1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/mutex.h>
24 #include <linux/log2.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/amd-iommu.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 
39 struct mm_struct;
40 
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_dbgmgr.h"
44 #include "kfd_iommu.h"
45 
46 /*
47  * List of struct kfd_process (field kfd_process).
48  * Unique/indexed by mm_struct*
49  */
50 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
51 static DEFINE_MUTEX(kfd_processes_mutex);
52 
53 DEFINE_SRCU(kfd_processes_srcu);
54 
55 /* For process termination handling */
56 static struct workqueue_struct *kfd_process_wq;
57 
58 /* Ordered, single-threaded workqueue for restoring evicted
59  * processes. Restoring multiple processes concurrently under memory
60  * pressure can lead to processes blocking each other from validating
61  * their BOs and result in a live-lock situation where processes
62  * remain evicted indefinitely.
63  */
64 static struct workqueue_struct *kfd_restore_wq;
65 
66 static struct kfd_process *find_process(const struct task_struct *thread);
67 static void kfd_process_ref_release(struct kref *ref);
68 static struct kfd_process *create_process(const struct task_struct *thread);
69 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
70 
71 static void evict_process_worker(struct work_struct *work);
72 static void restore_process_worker(struct work_struct *work);
73 
74 struct kfd_procfs_tree {
75 	struct kobject *kobj;
76 };
77 
78 static struct kfd_procfs_tree procfs;
79 
80 /*
81  * Structure for SDMA activity tracking
82  */
83 struct kfd_sdma_activity_handler_workarea {
84 	struct work_struct sdma_activity_work;
85 	struct kfd_process_device *pdd;
86 	uint64_t sdma_activity_counter;
87 };
88 
89 struct temp_sdma_queue_list {
90 	uint64_t __user *rptr;
91 	uint64_t sdma_val;
92 	unsigned int queue_id;
93 	struct list_head list;
94 };
95 
96 static void kfd_sdma_activity_worker(struct work_struct *work)
97 {
98 	struct kfd_sdma_activity_handler_workarea *workarea;
99 	struct kfd_process_device *pdd;
100 	uint64_t val;
101 	struct mm_struct *mm;
102 	struct queue *q;
103 	struct qcm_process_device *qpd;
104 	struct device_queue_manager *dqm;
105 	int ret = 0;
106 	struct temp_sdma_queue_list sdma_q_list;
107 	struct temp_sdma_queue_list *sdma_q, *next;
108 
109 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
110 				sdma_activity_work);
111 	if (!workarea)
112 		return;
113 
114 	pdd = workarea->pdd;
115 	if (!pdd)
116 		return;
117 	dqm = pdd->dev->dqm;
118 	qpd = &pdd->qpd;
119 	if (!dqm || !qpd)
120 		return;
121 	/*
122 	 * Total SDMA activity is current SDMA activity + past SDMA activity
123 	 * Past SDMA count is stored in pdd.
124 	 * To get the current activity counters for all active SDMA queues,
125 	 * we loop over all SDMA queues and get their counts from user-space.
126 	 *
127 	 * We cannot call get_user() with dqm_lock held as it can cause
128 	 * a circular lock dependency situation. To read the SDMA stats,
129 	 * we need to do the following:
130 	 *
131 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
132 	 *    with dqm_lock/dqm_unlock().
133 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
134 	 *    Save the SDMA count for each node and also add the count to the total
135 	 *    SDMA count counter.
136 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
137 	 *    from the qpd->queues_list.
138 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
139 	 *    If any node got deleted, its SDMA count would be captured in the sdma
140 	 *    past activity counter. So subtract the SDMA counter stored in step 2
141 	 *    for this node from the total SDMA count.
142 	 */
143 	INIT_LIST_HEAD(&sdma_q_list.list);
144 
145 	/*
146 	 * Create the temp list of all SDMA queues
147 	 */
148 	dqm_lock(dqm);
149 
150 	list_for_each_entry(q, &qpd->queues_list, list) {
151 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
152 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
153 			continue;
154 
155 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
156 		if (!sdma_q) {
157 			dqm_unlock(dqm);
158 			goto cleanup;
159 		}
160 
161 		INIT_LIST_HEAD(&sdma_q->list);
162 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
163 		sdma_q->queue_id = q->properties.queue_id;
164 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
165 	}
166 
167 	/*
168 	 * If the temp list is empty, then no SDMA queues nodes were found in
169 	 * qpd->queues_list. Return the past activity count as the total sdma
170 	 * count
171 	 */
172 	if (list_empty(&sdma_q_list.list)) {
173 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
174 		dqm_unlock(dqm);
175 		return;
176 	}
177 
178 	dqm_unlock(dqm);
179 
180 	/*
181 	 * Get the usage count for each SDMA queue in temp_list.
182 	 */
183 	mm = get_task_mm(pdd->process->lead_thread);
184 	if (!mm)
185 		goto cleanup;
186 
187 	kthread_use_mm(mm);
188 
189 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
190 		val = 0;
191 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
192 		if (ret) {
193 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
194 				 sdma_q->queue_id);
195 		} else {
196 			sdma_q->sdma_val = val;
197 			workarea->sdma_activity_counter += val;
198 		}
199 	}
200 
201 	kthread_unuse_mm(mm);
202 	mmput(mm);
203 
204 	/*
205 	 * Do a second iteration over qpd_queues_list to check if any SDMA
206 	 * nodes got deleted while fetching SDMA counter.
207 	 */
208 	dqm_lock(dqm);
209 
210 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
211 
212 	list_for_each_entry(q, &qpd->queues_list, list) {
213 		if (list_empty(&sdma_q_list.list))
214 			break;
215 
216 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
217 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
218 			continue;
219 
220 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
221 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
222 			     (sdma_q->queue_id == q->properties.queue_id)) {
223 				list_del(&sdma_q->list);
224 				kfree(sdma_q);
225 				break;
226 			}
227 		}
228 	}
229 
230 	dqm_unlock(dqm);
231 
232 	/*
233 	 * If temp list is not empty, it implies some queues got deleted
234 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
235 	 * count for each node from the total SDMA count.
