1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/mutex.h> 24 #include <linux/log2.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/amd-iommu.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 39 struct mm_struct; 40 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_dbgmgr.h" 44 #include "kfd_iommu.h" 45 46 /* 47 * List of struct kfd_process (field kfd_process). 48 * Unique/indexed by mm_struct* 49 */ 50 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 51 static DEFINE_MUTEX(kfd_processes_mutex); 52 53 DEFINE_SRCU(kfd_processes_srcu); 54 55 /* For process termination handling */ 56 static struct workqueue_struct *kfd_process_wq; 57 58 /* Ordered, single-threaded workqueue for restoring evicted 59 * processes. Restoring multiple processes concurrently under memory 60 * pressure can lead to processes blocking each other from validating 61 * their BOs and result in a live-lock situation where processes 62 * remain evicted indefinitely. 63 */ 64 static struct workqueue_struct *kfd_restore_wq; 65 66 static struct kfd_process *find_process(const struct task_struct *thread); 67 static void kfd_process_ref_release(struct kref *ref); 68 static struct kfd_process *create_process(const struct task_struct *thread); 69 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep); 70 71 static void evict_process_worker(struct work_struct *work); 72 static void restore_process_worker(struct work_struct *work); 73 74 struct kfd_procfs_tree { 75 struct kobject *kobj; 76 }; 77 78 static struct kfd_procfs_tree procfs; 79 80 /* 81 * Structure for SDMA activity tracking 82 */ 83 struct kfd_sdma_activity_handler_workarea { 84 struct work_struct sdma_activity_work; 85 struct kfd_process_device *pdd; 86 uint64_t sdma_activity_counter; 87 }; 88 89 struct temp_sdma_queue_list { 90 uint64_t rptr; 91 uint64_t sdma_val; 92 unsigned int queue_id; 93 struct list_head list; 94 }; 95 96 static void kfd_sdma_activity_worker(struct work_struct *work) 97 { 98 struct kfd_sdma_activity_handler_workarea *workarea; 99 struct kfd_process_device *pdd; 100 uint64_t val; 101 struct mm_struct *mm; 102 struct queue *q; 103 struct qcm_process_device *qpd; 104 struct device_queue_manager *dqm; 105 int ret = 0; 106 struct temp_sdma_queue_list sdma_q_list; 107 struct temp_sdma_queue_list *sdma_q, *next; 108 109 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 110 sdma_activity_work); 111 if (!workarea) 112 return; 113 114 pdd = workarea->pdd; 115 if (!pdd) 116 return; 117 dqm = pdd->dev->dqm; 118 qpd = &pdd->qpd; 119 if (!dqm || !qpd) 120 return; 121 /* 122 * Total SDMA activity is current SDMA activity + past SDMA activity 123 * Past SDMA count is stored in pdd. 124 * To get the current activity counters for all active SDMA queues, 125 * we loop over all SDMA queues and get their counts from user-space. 126 * 127 * We cannot call get_user() with dqm_lock held as it can cause 128 * a circular lock dependency situation. To read the SDMA stats, 129 * we need to do the following: 130 * 131 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 132 * with dqm_lock/dqm_unlock(). 133 * 2. Call get_user() for each node in temporary list without dqm_lock. 134 * Save the SDMA count for each node and also add the count to the total 135 * SDMA count counter. 136 * Its possible, during this step, a few SDMA queue nodes got deleted 137 * from the qpd->queues_list. 138 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 139 * If any node got deleted, its SDMA count would be captured in the sdma 140 * past activity counter. So subtract the SDMA counter stored in step 2 141 * for this node from the total SDMA count. 142 */ 143 INIT_LIST_HEAD(&sdma_q_list.list); 144 145 /* 146 * Create the temp list of all SDMA queues 147 */ 148 dqm_lock(dqm); 149 150 list_for_each_entry(q, &qpd->queues_list, list) { 151 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 152 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 153 continue; 154 155 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 156 if (!sdma_q) { 157 dqm_unlock(dqm); 158 goto cleanup; 159 } 160 161 INIT_LIST_HEAD(&sdma_q->list); 162 sdma_q->rptr = (uint64_t)q->properties.read_ptr; 163 sdma_q->queue_id = q->properties.queue_id; 164 list_add_tail(&sdma_q->list, &sdma_q_list.list); 165 } 166 167 /* 168 * If the temp list is empty, then no SDMA queues nodes were found in 169 * qpd->queues_list. Return the past activity count as the total sdma 170 * count 171 */ 172 if (list_empty(&sdma_q_list.list)) { 173 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 174 dqm_unlock(dqm); 175 return; 176 } 177 178 dqm_unlock(dqm); 179 180 /* 181 * Get the usage count for each SDMA queue in temp_list. 182 */ 183 mm = get_task_mm(pdd->process->lead_thread); 184 if (!mm) 185 goto cleanup; 186 187 kthread_use_mm(mm); 188 189 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 190 val = 0; 191 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 192 if (ret) { 193 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 194 sdma_q->queue_id); 195 } else { 196 sdma_q->sdma_val = val; 197 workarea->sdma_activity_counter += val; 198 } 199 } 200 201 kthread_unuse_mm(mm); 202 mmput(mm); 203 204 /* 205 * Do a second iteration over qpd_queues_list to check if any SDMA 206 * nodes got deleted while fetching SDMA counter. 