xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision 25879d7b4986beba3f0d84762fe40d09fdc8b219)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/compat.h>
34 #include <linux/mman.h>
35 #include <linux/file.h>
36 #include <linux/pm_runtime.h>
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu.h"
39 
40 struct mm_struct;
41 
42 #include "kfd_priv.h"
43 #include "kfd_device_queue_manager.h"
44 #include "kfd_iommu.h"
45 #include "kfd_svm.h"
46 #include "kfd_smi_events.h"
47 
48 /*
49  * List of struct kfd_process (field kfd_process).
50  * Unique/indexed by mm_struct*
51  */
52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
53 DEFINE_MUTEX(kfd_processes_mutex);
54 
55 DEFINE_SRCU(kfd_processes_srcu);
56 
57 /* For process termination handling */
58 static struct workqueue_struct *kfd_process_wq;
59 
60 /* Ordered, single-threaded workqueue for restoring evicted
61  * processes. Restoring multiple processes concurrently under memory
62  * pressure can lead to processes blocking each other from validating
63  * their BOs and result in a live-lock situation where processes
64  * remain evicted indefinitely.
65  */
66 static struct workqueue_struct *kfd_restore_wq;
67 
68 static struct kfd_process *find_process(const struct task_struct *thread,
69 					bool ref);
70 static void kfd_process_ref_release(struct kref *ref);
71 static struct kfd_process *create_process(const struct task_struct *thread);
72 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
73 
74 static void evict_process_worker(struct work_struct *work);
75 static void restore_process_worker(struct work_struct *work);
76 
77 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
78 
79 struct kfd_procfs_tree {
80 	struct kobject *kobj;
81 };
82 
83 static struct kfd_procfs_tree procfs;
84 
85 /*
86  * Structure for SDMA activity tracking
87  */
88 struct kfd_sdma_activity_handler_workarea {
89 	struct work_struct sdma_activity_work;
90 	struct kfd_process_device *pdd;
91 	uint64_t sdma_activity_counter;
92 };
93 
94 struct temp_sdma_queue_list {
95 	uint64_t __user *rptr;
96 	uint64_t sdma_val;
97 	unsigned int queue_id;
98 	struct list_head list;
99 };
100 
101 static void kfd_sdma_activity_worker(struct work_struct *work)
102 {
103 	struct kfd_sdma_activity_handler_workarea *workarea;
104 	struct kfd_process_device *pdd;
105 	uint64_t val;
106 	struct mm_struct *mm;
107 	struct queue *q;
108 	struct qcm_process_device *qpd;
109 	struct device_queue_manager *dqm;
110 	int ret = 0;
111 	struct temp_sdma_queue_list sdma_q_list;
112 	struct temp_sdma_queue_list *sdma_q, *next;
113 
114 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
115 				sdma_activity_work);
116 
117 	pdd = workarea->pdd;
118 	if (!pdd)
119 		return;
120 	dqm = pdd->dev->dqm;
121 	qpd = &pdd->qpd;
122 	if (!dqm || !qpd)
123 		return;
124 	/*
125 	 * Total SDMA activity is current SDMA activity + past SDMA activity
126 	 * Past SDMA count is stored in pdd.
127 	 * To get the current activity counters for all active SDMA queues,
128 	 * we loop over all SDMA queues and get their counts from user-space.
129 	 *
130 	 * We cannot call get_user() with dqm_lock held as it can cause
131 	 * a circular lock dependency situation. To read the SDMA stats,
132 	 * we need to do the following:
133 	 *
134 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
135 	 *    with dqm_lock/dqm_unlock().
136 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
137 	 *    Save the SDMA count for each node and also add the count to the total
138 	 *    SDMA count counter.
139 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
140 	 *    from the qpd->queues_list.
141 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
142 	 *    If any node got deleted, its SDMA count would be captured in the sdma
143 	 *    past activity counter. So subtract the SDMA counter stored in step 2
144 	 *    for this node from the total SDMA count.
145 	 */
146 	INIT_LIST_HEAD(&sdma_q_list.list);
147 
148 	/*
149 	 * Create the temp list of all SDMA queues
150 	 */
151 	dqm_lock(dqm);
152 
153 	list_for_each_entry(q, &qpd->queues_list, list) {
154 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
155 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
156 			continue;
157 
158 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
159 		if (!sdma_q) {
160 			dqm_unlock(dqm);
161 			goto cleanup;
162 		}
163 
164 		INIT_LIST_HEAD(&sdma_q->list);
165 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
166 		sdma_q->queue_id = q->properties.queue_id;
167 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
168 	}
169 
170 	/*
171 	 * If the temp list is empty, then no SDMA queues nodes were found in
172 	 * qpd->queues_list. Return the past activity count as the total sdma
173 	 * count
174 	 */
175 	if (list_empty(&sdma_q_list.list)) {
176 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
177 		dqm_unlock(dqm);
178 		return;
179 	}
180 
181 	dqm_unlock(dqm);
182 
183 	/*
184 	 * Get the usage count for each SDMA queue in temp_list.
185 	 */
186 	mm = get_task_mm(pdd->process->lead_thread);
187 	if (!mm)
188 		goto cleanup;
189 
190 	kthread_use_mm(mm);
191 
192 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
193 		val = 0;
194 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
195 		if (ret) {
196 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
197 				 sdma_q->queue_id);
198 		} else {
199 			sdma_q->sdma_val = val;
200 			workarea->sdma_activity_counter += val;
201 		}
202 	}
203 
204 	kthread_unuse_mm(mm);
205 	mmput(mm);
206 
207 	/*
208 	 * Do a second iteration over qpd_queues_list to check if any SDMA
209 	 * nodes got deleted while fetching SDMA counter.
210 	 */
211 	dqm_lock(dqm);
212 
213 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
214 
215 	list_for_each_entry(q, &qpd->queues_list, list) {
216 		if (list_empty(&sdma_q_list.list))
217 			break;
218 
219 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
220 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
221 			continue;
222 
223 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
224 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
225 			     (sdma_q->queue_id == q->properties.queue_id)) {
226 				list_del(&sdma_q->list);
227 				kfree(sdma_q);
228 				break;
229 			}
230 		}
231 	}
232 
233 	dqm_unlock(dqm);
234 
235 	/*
236 	 * If temp list is not empty, it implies some queues got deleted
237 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
238 	 * count for each node from the total SDMA count.
239 	 */
240 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
241 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
242 		list_del(&sdma_q->list);
243 		kfree(sdma_q);
244 	}
245 
246 	return;
247 
248 cleanup:
249 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
250 		list_del(&sdma_q->list);
251 		kfree(sdma_q);
252 	}
253 }
254 
255 /**
256  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
257  * by current process. Translates acquired wave count into number of compute units
258  * that are occupied.