236 	 */
237 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
238 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
239 		list_del(&sdma_q->list);
240 		kfree(sdma_q);
241 	}
242 
243 	return;
244 
245 cleanup:
246 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
247 		list_del(&sdma_q->list);
248 		kfree(sdma_q);
249 	}
250 }
251 
252 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
253 			       char *buffer)
254 {
255 	if (strcmp(attr->name, "pasid") == 0) {
256 		struct kfd_process *p = container_of(attr, struct kfd_process,
257 						     attr_pasid);
258 
259 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
260 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
261 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
262 							      attr_vram);
263 		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
264 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
265 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
266 							      attr_sdma);
267 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
268 
269 		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
270 					kfd_sdma_activity_worker);
271 
272 		sdma_activity_work_handler.pdd = pdd;
273 		sdma_activity_work_handler.sdma_activity_counter = 0;
274 
275 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
276 
277 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
278 
279 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
280 				(sdma_activity_work_handler.sdma_activity_counter)/
281 				 SDMA_ACTIVITY_DIVISOR);
282 	} else {
283 		pr_err("Invalid attribute");
284 		return -EINVAL;
285 	}
286 
287 	return 0;
288 }
289 
290 static void kfd_procfs_kobj_release(struct kobject *kobj)
291 {
292 	kfree(kobj);
293 }
294 
295 static const struct sysfs_ops kfd_procfs_ops = {
296 	.show = kfd_procfs_show,
297 };
298 
299 static struct kobj_type procfs_type = {
300 	.release = kfd_procfs_kobj_release,
301 	.sysfs_ops = &kfd_procfs_ops,
302 };
303 
304 void kfd_procfs_init(void)
305 {
306 	int ret = 0;
307 
308 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
309 	if (!procfs.kobj)
310 		return;
311 
312 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
313 				   &kfd_device->kobj, "proc");
314 	if (ret) {
315 		pr_warn("Could not create procfs proc folder");
316 		/* If we fail to create the procfs, clean up */
317 		kfd_procfs_shutdown();
318 	}
319 }
320 
321 void kfd_procfs_shutdown(void)
322 {
323 	if (procfs.kobj) {
324 		kobject_del(procfs.kobj);
325 		kobject_put(procfs.kobj);
326 		procfs.kobj = NULL;
327 	}
328 }
329 
330 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
331 				     struct attribute *attr, char *buffer)
332 {
333 	struct queue *q = container_of(kobj, struct queue, kobj);
334 
335 	if (!strcmp(attr->name, "size"))
336 		return snprintf(buffer, PAGE_SIZE, "%llu",
337 				q->properties.queue_size);
338 	else if (!strcmp(attr->name, "type"))
339 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
340 	else if (!strcmp(attr->name, "gpuid"))
341 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
342 	else
343 		pr_err("Invalid attribute");
344 
345 	return 0;
346 }
347 
348 static struct attribute attr_queue_size = {
349 	.name = "size",
350 	.mode = KFD_SYSFS_FILE_MODE
351 };
352 
353 static struct attribute attr_queue_type = {
354 	.name = "type",
355 	.mode = KFD_SYSFS_FILE_MODE
356 };
357 
358 static struct attribute attr_queue_gpuid = {
359 	.name = "gpuid",
360 	.mode = KFD_SYSFS_FILE_MODE
361 };
362 
363 static struct attribute *procfs_queue_attrs[] = {
364 	&attr_queue_size,
365 	&attr_queue_type,
366 	&attr_queue_gpuid,
367 	NULL
368 };
369 
370 static const struct sysfs_ops procfs_queue_ops = {
371 	.show = kfd_procfs_queue_show,
372 };
373 
374 static struct kobj_type procfs_queue_type = {
375 	.sysfs_ops = &procfs_queue_ops,
376 	.default_attrs = procfs_queue_attrs,
377 };
378 
379 int kfd_procfs_add_queue(struct queue *q)
380 {
381 	struct kfd_process *proc;
382 	int ret;
383 
384 	if (!q || !q->process)
385 		return -EINVAL;
386 	proc = q->process;
387 
388 	/* Create proc/<pid>/queues/<queue id> folder */
389 	if (!proc->kobj_queues)
390 		return -EFAULT;
391 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
392 			proc->kobj_queues, "%u", q->properties.queue_id);
393 	if (ret < 0) {
394 		pr_warn("Creating proc/<pid>/queues/%u failed",
395 			q->properties.queue_id);
396 		kobject_put(&q->kobj);
397 		return ret;
398 	}
399 
400 	return 0;
401 }
402 
403 static int kfd_sysfs_create_file(struct kfd_process *p, struct attribute *attr,
404 				 char *name)
405 {
406 	int ret = 0;
407 
408 	if (!p || !attr || !name)
409 		return -EINVAL;
410 
411 	attr->name = name;
412 	attr->mode = KFD_SYSFS_FILE_MODE;
413 	sysfs_attr_init(attr);
414 
415 	ret = sysfs_create_file(p->kobj, attr);
416 
417 	return ret;
418 }
419 
420 static int kfd_procfs_add_sysfs_files(struct kfd_process *p)
421 {
422 	int ret = 0;
423 	struct kfd_process_device *pdd;
424 
425 	if (!p)
426 		return -EINVAL;
427 
428 	if (!p->kobj)
429 		return -EFAULT;
430 
431 	/*
432 	 * Create sysfs files for each GPU:
433 	 * - proc/<pid>/vram_<gpuid>
434 	 * - proc/<pid>/sdma_<gpuid>
435 	 */
436 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
