kaddr will have the CPU/kernel 762 * address. Check ib_kaddr before accessing the memory. 763 */ 764 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 765 { 766 struct qcm_process_device *qpd = &pdd->qpd; 767 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 768 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 769 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 770 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 771 struct kgd_mem *mem; 772 void *kaddr; 773 int ret; 774 775 if (qpd->ib_kaddr || !qpd->ib_base) 776 return 0; 777 778 /* ib_base is only set for dGPU */ 779 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 780 &mem, &kaddr); 781 if (ret) 782 return ret; 783 784 qpd->ib_mem = mem; 785 qpd->ib_kaddr = kaddr; 786 787 return 0; 788 } 789 790 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) 791 { 792 struct qcm_process_device *qpd = &pdd->qpd; 793 794 if (!qpd->ib_kaddr || !qpd->ib_base) 795 return; 796 797 kfd_process_free_gpuvm(qpd->ib_mem, pdd, qpd->ib_kaddr); 798 } 799 800 struct kfd_process *kfd_create_process(struct file *filep) 801 { 802 struct kfd_process *process; 803 struct task_struct *thread = current; 804 int ret; 805 806 if (!thread->mm) 807 return ERR_PTR(-EINVAL); 808 809 /* Only the pthreads threading model is supported. */ 810 if (thread->group_leader->mm != thread->mm) 811 return ERR_PTR(-EINVAL); 812 813 /* 814 * take kfd processes mutex before starting of process creation 815 * so there won't be a case where two threads of the same process 816 * create two kfd_process structures 817 */ 818 mutex_lock(&kfd_processes_mutex); 819 820 /* A prior open of /dev/kfd could have already created the process. */ 821 process = find_process(thread, false); 822 if (process) { 823 pr_debug("Process already found\n"); 824 } else { 825 process = create_process(thread); 826 if (IS_ERR(process)) 827 goto out; 828 829 ret = kfd_process_init_cwsr_apu(process, filep); 830 if (ret) 831 goto out_destroy; 832 833 if (!procfs.kobj) 834 goto out; 835 836 process->kobj = kfd_alloc_struct(process->kobj); 837 if (!process->kobj) { 838 pr_warn("Creating procfs kobject failed"); 839 goto out; 840 } 841 ret = kobject_init_and_add(process->kobj, &procfs_type, 842 procfs.kobj, "%d", 843 (int)process->lead_thread->pid); 844 if (ret) { 845 pr_warn("Creating procfs pid directory failed"); 846 kobject_put(process->kobj); 847 goto out; 848 } 849 850 kfd_sysfs_create_file(process->kobj, &process->attr_pasid, 851 "pasid"); 852 853 process->kobj_queues = kobject_create_and_add("queues", 854 process->kobj); 855 if (!process->kobj_queues) 856 pr_warn("Creating KFD proc/queues folder failed"); 857 858 kfd_procfs_add_sysfs_stats(process); 859 kfd_procfs_add_sysfs_files(process); 860 kfd_procfs_add_sysfs_counters(process); 861 } 862 out: 863 if (!IS_ERR(process)) 864 kref_get(&process->ref); 865 mutex_unlock(&kfd_processes_mutex); 866 867 return process; 868 869 out_destroy: 870 hash_del_rcu(&process->kfd_processes); 871 mutex_unlock(&kfd_processes_mutex); 872 synchronize_srcu(&kfd_processes_srcu); 873 /* kfd_process_free_notifier will trigger the cleanup */ 874 mmu_notifier_put(&process->mmu_notifier); 875 return ERR_PTR(ret); 876 } 877 878 struct kfd_process *kfd_get_process(const struct task_struct *thread) 879 { 880 struct kfd_process *process; 881 882 if (!thread->mm) 883 return ERR_PTR(-EINVAL); 884 885 /* Only the pthreads threading model is supported. */ 886 if (thread->group_leader->mm != thread->mm) 887 return ERR_PTR(-EINVAL); 888 889 process = find_process(thread, false); 890 if (!process) 891 return ERR_PTR(-EINVAL); 892 893 return process; 894 } 895 896 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 897 { 898 struct kfd_process *process; 899 900 hash_for_each_possible_rcu(kfd_processes_table, process, 901 kfd_processes, (uintptr_t)mm) 902 if (process->mm == mm) 903 return process; 904 905 return NULL; 906 } 907 908 static struct kfd_process *find_process(const struct task_struct *thread, 909 bool ref) 910 { 911 struct kfd_process *p; 912 int idx; 913 914 idx = srcu_read_lock(&kfd_processes_srcu); 915 p = find_process_by_mm(thread->mm); 916 if (p && ref) 917 kref_get(&p->ref); 918 srcu_read_unlock(&kfd_processes_srcu, idx); 919 920 return p; 921 } 922 923 void kfd_unref_process(struct kfd_process *p) 924 { 925 kref_put(&p->ref, kfd_process_ref_release); 926 } 927 928 /* This increments the process->ref counter. */ 929 