259  *
260  * @attr: Handle of attribute that allows reporting of wave count. The attribute
261  * handle encapsulates GPU device it is associated with, thereby allowing collection
262  * of waves in flight, etc
263  * @buffer: Handle of user provided buffer updated with wave count
264  *
265  * Return: Number of bytes written to user buffer or an error value
266  */
267 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
268 {
269 	int cu_cnt;
270 	int wave_cnt;
271 	int max_waves_per_cu;
272 	struct kfd_node *dev = NULL;
273 	struct kfd_process *proc = NULL;
274 	struct kfd_process_device *pdd = NULL;
275 
276 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
277 	dev = pdd->dev;
278 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
279 		return -EINVAL;
280 
281 	cu_cnt = 0;
282 	proc = pdd->process;
283 	if (pdd->qpd.queue_count == 0) {
284 		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
285 			 dev->id, proc->pasid);
286 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
287 	}
288 
289 	/* Collect wave count from device if it supports */
290 	wave_cnt = 0;
291 	max_waves_per_cu = 0;
292 	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
293 			&max_waves_per_cu, 0);
294 
295 	/* Translate wave count to number of compute units */
296 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
297 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
298 }
299 
300 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
301 			       char *buffer)
302 {
303 	if (strcmp(attr->name, "pasid") == 0) {
304 		struct kfd_process *p = container_of(attr, struct kfd_process,
305 						     attr_pasid);
306 
307 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
308 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
309 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
310 							      attr_vram);
311 		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
312 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
313 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
314 							      attr_sdma);
315 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
316 
317 		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
318 					kfd_sdma_activity_worker);
319 
320 		sdma_activity_work_handler.pdd = pdd;
321 		sdma_activity_work_handler.sdma_activity_counter = 0;
322 
323 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
324 
325 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
326 
327 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
328 				(sdma_activity_work_handler.sdma_activity_counter)/
329 				 SDMA_ACTIVITY_DIVISOR);
330 	} else {
331 		pr_err("Invalid attribute");
332 		return -EINVAL;
333 	}
334 
335 	return 0;
336 }
337 
338 static void kfd_procfs_kobj_release(struct kobject *kobj)
339 {
340 	kfree(kobj);
341 }
342 
343 static const struct sysfs_ops kfd_procfs_ops = {
344 	.show = kfd_procfs_show,
345 };
346 
347 static const struct kobj_type procfs_type = {
348 	.release = kfd_procfs_kobj_release,
349 	.sysfs_ops = &kfd_procfs_ops,
350 };
351 
352 void kfd_procfs_init(void)
353 {
354 	int ret = 0;
355 
356 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
357 	if (!procfs.kobj)
358 		return;
359 
360 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
361 				   &kfd_device->kobj, "proc");
362 	if (ret) {
363 		pr_warn("Could not create procfs proc folder");
364 		/* If we fail to create the procfs, clean up */
365 		kfd_procfs_shutdown();
366 	}
367 }
368 
369 void kfd_procfs_shutdown(void)
370 {
371 	if (procfs.kobj) {
372 		kobject_del(procfs.kobj);
373 		kobject_put(procfs.kobj);
374 		procfs.kobj = NULL;
375 	}
376 }
377 
378 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
379 				     struct attribute *attr, char *buffer)
380 {
381 	struct queue *q = container_of(kobj, struct queue, kobj);
382 
383 	if (!strcmp(attr->name, "size"))
384 		return snprintf(buffer, PAGE_SIZE, "%llu",
385 				q->properties.queue_size);
386 	else if (!strcmp(attr->name, "type"))
387 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
388 	else if (!strcmp(attr->name, "gpuid"))
389 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
390 	else
391 		pr_err("Invalid attribute");
392 
393 	return 0;
394 }
395 
396 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
397 				     struct attribute *attr, char *buffer)
398 {
399 	if (strcmp(attr->name, "evicted_ms") == 0) {
400 		struct kfd_process_device *pdd = container_of(attr,
401 				struct kfd_process_device,
402 				attr_evict);
403 		uint64_t evict_jiffies;
404 
405 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
406 
407 		return snprintf(buffer,
408 				PAGE_SIZE,
409 				"%llu\n",
410 				jiffies64_to_msecs(evict_jiffies));
411 
412 	/* Sysfs handle that gets CU occupancy is per device */
413 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
414 		return kfd_get_cu_occupancy(attr, buffer);
415 	} else {
416 		pr_err("Invalid attribute");
417 	}
418 
419 	return 0;
420 }
421 
422 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
423 				       struct attribute *attr, char *buf)
424 {
425 	struct kfd_process_device *pdd;
426 
427 	if (!strcmp(attr->name, "faults")) {
428 		pdd = container_of(attr, struct kfd_process_device,
429 				   attr_faults);
430 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
431 	}
432 	if (!strcmp(attr->name, "page_in")) {
433 		pdd = container_of(attr, struct kfd_process_device,
434 				   attr_page_in);
435 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
436 	}
437 	if (!strcmp(attr->name, "page_out")) {
438 		pdd = container_of(attr, struct kfd_process_device,
439 				   attr_page_out);
440 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
441 	}
442 	return 0;
443 }
444 
445 static struct attribute attr_queue_size = {
446 	.name = "size",
447 	.mode = KFD_SYSFS_FILE_MODE
448 };
449 
450 static struct attribute attr_queue_type = {
451 	.name = "type",
452 	.mode = KFD_SYSFS_FILE_MODE
453 };
454 
455 static struct attribute attr_queue_gpuid = {
456 	.name = "gpuid",
457 	.mode = KFD_SYSFS_FILE_MODE
458 };
459 
460 static struct attribute *procfs_queue_attrs[] = {
461 	&attr_queue_size,
462 	&attr_queue_type,
463 	&attr_queue_gpuid,
464 	NULL
465 };
466 ATTRIBUTE_GROUPS(procfs_queue);
467 
468 static const struct sysfs_ops procfs_queue_ops = {
469 	.show = kfd_procfs_queue_show,
470 };
471 
472 static const struct kobj_type procfs_queue_type = {
473 	.sysfs_ops = &procfs_queue_ops,
474 	.default_groups = procfs_queue_groups,
475 };
476 
477 static const struct sysfs_ops procfs_stats_ops = {
478 	.show = kfd_procfs_stats_show,
479 };
480 
481 static const struct kobj_type procfs_stats_type = {
482 	.sysfs_ops = &procfs_stats_ops,
483 	.release = kfd_procfs_kobj_release,
484 };
485 
486 static const struct sysfs_ops sysfs_counters_ops = {
487 	.show = kfd_sysfs_counters_show,
488 };
489 
490 static const struct kobj_type sysfs_counters_type = {
491 	.sysfs_ops = &sysfs_counters_ops,
492 	.release = kfd_procfs_kobj_release,
493 };
494 
495 int kfd_procfs_add_queue(struct queue *q)
496 {
497 	struct kfd_process *proc;
498 	int ret;
499 
500 	if (!q || !q->process)
501 		return -EINVAL;
502 	proc = q->process;
503 
504 	/* Create proc/<pid>/queues/<queue id> folder */
505 	if (!proc->kobj_queues)
506 		return -EFAULT;
507 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
508 			proc->kobj_queues, "%u", q->properties.queue_id);
509 	if (ret < 0) {
510 		pr_warn("Creating proc/<pid>/queues/%u failed",
511 			q->properties.queue_id);
512 		kobject_put(&q->kobj);
513 		return ret;
514 	}
515 
516 	return 0;
517 }
518 
519 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
520 				 char *name)
521 {
522 	int ret;
523 
524 	if (!kobj || !attr || !name)
525 		return;
526 
527 	attr->name = name;
528 	attr->mode = KFD_SYSFS_FILE_MODE;
529 	sysfs_attr_init(attr);
530 
531 	ret = sysfs_create_file(kobj, attr);
532 	if (ret)
533 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
534 }
535 
536 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
537 {
538 	int ret;
539 	int i;
540 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