437 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
438 			 pdd->dev->id);
439 		ret = kfd_sysfs_create_file(p, &pdd->attr_vram, pdd->vram_filename);
440 		if (ret)
441 			pr_warn("Creating vram usage for gpu id %d failed",
442 				(int)pdd->dev->id);
443 
444 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
445 			 pdd->dev->id);
446 		ret = kfd_sysfs_create_file(p, &pdd->attr_sdma, pdd->sdma_filename);
447 		if (ret)
448 			pr_warn("Creating sdma usage for gpu id %d failed",
449 				(int)pdd->dev->id);
450 	}
451 
452 	return ret;
453 }
454 
455 
456 void kfd_procfs_del_queue(struct queue *q)
457 {
458 	if (!q)
459 		return;
460 
461 	kobject_del(&q->kobj);
462 	kobject_put(&q->kobj);
463 }
464 
465 int kfd_process_create_wq(void)
466 {
467 	if (!kfd_process_wq)
468 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
469 	if (!kfd_restore_wq)
470 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
471 
472 	if (!kfd_process_wq || !kfd_restore_wq) {
473 		kfd_process_destroy_wq();
474 		return -ENOMEM;
475 	}
476 
477 	return 0;
478 }
479 
480 void kfd_process_destroy_wq(void)
481 {
482 	if (kfd_process_wq) {
483 		destroy_workqueue(kfd_process_wq);
484 		kfd_process_wq = NULL;
485 	}
486 	if (kfd_restore_wq) {
487 		destroy_workqueue(kfd_restore_wq);
488 		kfd_restore_wq = NULL;
489 	}
490 }
491 
492 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
493 			struct kfd_process_device *pdd)
494 {
495 	struct kfd_dev *dev = pdd->dev;
496 
497 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->vm);
498 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, NULL);
499 }
500 
501 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
502  *	This function should be only called right after the process
503  *	is created and when kfd_processes_mutex is still being held
504  *	to avoid concurrency. Because of that exclusiveness, we do
505  *	not need to take p->mutex.
506  */
507 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
508 				   uint64_t gpu_va, uint32_t size,
509 				   uint32_t flags, void **kptr)
510 {
511 	struct kfd_dev *kdev = pdd->dev;
512 	struct kgd_mem *mem = NULL;
513 	int handle;
514 	int err;
515 
516 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
517 						 pdd->vm, &mem, NULL, flags);
518 	if (err)
519 		goto err_alloc_mem;
520 
521 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->vm);
522 	if (err)
523 		goto err_map_mem;
524 
525 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true);
526 	if (err) {
527 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
528 		goto sync_memory_failed;
529 	}
530 
531 	/* Create an obj handle so kfd_process_device_remove_obj_handle
532 	 * will take care of the bo removal when the process finishes.
533 	 * We do not need to take p->mutex, because the process is just
534 	 * created and the ioctls have not had the chance to run.
535 	 */
536 	handle = kfd_process_device_create_obj_handle(pdd, mem);
537 
538 	if (handle < 0) {
539 		err = handle;
540 		goto free_gpuvm;
541 	}
542 
543 	if (kptr) {
544 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd,
545 				(struct kgd_mem *)mem, kptr, NULL);
546 		if (err) {
547 			pr_debug("Map GTT BO to kernel failed\n");
548 			goto free_obj_handle;
549 		}
550 	}
551 
552 	return err;
553 
554 free_obj_handle:
555 	kfd_process_device_remove_obj_handle(pdd, handle);
556 free_gpuvm:
557 sync_memory_failed:
558 	kfd_process_free_gpuvm(mem, pdd);
559 	return err;
560 
561 err_map_mem:
562 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, NULL);
563 err_alloc_mem:
564 	*kptr = NULL;
565 	return err;
566 }
567 
568 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
569  *	process for IB usage The memory reserved is for KFD to submit
570  *	IB to AMDGPU from kernel.  If the memory is reserved
571  *	successfully, ib_kaddr will have the CPU/kernel
572  *	address. Check ib_kaddr before accessing the memory.
573  */
574 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
575 {
576 	struct qcm_process_device *qpd = &pdd->qpd;
577 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
578 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
579 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
580 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
581 	void *kaddr;
582 	int ret;
583 
584 	if (qpd->ib_kaddr || !qpd->ib_base)
585 		return 0;
586 
587 	/* ib_base is only set for dGPU */
588 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
589 				      &kaddr);
590 	if (ret)
591 		return ret;
592 
593 	qpd->ib_kaddr = kaddr;
594 
595 	return 0;
596 }
597 
598 struct kfd_process *kfd_create_process(struct file *filep)
599 {
600 	struct kfd_process *process;
601 	struct task_struct *thread = current;
602 	int ret;
603 
604 	if (!thread->mm)
605 		return ERR_PTR(-EINVAL);
606 
607 	/* Only the pthreads threading model is supported. */
608 	if (thread->group_leader->mm != thread->mm)
609 		return ERR_PTR(-EINVAL);
610 
611 	/*
612 	 * take kfd processes mutex before starting of process creation
613 	 * so there won't be a case where two threads of the same process
614 	 * create two kfd_process structures
615 	 */
616 	mutex_lock(&kfd_processes_mutex);
617 