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid) 930 { 931 struct task_struct *task = NULL; 932 struct kfd_process *p = NULL; 933 934 if (!pid) { 935 task = current; 936 get_task_struct(task); 937 } else { 938 task = get_pid_task(pid, PIDTYPE_PID); 939 } 940 941 if (task) { 942 p = find_process(task, true); 943 put_task_struct(task); 944 } 945 946 return p; 947 } 948 949 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 950 { 951 struct kfd_process *p = pdd->process; 952 void *mem; 953 int id; 954 int i; 955 956 /* 957 * Remove all handles from idr and release appropriate 958 * local memory object 959 */ 960 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 961 962 for (i = 0; i < p->n_pdds; i++) { 963 struct kfd_process_device *peer_pdd = p->pdds[i]; 964 965 if (!peer_pdd->drm_priv) 966 continue; 967 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 968 peer_pdd->dev->adev, mem, peer_pdd->drm_priv); 969 } 970 971 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem, 972 pdd->drm_priv, NULL); 973 kfd_process_device_remove_obj_handle(pdd, id); 974 } 975 } 976 977 /* 978 * Just kunmap and unpin signal BO here. It will be freed in 979 * kfd_process_free_outstanding_kfd_bos() 980 */ 981 static void kfd_process_kunmap_signal_bo(struct kfd_process *p) 982 { 983 struct kfd_process_device *pdd; 984 struct kfd_dev *kdev; 985 void *mem; 986 987 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); 988 if (!kdev) 989 return; 990 991 mutex_lock(&p->mutex); 992 993 pdd = kfd_get_process_device_data(kdev, p); 994 if (!pdd) 995 goto out; 996 997 mem = kfd_process_device_translate_handle( 998 pdd, GET_IDR_HANDLE(p->signal_handle)); 999 if (!mem) 1000 goto out; 1001 1002 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(kdev->adev, mem); 1003 1004 out: 1005 mutex_unlock(&p->mutex); 1006 } 1007 1008 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 1009 { 1010 int i; 1011 1012 for (i = 0; i < p->n_pdds; i++) 1013 kfd_process_device_free_bos(p->pdds[i]); 1014 } 1015 1016 static void kfd_process_destroy_pdds(struct kfd_process *p) 1017 { 1018 int i; 1019 1020 for (i = 0; i < p->n_pdds; i++) { 1021 struct kfd_process_device *pdd = p->pdds[i]; 1022 1023 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 1024 pdd->dev->id, p->pasid); 1025 1026 kfd_process_device_destroy_cwsr_dgpu(pdd); 1027 kfd_process_device_destroy_ib_mem(pdd); 1028 1029 if (pdd->drm_file) { 1030 amdgpu_amdkfd_gpuvm_release_process_vm( 1031 pdd->dev->adev, pdd->drm_priv); 1032 fput(pdd->drm_file); 1033 } 1034 1035 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 1036 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 1037 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1038 1039 bitmap_free(pdd->qpd.doorbell_bitmap); 1040 idr_destroy(&pdd->alloc_idr); 1041 1042 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index); 1043 1044 /* 1045 * before destroying pdd, make sure to report availability 1046 * for auto suspend 1047 */ 1048 if (pdd->runtime_inuse) { 1049 pm_runtime_mark_last_busy(pdd->dev->ddev->dev); 1050 pm_runtime_put_autosuspend(pdd->dev->ddev->dev); 1051 pdd->runtime_inuse = false; 1052 } 1053 1054 kfree(pdd); 1055 p->pdds[i] = NULL; 1056 } 1057 p->n_pdds = 0; 1058 } 1059 1060 static void kfd_process_remove_sysfs(struct kfd_process *p) 1061 { 1062 struct kfd_process_device *pdd; 1063 int i; 1064 1065 if (!p->kobj) 1066 return; 1067 1068 sysfs_remove_file(p->kobj, &p->attr_pasid); 1069 kobject_del(p->kobj_queues); 1070 kobject_put(p->kobj_queues); 1071 p->kobj_queues = NULL; 1072 1073 for (i = 0; i < p->n_pdds; i++) { 1074 pdd = p->pdds[i]; 1075 1076 sysfs_remove_file(p->kobj, &pdd->attr_vram); 1077 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 1078 1079 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 1080 if (pdd->dev->kfd2kgd->get_cu_occupancy) 1081 sysfs_remove_file(pdd->kobj_stats, 1082 &pdd->attr_cu_occupancy); 1083 kobject_del(pdd->kobj_stats); 1084 kobject_put(pdd->kobj_stats); 1085 pdd->kobj_stats = NULL; 1086 } 1087 1088 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 1089 pdd = p->pdds[i]; 1090 1091 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); 1092 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); 1093 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); 1094 kobject_del(pdd->kobj_counters); 1095 kobject_put(pdd->kobj_counters); 1096 pdd->kobj_counters = NULL; 1097 } 1098 1099 kobject_del(p->kobj); 1100 kobject_put(p->kobj); 