541 
542 	if (!p || !p->kobj)
543 		return;
544 
545 	/*
546 	 * Create sysfs files for each GPU:
547 	 * - proc/<pid>/stats_<gpuid>/
548 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
549 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
550 	 */
551 	for (i = 0; i < p->n_pdds; i++) {
552 		struct kfd_process_device *pdd = p->pdds[i];
553 
554 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
555 				"stats_%u", pdd->dev->id);
556 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
557 		if (!pdd->kobj_stats)
558 			return;
559 
560 		ret = kobject_init_and_add(pdd->kobj_stats,
561 					   &procfs_stats_type,
562 					   p->kobj,
563 					   stats_dir_filename);
564 
565 		if (ret) {
566 			pr_warn("Creating KFD proc/stats_%s folder failed",
567 				stats_dir_filename);
568 			kobject_put(pdd->kobj_stats);
569 			pdd->kobj_stats = NULL;
570 			return;
571 		}
572 
573 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
574 				      "evicted_ms");
575 		/* Add sysfs file to report compute unit occupancy */
576 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
577 			kfd_sysfs_create_file(pdd->kobj_stats,
578 					      &pdd->attr_cu_occupancy,
579 					      "cu_occupancy");
580 	}
581 }
582 
583 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
584 {
585 	int ret = 0;
586 	int i;
587 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
588 
589 	if (!p || !p->kobj)
590 		return;
591 
592 	/*
593 	 * Create sysfs files for each GPU which supports SVM
594 	 * - proc/<pid>/counters_<gpuid>/
595 	 * - proc/<pid>/counters_<gpuid>/faults
596 	 * - proc/<pid>/counters_<gpuid>/page_in
597 	 * - proc/<pid>/counters_<gpuid>/page_out
598 	 */
599 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
600 		struct kfd_process_device *pdd = p->pdds[i];
601 		struct kobject *kobj_counters;
602 
603 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
604 			"counters_%u", pdd->dev->id);
605 		kobj_counters = kfd_alloc_struct(kobj_counters);
606 		if (!kobj_counters)
607 			return;
608 
609 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
610 					   p->kobj, counters_dir_filename);
611 		if (ret) {
612 			pr_warn("Creating KFD proc/%s folder failed",
613 				counters_dir_filename);
614 			kobject_put(kobj_counters);
615 			return;
616 		}
617 
618 		pdd->kobj_counters = kobj_counters;
619 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
620 				      "faults");
621 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
622 				      "page_in");
623 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
624 				      "page_out");
625 	}
626 }
627 
628 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
629 {
630 	int i;
631 
632 	if (!p || !p->kobj)
633 		return;
634 
635 	/*
636 	 * Create sysfs files for each GPU:
637 	 * - proc/<pid>/vram_<gpuid>
638 	 * - proc/<pid>/sdma_<gpuid>
639 	 */
640 	for (i = 0; i < p->n_pdds; i++) {
641 		struct kfd_process_device *pdd = p->pdds[i];
642 
643 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
644 			 pdd->dev->id);
645 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
646 				      pdd->vram_filename);
647 
648 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
649 			 pdd->dev->id);
650 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
651 					    pdd->sdma_filename);
652 	}
653 }
654 
655 void kfd_procfs_del_queue(struct queue *q)
656 {
657 	if (!q)
658 		return;
659 
660 	kobject_del(&q->kobj);
661 	kobject_put(&q->kobj);
662 }
663 
664 int kfd_process_create_wq(void)
665 {
666 	if (!kfd_process_wq)
667 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
668 	if (!kfd_restore_wq)
669 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
670 
671 	if (!kfd_process_wq || !kfd_restore_wq) {
672 		kfd_process_destroy_wq();
673 		return -ENOMEM;
674 	}
675 
676 	return 0;
677 }
678 
679 void kfd_process_destroy_wq(void)
680 {
681 	if (kfd_process_wq) {
682 		destroy_workqueue(kfd_process_wq);
683 		kfd_process_wq = NULL;
684 	}
685 	if (kfd_restore_wq) {
686 		destroy_workqueue(kfd_restore_wq);
687 		kfd_restore_wq = NULL;
688 	}
689 }
690 
691 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
692 			struct kfd_process_device *pdd, void **kptr)
693 {
694 	struct kfd_node *dev = pdd->dev;
695 
696 	if (kptr && *kptr) {
697 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
698 		*kptr = NULL;
699 	}
700 
701 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
702 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
703 					       NULL);
704 }
705 
706 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
707  *	This function should be only called right after the process
708  *	is created and when kfd_processes_mutex is still being held
709  *	to avoid concurrency. Because of that exclusiveness, we do
710  *	not need to take p->mutex.
711  */
712 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
713 				   uint64_t gpu_va, uint32_t size,
714 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
715 {
716 	struct kfd_node *kdev = pdd->dev;
717 	int err;
718 
719 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
720 						 pdd->drm_priv, mem, NULL,
721 						 flags, false);
722 	if (err)
723 		goto err_alloc_mem;
724 
725 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
726 			pdd->drm_priv);
727 	if (err)
728 		goto err_map_mem;
729 
730 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
731 	if (err) {
732 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
733 		goto sync_memory_failed;
734 	}
735 
736 	if (kptr) {
737 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
738 				(struct kgd_mem *)*mem, kptr, NULL);
739 		if (err) {
740 			pr_debug("Map GTT BO to kernel failed\n");
741 			goto sync_memory_failed;
742 		}
743 	}
744 
745 	return err;
746 
747 sync_memory_failed:
748 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
749 
750 err_map_mem:
751 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
752 					       NULL);
753 err_alloc_mem:
754 	*mem = NULL;
755 	*kptr = NULL;
756 	return err;
757 }
758 
759 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
760  *	process for IB usage The memory reserved is for KFD to submit
761  *	IB to AMDGPU from kernel.  If the memory is reserved
762  *	successfully, ib_kaddr will have the CPU/kernel
763  *	address. Check ib_kaddr before accessing the memory.
764  */
765 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
766 {
767 	struct qcm_process_device *qpd = &pdd->qpd;
768 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
769 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
770 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
771 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
772 	struct kgd_mem *mem;
773 	void *kaddr;
774 	int ret;
775 
776 	if (qpd->ib_kaddr || !qpd->ib_base)
777 		return 0;
778 
779 	/* ib_base is only set for dGPU */
780 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
781 				      &mem, &kaddr);
782 	if (ret)
783 		return ret;
784 
785 	qpd->ib_mem = mem;
786 	qpd->ib_kaddr = kaddr;
787 
788 	return 0;
789 }
790 
791 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
792 {
793 	struct qcm_process_device *qpd = &pdd->qpd;
794 
795 	if (!qpd->ib_kaddr || !qpd->ib_base)
796 		return;
797 
798 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
799 }
800 
801 struct kfd_process *kfd_create_process(struct file *filep)
802 {
803 	struct kfd_process *process;
804 	struct task_struct *thread = current;
805 	int ret;
806 
807 	if (!thread->mm)
808 		return ERR_PTR(-EINVAL);
809 
810 	/* Only the pthreads threading model is supported. */
811 	if (thread->group_leader->mm != thread->mm)
812 		return ERR_PTR(-EINVAL);
813 
814 	/*
815 	 * take kfd processes mutex before starting of process creation
816 	 * so there won't be a case where two threads of the same process
817 	 * create two kfd_process structures
818 	 */
819 	mutex_lock(&kfd_processes_mutex);
820 
821 	if (kfd_is_locked()) {
822 		mutex_unlock(&kfd_processes_mutex);
823 		pr_debug("KFD is locked! Cannot create process");
824 		return ERR_PTR(-EINVAL);
825 	}
826 