207 */ 208 dqm_lock(dqm); 209 210 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 211 212 list_for_each_entry(q, &qpd->queues_list, list) { 213 if (list_empty(&sdma_q_list.list)) 214 break; 215 216 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 217 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 218 continue; 219 220 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 221 if (((uint64_t)q->properties.read_ptr == sdma_q->rptr) && 222 (sdma_q->queue_id == q->properties.queue_id)) { 223 list_del(&sdma_q->list); 224 kfree(sdma_q); 225 break; 226 } 227 } 228 } 229 230 dqm_unlock(dqm); 231 232 /* 233 * If temp list is not empty, it implies some queues got deleted 234 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 235 * count for each node from the total SDMA count. 236 */ 237 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 238 workarea->sdma_activity_counter -= sdma_q->sdma_val; 239 list_del(&sdma_q->list); 240 kfree(sdma_q); 241 } 242 243 return; 244 245 cleanup: 246 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 247 list_del(&sdma_q->list); 248 kfree(sdma_q); 249 } 250 } 251 252 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 253 char *buffer) 254 { 255 if (strcmp(attr->name, "pasid") == 0) { 256 struct kfd_process *p = container_of(attr, struct kfd_process, 257 attr_pasid); 258 259 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 260 } else if (strncmp(attr->name, "vram_", 5) == 0) { 261 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 262 attr_vram); 263 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage)); 264 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 265 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 266 attr_sdma); 267 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 268 269 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work, 270 kfd_sdma_activity_worker); 271 272 sdma_activity_work_handler.pdd = pdd; 273 274 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 275 276 flush_work(&sdma_activity_work_handler.sdma_activity_work); 277 278 return snprintf(buffer, PAGE_SIZE, "%llu\n", 279 (sdma_activity_work_handler.sdma_activity_counter)/ 280 SDMA_ACTIVITY_DIVISOR); 281 } else { 282 pr_err("Invalid attribute"); 283 return -EINVAL; 284 } 285 286 return 0; 287 } 288 289 static void kfd_procfs_kobj_release(struct kobject *kobj) 290 { 291 kfree(kobj); 292 } 293 294 static const struct sysfs_ops kfd_procfs_ops = { 295 .show = kfd_procfs_show, 296 }; 297 298 static struct kobj_type procfs_type = { 299 .release = kfd_procfs_kobj_release, 300 .sysfs_ops = &kfd_procfs_ops, 301 }; 302 303 void kfd_procfs_init(void) 304 { 305 int ret = 0; 306 307 procfs.kobj = kfd_alloc_struct(procfs.kobj); 308 if (!procfs.kobj) 309 return; 310 311 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 312 &kfd_device->kobj, "proc"); 313 if (ret) { 314 pr_warn("Could not create procfs proc folder"); 315 /* If we fail to create the procfs, clean up */ 316 kfd_procfs_shutdown(); 317 } 318 } 319 320 void kfd_procfs_shutdown(void) 321 { 322 if (procfs.kobj) { 323 kobject_del(procfs.kobj); 324 kobject_put(procfs.kobj); 325 procfs.kobj = NULL; 326 } 327 } 328 329 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 330 struct attribute *attr, char *buffer) 331 { 332 struct queue *q = container_of(kobj, struct queue, kobj); 333 334 if (!strcmp(attr->name, "size")) 335 return snprintf(buffer, PAGE_SIZE, "%llu", 336 q->properties.queue_size); 337 else if (!strcmp(attr->name, "type")) 338 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 339 else if (!strcmp(attr->name, "gpuid")) 340 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 341 else 342 pr_err("Invalid attribute"); 343 344 return 0; 345 } 346 347 static struct attribute attr_queue_size = { 348 .name = "size", 349 .mode = KFD_SYSFS_FILE_MODE 350 }; 351 352 static struct attribute attr_queue_type = { 353 .name = "type", 354 .mode = KFD_SYSFS_FILE_MODE 355 }; 356 357 static struct attribute attr_queue_gpuid = { 358 .name = "gpuid", 359 .mode = KFD_SYSFS_FILE_MODE 360 }; 361 362 static struct attribute *procfs_queue_attrs[] = { 363 &attr_queue_size, 364 &attr_queue_type, 365 &attr_queue_gpuid, 366 NULL 367 }; 368 369 static const struct sysfs_ops procfs_queue_ops = { 370 .show = kfd_procfs_queue_show, 371 }; 372 373 static struct kobj_type procfs_queue_type = { 374 .sysfs_ops = &procfs_queue_ops, 375 .default_attrs = procfs_queue_attrs, 376 }; 377 378 int kfd_procfs_add_queue(struct queue *q) 379 { 380 struct kfd_process *proc; 381 int ret; 382 383 if (!q || !q->process) 384 return -EINVAL; 385 proc = q->process; 386 387 /* Create proc/<pid>/queues/<queue id> folder */ 388 if (!proc->kobj_queues) 389 return -EFAULT; 390 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 391 proc->kobj_queues, "%u", q->properties.queue_id); 392 if (ret < 0) { 393 pr_warn("Creating proc/<pid>/queues/%u failed", 394 q->properties.queue_id); 395 kobject_put(&q->kobj); 396 return ret; 397 } 398 399 return 0; 400 } 401 402 static int kfd_sysfs_create_file(struct kfd_process *p, struct attribute *attr, 403 char *name) 404 { 405 int ret = 0; 406 407 if (!p || !attr || !name) 408 return -EINVAL; 409 410 attr->name = name; 411 attr->mode = KFD_SYSFS_FILE_MODE; 412 sysfs_attr_init(attr); 413 414 ret = sysfs_create_file(p->kobj, attr); 415 416 return ret; 417 } 418 419 static int kfd_procfs_add_sysfs_files(struct kfd_process *p) 420 { 421 int ret = 0; 422 struct kfd_process_device *pdd; 423 424 if (!p) 425 return -EINVAL; 426 427 if (!p->kobj) 428 return -EFAULT; 429 430 /* 431 * Create sysfs files for each GPU: 432 * - proc/<pid>/vram_<gpuid> 433 * - proc/<pid>/sdma_<gpuid> 434 */ 435 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 436 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 437 pdd->dev->id); 438 ret = kfd_sysfs_create_file(p, &pdd->attr_vram, pdd->vram_filename); 439 if (ret) 440 pr_warn("Creating vram usage for gpu id %d failed", 441 (int)pdd->dev->id); 442 443 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 444 pdd->dev->id); 445 ret = kfd_sysfs_create_file(p, &pdd->attr_sdma, pdd->sdma_filename); 446 if (ret) 447 pr_warn("Creating sdma usage for gpu id %d failed", 448 (int)pdd->dev->id); 449 } 450 451 return ret; 452 } 453 454 455 void kfd_procfs_del_queue(struct queue *q) 456 { 457 if (!q) 458 return; 459 460 kobject_del(&q->kobj); 461 kobject_put(&q->kobj); 462 } 463 464 int kfd_process_create_wq(void) 465 { 466 if (!kfd_process_wq) 467 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 468 if (!kfd_restore_wq) 469 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0); 470 471 if (!kfd_process_wq || !kfd_restore_wq) { 472 kfd_process_destroy_wq(); 473 return -ENOMEM; 474 } 475 476 return 0; 477 } 478 479 void kfd_process_destroy_wq(void) 480 { 481 if (kfd_process_wq) { 482 destroy_workqueue(kfd_process_wq); 483 kfd_process_wq = NULL; 484 } 485 if (kfd_restore_wq) { 486 destroy_workqueue(kfd_restore_wq); 487 kfd_restore_wq = NULL; 488 } 489 } 490 491 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 492 struct kfd_process_device *pdd) 493 { 494 struct kfd_dev *dev = pdd->dev; 495 496 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->vm); 497 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, NULL); 498 } 499 500 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 501 * This function should be only called right after the process 502 * is created and when kfd_processes_mutex is still being held 503 * to avoid concurrency. Because of that exclusiveness, we do 504 * not need to take p->mutex. 505 */ 506 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 507 uint64_t gpu_va, uint32_t size, 508 uint32_t flags, void **kptr) 509 { 510 struct kfd_dev *kdev = pdd->dev; 511 struct kgd_mem *mem = NULL; 512 int handle; 513 int err; 514 515 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size, 516 pdd->vm, &mem, NULL, flags); 517 if (err) 518 goto err_alloc_mem; 519 520 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->vm); 521 if (err) 522 goto err_map_mem; 523 524 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true); 525 if (err) { 526 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 527 goto sync_memory_failed; 528 } 529 530 /* Create an obj handle so kfd_process_device_remove_obj_handle 531 * will take care of the bo removal when the process finishes. 532 * We do not need to take p->mutex, because the process is just 533 * created and the ioctls have not had the chance to run. 534 */ 535 handle = kfd_process_device_create_obj_handle(pdd, mem); 536 537 if (handle < 0) { 538 err = handle; 539 goto free_gpuvm; 540 } 541 542 if (kptr) { 543 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd, 544 (struct kgd_mem *)mem, kptr, NULL); 545 if (err) { 546 pr_debug("Map GTT BO to kernel failed\n"); 547 goto free_obj_handle; 548 } 549 } 550 551 return err; 552 553 free_obj_handle: 554 kfd_process_device_remove_obj_handle(pdd, handle); 555 free_gpuvm: 556 sync_memory_failed: 557 kfd_process_free_gpuvm(mem, pdd); 558 return err; 559 560 err_map_mem: 561 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, NULL); 562 err_alloc_mem: 563 *kptr = NULL; 564 return err; 565 } 566 567 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 568 * process for IB usage The memory reserved is for KFD to submit 569 * IB to AMDGPU from kernel. If the memory is reserved 570 * successfully, ib_kaddr will have the CPU/kernel 571 * address. Check ib_kaddr before accessing the memory. 572 */ 573 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 574 { 575 struct qcm_process_device *qpd = &pdd->qpd; 576 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 577 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 578 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 579 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 580 void *kaddr; 581 int ret; 582 583 if (qpd->ib_kaddr || !qpd->ib_base) 584 return 0; 585 586 /* ib_base is only set for dGPU */ 587 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 588 &kaddr); 589 if (ret) 590 return ret; 591 592 qpd->ib_kaddr = kaddr; 593 594 return 0; 595 } 596 597 struct kfd_process *kfd_create_process(struct file *filep) 598 { 599 struct kfd_process *process; 600 struct task_struct *thread = current; 601 int ret; 602 603 if (!thread->mm) 604 return ERR_PTR(-EINVAL); 605 606 /* Only the pthreads threading model is supported. */ 607 if (thread->group_leader->mm != thread->mm) 608 return ERR_PTR(-EINVAL); 609 610 /* 611 * take kfd processes mutex before starting of process creation 612 * so there won't be a case where two threads of the same process 613 * create two kfd_process structures 614 */ 615 mutex_lock(&kfd_processes_mutex); 616 617 /* A prior open of /dev/kfd could have already created the process. */ 618 process = find_process(thread); 619 if (process) { 620 pr_debug("Process already found\n"); 621 } else { 622 process = create_process(thread); 623 if (IS_ERR(process)) 624 goto out; 625 626 ret = kfd_process_init_cwsr_apu(process, filep); 627 if (ret) { 628 process = ERR_PTR(ret); 629 goto out; 630 } 631 632 if (!procfs.kobj) 633 goto