1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mutex.h> 25 #include <linux/log2.h> 26 #include <linux/sched.h> 27 #include <linux/sched/mm.h> 28 #include <linux/sched/task.h> 29 #include <linux/mmu_context.h> 30 #include <linux/slab.h> 31 #include <linux/amd-iommu.h> 32 #include <linux/notifier.h> 33 #include <linux/compat.h> 34 #include <linux/mman.h> 35 #include <linux/file.h> 36 #include <linux/pm_runtime.h> 37 #include "amdgpu_amdkfd.h" 38 #include "amdgpu.h" 39 40 struct mm_struct; 41 42 #include "kfd_priv.h" 43 #include "kfd_device_queue_manager.h" 44 #include "kfd_iommu.h" 45 #include "kfd_svm.h" 46 #include "kfd_smi_events.h" 47 48 /* 49 * List of struct kfd_process (field kfd_process). 50 * Unique/indexed by mm_struct* 51 */ 52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 53 DEFINE_MUTEX(kfd_processes_mutex); 54 55 DEFINE_SRCU(kfd_processes_srcu); 56 57 /* For process termination handling */ 58 static struct workqueue_struct *kfd_process_wq; 59 60 /* Ordered, single-threaded workqueue for restoring evicted 61 * processes. Restoring multiple processes concurrently under memory 62 * pressure can lead to processes blocking each other from validating 63 * their BOs and result in a live-lock situation where processes 64 * remain evicted indefinitely. 65 */ 66 static struct workqueue_struct *kfd_restore_wq; 67 68 static struct kfd_process *find_process(const struct task_struct *thread, 69 bool ref); 70 static void kfd_process_ref_release(struct kref *ref); 71 static struct kfd_process *create_process(const struct task_struct *thread); 72 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep); 73 74 static void evict_process_worker(struct work_struct *work); 75 static void restore_process_worker(struct work_struct *work); 76 77 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); 78 79 struct kfd_procfs_tree { 80 struct kobject *kobj; 81 }; 82 83 static struct kfd_procfs_tree procfs; 84 85 /* 86 * Structure for SDMA activity tracking 87 */ 88 struct kfd_sdma_activity_handler_workarea { 89 struct work_struct sdma_activity_work; 90 struct kfd_process_device *pdd; 91 uint64_t sdma_activity_counter; 92 }; 93 94 struct temp_sdma_queue_list { 95 uint64_t __user *rptr; 96 uint64_t sdma_val; 97 unsigned int queue_id; 98 struct list_head list; 99 }; 100 101 static void kfd_sdma_activity_worker(struct work_struct *work) 102 { 103 struct kfd_sdma_activity_handler_workarea *workarea; 104 struct kfd_process_device *pdd; 105 uint64_t val; 106 struct mm_struct *mm; 107 struct queue *q; 108 struct qcm_process_device *qpd; 109 struct device_queue_manager *dqm; 110 int ret = 0; 111 struct temp_sdma_queue_list sdma_q_list; 112 struct temp_sdma_queue_list *sdma_q, *next; 113 114 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 115 sdma_activity_work); 116 117 pdd = workarea->pdd; 118 if (!pdd) 119 return; 120 dqm = pdd->dev->dqm; 121 qpd = &pdd->qpd; 122 if (!dqm || !qpd) 123 return; 124 /* 125 * Total SDMA activity is current SDMA activity + past SDMA activity 126 * Past SDMA count is stored in pdd. 127 * To get the current activity counters for all active SDMA queues, 128 * we loop over all SDMA queues and get their counts from user-space. 129 * 130 * We cannot call get_user() with dqm_lock held as it can cause 131 * a circular lock dependency situation. To read the SDMA stats, 132 * we need to do the following: 133 * 134 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 135 * with dqm_lock/dqm_unlock(). 136 * 2. Call get_user() for each node in temporary list without dqm_lock. 137 * Save the SDMA count for each node and also add the count to the total 138 * SDMA count counter. 139 * Its possible, during this step, a few SDMA queue nodes got deleted 140 * from the qpd->queues_list. 141 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 142 * If any node got deleted, its SDMA count would be captured in the sdma 143 * past activity counter. So subtract the SDMA counter stored in step 2 144 * for this node from the total SDMA count. 