1101 p->kobj = NULL; 1102 } 1103 1104 /* No process locking is needed in this function, because the process 1105 * is not findable any more. We must assume that no other thread is 1106 * using it any more, otherwise we couldn't safely free the process 1107 * structure in the end. 1108 */ 1109 static void kfd_process_wq_release(struct work_struct *work) 1110 { 1111 struct kfd_process *p = container_of(work, struct kfd_process, 1112 release_work); 1113 1114 kfd_process_remove_sysfs(p); 1115 kfd_iommu_unbind_process(p); 1116 1117 kfd_process_kunmap_signal_bo(p); 1118 kfd_process_free_outstanding_kfd_bos(p); 1119 svm_range_list_fini(p); 1120 1121 kfd_process_destroy_pdds(p); 1122 dma_fence_put(p->ef); 1123 1124 kfd_event_free_process(p); 1125 1126 kfd_pasid_free(p->pasid); 1127 mutex_destroy(&p->mutex); 1128 1129 put_task_struct(p->lead_thread); 1130 1131 kfree(p); 1132 } 1133 1134 static void kfd_process_ref_release(struct kref *ref) 1135 { 1136 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1137 1138 INIT_WORK(&p->release_work, kfd_process_wq_release); 1139 queue_work(kfd_process_wq, &p->release_work); 1140 } 1141 1142 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1143 { 1144 int idx = srcu_read_lock(&kfd_processes_srcu); 1145 struct kfd_process *p = find_process_by_mm(mm); 1146 1147 srcu_read_unlock(&kfd_processes_srcu, idx); 1148 1149 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1150 } 1151 1152 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1153 { 1154 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1155 } 1156 1157 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1158 struct mm_struct *mm) 1159 { 1160 struct kfd_process *p; 1161 1162 /* 1163 * The kfd_process structure can not be free because the 1164 * mmu_notifier srcu is read locked 1165 */ 1166 p = container_of(mn, struct kfd_process, mmu_notifier); 1167 if (WARN_ON(p->mm != mm)) 1168 return; 1169 1170 mutex_lock(&kfd_processes_mutex); 1171 hash_del_rcu(&p->kfd_processes); 1172 mutex_unlock(&kfd_processes_mutex); 1173 synchronize_srcu(&kfd_processes_srcu); 1174 1175 cancel_delayed_work_sync(&p->eviction_work); 1176 cancel_delayed_work_sync(&p->restore_work); 1177 1178 mutex_lock(&p->mutex); 1179 1180 kfd_process_dequeue_from_all_devices(p); 1181 pqm_uninit(&p->pqm); 1182 1183 /* Indicate to other users that MM is no longer valid */ 1184 p->mm = NULL; 1185 /* Signal the eviction fence after user mode queues are 1186 * destroyed. This allows any BOs to be freed without 1187 * triggering pointless evictions or waiting for fences. 1188 */ 1189 dma_fence_signal(p->ef); 1190 1191 mutex_unlock(&p->mutex); 1192 1193 mmu_notifier_put(&p->mmu_notifier); 1194 } 1195 1196 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1197 .release = kfd_process_notifier_release, 1198 .alloc_notifier = kfd_process_alloc_notifier, 1199 .free_notifier = kfd_process_free_notifier, 1200 }; 1201 1202 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1203 { 1204 unsigned long offset; 1205 int i; 1206 1207 for (i = 0; i < p->n_pdds; i++) { 1208 struct kfd_dev *dev = p->pdds[i]->dev; 1209 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1210 1211 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1212 continue; 1213 1214 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1215 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1216 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1217 MAP_SHARED, offset); 1218 1219 if (IS_ERR_VALUE(qpd->tba_addr)) { 1220 int err = qpd->tba_addr; 1221 1222 pr_err("Failure to set tba address. error %d.\n", err); 1223 qpd->tba_addr = 0; 1224 qpd->cwsr_kaddr = NULL; 1225 return err; 1226 } 1227 1228 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1229 1230 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1231 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1232 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1233 } 1234 1235 return 0; 1236 } 1237 1238 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1239 { 1240 struct kfd_dev *dev = pdd->dev; 1241 struct qcm_process_device *qpd = &pdd->qpd; 1242 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1243 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1244 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1245 struct kgd_mem *mem; 1246 void *kaddr; 1247 int ret; 1248 1249 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1250 return 0; 1251 1252 /* cwsr_base is only