out; 634 635 process->kobj = kfd_alloc_struct(process->kobj); 636 if (!process->kobj) { 637 pr_warn("Creating procfs kobject failed"); 638 goto out; 639 } 640 ret = kobject_init_and_add(process->kobj, &procfs_type, 641 procfs.kobj, "%d", 642 (int)process->lead_thread->pid); 643 if (ret) { 644 pr_warn("Creating procfs pid directory failed"); 645 kobject_put(process->kobj); 646 goto out; 647 } 648 649 process->attr_pasid.name = "pasid"; 650 process->attr_pasid.mode = KFD_SYSFS_FILE_MODE; 651 sysfs_attr_init(&process->attr_pasid); 652 ret = sysfs_create_file(process->kobj, &process->attr_pasid); 653 if (ret) 654 pr_warn("Creating pasid for pid %d failed", 655 (int)process->lead_thread->pid); 656 657 process->kobj_queues = kobject_create_and_add("queues", 658 process->kobj); 659 if (!process->kobj_queues) 660 pr_warn("Creating KFD proc/queues folder failed"); 661 662 ret = kfd_procfs_add_sysfs_files(process); 663 if (ret) 664 pr_warn("Creating sysfs usage file for pid %d failed", 665 (int)process->lead_thread->pid); 666 } 667 out: 668 if (!IS_ERR(process)) 669 kref_get(&process->ref); 670 mutex_unlock(&kfd_processes_mutex); 671 672 return process; 673 } 674 675 struct kfd_process *kfd_get_process(const struct task_struct *thread) 676 { 677 struct kfd_process *process; 678 679 if (!thread->mm) 680 return ERR_PTR(-EINVAL); 681 682 /* Only the pthreads threading model is supported. */ 683 if (thread->group_leader->mm != thread->mm) 684 return ERR_PTR(-EINVAL); 685 686 process = find_process(thread); 687 if (!process) 688 return ERR_PTR(-EINVAL); 689 690 return process; 691 } 692 693 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 694 { 695 struct kfd_process *process; 696 697 hash_for_each_possible_rcu(kfd_processes_table, process, 698 kfd_processes, (uintptr_t)mm) 699 if (process->mm == mm) 700 return process; 701 702 return NULL; 703 } 704 705 static struct kfd_process *find_process(const struct task_struct *thread) 706 { 707 struct kfd_process *p; 708 int idx; 709 710 idx = srcu_read_lock(&kfd_processes_srcu); 711 p = find_process_by_mm(thread->mm); 712 srcu_read_unlock(&kfd_processes_srcu, idx); 713 714 return p; 715 } 716 717 void kfd_unref_process(struct kfd_process *p) 718 { 719 kref_put(&p->ref, kfd_process_ref_release); 720 } 721 722 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 723 { 724 struct kfd_process *p = pdd->process; 725 void *mem; 726 int id; 727 728 /* 729 * Remove all handles from idr and release appropriate 730 * local memory object 731 */ 732 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 733 struct kfd_process_device *peer_pdd; 734 735 list_for_each_entry(peer_pdd, &p->per_device_data, 736 per_device_list) { 737 if (!peer_pdd->vm) 738 continue; 739 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 740 peer_pdd->dev->kgd, mem, peer_pdd->vm); 741 } 742 743 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem, NULL); 744 kfd_process_device_remove_obj_handle(pdd, id); 745 } 746 } 747 748 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 749 { 750 struct kfd_process_device *pdd; 751 752 list_for_each_entry(pdd, &p->per_device_data, per_device_list) 753 kfd_process_device_free_bos(pdd); 754 } 755 756 static void kfd_process_destroy_pdds(struct kfd_process *p) 757 { 758 struct kfd_process_device *pdd, *temp; 759 760 list_for_each_entry_safe(pdd, temp, &p->per_device_data, 761 per_device_list) { 762 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 763 pdd->dev->id, p->pasid); 764 765 if (pdd->drm_file) { 766 amdgpu_amdkfd_gpuvm_release_process_vm( 767 pdd->dev->kgd, pdd->vm); 768 fput(pdd->drm_file); 769 } 770 else if (pdd->vm) 771 amdgpu_amdkfd_gpuvm_destroy_process_vm( 772 pdd->dev->kgd, pdd->vm); 773 774 list_del(&pdd->per_device_list); 775 776 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 777 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 778 get_order(KFD_CWSR_TBA_TMA_SIZE)); 779 780 kfree(pdd->qpd.doorbell_bitmap); 781 idr_destroy(&pdd->alloc_idr); 782 783 /* 784 * before destroying pdd, make sure to report availability 785 * for auto suspend 786 */ 787 if (pdd->runtime_inuse) { 788 pm_runtime_mark_last_busy(pdd->dev->ddev->dev); 789 pm_runtime_put_autosuspend(pdd->dev->ddev->dev); 790 pdd->runtime_inuse = false; 791 } 792 793 kfree(pdd); 794 } 795 } 796 797 /* No process locking is needed in this function, because the process 798 * is not findable any more. We must assume that no other thread is 799 * using it any more, otherwise we couldn't safely free the process 800 * structure in the end. 801 */ 802 static void kfd_process_wq_release(struct work_struct *work) 803 { 804 struct kfd_process *p = container_of(work, struct kfd_process, 805 release_work); 806 struct kfd_process_device *pdd; 807 808 /* Remove the procfs files */ 809 if (p->kobj) { 810 sysfs_remove_file(p->kobj, &p->attr_pasid); 811 kobject_del(p->kobj_queues); 812 kobject_put(p->kobj_queues); 813 p->kobj_queues = NULL; 814 815 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 816 sysfs_remove_file(p->kobj, &pdd->attr_vram); 817 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 818 } 819 820 kobject_del(p->kobj); 821 kobject_put(p->kobj); 822 p->kobj = NULL; 823 } 824 825 kfd_iommu_unbind_process(p); 826 827 kfd_process_free_outstanding_kfd_bos(p); 828 829 kfd_process_destroy_pdds(p); 830 dma_fence_put(p->ef); 831 832 kfd_event_free_process(p); 833 834 kfd_pasid_free(p->pasid); 835 kfd_free_process_doorbells(p); 836 837 mutex_destroy(&p->mutex); 