827 	/* A prior open of /dev/kfd could have already created the process. */
828 	process = find_process(thread, false);
829 	if (process) {
830 		pr_debug("Process already found\n");
831 	} else {
832 		process = create_process(thread);
833 		if (IS_ERR(process))
834 			goto out;
835 
836 		ret = kfd_process_init_cwsr_apu(process, filep);
837 		if (ret)
838 			goto out_destroy;
839 
840 		if (!procfs.kobj)
841 			goto out;
842 
843 		process->kobj = kfd_alloc_struct(process->kobj);
844 		if (!process->kobj) {
845 			pr_warn("Creating procfs kobject failed");
846 			goto out;
847 		}
848 		ret = kobject_init_and_add(process->kobj, &procfs_type,
849 					   procfs.kobj, "%d",
850 					   (int)process->lead_thread->pid);
851 		if (ret) {
852 			pr_warn("Creating procfs pid directory failed");
853 			kobject_put(process->kobj);
854 			goto out;
855 		}
856 
857 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
858 				      "pasid");
859 
860 		process->kobj_queues = kobject_create_and_add("queues",
861 							process->kobj);
862 		if (!process->kobj_queues)
863 			pr_warn("Creating KFD proc/queues folder failed");
864 
865 		kfd_procfs_add_sysfs_stats(process);
866 		kfd_procfs_add_sysfs_files(process);
867 		kfd_procfs_add_sysfs_counters(process);
868 	}
869 out:
870 	if (!IS_ERR(process))
871 		kref_get(&process->ref);
872 	mutex_unlock(&kfd_processes_mutex);
873 
874 	return process;
875 
876 out_destroy:
877 	hash_del_rcu(&process->kfd_processes);
878 	mutex_unlock(&kfd_processes_mutex);
879 	synchronize_srcu(&kfd_processes_srcu);
880 	/* kfd_process_free_notifier will trigger the cleanup */
881 	mmu_notifier_put(&process->mmu_notifier);
882 	return ERR_PTR(ret);
883 }
884 
885 struct kfd_process *kfd_get_process(const struct task_struct *thread)
886 {
887 	struct kfd_process *process;
888 
889 	if (!thread->mm)
890 		return ERR_PTR(-EINVAL);
891 
892 	/* Only the pthreads threading model is supported. */
893 	if (thread->group_leader->mm != thread->mm)
894 		return ERR_PTR(-EINVAL);
895 
896 	process = find_process(thread, false);
897 	if (!process)
898 		return ERR_PTR(-EINVAL);
899 
900 	return process;
901 }
902 
903 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
904 {
905 	struct kfd_process *process;
906 
907 	hash_for_each_possible_rcu(kfd_processes_table, process,
908 					kfd_processes, (uintptr_t)mm)
909 		if (process->mm == mm)
910 			return process;
911 
912 	return NULL;
913 }
914 
915 static struct kfd_process *find_process(const struct task_struct *thread,
916 					bool ref)
917 {
918 	struct kfd_process *p;
919 	int idx;
920 
921 	idx = srcu_read_lock(&kfd_processes_srcu);
922 	p = find_process_by_mm(thread->mm);
923 	if (p && ref)
924 		kref_get(&p->ref);
925 	srcu_read_unlock(&kfd_processes_srcu, idx);
926 
927 	return p;
928 }
929 
930 void kfd_unref_process(struct kfd_process *p)
931 {
932 	kref_put(&p->ref, kfd_process_ref_release);
933 }
934 
935 /* This increments the process->ref counter. */
936 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
937 {
938 	struct task_struct *task = NULL;
939 	struct kfd_process *p    = NULL;
940 
941 	if (!pid) {
942 		task = current;
943 		get_task_struct(task);
944 	} else {
945 		task = get_pid_task(pid, PIDTYPE_PID);
946 	}
947 
948 	if (task) {
949 		p = find_process(task, true);
950 		put_task_struct(task);
951 	}
952 
953 	return p;
954 }
955 
956 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
957 {
958 	struct kfd_process *p = pdd->process;
959 	void *mem;
960 	int id;
961 	int i;
962 
963 	/*
964 	 * Remove all handles from idr and release appropriate
965 	 * local memory object
966 	 */
967 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
968 
969 		for (i = 0; i < p->n_pdds; i++) {
970 			struct kfd_process_device *peer_pdd = p->pdds[i];
971 
972 			if (!peer_pdd->drm_priv)
973 				continue;
974 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
975 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
976 		}
977 
978 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
979 						       pdd->drm_priv, NULL);
980 		kfd_process_device_remove_obj_handle(pdd, id);
981 	}
982 }
983 
984 /*
985  * Just kunmap and unpin signal BO here. It will be freed in
986  * kfd_process_free_outstanding_kfd_bos()
987  */
988 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
989 {
990 	struct kfd_process_device *pdd;
991 	struct kfd_node *kdev;
992 	void *mem;
993 
994 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
995 	if (!kdev)
996 		return;
997 
998 	mutex_lock(&p->mutex);
999 
1000 	pdd = kfd_get_process_device_data(kdev, p);
1001 	if (!pdd)
1002 		goto out;
1003 
1004 	mem = kfd_process_device_translate_handle(
1005 		pdd, GET_IDR_HANDLE(p->signal_handle));
1006 	if (!mem)
1007 		goto out;
1008 
1009 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1010 
1011 out:
1012 	mutex_unlock(&p->mutex);
1013 }
1014 
1015 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1016 {
1017 	int i;
1018 
1019 	for (i = 0; i < p->n_pdds; i++)
1020 		kfd_process_device_free_bos(p->pdds[i]);
1021 }
1022 
1023 static void kfd_process_destroy_pdds(struct kfd_process *p)
1024 {
1025 	int i;
1026 
1027 	for (i = 0; i < p->n_pdds; i++) {
1028 		struct kfd_process_device *pdd = p->pdds[i];
1029 
1030 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1031 				pdd->dev->id, p->pasid);
1032 
1033 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1034 		kfd_process_device_destroy_ib_mem(pdd);
1035 
1036 		if (pdd->drm_file) {
1037 			amdgpu_amdkfd_gpuvm_release_process_vm(
1038 					pdd->dev->adev, pdd->drm_priv);
1039 			fput(pdd->drm_file);
1040 		}
1041 
1042 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1043 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1044 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1045 
1046 		bitmap_free(pdd->qpd.doorbell_bitmap);
1047 		idr_destroy(&pdd->alloc_idr);
1048 
1049 		kfd_free_process_doorbells(pdd->dev->kfd, pdd->doorbell_index);
1050 
1051 		if (pdd->dev->kfd->shared_resources.enable_mes)
1052 			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1053 						   pdd->proc_ctx_bo);
1054 		/*
1055 		 * before destroying pdd, make sure to report availability
1056 		 * for auto suspend
1057 		 */
1058 		if (pdd->runtime_inuse) {
1059 			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1060 			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1061 			pdd->runtime_inuse = false;
1062 		}
1063 
1064 		kfree(pdd);
1065 		p->pdds[i] = NULL;
1066 	}
1067 	p->n_pdds = 0;
1068 }
1069 
1070 static void kfd_process_remove_sysfs(struct kfd_process *p)
1071 {
1072 	struct kfd_process_device *pdd;
1073 	int i;
1074 
1075 	if (!p->kobj)
1076 		return;
1077 
1078 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1079 	kobject_del(p->kobj_queues);
1080 	kobject_put(p->kobj_queues);
1081 	p->kobj_queues = NULL;
1082 
1083 	for (i = 0; i < p->n_pdds; i++) {
1084 		pdd = p->pdds[i];
1085 
1086 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1087 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1088 
1089 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1090 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1091 			sysfs_remove_file(pdd->kobj_stats,
1092 					  &pdd->attr_cu_occupancy);
1093 		kobject_del(pdd->kobj_stats);
1094 		kobject_put(pdd->kobj_stats);
1095 		pdd->kobj_stats = NULL;
1096 	}
1097 
1098 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1099 		pdd = p->pdds[i];
1100 
1101 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1102 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1103 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1104 		kobject_del(pdd->kobj_counters);
1105 		kobject_put(pdd->kobj_counters);
1106 		pdd->kobj_counters = NULL;
1107 	}
1108 
1109 	kobject_del(p->kobj);
1110 	kobject_put(p->kobj);
1111 	p->kobj = NULL;
1112 }
1113 
1114 /* No process locking is needed in this function, because the process
1115  * is not findable any more. We must assume that no other thread is
1116  * using it any more, otherwise we couldn't safely free the process
1117  * structure in the end.