set for dGPU */ 1253 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1254 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr); 1255 if (ret) 1256 return ret; 1257 1258 qpd->cwsr_mem = mem; 1259 qpd->cwsr_kaddr = kaddr; 1260 qpd->tba_addr = qpd->cwsr_base; 1261 1262 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1263 1264 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1265 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1266 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1267 1268 return 0; 1269 } 1270 1271 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) 1272 { 1273 struct kfd_dev *dev = pdd->dev; 1274 struct qcm_process_device *qpd = &pdd->qpd; 1275 1276 if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) 1277 return; 1278 1279 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, qpd->cwsr_kaddr); 1280 } 1281 1282 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1283 uint64_t tba_addr, 1284 uint64_t tma_addr) 1285 { 1286 if (qpd->cwsr_kaddr) { 1287 /* KFD trap handler is bound, record as second-level TBA/TMA 1288 * in first-level TMA. First-level trap will jump to second. 1289 */ 1290 uint64_t *tma = 1291 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1292 tma[0] = tba_addr; 1293 tma[1] = tma_addr; 1294 } else { 1295 /* No trap handler bound, bind as first-level TBA/TMA. */ 1296 qpd->tba_addr = tba_addr; 1297 qpd->tma_addr = tma_addr; 1298 } 1299 } 1300 1301 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1302 { 1303 int i; 1304 1305 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1306 * boot time retry setting. Mixing processes with different 1307 * XNACK/retry settings can hang the GPU. 1308 * 1309 * Different GPUs can have different noretry settings depending 1310 * on HW bugs or limitations. We need to find at least one 1311 * XNACK mode for this process that's compatible with all GPUs. 1312 * Fortunately GPUs with retry enabled (noretry=0) can run code 1313 * built for XNACK-off. On GFXv9 it may perform slower. 1314 * 1315 * Therefore applications built for XNACK-off can always be 1316 * supported and will be our fallback if any GPU does not 1317 * support retry. 1318 */ 1319 for (i = 0; i < p->n_pdds; i++) { 1320 struct kfd_dev *dev = p->pdds[i]->dev; 1321 1322 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1323 * support the SVM APIs and don't need to be considered 1324 * for the XNACK mode selection. 1325 */ 1326 if (!KFD_IS_SOC15(dev)) 1327 continue; 1328 /* Aldebaran can always support XNACK because it can support 1329 * per-process XNACK mode selection. But let the dev->noretry 1330 * setting still influence the default XNACK mode. 1331 */ 1332 if (supported && KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) 1333 continue; 1334 1335 /* GFXv10 and later GPUs do not support shader preemption 1336 * during page faults. This can lead to poor QoS for queue 1337 * management and memory-manager-related preemptions or 1338 * even deadlocks. 1339 */ 1340 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 1341 return false; 1342 1343 if (dev->noretry) 1344 return false; 1345 } 1346 1347 return true; 1348 } 1349 1350 /* 1351 * On return the kfd_process is fully operational and will be freed when the 1352 * mm is released 1353 */ 1354 static struct kfd_process *create_process(const struct task_struct *thread) 1355 { 1356 struct kfd_process *process; 1357 struct mmu_notifier *mn; 1358 int err = -ENOMEM; 1359 1360 process = kzalloc(sizeof(*process), GFP_KERNEL); 1361 if (!process) 1362 goto err_alloc_process; 1363 1364 kref_init(&process->ref); 1365 mutex_init(&process->mutex); 1366 process->mm = thread->mm; 1367 process->lead_thread = thread->group_leader; 1368 process->n_pdds = 0; 1369 process->queues_paused = false; 1370 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1371 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1372 process->last_restore_timestamp = get_jiffies_64(); 1373 kfd_event_init_process(process); 1374 process->is_32bit_user_mode = in_compat_syscall(); 1375 1376 process->pasid = kfd_pasid_alloc(); 1377 if (process->pasid == 0) 1378 goto err_alloc_pasid; 1379 1380 err = pqm_init(&process->pqm, process); 1381 if (err != 0) 1382 goto err_process_pqm_init; 1383 1384 /* init process apertures*/ 1385 err = kfd_init_apertures(process); 1386 if (err != 0) 1387 goto err_init_apertures; 1388 1389 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1390 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1391 1392 err = svm_range_list_init(process); 1393 if (err) 1394 goto err_init_svm_range_list; 1395 1396 /* alloc_notifier needs to find the process in the hash table */ 1397 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1398 (uintptr_t)process->mm); 1399 1400 /* MMU notifier registration must be the last call that can fail 1401 * because after this point we cannot unwind the process creation. 