838 839 put_task_struct(p->lead_thread); 840 841 kfree(p); 842 } 843 844 static void kfd_process_ref_release(struct kref *ref) 845 { 846 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 847 848 INIT_WORK(&p->release_work, kfd_process_wq_release); 849 queue_work(kfd_process_wq, &p->release_work); 850 } 851 852 static void kfd_process_free_notifier(struct mmu_notifier *mn) 853 { 854 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 855 } 856 857 static void kfd_process_notifier_release(struct mmu_notifier *mn, 858 struct mm_struct *mm) 859 { 860 struct kfd_process *p; 861 struct kfd_process_device *pdd = NULL; 862 863 /* 864 * The kfd_process structure can not be free because the 865 * mmu_notifier srcu is read locked 866 */ 867 p = container_of(mn, struct kfd_process, mmu_notifier); 868 if (WARN_ON(p->mm != mm)) 869 return; 870 871 mutex_lock(&kfd_processes_mutex); 872 hash_del_rcu(&p->kfd_processes); 873 mutex_unlock(&kfd_processes_mutex); 874 synchronize_srcu(&kfd_processes_srcu); 875 876 cancel_delayed_work_sync(&p->eviction_work); 877 cancel_delayed_work_sync(&p->restore_work); 878 879 mutex_lock(&p->mutex); 880 881 /* Iterate over all process device data structures and if the 882 * pdd is in debug mode, we should first force unregistration, 883 * then we will be able to destroy the queues 884 */ 885 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 886 struct kfd_dev *dev = pdd->dev; 887 888 mutex_lock(kfd_get_dbgmgr_mutex()); 889 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) { 890 if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) { 891 kfd_dbgmgr_destroy(dev->dbgmgr); 892 dev->dbgmgr = NULL; 893 } 894 } 895 mutex_unlock(kfd_get_dbgmgr_mutex()); 896 } 897 898 kfd_process_dequeue_from_all_devices(p); 899 pqm_uninit(&p->pqm); 900 901 /* Indicate to other users that MM is no longer valid */ 902 p->mm = NULL; 903 /* Signal the eviction fence after user mode queues are 904 * destroyed. This allows any BOs to be freed without 905 * triggering pointless evictions or waiting for fences. 906 */ 907 dma_fence_signal(p->ef); 908 909 mutex_unlock(&p->mutex); 910 911 mmu_notifier_put(&p->mmu_notifier); 912 } 913 914 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 915 .release = kfd_process_notifier_release, 916 .free_notifier = kfd_process_free_notifier, 917 }; 918 919 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 920 { 921 unsigned long offset; 922 struct kfd_process_device *pdd; 923 924 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 925 struct kfd_dev *dev = pdd->dev; 926 struct qcm_process_device *qpd = &pdd->qpd; 927 928 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 929 continue; 930 931 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 932 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 933 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 934 MAP_SHARED, offset); 935 936 if (IS_ERR_VALUE(qpd->tba_addr)) { 937 int err = qpd->tba_addr; 938 939 pr_err("Failure to set tba address. error %d.\n", err); 940 qpd->tba_addr = 0; 941 qpd->cwsr_kaddr = NULL; 942 return err; 943 } 944 945 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 946 947 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 948 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 949 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 950 } 951 952 return 0; 953 } 954 955 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 956 { 957 struct kfd_dev *dev = pdd->dev; 958 struct qcm_process_device *qpd = &pdd->qpd; 959 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 960 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 961 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 962 void *kaddr; 963 int ret; 964 965 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 966 return 0; 967 968 /* cwsr_base is only set for dGPU */ 969 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 970 KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr); 971 if (ret) 972 return ret; 973 974 qpd->cwsr_kaddr = kaddr; 975 qpd->tba_addr = qpd->cwsr_base; 976 977 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 978 979 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 980 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 981 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 982 983 return 0; 984 } 985 986 /* 987 * On return the kfd_process is fully operational and will be freed when the 988 * mm is released 989 */ 990 static struct kfd_process *create_process(const struct task_struct *thread) 991 { 992 struct kfd_process *process; 993 int err = -ENOMEM; 994 995 process = kzalloc(sizeof(*process), GFP_KERNEL); 996 if (!process) 997 goto err_alloc_process; 998 999 kref_init(&process->ref); 1000 mutex_init(&process->mutex); 1001 process->mm = thread->mm; 1002 process->lead_thread = thread->group_leader; 1003 INIT_LIST_HEAD(&process->per_device_data); 1004 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1005 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1006 process->last_restore_timestamp = get_jiffies_64(); 1007 kfd_event_init_process(process); 1008 process->is_32bit_user_mode = in_compat_syscall(); 1009 1010 process->pasid = kfd_pasid_alloc(); 1011 if (process->pasid == 0) 1012 goto err_alloc_pasid; 1013 1014 if (kfd_alloc_process_doorbells(process) < 0) 1015 goto err_alloc_doorbells; 1016 1017 err = pqm_init(&process->pqm, process); 1018 if (err != 0) 1019 goto err_process_pqm_init; 1020 1021 /* init process apertures*/ 1022 