618 	/* A prior open of /dev/kfd could have already created the process. */
619 	process = find_process(thread);
620 	if (process) {
621 		pr_debug("Process already found\n");
622 	} else {
623 		process = create_process(thread);
624 		if (IS_ERR(process))
625 			goto out;
626 
627 		ret = kfd_process_init_cwsr_apu(process, filep);
628 		if (ret) {
629 			process = ERR_PTR(ret);
630 			goto out;
631 		}
632 
633 		if (!procfs.kobj)
634 			goto out;
635 
636 		process->kobj = kfd_alloc_struct(process->kobj);
637 		if (!process->kobj) {
638 			pr_warn("Creating procfs kobject failed");
639 			goto out;
640 		}
641 		ret = kobject_init_and_add(process->kobj, &procfs_type,
642 					   procfs.kobj, "%d",
643 					   (int)process->lead_thread->pid);
644 		if (ret) {
645 			pr_warn("Creating procfs pid directory failed");
646 			kobject_put(process->kobj);
647 			goto out;
648 		}
649 
650 		process->attr_pasid.name = "pasid";
651 		process->attr_pasid.mode = KFD_SYSFS_FILE_MODE;
652 		sysfs_attr_init(&process->attr_pasid);
653 		ret = sysfs_create_file(process->kobj, &process->attr_pasid);
654 		if (ret)
655 			pr_warn("Creating pasid for pid %d failed",
656 					(int)process->lead_thread->pid);
657 
658 		process->kobj_queues = kobject_create_and_add("queues",
659 							process->kobj);
660 		if (!process->kobj_queues)
661 			pr_warn("Creating KFD proc/queues folder failed");
662 
663 		ret = kfd_procfs_add_sysfs_files(process);
664 		if (ret)
665 			pr_warn("Creating sysfs usage file for pid %d failed",
666 				(int)process->lead_thread->pid);
667 	}
668 out:
669 	if (!IS_ERR(process))
670 		kref_get(&process->ref);
671 	mutex_unlock(&kfd_processes_mutex);
672 
673 	return process;
674 }
675 
676 struct kfd_process *kfd_get_process(const struct task_struct *thread)
677 {
678 	struct kfd_process *process;
679 
680 	if (!thread->mm)
681 		return ERR_PTR(-EINVAL);
682 
683 	/* Only the pthreads threading model is supported. */
684 	if (thread->group_leader->mm != thread->mm)
685 		return ERR_PTR(-EINVAL);
686 
687 	process = find_process(thread);
688 	if (!process)
689 		return ERR_PTR(-EINVAL);
690 
691 	return process;
692 }
693 
694 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
695 {
696 	struct kfd_process *process;
697 
698 	hash_for_each_possible_rcu(kfd_processes_table, process,
699 					kfd_processes, (uintptr_t)mm)
700 		if (process->mm == mm)
701 			return process;
702 
703 	return NULL;
704 }
705 
706 static struct kfd_process *find_process(const struct task_struct *thread)
707 {
708 	struct kfd_process *p;
709 	int idx;
710 
711 	idx = srcu_read_lock(&kfd_processes_srcu);
712 	p = find_process_by_mm(thread->mm);
713 	srcu_read_unlock(&kfd_processes_srcu, idx);
714 
715 	return p;
716 }
717 
718 void kfd_unref_process(struct kfd_process *p)
719 {
720 	kref_put(&p->ref, kfd_process_ref_release);
721 }
722 
723 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
724 {
725 	struct kfd_process *p = pdd->process;
726 	void *mem;
727 	int id;
728 
729 	/*
730 	 * Remove all handles from idr and release appropriate
731 	 * local memory object
732 	 */
733 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
734 		struct kfd_process_device *peer_pdd;
735 
736 		list_for_each_entry(peer_pdd, &p->per_device_data,
737 				    per_device_list) {
738 			if (!peer_pdd->vm)
739 				continue;
740 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
741 				peer_pdd->dev->kgd, mem, peer_pdd->vm);
742 		}
743 
744 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem, NULL);
745 		kfd_process_device_remove_obj_handle(pdd, id);
746 	}
747 }
748 
749 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
750 {
751 	struct kfd_process_device *pdd;
752 
753 	list_for_each_entry(pdd, &p->per_device_data, per_device_list)
754 		kfd_process_device_free_bos(pdd);
755 }
756 
757 static void kfd_process_destroy_pdds(struct kfd_process *p)
758 {
759 	struct kfd_process_device *pdd, *temp;
760 
761 	list_for_each_entry_safe(pdd, temp, &p->per_device_data,
762 				 per_device_list) {
763 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
764 				pdd->dev->id, p->pasid);
765 
766 		if (pdd->drm_file) {
767 			amdgpu_amdkfd_gpuvm_release_process_vm(
768 					pdd->dev->kgd, pdd->vm);
769 			fput(pdd->drm_file);
770 		}
771 		else if (pdd->vm)
772 			amdgpu_amdkfd_gpuvm_destroy_process_vm(
773 				pdd->dev->kgd, pdd->vm);
774 
775 		list_del(&pdd->per_device_list);
776 
777 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
778 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
779 				get_order(KFD_CWSR_TBA_TMA_SIZE));
780 
781 		kfree(pdd->qpd.doorbell_bitmap);
782 		idr_destroy(&pdd->alloc_idr);
783 
784 		/*
785 		 * before destroying pdd, make sure to report availability
786 		 * for auto suspend
787 		 */
788 		if (pdd->runtime_inuse) {
789 			pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
790 			pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
791 			pdd->runtime_inuse = false;
792 		}
793 
794 		kfree(pdd);
795 	}
796 }
797 
798 /* No process locking is needed in this function, because the process
799  * is not findable any more. We must assume that no other thread is
800  * using it any more, otherwise we couldn't safely free the process
801  * structure in the end.