1402 * After this point, mmu_notifier_put will trigger the cleanup by 1403 * dropping the last process reference in the free_notifier. 1404 */ 1405 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1406 if (IS_ERR(mn)) { 1407 err = PTR_ERR(mn); 1408 goto err_register_notifier; 1409 } 1410 BUG_ON(mn != &process->mmu_notifier); 1411 1412 get_task_struct(process->lead_thread); 1413 1414 return process; 1415 1416 err_register_notifier: 1417 hash_del_rcu(&process->kfd_processes); 1418 svm_range_list_fini(process); 1419 err_init_svm_range_list: 1420 kfd_process_free_outstanding_kfd_bos(process); 1421 kfd_process_destroy_pdds(process); 1422 err_init_apertures: 1423 pqm_uninit(&process->pqm); 1424 err_process_pqm_init: 1425 kfd_pasid_free(process->pasid); 1426 err_alloc_pasid: 1427 mutex_destroy(&process->mutex); 1428 kfree(process); 1429 err_alloc_process: 1430 return ERR_PTR(err); 1431 } 1432 1433 static int init_doorbell_bitmap(struct qcm_process_device *qpd, 1434 struct kfd_dev *dev) 1435 { 1436 unsigned int i; 1437 int range_start = dev->shared_resources.non_cp_doorbells_start; 1438 int range_end = dev->shared_resources.non_cp_doorbells_end; 1439 1440 if (!KFD_IS_SOC15(dev)) 1441 return 0; 1442 1443 qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, 1444 GFP_KERNEL); 1445 if (!qpd->doorbell_bitmap) 1446 return -ENOMEM; 1447 1448 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */ 1449 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end); 1450 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", 1451 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1452 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET); 1453 1454 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) { 1455 if (i >= range_start && i <= range_end) { 1456 __set_bit(i, qpd->doorbell_bitmap); 1457 __set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1458 qpd->doorbell_bitmap); 1459 } 1460 } 1461 1462 return 0; 1463 } 1464 1465 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 1466 struct kfd_process *p) 1467 { 1468 int i; 1469 1470 for (i = 0; i < p->n_pdds; i++) 1471 if (p->pdds[i]->dev == dev) 1472 return p->pdds[i]; 1473 1474 return NULL; 1475 } 1476 1477 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 1478 struct kfd_process *p) 1479 { 1480 struct kfd_process_device *pdd = NULL; 1481 1482 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1483 return NULL; 1484 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1485 if (!pdd) 1486 return NULL; 1487 1488 if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) { 1489 pr_err("Failed to alloc doorbell for pdd\n"); 1490 goto err_free_pdd; 1491 } 1492 1493 if (init_doorbell_bitmap(&pdd->qpd, dev)) { 1494 pr_err("Failed to init doorbell for process\n"); 1495 goto err_free_pdd; 1496 } 1497 1498 pdd->dev = dev; 1499 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1500 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1501 pdd->qpd.dqm = dev->dqm; 1502 pdd->qpd.pqm = &p->pqm; 1503 pdd->qpd.evicted = 0; 1504 pdd->qpd.mapped_gws_queue = false; 1505 pdd->process = p; 1506 pdd->bound = PDD_UNBOUND; 1507 pdd->already_dequeued = false; 1508 pdd->runtime_inuse = false; 1509 pdd->vram_usage = 0; 1510 pdd->sdma_past_activity_counter = 0; 1511 pdd->user_gpu_id = dev->id; 1512 atomic64_set(&pdd->evict_duration_counter, 0); 1513 p->pdds[p->n_pdds++] = pdd; 1514 1515 /* Init idr used for memory handle translation */ 1516 idr_init(&pdd->alloc_idr); 1517 1518 return pdd; 1519 1520 err_free_pdd: 1521 kfree(pdd); 1522 return NULL; 1523 } 1524 1525 /** 1526 * kfd_process_device_init_vm - Initialize a VM for a process-device 1527 * 1528 * @pdd: The process-device 1529 * @drm_file: Optional pointer to a DRM file descriptor 1530 * 1531 * If @drm_file is specified, it will be used to acquire the VM from 1532 * that file descriptor. If successful, the @pdd takes ownership of 1533 * the file descriptor. 1534 * 1535 * If @drm_file is NULL, a new VM is created. 1536 * 1537 * Returns 0 on success, -errno on failure. 