err = kfd_init_apertures(process); 1023 if (err != 0) 1024 goto err_init_apertures; 1025 1026 /* Must be last, have to use release destruction after this */ 1027 process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops; 1028 err = mmu_notifier_register(&process->mmu_notifier, process->mm); 1029 if (err) 1030 goto err_register_notifier; 1031 1032 get_task_struct(process->lead_thread); 1033 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1034 (uintptr_t)process->mm); 1035 1036 return process; 1037 1038 err_register_notifier: 1039 kfd_process_free_outstanding_kfd_bos(process); 1040 kfd_process_destroy_pdds(process); 1041 err_init_apertures: 1042 pqm_uninit(&process->pqm); 1043 err_process_pqm_init: 1044 kfd_free_process_doorbells(process); 1045 err_alloc_doorbells: 1046 kfd_pasid_free(process->pasid); 1047 err_alloc_pasid: 1048 mutex_destroy(&process->mutex); 1049 kfree(process); 1050 err_alloc_process: 1051 return ERR_PTR(err); 1052 } 1053 1054 static int init_doorbell_bitmap(struct qcm_process_device *qpd, 1055 struct kfd_dev *dev) 1056 { 1057 unsigned int i; 1058 int range_start = dev->shared_resources.non_cp_doorbells_start; 1059 int range_end = dev->shared_resources.non_cp_doorbells_end; 1060 1061 if (!KFD_IS_SOC15(dev->device_info->asic_family)) 1062 return 0; 1063 1064 qpd->doorbell_bitmap = 1065 kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, 1066 BITS_PER_BYTE), GFP_KERNEL); 1067 if (!qpd->doorbell_bitmap) 1068 return -ENOMEM; 1069 1070 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */ 1071 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end); 1072 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", 1073 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1074 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET); 1075 1076 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) { 1077 if (i >= range_start && i <= range_end) { 1078 set_bit(i, qpd->doorbell_bitmap); 1079 set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1080 qpd->doorbell_bitmap); 1081 } 1082 } 1083 1084 return 0; 1085 } 1086 1087 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 1088 struct kfd_process *p) 1089 { 1090 struct kfd_process_device *pdd = NULL; 1091 1092 list_for_each_entry(pdd, &p->per_device_data, per_device_list) 1093 if (pdd->dev == dev) 1094 return pdd; 1095 1096 return NULL; 1097 } 1098 1099 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 1100 struct kfd_process *p) 1101 { 1102 struct kfd_process_device *pdd = NULL; 1103 1104 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1105 if (!pdd) 1106 return NULL; 1107 1108 if (init_doorbell_bitmap(&pdd->qpd, dev)) { 1109 pr_err("Failed to init doorbell for process\n"); 1110 kfree(pdd); 1111 return NULL; 1112 } 1113 1114 pdd->dev = dev; 1115 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1116 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1117 pdd->qpd.dqm = dev->dqm; 1118 pdd->qpd.pqm = &p->pqm; 1119 pdd->qpd.evicted = 0; 1120 pdd->qpd.mapped_gws_queue = false; 1121 pdd->process = p; 1122 pdd->bound = PDD_UNBOUND; 1123 pdd->already_dequeued = false; 1124 pdd->runtime_inuse = false; 1125 pdd->vram_usage = 0; 1126 pdd->sdma_past_activity_counter = 0; 1127 list_add(&pdd->per_device_list, &p->per_device_data); 1128 1129 /* Init idr used for memory handle translation */ 1130 idr_init(&pdd->alloc_idr); 1131 1132 return pdd; 1133 } 1134 1135 /** 1136 * kfd_process_device_init_vm - Initialize a VM for a process-device 1137 * 1138 * @pdd: The process-device 1139 * @drm_file: Optional pointer to a DRM file descriptor 1140 * 1141 * If @drm_file is specified, it will be used to acquire the VM from 1142 * that file descriptor. If successful, the @pdd takes ownership of 1143 * the file descriptor. 1144 * 1145 * If @drm_file is NULL, a new VM is created. 1146 * 1147 * Returns 0 on success, -errno on failure. 1148 */ 1149 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1150 struct file *drm_file) 1151 { 1152 struct kfd_process *p; 1153 struct kfd_dev *dev; 1154 int ret; 1155 1156 if (pdd->vm) 1157 return drm_file ? -EBUSY : 0; 1158 1159 p = pdd->process; 1160 dev = pdd->dev; 1161 1162 if (drm_file) 1163 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm( 1164 dev->kgd, drm_file, p->pasid, 1165 &pdd->vm, &p->kgd_process_info, &p->ef); 1166 else 1167 ret = amdgpu_amdkfd_gpuvm_create_process_vm(dev->kgd, p->pasid, 1168 &pdd->vm, &p->kgd_process_info, &p->ef); 1169 if (ret) { 1170 pr_err("Failed to create process VM object\n"); 1171 return ret; 1172 } 1173 1174 amdgpu_vm_set_task_info(pdd->vm); 1175 1176 ret = kfd_process_device_reserve_ib_mem(pdd); 1177 if (ret) 1178 goto err_reserve_ib_mem; 1179 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1180 if (ret) 1181 goto err_init_cwsr; 1182 1183 pdd->drm_file = drm_file; 1184 1185 return 0; 1186 1187 err_init_cwsr: 1188 err_reserve_ib_mem: 1189 kfd_process_device_free_bos(pdd); 1190 if (!drm_file) 1191 amdgpu_amdkfd_gpuvm_destroy_process_vm(dev->kgd, pdd->vm); 1192 pdd->vm = NULL; 1193 1194 return ret; 1195 } 1196 1197 /* 1198 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1199 * to the device. 1200 * Unbinding occurs when the process dies or the device is removed. 1201 * 1202 * Assumes that the process lock is held. 1203 */ 1204 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 1205 struct kfd_process *p) 1206 { 1207 struct kfd_process_device *pdd; 1208 int err; 1209 1210 pdd = kfd_get_process_device_data(dev, p); 1211 if (!pdd) { 1212 pr_err("Process device data doesn't exist\n"); 1213 return ERR_PTR(-ENOMEM); 1214 } 1215 1216 /* 1217 * signal runtime-pm system to auto resume and prevent 1218 * further runtime suspend once device pdd is created until 1219 * pdd is destroyed. 