145 */ 146 INIT_LIST_HEAD(&sdma_q_list.list); 147 148 /* 149 * Create the temp list of all SDMA queues 150 */ 151 dqm_lock(dqm); 152 153 list_for_each_entry(q, &qpd->queues_list, list) { 154 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 155 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 156 continue; 157 158 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 159 if (!sdma_q) { 160 dqm_unlock(dqm); 161 goto cleanup; 162 } 163 164 INIT_LIST_HEAD(&sdma_q->list); 165 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 166 sdma_q->queue_id = q->properties.queue_id; 167 list_add_tail(&sdma_q->list, &sdma_q_list.list); 168 } 169 170 /* 171 * If the temp list is empty, then no SDMA queues nodes were found in 172 * qpd->queues_list. Return the past activity count as the total sdma 173 * count 174 */ 175 if (list_empty(&sdma_q_list.list)) { 176 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 177 dqm_unlock(dqm); 178 return; 179 } 180 181 dqm_unlock(dqm); 182 183 /* 184 * Get the usage count for each SDMA queue in temp_list. 185 */ 186 mm = get_task_mm(pdd->process->lead_thread); 187 if (!mm) 188 goto cleanup; 189 190 kthread_use_mm(mm); 191 192 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 193 val = 0; 194 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 195 if (ret) { 196 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 197 sdma_q->queue_id); 198 } else { 199 sdma_q->sdma_val = val; 200 workarea->sdma_activity_counter += val; 201 } 202 } 203 204 kthread_unuse_mm(mm); 205 mmput(mm); 206 207 /* 208 * Do a second iteration over qpd_queues_list to check if any SDMA 209 * nodes got deleted while fetching SDMA counter. 210 */ 211 dqm_lock(dqm); 212 213 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 214 215 list_for_each_entry(q, &qpd->queues_list, list) { 216 if (list_empty(&sdma_q_list.list)) 217 break; 218 219 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 220 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 221 continue; 222 223 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 224 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 225 (sdma_q->queue_id == q->properties.queue_id)) { 226 list_del(&sdma_q->list); 227 kfree(sdma_q); 228 break; 229 } 230 } 231 } 232 233 dqm_unlock(dqm); 234 235 /* 236 * If temp list is not empty, it implies some queues got deleted 237 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 238 * count for each node from the total SDMA count. 239 */ 240 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 241 workarea->sdma_activity_counter -= sdma_q->sdma_val; 242 list_del(&sdma_q->list); 243 kfree(sdma_q); 244 } 245 246 return; 247 248 cleanup: 249 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 250 list_del(&sdma_q->list); 251 kfree(sdma_q); 252 } 253 } 254 255 /** 256 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device 257 * by current process. Translates acquired wave count into number of compute units 258 * that are occupied. 259 * 260 * @attr: Handle of attribute that allows reporting of wave count. The attribute 261 * handle encapsulates GPU device it is associated with, thereby allowing collection 262 * of waves in flight, etc 263 * @buffer: Handle of user provided buffer updated with wave count 264 * 265 * Return: Number of bytes written to user buffer or an error value 266 */ 267 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 268 { 269 int cu_cnt; 270 int wave_cnt; 271 int max_waves_per_cu; 272 struct kfd_node *dev = NULL; 273 struct kfd_process *proc = NULL; 274 struct kfd_process_device *pdd = NULL; 275 276 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 277 dev = pdd->dev; 278 if (dev->kfd2kgd->get_cu_occupancy == NULL) 279 return -EINVAL; 280 281 cu_cnt = 0; 282 proc = pdd->process; 283 if (pdd->qpd.queue_count == 0) { 284 pr_debug("Gpu-Id: %d has no active queues for process %d\n", 285 dev->id, proc->pasid); 286 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 287 } 288 289 /* Collect wave count from device if it supports */ 290 wave_cnt = 0; 291 max_waves_per_cu = 0; 292 dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt, 293 &max_waves_per_cu, 0); 294 295 /* Translate wave count to number of compute units */ 296 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 297 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 298 } 299 300 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 301 char *buffer) 302 { 303 if (strcmp(attr->name, "pasid") == 0) { 304 struct kfd_process *p = container_of(attr, struct kfd_process, 305 attr_pasid); 306 307 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 