1538 */ 1539 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1540 struct file *drm_file) 1541 { 1542 struct kfd_process *p; 1543 struct kfd_dev *dev; 1544 int ret; 1545 1546 if (!drm_file) 1547 return -EINVAL; 1548 1549 if (pdd->drm_priv) 1550 return -EBUSY; 1551 1552 p = pdd->process; 1553 dev = pdd->dev; 1554 1555 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm( 1556 dev->adev, drm_file, p->pasid, 1557 &p->kgd_process_info, &p->ef); 1558 if (ret) { 1559 pr_err("Failed to create process VM object\n"); 1560 return ret; 1561 } 1562 pdd->drm_priv = drm_file->private_data; 1563 1564 ret = kfd_process_device_reserve_ib_mem(pdd); 1565 if (ret) 1566 goto err_reserve_ib_mem; 1567 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1568 if (ret) 1569 goto err_init_cwsr; 1570 1571 pdd->drm_file = drm_file; 1572 1573 return 0; 1574 1575 err_init_cwsr: 1576 err_reserve_ib_mem: 1577 kfd_process_device_free_bos(pdd); 1578 pdd->drm_priv = NULL; 1579 1580 return ret; 1581 } 1582 1583 /* 1584 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1585 * to the device. 1586 * Unbinding occurs when the process dies or the device is removed. 1587 * 1588 * Assumes that the process lock is held. 1589 */ 1590 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 1591 struct kfd_process *p) 1592 { 1593 struct kfd_process_device *pdd; 1594 int err; 1595 1596 pdd = kfd_get_process_device_data(dev, p); 1597 if (!pdd) { 1598 pr_err("Process device data doesn't exist\n"); 1599 return ERR_PTR(-ENOMEM); 1600 } 1601 1602 if (!pdd->drm_priv) 1603 return ERR_PTR(-ENODEV); 1604 1605 /* 1606 * signal runtime-pm system to auto resume and prevent 1607 * further runtime suspend once device pdd is created until 1608 * pdd is destroyed. 1609 */ 1610 if (!pdd->runtime_inuse) { 1611 err = pm_runtime_get_sync(dev->ddev->dev); 1612 if (err < 0) { 1613 pm_runtime_put_autosuspend(dev->ddev->dev); 1614 return ERR_PTR(err); 1615 } 1616 } 1617 1618 err = kfd_iommu_bind_process_to_device(pdd); 1619 if (err) 1620 goto out; 1621 1622 /* 1623 * make sure that runtime_usage counter is incremented just once 1624 * per pdd 1625 */ 1626 pdd->runtime_inuse = true; 1627 1628 return pdd; 1629 1630 out: 1631 /* balance runpm reference count and exit with error */ 1632 if (!pdd->runtime_inuse) { 1633 pm_runtime_mark_last_busy(dev->ddev->dev); 1634 pm_runtime_put_autosuspend(dev->ddev->dev); 1635 } 1636 1637 return ERR_PTR(err); 1638 } 1639 1640 /* Create specific handle mapped to mem from process local memory idr 1641 * Assumes that the process lock is held. 1642 */ 1643 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1644 void *mem) 1645 { 1646 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1647 } 1648 1649 /* Translate specific handle from process local memory idr 1650 * Assumes that the process lock is held. 1651 */ 1652 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1653 int handle) 1654 { 1655 if (handle < 0) 1656 return NULL; 1657 1658 return idr_find(&pdd->alloc_idr, handle); 1659 } 1660 1661 /* Remove specific handle from process local memory idr 1662 * Assumes that the process lock is held. 1663 */ 1664 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1665 int handle) 1666 { 1667 if (handle >= 0) 1668 idr_remove(&pdd->alloc_idr, handle); 1669 } 1670 1671 /* This increments the process->ref counter. */ 1672 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) 1673 { 1674 struct kfd_process *p, *ret_p = NULL; 1675 unsigned int temp; 1676 1677 int idx = srcu_read_lock(&kfd_processes_srcu); 1678 1679 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1680 if (p->pasid == pasid) { 1681 kref_get(&p->ref); 1682 ret_p = p; 1683 break; 1684 } 1685 } 1686 1687 srcu_read_unlock(&kfd_processes_srcu, idx); 1688 1689 return ret_p; 1690 } 1691 1692 /* This increments the process->ref counter. */ 1693 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1694 { 1695 struct kfd_process *p; 1696 1697 int idx = srcu_read_lock(&kfd_processes_srcu); 1698 1699 p = find_process_by_mm(mm); 1700 if (p) 1701 kref_get(&p->ref); 1702 1703 srcu_read_unlock(&kfd_processes_srcu, idx); 1704 1705 return p; 1706 } 1707 1708 /* kfd_process_evict_queues - Evict all user queues of a process 1709 * 1710 * Eviction is reference-counted per process-device. This means multiple 1711 * evictions from different sources can be nested safely. 