1118  */
1119 static void kfd_process_wq_release(struct work_struct *work)
1120 {
1121 	struct kfd_process *p = container_of(work, struct kfd_process,
1122 					     release_work);
1123 
1124 	kfd_process_dequeue_from_all_devices(p);
1125 	pqm_uninit(&p->pqm);
1126 
1127 	/* Signal the eviction fence after user mode queues are
1128 	 * destroyed. This allows any BOs to be freed without
1129 	 * triggering pointless evictions or waiting for fences.
1130 	 */
1131 	dma_fence_signal(p->ef);
1132 
1133 	kfd_process_remove_sysfs(p);
1134 	kfd_iommu_unbind_process(p);
1135 
1136 	kfd_process_kunmap_signal_bo(p);
1137 	kfd_process_free_outstanding_kfd_bos(p);
1138 	svm_range_list_fini(p);
1139 
1140 	kfd_process_destroy_pdds(p);
1141 	dma_fence_put(p->ef);
1142 
1143 	kfd_event_free_process(p);
1144 
1145 	kfd_pasid_free(p->pasid);
1146 	mutex_destroy(&p->mutex);
1147 
1148 	put_task_struct(p->lead_thread);
1149 
1150 	kfree(p);
1151 }
1152 
1153 static void kfd_process_ref_release(struct kref *ref)
1154 {
1155 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1156 
1157 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1158 	queue_work(kfd_process_wq, &p->release_work);
1159 }
1160 
1161 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1162 {
1163 	int idx = srcu_read_lock(&kfd_processes_srcu);
1164 	struct kfd_process *p = find_process_by_mm(mm);
1165 
1166 	srcu_read_unlock(&kfd_processes_srcu, idx);
1167 
1168 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1169 }
1170 
1171 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1172 {
1173 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1174 }
1175 
1176 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1177 {
1178 	cancel_delayed_work_sync(&p->eviction_work);
1179 	cancel_delayed_work_sync(&p->restore_work);
1180 
1181 	/* Indicate to other users that MM is no longer valid */
1182 	p->mm = NULL;
1183 
1184 	mmu_notifier_put(&p->mmu_notifier);
1185 }
1186 
1187 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1188 					struct mm_struct *mm)
1189 {
1190 	struct kfd_process *p;
1191 
1192 	/*
1193 	 * The kfd_process structure can not be free because the
1194 	 * mmu_notifier srcu is read locked
1195 	 */
1196 	p = container_of(mn, struct kfd_process, mmu_notifier);
1197 	if (WARN_ON(p->mm != mm))
1198 		return;
1199 
1200 	mutex_lock(&kfd_processes_mutex);
1201 	/*
1202 	 * Do early return if table is empty.
1203 	 *
1204 	 * This could potentially happen if this function is called concurrently
1205 	 * by mmu_notifier and by kfd_cleanup_pocesses.
1206 	 *
1207 	 */
1208 	if (hash_empty(kfd_processes_table)) {
1209 		mutex_unlock(&kfd_processes_mutex);
1210 		return;
1211 	}
1212 	hash_del_rcu(&p->kfd_processes);
1213 	mutex_unlock(&kfd_processes_mutex);
1214 	synchronize_srcu(&kfd_processes_srcu);
1215 
1216 	kfd_process_notifier_release_internal(p);
1217 }
1218 
1219 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1220 	.release = kfd_process_notifier_release,
1221 	.alloc_notifier = kfd_process_alloc_notifier,
1222 	.free_notifier = kfd_process_free_notifier,
1223 };
1224 
1225 /*
1226  * This code handles the case when driver is being unloaded before all
1227  * mm_struct are released.  We need to safely free the kfd_process and
1228  * avoid race conditions with mmu_notifier that might try to free them.
1229  *
1230  */
1231 void kfd_cleanup_processes(void)
1232 {
1233 	struct kfd_process *p;
1234 	struct hlist_node *p_temp;
1235 	unsigned int temp;
1236 	HLIST_HEAD(cleanup_list);
1237 
1238 	/*
1239 	 * Move all remaining kfd_process from the process table to a
1240 	 * temp list for processing.   Once done, callback from mmu_notifier
1241 	 * release will not see the kfd_process in the table and do early return,
1242 	 * avoiding double free issues.
1243 	 */
1244 	mutex_lock(&kfd_processes_mutex);
1245 	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1246 		hash_del_rcu(&p->kfd_processes);
1247 		synchronize_srcu(&kfd_processes_srcu);
1248 		hlist_add_head(&p->kfd_processes, &cleanup_list);
1249 	}
1250 	mutex_unlock(&kfd_processes_mutex);
1251 
1252 	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1253 		kfd_process_notifier_release_internal(p);
1254 
1255 	/*
1256 	 * Ensures that all outstanding free_notifier get called, triggering
1257 	 * the release of the kfd_process struct.
1258 	 */
1259 	mmu_notifier_synchronize();
1260 }
1261 
1262 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1263 {
1264 	unsigned long  offset;
1265 	int i;
1266 
1267 	for (i = 0; i < p->n_pdds; i++) {
1268 		struct kfd_node *dev = p->pdds[i]->dev;
1269 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1270 
1271 		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1272 			continue;
1273 
1274 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1275 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1276 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1277 			MAP_SHARED, offset);
1278 
1279 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1280 			int err = qpd->tba_addr;
1281 
1282 			pr_err("Failure to set tba address. error %d.\n", err);
1283 			qpd->tba_addr = 0;
1284 			qpd->cwsr_kaddr = NULL;
1285 			return err;
1286 		}
1287 
1288 		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1289 
1290 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1291 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1292 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1299 {
1300 	struct kfd_node *dev = pdd->dev;
1301 	struct qcm_process_device *qpd = &pdd->qpd;
1302 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1303 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1304 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1305 	struct kgd_mem *mem;
1306 	void *kaddr;
1307 	int ret;
1308 
1309 	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1310 		return 0;
1311 
1312 	/* cwsr_base is only set for dGPU */
1313 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1314 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1315 	if (ret)
1316 		return ret;
1317 
1318 	qpd->cwsr_mem = mem;
1319 	qpd->cwsr_kaddr = kaddr;
1320 	qpd->tba_addr = qpd->cwsr_base;
1321 
1322 	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1323 
1324 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1325 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1326 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1327 
1328 	return 0;
1329 }
1330 
1331 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1332 {
1333 	struct kfd_node *dev = pdd->dev;
1334 	struct qcm_process_device *qpd = &pdd->qpd;
1335 
1336 	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1337 		return;
1338 
1339 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1340 }
1341 
1342 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1343 				  uint64_t tba_addr,
1344 				  uint64_t tma_addr)
1345 {
1346 	if (qpd->cwsr_kaddr) {
1347 		/* KFD trap handler is bound, record as second-level TBA/TMA
1348 		 * in first-level TMA. First-level trap will jump to second.
1349 		 */
1350 		uint64_t *tma =
1351 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1352 		tma[0] = tba_addr;
1353 		tma[1] = tma_addr;
1354 	} else {
1355 		/* No trap handler bound, bind as first-level TBA/TMA. */
1356 		qpd->tba_addr = tba_addr;
1357 		qpd->tma_addr = tma_addr;
1358 	}
1359 }
1360 
1361 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1362 {
1363 	int i;
1364 
1365 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1366 	 * boot time retry setting. Mixing processes with different
1367 	 * XNACK/retry settings can hang the GPU.
1368 	 *
1369 	 * Different GPUs can have different noretry settings depending
1370 	 * on HW bugs or limitations. We need to find at least one
1371 	 * XNACK mode for this process that's compatible with all GPUs.
1372 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1373 	 * built for XNACK-off. On GFXv9 it may perform slower.
1374 	 *
1375 	 * Therefore applications built for XNACK-off can always be
1376 	 * supported and will be our fallback if any GPU does not
1377 	 * support retry.