308 } else if (strncmp(attr->name, "vram_", 5) == 0) { 309 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 310 attr_vram); 311 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage)); 312 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 313 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 314 attr_sdma); 315 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 316 317 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work, 318 kfd_sdma_activity_worker); 319 320 sdma_activity_work_handler.pdd = pdd; 321 sdma_activity_work_handler.sdma_activity_counter = 0; 322 323 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 324 325 flush_work(&sdma_activity_work_handler.sdma_activity_work); 326 327 return snprintf(buffer, PAGE_SIZE, "%llu\n", 328 (sdma_activity_work_handler.sdma_activity_counter)/ 329 SDMA_ACTIVITY_DIVISOR); 330 } else { 331 pr_err("Invalid attribute"); 332 return -EINVAL; 333 } 334 335 return 0; 336 } 337 338 static void kfd_procfs_kobj_release(struct kobject *kobj) 339 { 340 kfree(kobj); 341 } 342 343 static const struct sysfs_ops kfd_procfs_ops = { 344 .show = kfd_procfs_show, 345 }; 346 347 static const struct kobj_type procfs_type = { 348 .release = kfd_procfs_kobj_release, 349 .sysfs_ops = &kfd_procfs_ops, 350 }; 351 352 void kfd_procfs_init(void) 353 { 354 int ret = 0; 355 356 procfs.kobj = kfd_alloc_struct(procfs.kobj); 357 if (!procfs.kobj) 358 return; 359 360 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 361 &kfd_device->kobj, "proc"); 362 if (ret) { 363 pr_warn("Could not create procfs proc folder"); 364 /* If we fail to create the procfs, clean up */ 365 kfd_procfs_shutdown(); 366 } 367 } 368 369 void kfd_procfs_shutdown(void) 370 { 371 if (procfs.kobj) { 372 kobject_del(procfs.kobj); 373 kobject_put(procfs.kobj); 374 procfs.kobj = NULL; 375 } 376 } 377 378 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 379 struct attribute *attr, char *buffer) 380 { 381 struct queue *q = container_of(kobj, struct queue, kobj); 382 383 if (!strcmp(attr->name, "size")) 384 return snprintf(buffer, PAGE_SIZE, "%llu", 385 q->properties.queue_size); 386 else if (!strcmp(attr->name, "type")) 387 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 388 else if (!strcmp(attr->name, "gpuid")) 389 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 390 else 391 pr_err("Invalid attribute"); 392 393 return 0; 394 } 395 396 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 397 struct attribute *attr, char *buffer) 398 { 399 if (strcmp(attr->name, "evicted_ms") == 0) { 400 struct kfd_process_device *pdd = container_of(attr, 401 struct kfd_process_device, 402 attr_evict); 403 uint64_t evict_jiffies; 404 405 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 406 407 return snprintf(buffer, 408 PAGE_SIZE, 409 "%llu\n", 410 jiffies64_to_msecs(evict_jiffies)); 411 412 /* Sysfs handle that gets CU occupancy is per device */ 413 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 414 return kfd_get_cu_occupancy(attr, buffer); 415 } else { 416 pr_err("Invalid attribute"); 417 } 418 419 return 0; 420 } 421 422 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, 423 struct attribute *attr, char *buf) 424 { 425 struct kfd_process_device *pdd; 426 427 if (!strcmp(attr->name, "faults")) { 428 pdd = container_of(attr, struct kfd_process_device, 429 attr_faults); 430 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); 431 } 432 if (!strcmp(attr->name, "page_in")) { 433 pdd = container_of(attr, struct kfd_process_device, 434 attr_page_in); 435 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); 436 } 437 if (!strcmp(attr->name, "page_out")) { 438 pdd = container_of(attr, struct kfd_process_device, 439 attr_page_out); 440 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); 441 } 442 return 0; 443 } 444 445 static struct attribute attr_queue_size = { 446 .name = "size", 447 .mode = KFD_SYSFS_FILE_MODE 448 }; 449 450 static struct attribute attr_queue_type = { 451 .name = "type", 452 .mode = KFD_SYSFS_FILE_MODE 453 }; 454 455 static struct attribute attr_queue_gpuid = { 456 .name = "gpuid", 457 .mode = KFD_SYSFS_FILE_MODE 458 }; 459 460 static struct attribute *procfs_queue_attrs[] = { 461 &attr_queue_size, 462 &attr_queue_type, 463 &attr_queue_gpuid, 464 NULL 465 }; 466 ATTRIBUTE_GROUPS(procfs_queue); 