1220 */ 1221 if (!pdd->runtime_inuse) { 1222 err = pm_runtime_get_sync(dev->ddev->dev); 1223 if (err < 0) { 1224 pm_runtime_put_autosuspend(dev->ddev->dev); 1225 return ERR_PTR(err); 1226 } 1227 } 1228 1229 err = kfd_iommu_bind_process_to_device(pdd); 1230 if (err) 1231 goto out; 1232 1233 err = kfd_process_device_init_vm(pdd, NULL); 1234 if (err) 1235 goto out; 1236 1237 /* 1238 * make sure that runtime_usage counter is incremented just once 1239 * per pdd 1240 */ 1241 pdd->runtime_inuse = true; 1242 1243 return pdd; 1244 1245 out: 1246 /* balance runpm reference count and exit with error */ 1247 if (!pdd->runtime_inuse) { 1248 pm_runtime_mark_last_busy(dev->ddev->dev); 1249 pm_runtime_put_autosuspend(dev->ddev->dev); 1250 } 1251 1252 return ERR_PTR(err); 1253 } 1254 1255 struct kfd_process_device *kfd_get_first_process_device_data( 1256 struct kfd_process *p) 1257 { 1258 return list_first_entry(&p->per_device_data, 1259 struct kfd_process_device, 1260 per_device_list); 1261 } 1262 1263 struct kfd_process_device *kfd_get_next_process_device_data( 1264 struct kfd_process *p, 1265 struct kfd_process_device *pdd) 1266 { 1267 if (list_is_last(&pdd->per_device_list, &p->per_device_data)) 1268 return NULL; 1269 return list_next_entry(pdd, per_device_list); 1270 } 1271 1272 bool kfd_has_process_device_data(struct kfd_process *p) 1273 { 1274 return !(list_empty(&p->per_device_data)); 1275 } 1276 1277 /* Create specific handle mapped to mem from process local memory idr 1278 * Assumes that the process lock is held. 1279 */ 1280 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1281 void *mem) 1282 { 1283 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1284 } 1285 1286 /* Translate specific handle from process local memory idr 1287 * Assumes that the process lock is held. 1288 */ 1289 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1290 int handle) 1291 { 1292 if (handle < 0) 1293 return NULL; 1294 1295 return idr_find(&pdd->alloc_idr, handle); 1296 } 1297 1298 /* Remove specific handle from process local memory idr 1299 * Assumes that the process lock is held. 1300 */ 1301 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1302 int handle) 1303 { 1304 if (handle >= 0) 1305 idr_remove(&pdd->alloc_idr, handle); 1306 } 1307 1308 /* This increments the process->ref counter. */ 1309 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid) 1310 { 1311 struct kfd_process *p, *ret_p = NULL; 1312 unsigned int temp; 1313 1314 int idx = srcu_read_lock(&kfd_processes_srcu); 1315 1316 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1317 if (p->pasid == pasid) { 1318 kref_get(&p->ref); 1319 ret_p = p; 1320 break; 1321 } 1322 } 1323 1324 srcu_read_unlock(&kfd_processes_srcu, idx); 1325 1326 return ret_p; 1327 } 1328 1329 /* This increments the process->ref counter. */ 1330 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1331 { 1332 struct kfd_process *p; 1333 1334 int idx = srcu_read_lock(&kfd_processes_srcu); 1335 1336 p = find_process_by_mm(mm); 1337 if (p) 1338 kref_get(&p->ref); 1339 1340 srcu_read_unlock(&kfd_processes_srcu, idx); 1341 1342 return p; 1343 } 1344 1345 /* kfd_process_evict_queues - Evict all user queues of a process 1346 * 1347 * Eviction is reference-counted per process-device. This means multiple 1348 * evictions from different sources can be nested safely. 1349 */ 1350 int kfd_process_evict_queues(struct kfd_process *p) 1351 { 1352 struct kfd_process_device *pdd; 1353 int r = 0; 1354 unsigned int n_evicted = 0; 1355 1356 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 1357 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1358 &pdd->qpd); 1359 if (r) { 1360 pr_err("Failed to evict process queues\n"); 1361 goto fail; 1362 } 1363 n_evicted++; 1364 } 1365 1366 return r; 1367 1368 fail: 1369 /* To keep state consistent, roll back partial eviction by 1370 * restoring queues 1371 */ 1372 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 1373 if (n_evicted == 0) 1374 break; 1375 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1376 &pdd->qpd)) 1377 pr_err("Failed to restore queues\n"); 1378 1379 n_evicted--; 1380 } 1381 1382 return r; 1383 } 1384 1385 /* kfd_process_restore_queues - Restore all user queues of a process */ 1386 int kfd_process_restore_queues(struct kfd_process *p) 1387 { 1388 struct kfd_process_device *pdd; 1389 int r, ret = 0; 1390 1391 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 1392 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1393 &pdd->qpd); 1394 if (r) { 1395 pr_err("Failed to restore process queues\n"); 1396 if (!ret) 1397 ret = r; 1398 } 1399 } 1400 1401 return ret; 1402 } 1403 1404 static void evict_process_worker(struct work_struct *work) 1405 { 1406 int ret; 1407 struct kfd_process *p; 1408 struct delayed_work *dwork; 1409 1410 dwork = to_delayed_work(work); 1411 1412 /* Process termination destroys this worker thread. So during the 1413 * lifetime of this thread, kfd_process p will be valid 1414 */ 1415 p = container_of(dwork, struct kfd_process, eviction_work); 1416 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, 1417 "Eviction fence mismatch\n"); 1418 1419 /* Narrow window of overlap between restore and evict work 1420 