1378 	 */
1379 	for (i = 0; i < p->n_pdds; i++) {
1380 		struct kfd_node *dev = p->pdds[i]->dev;
1381 
1382 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1383 		 * support the SVM APIs and don't need to be considered
1384 		 * for the XNACK mode selection.
1385 		 */
1386 		if (!KFD_IS_SOC15(dev))
1387 			continue;
1388 		/* Aldebaran can always support XNACK because it can support
1389 		 * per-process XNACK mode selection. But let the dev->noretry
1390 		 * setting still influence the default XNACK mode.
1391 		 */
1392 		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev))
1393 			continue;
1394 
1395 		/* GFXv10 and later GPUs do not support shader preemption
1396 		 * during page faults. This can lead to poor QoS for queue
1397 		 * management and memory-manager-related preemptions or
1398 		 * even deadlocks.
1399 		 */
1400 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1401 			return false;
1402 
1403 		if (dev->kfd->noretry)
1404 			return false;
1405 	}
1406 
1407 	return true;
1408 }
1409 
1410 /*
1411  * On return the kfd_process is fully operational and will be freed when the
1412  * mm is released
1413  */
1414 static struct kfd_process *create_process(const struct task_struct *thread)
1415 {
1416 	struct kfd_process *process;
1417 	struct mmu_notifier *mn;
1418 	int err = -ENOMEM;
1419 
1420 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1421 	if (!process)
1422 		goto err_alloc_process;
1423 
1424 	kref_init(&process->ref);
1425 	mutex_init(&process->mutex);
1426 	process->mm = thread->mm;
1427 	process->lead_thread = thread->group_leader;
1428 	process->n_pdds = 0;
1429 	process->queues_paused = false;
1430 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1431 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1432 	process->last_restore_timestamp = get_jiffies_64();
1433 	err = kfd_event_init_process(process);
1434 	if (err)
1435 		goto err_event_init;
1436 	process->is_32bit_user_mode = in_compat_syscall();
1437 
1438 	process->pasid = kfd_pasid_alloc();
1439 	if (process->pasid == 0) {
1440 		err = -ENOSPC;
1441 		goto err_alloc_pasid;
1442 	}
1443 
1444 	err = pqm_init(&process->pqm, process);
1445 	if (err != 0)
1446 		goto err_process_pqm_init;
1447 
1448 	/* init process apertures*/
1449 	err = kfd_init_apertures(process);
1450 	if (err != 0)
1451 		goto err_init_apertures;
1452 
1453 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1454 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1455 
1456 	err = svm_range_list_init(process);
1457 	if (err)
1458 		goto err_init_svm_range_list;
1459 
1460 	/* alloc_notifier needs to find the process in the hash table */
1461 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1462 			(uintptr_t)process->mm);
1463 
1464 	/* Avoid free_notifier to start kfd_process_wq_release if
1465 	 * mmu_notifier_get failed because of pending signal.
1466 	 */
1467 	kref_get(&process->ref);
1468 
1469 	/* MMU notifier registration must be the last call that can fail
1470 	 * because after this point we cannot unwind the process creation.
1471 	 * After this point, mmu_notifier_put will trigger the cleanup by
1472 	 * dropping the last process reference in the free_notifier.
1473 	 */
1474 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1475 	if (IS_ERR(mn)) {
1476 		err = PTR_ERR(mn);
1477 		goto err_register_notifier;
1478 	}
1479 	BUG_ON(mn != &process->mmu_notifier);
1480 
1481 	kfd_unref_process(process);
1482 	get_task_struct(process->lead_thread);
1483 
1484 	return process;
1485 
1486 err_register_notifier:
1487 	hash_del_rcu(&process->kfd_processes);
1488 	svm_range_list_fini(process);
1489 err_init_svm_range_list:
1490 	kfd_process_free_outstanding_kfd_bos(process);
1491 	kfd_process_destroy_pdds(process);
1492 err_init_apertures:
1493 	pqm_uninit(&process->pqm);
1494 err_process_pqm_init:
1495 	kfd_pasid_free(process->pasid);
1496 err_alloc_pasid:
1497 	kfd_event_free_process(process);
1498 err_event_init:
1499 	mutex_destroy(&process->mutex);
1500 	kfree(process);
1501 err_alloc_process:
1502 	return ERR_PTR(err);
1503 }
1504 
1505 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1506 			struct kfd_dev *dev)
1507 {
1508 	unsigned int i;
1509 	int range_start = dev->shared_resources.non_cp_doorbells_start;
1510 	int range_end = dev->shared_resources.non_cp_doorbells_end;
1511 
1512 	if (!KFD_IS_SOC15(dev))
1513 		return 0;
1514 
1515 	qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1516 					     GFP_KERNEL);
1517 	if (!qpd->doorbell_bitmap)
1518 		return -ENOMEM;
1519 
1520 	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1521 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1522 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1523 			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1524 			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1525 
1526 	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1527 		if (i >= range_start && i <= range_end) {
1528 			__set_bit(i, qpd->doorbell_bitmap);
1529 			__set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1530 				  qpd->doorbell_bitmap);
1531 		}
1532 	}
1533 
1534 	return 0;
1535 }
1536 
1537 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1538 							struct kfd_process *p)
1539 {
1540 	int i;
1541 
1542 	for (i = 0; i < p->n_pdds; i++)
1543 		if (p->pdds[i]->dev == dev)
1544 			return p->pdds[i];
1545 
1546 	return NULL;
1547 }
1548 
1549 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1550 							struct kfd_process *p)
1551 {
1552 	struct kfd_process_device *pdd = NULL;
1553 	int retval = 0;
1554 
1555 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1556 		return NULL;
1557 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1558 	if (!pdd)
1559 		return NULL;
1560 
1561 	if (init_doorbell_bitmap(&pdd->qpd, dev->kfd)) {
1562 		pr_err("Failed to init doorbell for process\n");
1563 		goto err_free_pdd;
1564 	}
1565 
1566 	pdd->dev = dev;
1567 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1568 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1569 	pdd->qpd.dqm = dev->dqm;
1570 	pdd->qpd.pqm = &p->pqm;
1571 	pdd->qpd.evicted = 0;
1572 	pdd->qpd.mapped_gws_queue = false;
1573 	pdd->process = p;
1574 	pdd->bound = PDD_UNBOUND;
1575 	pdd->already_dequeued = false;
1576 	pdd->runtime_inuse = false;
1577 	pdd->vram_usage = 0;
1578 	pdd->sdma_past_activity_counter = 0;
1579 	pdd->user_gpu_id = dev->id;
1580 	atomic64_set(&pdd->evict_duration_counter, 0);
1581 
1582 	if (dev->kfd->shared_resources.enable_mes) {
1583 		retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1584 						AMDGPU_MES_PROC_CTX_SIZE,
1585 						&pdd->proc_ctx_bo,
1586 						&pdd->proc_ctx_gpu_addr,
1587 						&pdd->proc_ctx_cpu_ptr,
1588 						false);
1589 		if (retval) {
1590 			pr_err("failed to allocate process context bo\n");
1591 			goto err_free_pdd;
1592 		}
1593 		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1594 	}
1595 
1596 	p->pdds[p->n_pdds++] = pdd;
1597 
1598 	/* Init idr used for memory handle translation */
1599 	idr_init(&pdd->alloc_idr);
1600 
1601 	return pdd;
1602 
1603 err_free_pdd:
1604 	kfree(pdd);
1605 	return NULL;
1606 }
1607 
1608 /**
1609  * kfd_process_device_init_vm - Initialize a VM for a process-device
1610  *
1611  * @pdd: The process-device
1612  * @drm_file: Optional pointer to a DRM file descriptor
1613  *
1614  * If @drm_file is specified, it will be used to acquire the VM from
1615  * that file descriptor. If successful, the @pdd takes ownership of
1616  * the file descriptor.