802  */
803 static void kfd_process_wq_release(struct work_struct *work)
804 {
805 	struct kfd_process *p = container_of(work, struct kfd_process,
806 					     release_work);
807 	struct kfd_process_device *pdd;
808 
809 	/* Remove the procfs files */
810 	if (p->kobj) {
811 		sysfs_remove_file(p->kobj, &p->attr_pasid);
812 		kobject_del(p->kobj_queues);
813 		kobject_put(p->kobj_queues);
814 		p->kobj_queues = NULL;
815 
816 		list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
817 			sysfs_remove_file(p->kobj, &pdd->attr_vram);
818 			sysfs_remove_file(p->kobj, &pdd->attr_sdma);
819 		}
820 
821 		kobject_del(p->kobj);
822 		kobject_put(p->kobj);
823 		p->kobj = NULL;
824 	}
825 
826 	kfd_iommu_unbind_process(p);
827 
828 	kfd_process_free_outstanding_kfd_bos(p);
829 
830 	kfd_process_destroy_pdds(p);
831 	dma_fence_put(p->ef);
832 
833 	kfd_event_free_process(p);
834 
835 	kfd_pasid_free(p->pasid);
836 	kfd_free_process_doorbells(p);
837 
838 	mutex_destroy(&p->mutex);
839 
840 	put_task_struct(p->lead_thread);
841 
842 	kfree(p);
843 }
844 
845 static void kfd_process_ref_release(struct kref *ref)
846 {
847 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
848 
849 	INIT_WORK(&p->release_work, kfd_process_wq_release);
850 	queue_work(kfd_process_wq, &p->release_work);
851 }
852 
853 static void kfd_process_free_notifier(struct mmu_notifier *mn)
854 {
855 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
856 }
857 
858 static void kfd_process_notifier_release(struct mmu_notifier *mn,
859 					struct mm_struct *mm)
860 {
861 	struct kfd_process *p;
862 	struct kfd_process_device *pdd = NULL;
863 
864 	/*
865 	 * The kfd_process structure can not be free because the
866 	 * mmu_notifier srcu is read locked
867 	 */
868 	p = container_of(mn, struct kfd_process, mmu_notifier);
869 	if (WARN_ON(p->mm != mm))
870 		return;
871 
872 	mutex_lock(&kfd_processes_mutex);
873 	hash_del_rcu(&p->kfd_processes);
874 	mutex_unlock(&kfd_processes_mutex);
875 	synchronize_srcu(&kfd_processes_srcu);
876 
877 	cancel_delayed_work_sync(&p->eviction_work);
878 	cancel_delayed_work_sync(&p->restore_work);
879 
880 	mutex_lock(&p->mutex);
881 
882 	/* Iterate over all process device data structures and if the
883 	 * pdd is in debug mode, we should first force unregistration,
884 	 * then we will be able to destroy the queues
885 	 */
886 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
887 		struct kfd_dev *dev = pdd->dev;
888 
889 		mutex_lock(kfd_get_dbgmgr_mutex());
890 		if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
891 			if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
892 				kfd_dbgmgr_destroy(dev->dbgmgr);
893 				dev->dbgmgr = NULL;
894 			}
895 		}
896 		mutex_unlock(kfd_get_dbgmgr_mutex());
897 	}
898 
899 	kfd_process_dequeue_from_all_devices(p);
900 	pqm_uninit(&p->pqm);
901 
902 	/* Indicate to other users that MM is no longer valid */
903 	p->mm = NULL;
904 	/* Signal the eviction fence after user mode queues are
905 	 * destroyed. This allows any BOs to be freed without
906 	 * triggering pointless evictions or waiting for fences.
907 	 */
908 	dma_fence_signal(p->ef);
909 
910 	mutex_unlock(&p->mutex);
911 
912 	mmu_notifier_put(&p->mmu_notifier);
913 }
914 
915 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
916 	.release = kfd_process_notifier_release,
917 	.free_notifier = kfd_process_free_notifier,
918 };
919 
920 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
921 {
922 	unsigned long  offset;
923 	struct kfd_process_device *pdd;
924 
925 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
926 		struct kfd_dev *dev = pdd->dev;
927 		struct qcm_process_device *qpd = &pdd->qpd;
928 
929 		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
930 			continue;
931 
932 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
933 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
934 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
935 			MAP_SHARED, offset);
936 
937 		if (IS_ERR_VALUE(qpd->tba_addr)) {
938 			int err = qpd->tba_addr;
939 
940 			pr_err("Failure to set tba address. error %d.\n", err);
941 			qpd->tba_addr = 0;
942 			qpd->cwsr_kaddr = NULL;
943 			return err;
944 		}
945 
946 		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
947 
948 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
949 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
950 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
951 	}
952 
953 	return 0;
954 }
955 
956 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
957 {
958 	struct kfd_dev *dev = pdd->dev;
959 	struct qcm_process_device *qpd = &pdd->qpd;
960 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
961 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
962 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
963 	void *kaddr;
964 	int ret;
965 
966 	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
967 		return 0;
968 
969 	/* cwsr_base is only set for dGPU */
970 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
971 				      KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
972 	if (ret)
973 		return ret;
974 
975 	qpd->cwsr_kaddr = kaddr;
976 	qpd->tba_addr = qpd->cwsr_base;
977 
978 	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
979 
980 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
981 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
982 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
983 
984 	return 0;
985 }
986 
987 /*
988  * On return the kfd_process is fully operational and will be freed when the
989  * mm is released
990  */
991 static struct kfd_process *create_process(const struct task_struct *thread)
992 {
993 	struct kfd_process *process;
994 	int err = -ENOMEM;
995 
996 	process = kzalloc(sizeof(*process), GFP_KERNEL);
997 	if (!process)
998 		goto err_alloc_process;
999 
1000 	kref_init(&process->ref);
1001 	mutex_init(&process->mutex);
1002 	process->mm = thread->mm;
1003 	process->lead_thread = thread->group_leader;
1004 	INIT_LIST_HEAD(&process->per_device_data);