1712 */ 1713 int kfd_process_evict_queues(struct kfd_process *p) 1714 { 1715 int r = 0; 1716 int i; 1717 unsigned int n_evicted = 0; 1718 1719 for (i = 0; i < p->n_pdds; i++) { 1720 struct kfd_process_device *pdd = p->pdds[i]; 1721 1722 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1723 &pdd->qpd); 1724 /* evict return -EIO if HWS is hang or asic is resetting, in this case 1725 * we would like to set all the queues to be in evicted state to prevent 1726 * them been add back since they actually not be saved right now. 1727 */ 1728 if (r && r != -EIO) { 1729 pr_err("Failed to evict process queues\n"); 1730 goto fail; 1731 } 1732 n_evicted++; 1733 } 1734 1735 return r; 1736 1737 fail: 1738 /* To keep state consistent, roll back partial eviction by 1739 * restoring queues 1740 */ 1741 for (i = 0; i < p->n_pdds; i++) { 1742 struct kfd_process_device *pdd = p->pdds[i]; 1743 1744 if (n_evicted == 0) 1745 break; 1746 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1747 &pdd->qpd)) 1748 pr_err("Failed to restore queues\n"); 1749 1750 n_evicted--; 1751 } 1752 1753 return r; 1754 } 1755 1756 /* kfd_process_restore_queues - Restore all user queues of a process */ 1757 int kfd_process_restore_queues(struct kfd_process *p) 1758 { 1759 int r, ret = 0; 1760 int i; 1761 1762 for (i = 0; i < p->n_pdds; i++) { 1763 struct kfd_process_device *pdd = p->pdds[i]; 1764 1765 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1766 &pdd->qpd); 1767 if (r) { 1768 pr_err("Failed to restore process queues\n"); 1769 if (!ret) 1770 ret = r; 1771 } 1772 } 1773 1774 return ret; 1775 } 1776 1777 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 1778 { 1779 int i; 1780 1781 for (i = 0; i < p->n_pdds; i++) 1782 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id) 1783 return i; 1784 return -EINVAL; 1785 } 1786 1787 int 1788 kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev, 1789 uint32_t *gpuid, uint32_t *gpuidx) 1790 { 1791 int i; 1792 1793 for (i = 0; i < p->n_pdds; i++) 1794 if (p->pdds[i] && p->pdds[i]->dev->adev == adev) { 1795 *gpuid = p->pdds[i]->user_gpu_id; 1796 *gpuidx = i; 1797 return 0; 1798 } 1799 return -EINVAL; 1800 } 1801 1802 static void evict_process_worker(struct work_struct *work) 1803 { 1804 int ret; 1805 struct kfd_process *p; 1806 struct delayed_work *dwork; 1807 1808 dwork = to_delayed_work(work); 1809 1810 /* Process termination destroys this worker thread. So during the 1811 * lifetime of this thread, kfd_process p will be valid 1812 */ 1813 p = container_of(dwork, struct kfd_process, eviction_work); 1814 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, 1815 "Eviction fence mismatch\n"); 1816 1817 /* Narrow window of overlap between restore and evict work 1818 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos 1819 * unreserves KFD BOs, it is possible to evicted again. But 1820 * restore has few more steps of finish. So lets wait for any 1821 * previous restore work to complete 1822 */ 1823 flush_delayed_work(&p->restore_work); 1824 1825 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1826 ret = kfd_process_evict_queues(p); 1827 if (!ret) { 1828 dma_fence_signal(p->ef); 1829 dma_fence_put(p->ef); 1830 p->ef = NULL; 1831 queue_delayed_work(kfd_restore_wq, &p->restore_work, 1832 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); 1833 1834 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 1835 } else 1836 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 1837 } 1838 1839 static void restore_process_worker(struct work_struct *work) 1840 { 1841 struct delayed_work *dwork; 1842 struct kfd_process *p; 1843 int ret = 0; 1844 1845 dwork = to_delayed_work(work); 1846 1847 /* Process termination destroys this worker thread. So during the 1848 * lifetime of this thread, kfd_process p will be valid 1849 */ 1850 p = container_of(dwork, struct kfd_process, restore_work); 1851 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 1852 1853 /* Setting last_restore_timestamp before successful restoration. 