1617  *
1618  * If @drm_file is NULL, a new VM is created.
1619  *
1620  * Returns 0 on success, -errno on failure.
1621  */
1622 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1623 			       struct file *drm_file)
1624 {
1625 	struct amdgpu_fpriv *drv_priv;
1626 	struct amdgpu_vm *avm;
1627 	struct kfd_process *p;
1628 	struct kfd_node *dev;
1629 	int ret;
1630 
1631 	if (!drm_file)
1632 		return -EINVAL;
1633 
1634 	if (pdd->drm_priv)
1635 		return -EBUSY;
1636 
1637 	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1638 	if (ret)
1639 		return ret;
1640 	avm = &drv_priv->vm;
1641 
1642 	p = pdd->process;
1643 	dev = pdd->dev;
1644 
1645 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1646 						     &p->kgd_process_info,
1647 						     &p->ef);
1648 	if (ret) {
1649 		pr_err("Failed to create process VM object\n");
1650 		return ret;
1651 	}
1652 	pdd->drm_priv = drm_file->private_data;
1653 	atomic64_set(&pdd->tlb_seq, 0);
1654 
1655 	ret = kfd_process_device_reserve_ib_mem(pdd);
1656 	if (ret)
1657 		goto err_reserve_ib_mem;
1658 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1659 	if (ret)
1660 		goto err_init_cwsr;
1661 
1662 	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1663 	if (ret)
1664 		goto err_set_pasid;
1665 
1666 	pdd->drm_file = drm_file;
1667 
1668 	return 0;
1669 
1670 err_set_pasid:
1671 	kfd_process_device_destroy_cwsr_dgpu(pdd);
1672 err_init_cwsr:
1673 	kfd_process_device_destroy_ib_mem(pdd);
1674 err_reserve_ib_mem:
1675 	pdd->drm_priv = NULL;
1676 	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1677 
1678 	return ret;
1679 }
1680 
1681 /*
1682  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1683  * to the device.
1684  * Unbinding occurs when the process dies or the device is removed.
1685  *
1686  * Assumes that the process lock is held.
1687  */
1688 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1689 							struct kfd_process *p)
1690 {
1691 	struct kfd_process_device *pdd;
1692 	int err;
1693 
1694 	pdd = kfd_get_process_device_data(dev, p);
1695 	if (!pdd) {
1696 		pr_err("Process device data doesn't exist\n");
1697 		return ERR_PTR(-ENOMEM);
1698 	}
1699 
1700 	if (!pdd->drm_priv)
1701 		return ERR_PTR(-ENODEV);
1702 
1703 	/*
1704 	 * signal runtime-pm system to auto resume and prevent
1705 	 * further runtime suspend once device pdd is created until
1706 	 * pdd is destroyed.
1707 	 */
1708 	if (!pdd->runtime_inuse) {
1709 		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1710 		if (err < 0) {
1711 			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1712 			return ERR_PTR(err);
1713 		}
1714 	}
1715 
1716 	err = kfd_iommu_bind_process_to_device(pdd);
1717 	if (err)
1718 		goto out;
1719 
1720 	/*
1721 	 * make sure that runtime_usage counter is incremented just once
1722 	 * per pdd
1723 	 */
1724 	pdd->runtime_inuse = true;
1725 
1726 	return pdd;
1727 
1728 out:
1729 	/* balance runpm reference count and exit with error */
1730 	if (!pdd->runtime_inuse) {
1731 		pm_runtime_mark_last_busy(adev_to_drm(dev->adev)->dev);
1732 		pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1733 	}
1734 
1735 	return ERR_PTR(err);
1736 }
1737 
1738 /* Create specific handle mapped to mem from process local memory idr
1739  * Assumes that the process lock is held.
1740  */
1741 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1742 					void *mem)
1743 {
1744 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1745 }
1746 
1747 /* Translate specific handle from process local memory idr
1748  * Assumes that the process lock is held.
1749  */
1750 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1751 					int handle)
1752 {
1753 	if (handle < 0)
1754 		return NULL;
1755 
1756 	return idr_find(&pdd->alloc_idr, handle);
1757 }
1758 
1759 /* Remove specific handle from process local memory idr
1760  * Assumes that the process lock is held.
1761  */
1762 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1763 					int handle)
1764 {
1765 	if (handle >= 0)
1766 		idr_remove(&pdd->alloc_idr, handle);
1767 }
1768 
1769 /* This increments the process->ref counter. */
1770 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1771 {
1772 	struct kfd_process *p, *ret_p = NULL;
1773 	unsigned int temp;
1774 
1775 	int idx = srcu_read_lock(&kfd_processes_srcu);
1776 
1777 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1778 		if (p->pasid == pasid) {
1779 			kref_get(&p->ref);
1780 			ret_p = p;
1781 			break;
1782 		}
1783 	}
1784 
1785 	srcu_read_unlock(&kfd_processes_srcu, idx);
1786 
1787 	return ret_p;
1788 }
1789 
1790 /* This increments the process->ref counter. */
1791 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1792 {
1793 	struct kfd_process *p;
1794 
1795 	int idx = srcu_read_lock(&kfd_processes_srcu);
1796 
1797 	p = find_process_by_mm(mm);
1798 	if (p)
1799 		kref_get(&p->ref);
1800 
1801 	srcu_read_unlock(&kfd_processes_srcu, idx);
1802 
1803 	return p;
1804 }
1805 
1806 /* kfd_process_evict_queues - Evict all user queues of a process
1807  *
1808  * Eviction is reference-counted per process-device. This means multiple
1809  * evictions from different sources can be nested safely.
1810  */
1811 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1812 {
1813 	int r = 0;
1814 	int i;
1815 	unsigned int n_evicted = 0;
1816 
1817 	for (i = 0; i < p->n_pdds; i++) {
1818 		struct kfd_process_device *pdd = p->pdds[i];
1819 
1820 		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1821 					     trigger);
1822 
1823 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1824 							    &pdd->qpd);
1825 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1826 		 * we would like to set all the queues to be in evicted state to prevent
1827 		 * them been add back since they actually not be saved right now.