1005 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1006 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1007 	process->last_restore_timestamp = get_jiffies_64();
1008 	kfd_event_init_process(process);
1009 	process->is_32bit_user_mode = in_compat_syscall();
1010 
1011 	process->pasid = kfd_pasid_alloc();
1012 	if (process->pasid == 0)
1013 		goto err_alloc_pasid;
1014 
1015 	if (kfd_alloc_process_doorbells(process) < 0)
1016 		goto err_alloc_doorbells;
1017 
1018 	err = pqm_init(&process->pqm, process);
1019 	if (err != 0)
1020 		goto err_process_pqm_init;
1021 
1022 	/* init process apertures*/
1023 	err = kfd_init_apertures(process);
1024 	if (err != 0)
1025 		goto err_init_apertures;
1026 
1027 	/* Must be last, have to use release destruction after this */
1028 	process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops;
1029 	err = mmu_notifier_register(&process->mmu_notifier, process->mm);
1030 	if (err)
1031 		goto err_register_notifier;
1032 
1033 	get_task_struct(process->lead_thread);
1034 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1035 			(uintptr_t)process->mm);
1036 
1037 	return process;
1038 
1039 err_register_notifier:
1040 	kfd_process_free_outstanding_kfd_bos(process);
1041 	kfd_process_destroy_pdds(process);
1042 err_init_apertures:
1043 	pqm_uninit(&process->pqm);
1044 err_process_pqm_init:
1045 	kfd_free_process_doorbells(process);
1046 err_alloc_doorbells:
1047 	kfd_pasid_free(process->pasid);
1048 err_alloc_pasid:
1049 	mutex_destroy(&process->mutex);
1050 	kfree(process);
1051 err_alloc_process:
1052 	return ERR_PTR(err);
1053 }
1054 
1055 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1056 			struct kfd_dev *dev)
1057 {
1058 	unsigned int i;
1059 	int range_start = dev->shared_resources.non_cp_doorbells_start;
1060 	int range_end = dev->shared_resources.non_cp_doorbells_end;
1061 
1062 	if (!KFD_IS_SOC15(dev->device_info->asic_family))
1063 		return 0;
1064 
1065 	qpd->doorbell_bitmap =
1066 		kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1067 				     BITS_PER_BYTE), GFP_KERNEL);
1068 	if (!qpd->doorbell_bitmap)
1069 		return -ENOMEM;
1070 
1071 	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1072 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1073 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1074 			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1075 			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1076 
1077 	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1078 		if (i >= range_start && i <= range_end) {
1079 			set_bit(i, qpd->doorbell_bitmap);
1080 			set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1081 				qpd->doorbell_bitmap);
1082 		}
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1089 							struct kfd_process *p)
1090 {
1091 	struct kfd_process_device *pdd = NULL;
1092 
1093 	list_for_each_entry(pdd, &p->per_device_data, per_device_list)
1094 		if (pdd->dev == dev)
1095 			return pdd;
1096 
1097 	return NULL;
1098 }
1099 
1100 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1101 							struct kfd_process *p)
1102 {
1103 	struct kfd_process_device *pdd = NULL;
1104 
1105 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1106 	if (!pdd)
1107 		return NULL;
1108 
1109 	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1110 		pr_err("Failed to init doorbell for process\n");
1111 		kfree(pdd);
1112 		return NULL;
1113 	}
1114 
1115 	pdd->dev = dev;
1116 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1117 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1118 	pdd->qpd.dqm = dev->dqm;
1119 	pdd->qpd.pqm = &p->pqm;
1120 	pdd->qpd.evicted = 0;
1121 	pdd->qpd.mapped_gws_queue = false;
1122 	pdd->process = p;
1123 	pdd->bound = PDD_UNBOUND;
1124 	pdd->already_dequeued = false;
1125 	pdd->runtime_inuse = false;
1126 	pdd->vram_usage = 0;
1127 	pdd->sdma_past_activity_counter = 0;
1128 	list_add(&pdd->per_device_list, &p->per_device_data);
1129 
1130 	/* Init idr used for memory handle translation */
1131 	idr_init(&pdd->alloc_idr);
1132 
1133 	return pdd;
1134 }
1135 
1136 /**
1137  * kfd_process_device_init_vm - Initialize a VM for a process-device
1138  *
1139  * @pdd: The process-device
1140  * @drm_file: Optional pointer to a DRM file descriptor
1141  *
1142  * If @drm_file is specified, it will be used to acquire the VM from
1143  * that file descriptor. If successful, the @pdd takes ownership of
1144  * the file descriptor.
1145  *
1146  * If @drm_file is NULL, a new VM is created.
1147  *
1148  * Returns 0 on success, -errno on failure.
1149  */
1150 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1151 			       struct file *drm_file)
1152 {
1153 	struct kfd_process *p;
1154 	struct kfd_dev *dev;
1155 	int ret;
1156 
1157 	if (pdd->vm)
1158 		return drm_file ? -EBUSY : 0;
1159 
1160 	p = pdd->process;
1161 	dev = pdd->dev;
1162 
1163 	if (drm_file)
1164 		ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1165 			dev->kgd, drm_file, p->pasid,
1166 			&pdd->vm, &p->kgd_process_info, &p->ef);
1167 	else
1168 		ret = amdgpu_amdkfd_gpuvm_create_process_vm(dev->kgd, p->pasid,
1169 			&pdd->vm, &p->kgd_process_info, &p->ef);
1170 	if (ret) {
1171 		pr_err("Failed to create process VM object\n");
1172 		return ret;
1173 	}
1174 
1175 	amdgpu_vm_set_task_info(pdd->vm);
1176 
1177 	ret = kfd_process_device_reserve_ib_mem(pdd);
1178 	if (ret)
1179 		goto err_reserve_ib_mem;
1180 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1181 	if (ret)
1182 		goto err_init_cwsr;
1183 
1184 	pdd->drm_file = drm_file;
1185 
1186 	return 0;
1187 
1188 err_init_cwsr:
1189 err_reserve_ib_mem:
1190 	kfd_process_device_free_bos(pdd);
1191 	if (!drm_file)
1192 		amdgpu_amdkfd_gpuvm_destroy_process_vm(dev->kgd, pdd->vm);
1193 	pdd->vm = NULL;
1194 
1195 	return ret;
1196 }
1197 
1198 /*
1199  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1200  * to the device.
1201  * Unbinding occurs when the process dies or the device is removed.
1202  *
1203  * Assumes that the process lock is held.