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos 1421 * unreserves KFD BOs, it is possible to evicted again. But 1422 * restore has few more steps of finish. So lets wait for any 1423 * previous restore work to complete 1424 */ 1425 flush_delayed_work(&p->restore_work); 1426 1427 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1428 ret = kfd_process_evict_queues(p); 1429 if (!ret) { 1430 dma_fence_signal(p->ef); 1431 dma_fence_put(p->ef); 1432 p->ef = NULL; 1433 queue_delayed_work(kfd_restore_wq, &p->restore_work, 1434 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); 1435 1436 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 1437 } else 1438 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 1439 } 1440 1441 static void restore_process_worker(struct work_struct *work) 1442 { 1443 struct delayed_work *dwork; 1444 struct kfd_process *p; 1445 int ret = 0; 1446 1447 dwork = to_delayed_work(work); 1448 1449 /* Process termination destroys this worker thread. So during the 1450 * lifetime of this thread, kfd_process p will be valid 1451 */ 1452 p = container_of(dwork, struct kfd_process, restore_work); 1453 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 1454 1455 /* Setting last_restore_timestamp before successful restoration. 1456 * Otherwise this would have to be set by KGD (restore_process_bos) 1457 * before KFD BOs are unreserved. If not, the process can be evicted 1458 * again before the timestamp is set. 1459 * If restore fails, the timestamp will be set again in the next 1460 * attempt. This would mean that the minimum GPU quanta would be 1461 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 1462 * functions) 1463 */ 1464 1465 p->last_restore_timestamp = get_jiffies_64(); 1466 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info, 1467 &p->ef); 1468 if (ret) { 1469 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 1470 p->pasid, PROCESS_BACK_OFF_TIME_MS); 1471 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work, 1472 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); 1473 WARN(!ret, "reschedule restore work failed\n"); 1474 return; 1475 } 1476 1477 ret = kfd_process_restore_queues(p); 1478 if (!ret) 1479 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 1480 else 1481 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 1482 } 1483 1484 void kfd_suspend_all_processes(void) 1485 { 1486 struct kfd_process *p; 1487 unsigned int temp; 1488 int idx = srcu_read_lock(&kfd_processes_srcu); 1489 1490 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1491 cancel_delayed_work_sync(&p->eviction_work); 1492 cancel_delayed_work_sync(&p->restore_work); 1493 1494 if (kfd_process_evict_queues(p)) 1495 pr_err("Failed to suspend process 0x%x\n", p->pasid); 1496 dma_fence_signal(p->ef); 1497 dma_fence_put(p->ef); 1498 p->ef = NULL; 1499 } 1500 srcu_read_unlock(&kfd_processes_srcu, idx); 1501 } 1502 1503 int kfd_resume_all_processes(void) 1504 { 1505 struct kfd_process *p; 1506 unsigned int temp; 1507 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 1508 1509 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1510 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) { 1511 pr_err("Restore process %d failed during resume\n", 1512 p->pasid); 1513 ret = -EFAULT; 1514 } 1515 } 1516 srcu_read_unlock(&kfd_processes_srcu, idx); 1517 return ret; 1518 } 1519 1520 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 1521 struct vm_area_struct *vma) 1522 { 1523 struct kfd_process_device *pdd; 1524 struct qcm_process_device *qpd; 1525 1526 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 1527 pr_err("Incorrect CWSR mapping size.\n"); 1528 return -EINVAL; 1529 } 1530 1531 pdd = kfd_get_process_device_data(dev, process); 1532 if (!pdd) 1533 return -EINVAL; 1534 qpd = &pdd->qpd; 1535 1536 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1537 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1538 if (!qpd->cwsr_kaddr) { 1539 pr_err("Error allocating per process CWSR buffer.\n"); 1540 return -ENOMEM; 1541 } 1542 1543 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND 1544 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; 1545 /* Mapping pages to user process */ 1546 return remap_pfn_range(vma, vma->vm_start, 1547 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 1548 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 1549 } 1550 1551 void kfd_flush_tlb(struct kfd_process_device *pdd) 1552 { 1553 struct kfd_dev *dev = pdd->dev; 1554 1555 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1556 /* Nothing to flush until a VMID is assigned, which 1557 * only happens when the first queue is created. 1558 */ 1559 if (pdd->qpd.vmid) 1560 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd, 1561 pdd->qpd.vmid); 1562 } else { 1563 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd, 1564 pdd->process->pasid); 1565 } 1566 } 1567 1568 #if defined(CONFIG_DEBUG_FS) 1569 1570 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 1571 { 1572 struct kfd_process *p; 1573 unsigned int temp; 1574 int r = 0; 1575 1576 int idx = srcu_read_lock(&kfd_processes_srcu); 1577 1578 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1579 seq_printf(m, "Process %d PASID 0x%x:\n", 1580 p->lead_thread->tgid, p->pasid); 1581 1582 mutex_lock(&p->mutex); 1583 r = pqm_debugfs_mqds(m, &p->pqm); 1584 mutex_unlock(&p->mutex); 1585 1586 if (r) 1587 break; 1588 } 1589 1590 srcu_read_unlock(&kfd_processes_srcu, idx); 1591 1592 return r; 1593 } 1594 1595 #endif 1596 1597