1828 		 */
1829 		if (r && r != -EIO) {
1830 			pr_err("Failed to evict process queues\n");
1831 			goto fail;
1832 		}
1833 		n_evicted++;
1834 	}
1835 
1836 	return r;
1837 
1838 fail:
1839 	/* To keep state consistent, roll back partial eviction by
1840 	 * restoring queues
1841 	 */
1842 	for (i = 0; i < p->n_pdds; i++) {
1843 		struct kfd_process_device *pdd = p->pdds[i];
1844 
1845 		if (n_evicted == 0)
1846 			break;
1847 
1848 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1849 
1850 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1851 							      &pdd->qpd))
1852 			pr_err("Failed to restore queues\n");
1853 
1854 		n_evicted--;
1855 	}
1856 
1857 	return r;
1858 }
1859 
1860 /* kfd_process_restore_queues - Restore all user queues of a process */
1861 int kfd_process_restore_queues(struct kfd_process *p)
1862 {
1863 	int r, ret = 0;
1864 	int i;
1865 
1866 	for (i = 0; i < p->n_pdds; i++) {
1867 		struct kfd_process_device *pdd = p->pdds[i];
1868 
1869 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1870 
1871 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1872 							      &pdd->qpd);
1873 		if (r) {
1874 			pr_err("Failed to restore process queues\n");
1875 			if (!ret)
1876 				ret = r;
1877 		}
1878 	}
1879 
1880 	return ret;
1881 }
1882 
1883 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1884 {
1885 	int i;
1886 
1887 	for (i = 0; i < p->n_pdds; i++)
1888 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1889 			return i;
1890 	return -EINVAL;
1891 }
1892 
1893 int
1894 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1895 			    uint32_t *gpuid, uint32_t *gpuidx)
1896 {
1897 	int i;
1898 
1899 	for (i = 0; i < p->n_pdds; i++)
1900 		if (p->pdds[i] && p->pdds[i]->dev == node) {
1901 			*gpuid = p->pdds[i]->user_gpu_id;
1902 			*gpuidx = i;
1903 			return 0;
1904 		}
1905 	return -EINVAL;
1906 }
1907 
1908 static void evict_process_worker(struct work_struct *work)
1909 {
1910 	int ret;
1911 	struct kfd_process *p;
1912 	struct delayed_work *dwork;
1913 
1914 	dwork = to_delayed_work(work);
1915 
1916 	/* Process termination destroys this worker thread. So during the
1917 	 * lifetime of this thread, kfd_process p will be valid
1918 	 */
1919 	p = container_of(dwork, struct kfd_process, eviction_work);
1920 	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1921 		  "Eviction fence mismatch\n");
1922 
1923 	/* Narrow window of overlap between restore and evict work
1924 	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1925 	 * unreserves KFD BOs, it is possible to evicted again. But
1926 	 * restore has few more steps of finish. So lets wait for any
1927 	 * previous restore work to complete
1928 	 */
1929 	flush_delayed_work(&p->restore_work);
1930 
1931 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1932 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1933 	if (!ret) {
1934 		dma_fence_signal(p->ef);
1935 		dma_fence_put(p->ef);
1936 		p->ef = NULL;
1937 		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1938 				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1939 
1940 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1941 	} else
1942 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1943 }
1944 
1945 static void restore_process_worker(struct work_struct *work)
1946 {
1947 	struct delayed_work *dwork;
1948 	struct kfd_process *p;
1949 	int ret = 0;
1950 
1951 	dwork = to_delayed_work(work);
1952 
1953 	/* Process termination destroys this worker thread. So during the
1954 	 * lifetime of this thread, kfd_process p will be valid
1955 	 */
1956 	p = container_of(dwork, struct kfd_process, restore_work);
1957 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1958 
1959 	/* Setting last_restore_timestamp before successful restoration.
1960 	 * Otherwise this would have to be set by KGD (restore_process_bos)
1961 	 * before KFD BOs are unreserved. If not, the process can be evicted
1962 	 * again before the timestamp is set.
1963 	 * If restore fails, the timestamp will be set again in the next
1964 	 * attempt. This would mean that the minimum GPU quanta would be
1965 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1966 	 * functions)
1967 	 */
1968 
1969 	p->last_restore_timestamp = get_jiffies_64();
1970 	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1971 						     &p->ef);
1972 	if (ret) {
1973 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1974 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1975 		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1976 				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1977 		WARN(!ret, "reschedule restore work failed\n");
1978 		return;
1979 	}
1980 
1981 	ret = kfd_process_restore_queues(p);
1982 	if (!ret)
1983 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1984 	else
1985 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1986 }
1987 
1988 void kfd_suspend_all_processes(void)
1989 {
1990 	struct kfd_process *p;
1991 	unsigned int temp;
1992 	int idx = srcu_read_lock(&kfd_processes_srcu);
1993 
1994 	WARN(debug_evictions, "Evicting all processes");
1995 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1996 		cancel_delayed_work_sync(&p->eviction_work);
1997 		cancel_delayed_work_sync(&p->restore_work);
1998 
1999 		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2000 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
2001 		dma_fence_signal(p->ef);
2002 		dma_fence_put(p->ef);
2003 		p->ef = NULL;
2004 	}
2005 	srcu_read_unlock(&kfd_processes_srcu, idx);
2006 }
2007 
2008 int kfd_resume_all_processes(void)
2009 {
2010 	struct kfd_process *p;
2011 	unsigned int temp;
2012 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2013 
2014 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2015 		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
2016 			pr_err("Restore process %d failed during resume\n",
2017 			       p->pasid);
2018 			ret = -EFAULT;
2019 		}
2020 	}
2021 	srcu_read_unlock(&kfd_processes_srcu, idx);
2022 	return ret;
2023 }
2024 
2025 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2026 			  struct vm_area_struct *vma)
2027 {
2028 	struct kfd_process_device *pdd;
2029 	struct qcm_process_device *qpd;
2030 
2031 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2032 		pr_err("Incorrect CWSR mapping size.\n");
2033 		return -EINVAL;
2034 	}
2035 
2036 	pdd = kfd_get_process_device_data(dev, process);
2037 	if (!pdd)
2038 		return -EINVAL;
2039 	qpd = &pdd->qpd;
2040 
2041 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2042 					get_order(KFD_CWSR_TBA_TMA_SIZE));
2043 	if (!qpd->cwsr_kaddr) {
2044 		pr_err("Error allocating per process CWSR buffer.\n");
2045 		return -ENOMEM;
2046 	}
2047 
2048 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2049 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2050 	/* Mapping pages to user process */
2051 	return remap_pfn_range(vma, vma->vm_start,
2052 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2053 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2054 }
2055 
2056 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
2057 {
2058 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
2059 	uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
2060 	struct kfd_node *dev = pdd->dev;
2061 	uint32_t xcc_mask = dev->xcc_mask;
2062 	int xcc = 0;
2063 
2064 	/*
2065 	 * It can be that we race and lose here, but that is extremely unlikely
2066 	 * and the worst thing which could happen is that we flush the changes
2067 	 * into the TLB once more which is harmless.
2068 	 */
2069 	if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq)
2070 		return;
2071 
2072 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2073 		/* Nothing to flush until a VMID is assigned, which
2074 		 * only happens when the first queue is created.
2075 		 */
2076 		if (pdd->qpd.vmid)
2077 			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
2078 							pdd->qpd.vmid);
2079 	} else {
2080 		for_each_inst(xcc, xcc_mask)
2081 			amdgpu_amdkfd_flush_gpu_tlb_pasid(
2082 				dev->adev, pdd->process->pasid, type, xcc);
2083 	}
2084 }
2085 
2086 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2087 {
2088 	int i;
2089 
2090 	if (gpu_id) {
2091 		for (i = 0; i < p->n_pdds; i++) {
2092 			struct kfd_process_device *pdd = p->pdds[i];
2093 
2094 			if (pdd->user_gpu_id == gpu_id)
2095 				return pdd;
2096 		}
2097 	}
2098 	return NULL;
2099 }
2100 
2101 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2102 {
2103 	int i;
2104 
2105 	if (!actual_gpu_id)
2106 		return 0;
2107 
2108 	for (i = 0; i < p->n_pdds; i++) {
2109 		struct kfd_process_device *pdd = p->pdds[i];
2110 
2111 		if (pdd->dev->id == actual_gpu_id)
2112 			return pdd->user_gpu_id;
2113 	}
2114 	return -EINVAL;
2115 }
2116 
2117 #if defined(CONFIG_DEBUG_FS)
2118 
2119 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2120 {
2121 	struct kfd_process *p;
2122 	unsigned int temp;
2123 	int r = 0;
2124 
2125 	int idx = srcu_read_lock(&kfd_processes_srcu);
2126 
2127 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2128 		seq_printf(m, "Process %d PASID 0x%x:\n",
2129 			   p->lead_thread->tgid, p->pasid);
2130 
2131 		mutex_lock(&p->mutex);
2132 		r = pqm_debugfs_mqds(m, &p->pqm);
2133 		mutex_unlock(&p->mutex);
2134 
2135 		if (r)
2136 			break;
2137 	}
2138 
2139 	srcu_read_unlock(&kfd_processes_srcu, idx);
2140 
2141 	return r;
2142 }
2143 
2144 #endif
2145 
2146