1204  */
1205 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1206 							struct kfd_process *p)
1207 {
1208 	struct kfd_process_device *pdd;
1209 	int err;
1210 
1211 	pdd = kfd_get_process_device_data(dev, p);
1212 	if (!pdd) {
1213 		pr_err("Process device data doesn't exist\n");
1214 		return ERR_PTR(-ENOMEM);
1215 	}
1216 
1217 	/*
1218 	 * signal runtime-pm system to auto resume and prevent
1219 	 * further runtime suspend once device pdd is created until
1220 	 * pdd is destroyed.
1221 	 */
1222 	if (!pdd->runtime_inuse) {
1223 		err = pm_runtime_get_sync(dev->ddev->dev);
1224 		if (err < 0) {
1225 			pm_runtime_put_autosuspend(dev->ddev->dev);
1226 			return ERR_PTR(err);
1227 		}
1228 	}
1229 
1230 	err = kfd_iommu_bind_process_to_device(pdd);
1231 	if (err)
1232 		goto out;
1233 
1234 	err = kfd_process_device_init_vm(pdd, NULL);
1235 	if (err)
1236 		goto out;
1237 
1238 	/*
1239 	 * make sure that runtime_usage counter is incremented just once
1240 	 * per pdd
1241 	 */
1242 	pdd->runtime_inuse = true;
1243 
1244 	return pdd;
1245 
1246 out:
1247 	/* balance runpm reference count and exit with error */
1248 	if (!pdd->runtime_inuse) {
1249 		pm_runtime_mark_last_busy(dev->ddev->dev);
1250 		pm_runtime_put_autosuspend(dev->ddev->dev);
1251 	}
1252 
1253 	return ERR_PTR(err);
1254 }
1255 
1256 struct kfd_process_device *kfd_get_first_process_device_data(
1257 						struct kfd_process *p)
1258 {
1259 	return list_first_entry(&p->per_device_data,
1260 				struct kfd_process_device,
1261 				per_device_list);
1262 }
1263 
1264 struct kfd_process_device *kfd_get_next_process_device_data(
1265 						struct kfd_process *p,
1266 						struct kfd_process_device *pdd)
1267 {
1268 	if (list_is_last(&pdd->per_device_list, &p->per_device_data))
1269 		return NULL;
1270 	return list_next_entry(pdd, per_device_list);
1271 }
1272 
1273 bool kfd_has_process_device_data(struct kfd_process *p)
1274 {
1275 	return !(list_empty(&p->per_device_data));
1276 }
1277 
1278 /* Create specific handle mapped to mem from process local memory idr
1279  * Assumes that the process lock is held.
1280  */
1281 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1282 					void *mem)
1283 {
1284 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1285 }
1286 
1287 /* Translate specific handle from process local memory idr
1288  * Assumes that the process lock is held.
1289  */
1290 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1291 					int handle)
1292 {
1293 	if (handle < 0)
1294 		return NULL;
1295 
1296 	return idr_find(&pdd->alloc_idr, handle);
1297 }
1298 
1299 /* Remove specific handle from process local memory idr
1300  * Assumes that the process lock is held.
1301  */
1302 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1303 					int handle)
1304 {
1305 	if (handle >= 0)
1306 		idr_remove(&pdd->alloc_idr, handle);
1307 }
1308 
1309 /* This increments the process->ref counter. */
1310 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid)
1311 {
1312 	struct kfd_process *p, *ret_p = NULL;
1313 	unsigned int temp;
1314 
1315 	int idx = srcu_read_lock(&kfd_processes_srcu);
1316 
1317 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1318 		if (p->pasid == pasid) {
1319 			kref_get(&p->ref);
1320 			ret_p = p;
1321 			break;
1322 		}
1323 	}
1324 
1325 	srcu_read_unlock(&kfd_processes_srcu, idx);
1326 
1327 	return ret_p;
1328 }
1329 
1330 /* This increments the process->ref counter. */
1331 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1332 {
1333 	struct kfd_process *p;
1334 
1335 	int idx = srcu_read_lock(&kfd_processes_srcu);
1336 
1337 	p = find_process_by_mm(mm);
1338 	if (p)
1339 		kref_get(&p->ref);
1340 
1341 	srcu_read_unlock(&kfd_processes_srcu, idx);
1342 
1343 	return p;
1344 }
1345 
1346 /* kfd_process_evict_queues - Evict all user queues of a process
1347  *
1348  * Eviction is reference-counted per process-device. This means multiple
1349  * evictions from different sources can be nested safely.