1854 * Otherwise this would have to be set by KGD (restore_process_bos) 1855 * before KFD BOs are unreserved. If not, the process can be evicted 1856 * again before the timestamp is set. 1857 * If restore fails, the timestamp will be set again in the next 1858 * attempt. This would mean that the minimum GPU quanta would be 1859 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 1860 * functions) 1861 */ 1862 1863 p->last_restore_timestamp = get_jiffies_64(); 1864 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info, 1865 &p->ef); 1866 if (ret) { 1867 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 1868 p->pasid, PROCESS_BACK_OFF_TIME_MS); 1869 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work, 1870 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); 1871 WARN(!ret, "reschedule restore work failed\n"); 1872 return; 1873 } 1874 1875 ret = kfd_process_restore_queues(p); 1876 if (!ret) 1877 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 1878 else 1879 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 1880 } 1881 1882 void kfd_suspend_all_processes(void) 1883 { 1884 struct kfd_process *p; 1885 unsigned int temp; 1886 int idx = srcu_read_lock(&kfd_processes_srcu); 1887 1888 WARN(debug_evictions, "Evicting all processes"); 1889 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1890 cancel_delayed_work_sync(&p->eviction_work); 1891 cancel_delayed_work_sync(&p->restore_work); 1892 1893 if (kfd_process_evict_queues(p)) 1894 pr_err("Failed to suspend process 0x%x\n", p->pasid); 1895 dma_fence_signal(p->ef); 1896 dma_fence_put(p->ef); 1897 p->ef = NULL; 1898 } 1899 srcu_read_unlock(&kfd_processes_srcu, idx); 1900 } 1901 1902 int kfd_resume_all_processes(void) 1903 { 1904 struct kfd_process *p; 1905 unsigned int temp; 1906 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 1907 1908 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1909 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) { 1910 pr_err("Restore process %d failed during resume\n", 1911 p->pasid); 1912 ret = -EFAULT; 1913 } 1914 } 1915 srcu_read_unlock(&kfd_processes_srcu, idx); 1916 return ret; 1917 } 1918 1919 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 1920 struct vm_area_struct *vma) 1921 { 1922 struct kfd_process_device *pdd; 1923 struct qcm_process_device *qpd; 1924 1925 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 1926 pr_err("Incorrect CWSR mapping size.\n"); 1927 return -EINVAL; 1928 } 1929 1930 pdd = kfd_get_process_device_data(dev, process); 1931 if (!pdd) 1932 return -EINVAL; 1933 qpd = &pdd->qpd; 1934 1935 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1936 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1937 if (!qpd->cwsr_kaddr) { 1938 pr_err("Error allocating per process CWSR buffer.\n"); 1939 return -ENOMEM; 1940 } 1941 1942 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND 1943 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; 1944 /* Mapping pages to user process */ 1945 return remap_pfn_range(vma, vma->vm_start, 1946 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 1947 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 1948 } 1949 1950 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type) 1951 { 1952 struct kfd_dev *dev = pdd->dev; 1953 1954 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1955 /* Nothing to flush until a VMID is assigned, which 1956 * only happens when the first queue is created. 1957 */ 1958 if (pdd->qpd.vmid) 1959 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev, 1960 pdd->qpd.vmid); 1961 } else { 1962 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->adev, 1963 pdd->process->pasid, type); 1964 } 1965 } 1966 1967 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id) 1968 { 1969 int i; 1970 1971 if (gpu_id) { 1972 for (i = 0; i < p->n_pdds; i++) { 1973 struct kfd_process_device *pdd = p->pdds[i]; 1974 1975 if (pdd->user_gpu_id == gpu_id) 1976 return pdd; 1977 } 1978 } 1979 return NULL; 1980 } 1981 1982 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id) 1983 { 1984 int i; 1985 1986 if (!actual_gpu_id) 1987 return 0; 1988 1989 for (i = 0; i < p->n_pdds; i++) { 1990 struct kfd_process_device *pdd = p->pdds[i]; 1991 1992 if (pdd->dev->id == actual_gpu_id) 1993 return pdd->user_gpu_id; 1994 } 1995 return -EINVAL; 1996 } 1997 1998 #if defined(CONFIG_DEBUG_FS) 1999 2000 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 2001 { 2002 struct kfd_process *p; 2003 unsigned int temp; 2004 int r = 0; 2005 2006 int idx = srcu_read_lock(&kfd_processes_srcu); 2007 2008 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2009 seq_printf(m, "Process %d PASID 0x%x:\n", 2010 p->lead_thread->tgid, p->pasid); 2011 2012 mutex_lock(&p->mutex); 2013 r = pqm_debugfs_mqds(m, &p->pqm); 2014 mutex_unlock(&p->mutex); 2015 2016 if (r) 2017 break; 2018 } 2019 2020 srcu_read_unlock(&kfd_processes_srcu, idx); 2021 2022 return r; 2023 } 2024 2025 #endif 2026 2027