1350  */
1351 int kfd_process_evict_queues(struct kfd_process *p)
1352 {
1353 	struct kfd_process_device *pdd;
1354 	int r = 0;
1355 	unsigned int n_evicted = 0;
1356 
1357 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
1358 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1359 							    &pdd->qpd);
1360 		if (r) {
1361 			pr_err("Failed to evict process queues\n");
1362 			goto fail;
1363 		}
1364 		n_evicted++;
1365 	}
1366 
1367 	return r;
1368 
1369 fail:
1370 	/* To keep state consistent, roll back partial eviction by
1371 	 * restoring queues
1372 	 */
1373 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
1374 		if (n_evicted == 0)
1375 			break;
1376 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1377 							      &pdd->qpd))
1378 			pr_err("Failed to restore queues\n");
1379 
1380 		n_evicted--;
1381 	}
1382 
1383 	return r;
1384 }
1385 
1386 /* kfd_process_restore_queues - Restore all user queues of a process */
1387 int kfd_process_restore_queues(struct kfd_process *p)
1388 {
1389 	struct kfd_process_device *pdd;
1390 	int r, ret = 0;
1391 
1392 	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
1393 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1394 							      &pdd->qpd);
1395 		if (r) {
1396 			pr_err("Failed to restore process queues\n");
1397 			if (!ret)
1398 				ret = r;
1399 		}
1400 	}
1401 
1402 	return ret;
1403 }
1404 
1405 static void evict_process_worker(struct work_struct *work)
1406 {
1407 	int ret;
1408 	struct kfd_process *p;
1409 	struct delayed_work *dwork;
1410 
1411 	dwork = to_delayed_work(work);
1412 
1413 	/* Process termination destroys this worker thread. So during the
1414 	 * lifetime of this thread, kfd_process p will be valid
1415 	 */
1416 	p = container_of(dwork, struct kfd_process, eviction_work);
1417 	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1418 		  "Eviction fence mismatch\n");
1419 
1420 	/* Narrow window of overlap between restore and evict work
1421 	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1422 	 * unreserves KFD BOs, it is possible to evicted again. But
1423 	 * restore has few more steps of finish. So lets wait for any
1424 	 * previous restore work to complete
1425 	 */
1426 	flush_delayed_work(&p->restore_work);
1427 
1428 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1429 	ret = kfd_process_evict_queues(p);
1430 	if (!ret) {
1431 		dma_fence_signal(p->ef);
1432 		dma_fence_put(p->ef);
1433 		p->ef = NULL;
1434 		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1435 				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1436 
1437 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1438 	} else
1439 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1440 }
1441 
1442 static void restore_process_worker(struct work_struct *work)
1443 {
1444 	struct delayed_work *dwork;
1445 	struct kfd_process *p;
1446 	int ret = 0;
1447 
1448 	dwork = to_delayed_work(work);
1449 
1450 	/* Process termination destroys this worker thread. So during the
1451 	 * lifetime of this thread, kfd_process p will be valid
1452 	 */
1453 	p = container_of(dwork, struct kfd_process, restore_work);
1454 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1455 
1456 	/* Setting last_restore_timestamp before successful restoration.
1457 	 * Otherwise this would have to be set by KGD (restore_process_bos)
1458 	 * before KFD BOs are unreserved. If not, the process can be evicted
1459 	 * again before the timestamp is set.
1460 	 * If restore fails, the timestamp will be set again in the next
1461 	 * attempt. This would mean that the minimum GPU quanta would be
1462 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1463 	 * functions)
1464 	 */
1465 
1466 	p->last_restore_timestamp = get_jiffies_64();
1467 	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1468 						     &p->ef);
1469 	if (ret) {
1470 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1471 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1472 		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1473 				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1474 		WARN(!ret, "reschedule restore work failed\n");
1475 		return;
1476 	}
1477 
1478 	ret = kfd_process_restore_queues(p);
1479 	if (!ret)
1480 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1481 	else
1482 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1483 }
1484 
1485 void kfd_suspend_all_processes(void)
1486 {
1487 	struct kfd_process *p;
1488 	unsigned int temp;
1489 	int idx = srcu_read_lock(&kfd_processes_srcu);
1490 
1491 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1492 		cancel_delayed_work_sync(&p->eviction_work);
1493 		cancel_delayed_work_sync(&p->restore_work);
1494 
1495 		if (kfd_process_evict_queues(p))
1496 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1497 		dma_fence_signal(p->ef);
1498 		dma_fence_put(p->ef);
1499 		p->ef = NULL;
1500 	}
1501 	srcu_read_unlock(&kfd_processes_srcu, idx);
1502 }
1503 
1504 int kfd_resume_all_processes(void)
1505 {
1506 	struct kfd_process *p;
1507 	unsigned int temp;
1508 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1509 
1510 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1511 		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1512 			pr_err("Restore process %d failed during resume\n",
1513 			       p->pasid);
1514 			ret = -EFAULT;
1515 		}
1516 	}
1517 	srcu_read_unlock(&kfd_processes_srcu, idx);
1518 	return ret;
1519 }
1520 
1521 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1522 			  struct vm_area_struct *vma)
1523 {
1524 	struct kfd_process_device *pdd;
1525 	struct qcm_process_device *qpd;
1526 
1527 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1528 		pr_err("Incorrect CWSR mapping size.\n");
1529 		return -EINVAL;
1530 	}
1531 
1532 	pdd = kfd_get_process_device_data(dev, process);
1533 	if (!pdd)
1534 		return -EINVAL;
1535 	qpd = &pdd->qpd;
1536 
1537 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1538 					get_order(KFD_CWSR_TBA_TMA_SIZE));
1539 	if (!qpd->cwsr_kaddr) {
1540 		pr_err("Error allocating per process CWSR buffer.\n");
1541 		return -ENOMEM;
1542 	}
1543 
1544 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1545 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1546 	/* Mapping pages to user process */
1547 	return remap_pfn_range(vma, vma->vm_start,
1548 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1549 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1550 }
1551 
1552 void kfd_flush_tlb(struct kfd_process_device *pdd)
1553 {
1554 	struct kfd_dev *dev = pdd->dev;
1555 
1556 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1557 		/* Nothing to flush until a VMID is assigned, which
1558 		 * only happens when the first queue is created.
1559 		 */
1560 		if (pdd->qpd.vmid)
1561 			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd,
1562 							pdd->qpd.vmid);
1563 	} else {
1564 		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd,
1565 						pdd->process->pasid);
1566 	}
1567 }
1568 
1569 #if defined(CONFIG_DEBUG_FS)
1570 
1571 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1572 {
1573 	struct kfd_process *p;
1574 	unsigned int temp;
1575 	int r = 0;
1576 
1577 	int idx = srcu_read_lock(&kfd_processes_srcu);
1578 
1579 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1580 		seq_printf(m, "Process %d PASID 0x%x:\n",
1581 			   p->lead_thread->tgid, p->pasid);
1582 
1583 		mutex_lock(&p->mutex);
1584 		r = pqm_debugfs_mqds(m, &p->pqm);
1585 		mutex_unlock(&p->mutex);
1586 
1587 		if (r)
1588 			break;
1589 	}
1590 
1591 	srcu_read_unlock(&kfd_processes_srcu, idx);
1592 
1593 	return r;
1594 }
1595 
1596 #endif
1597 
1598