467 468 static const struct sysfs_ops procfs_queue_ops = { 469 .show = kfd_procfs_queue_show, 470 }; 471 472 static const struct kobj_type procfs_queue_type = { 473 .sysfs_ops = &procfs_queue_ops, 474 .default_groups = procfs_queue_groups, 475 }; 476 477 static const struct sysfs_ops procfs_stats_ops = { 478 .show = kfd_procfs_stats_show, 479 }; 480 481 static const struct kobj_type procfs_stats_type = { 482 .sysfs_ops = &procfs_stats_ops, 483 .release = kfd_procfs_kobj_release, 484 }; 485 486 static const struct sysfs_ops sysfs_counters_ops = { 487 .show = kfd_sysfs_counters_show, 488 }; 489 490 static const struct kobj_type sysfs_counters_type = { 491 .sysfs_ops = &sysfs_counters_ops, 492 .release = kfd_procfs_kobj_release, 493 }; 494 495 int kfd_procfs_add_queue(struct queue *q) 496 { 497 struct kfd_process *proc; 498 int ret; 499 500 if (!q || !q->process) 501 return -EINVAL; 502 proc = q->process; 503 504 /* Create proc/<pid>/queues/<queue id> folder */ 505 if (!proc->kobj_queues) 506 return -EFAULT; 507 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 508 proc->kobj_queues, "%u", q->properties.queue_id); 509 if (ret < 0) { 510 pr_warn("Creating proc/<pid>/queues/%u failed", 511 q->properties.queue_id); 512 kobject_put(&q->kobj); 513 return ret; 514 } 515 516 return 0; 517 } 518 519 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, 520 char *name) 521 { 522 int ret; 523 524 if (!kobj || !attr || !name) 525 return; 526 527 attr->name = name; 528 attr->mode = KFD_SYSFS_FILE_MODE; 529 sysfs_attr_init(attr); 530 531 ret = sysfs_create_file(kobj, attr); 532 if (ret) 533 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); 534 } 535 536 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) 537 { 538 int ret; 539 int i; 540 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 541 542 if (!p || !p->kobj) 543 return; 544 545 /* 546 * Create sysfs files for each GPU: 547 * - proc/<pid>/stats_<gpuid>/ 548 * - proc/<pid>/stats_<gpuid>/evicted_ms 549 * - proc/<pid>/stats_<gpuid>/cu_occupancy 550 */ 551 for (i = 0; i < p->n_pdds; i++) { 552 struct kfd_process_device *pdd = p->pdds[i]; 553 554 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 555 "stats_%u", pdd->dev->id); 556 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); 557 if (!pdd->kobj_stats) 558 return; 559 560 ret = kobject_init_and_add(pdd->kobj_stats, 561 &procfs_stats_type, 562 p->kobj, 563 stats_dir_filename); 564 565 if (ret) { 566 pr_warn("Creating KFD proc/stats_%s folder failed", 567 stats_dir_filename); 568 kobject_put(pdd->kobj_stats); 569 pdd->kobj_stats = NULL; 570 return; 571 } 572 573 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, 574 "evicted_ms"); 575 /* Add sysfs file to report compute unit occupancy */ 576 if (pdd->dev->kfd2kgd->get_cu_occupancy) 577 kfd_sysfs_create_file(pdd->kobj_stats, 578 &pdd->attr_cu_occupancy, 579 "cu_occupancy"); 580 } 581 } 582 583 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) 584 { 585 int ret = 0; 586 int i; 587 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; 588 589 if (!p || !p->kobj) 590 return; 591 592 /* 593 * Create sysfs files for each GPU which supports SVM 594 * - proc/<pid>/counters_<gpuid>/ 595 * - proc/<pid>/counters_<gpuid>/faults 596 * - proc/<pid>/counters_<gpuid>/page_in 597 * - proc/<pid>/counters_<gpuid>/page_out 598 */ 599 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 600 struct kfd_process_device *pdd = p->pdds[i]; 601 struct kobject *kobj_counters; 602 603 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, 604 "counters_%u", pdd->dev->id); 605 kobj_counters = kfd_alloc_struct(kobj_counters); 606 if (!kobj_counters) 607 return; 608 609 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, 610 p->kobj, counters_dir_filename); 611 if (ret) { 612 pr_warn("Creating KFD proc/%s folder failed", 613 counters_dir_filename); 614 kobject_put(kobj_counters); 615 return; 616 } 617 618 pdd->kobj_counters = kobj_counters; 619 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, 620 "faults"); 621 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, 622 "page_in"); 623 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, 624 "page_out"); 625 } 626 } 627 628 static void kfd_procfs_add_sysfs_files(struct kfd_process *p) 629 { 630 int i; 631 632 if (!p || !p->kobj) 633 return; 634 635 /* 636 * Create sysfs files for each GPU: 637 * - proc/<pid>/vram_<gpuid> 638 * - proc/<pid>/sdma_<gpuid> 639 */ 640 for (i = 0; i < p->n_pdds; i++) { 641 struct kfd_process_device *pdd = p->pdds[i]; 642 643 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 644 pdd->dev->id); 645 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, 646 pdd->vram_filename); 647 648 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 649 pdd->dev->id); 650 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, 651 pdd->sdma_filename); 652 } 653 } 654 655 void kfd_procfs_del_queue(struct queue *q) 656 { 657 if (!q) 658 return; 659 660 kobject_del(&q->kobj); 661 kobject_put(&q->kobj); 662 } 663 664 int kfd_process_create_wq(void) 665 { 666 if (!kfd_process_wq) 667 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 668 if (!kfd_restore_wq) 669 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0); 670 671 if (!kfd_process_wq || !kfd_restore_wq) { 672 kfd_process_destroy_wq(); 673 return -ENOMEM; 674 } 675 676 return 0; 677 } 678 679 void kfd_process_destroy_wq(void) 680 { 681 if (kfd_process_wq) { 682 destroy_workqueue(kfd_process_wq); 683 kfd_process_wq = NULL; 684 } 685 if (kfd_restore_wq) { 686 destroy_workqueue(kfd_restore_wq); 687 kfd_restore_wq = NULL; 688 } 689 } 690 691 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 692 struct kfd_process_device *pdd, void **kptr) 693 { 694 struct kfd_node *dev = pdd->dev; 695 696 if (kptr && *kptr) { 697 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 698 *kptr = NULL; 699 } 700 701 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv); 702 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv, 703 NULL); 704 } 705 706 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 707 * This function should be only called right after the process 708 * is created and when kfd_processes_mutex is still being held 709 * to avoid concurrency. Because of that exclusiveness, we do 710 * not need to take p->mutex. 711 */ 712 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 713 uint64_t gpu_va, uint32_t size, 714 uint32_t flags, struct kgd_mem **mem, void **kptr) 715 { 716 struct kfd_node *kdev = pdd->dev; 717 int err; 718 719 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size, 720 pdd->drm_priv, mem, NULL, 721 flags, false); 722 if (err) 723 goto err_alloc_mem; 724 725 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem, 726 pdd->drm_priv); 727 if (err) 728 goto err_map_mem; 729 730 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true); 731 if (err) { 732 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 733 goto sync_memory_failed; 734 } 735 736 if (kptr) { 737 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel( 738 (struct kgd_mem *)*mem, kptr, NULL); 739 if (err) { 740 pr_debug("Map GTT BO to kernel failed\n"); 741 goto sync_memory_failed; 742 } 743 } 744 745 return err; 746 747 sync_memory_failed: 748 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv); 749 750 err_map_mem: 751 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv, 752 NULL); 753 err_alloc_mem: 754 *mem = NULL; 755 *kptr = NULL; 756 return err; 757 } 758 759 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 760 * process for IB usage The memory reserved is for KFD to submit 761 * IB to AMDGPU from kernel. If the memory is reserved 762 * successfully, ib_kaddr will have the CPU/kernel 763 * address. Check ib_kaddr before accessing the memory. 764 */ 765 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 766 { 767 struct qcm_process_device *qpd = &pdd->qpd; 768 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 769 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 770 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 771 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 772 struct kgd_mem *mem; 773 void *kaddr; 774 int ret; 775 776 if (qpd->ib_kaddr || !qpd->ib_base) 777 return 0; 778 779 /* ib_base is only set for dGPU */ 780 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 781 &mem, &kaddr); 782 if (ret) 783 return ret; 784 785 qpd->ib_mem = mem; 786 qpd->ib_kaddr = kaddr; 787 788 return 0; 789 } 790 791 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) 792 { 793 struct qcm_process_device *qpd = &pdd->qpd; 794 795 if (!qpd->ib_kaddr || !qpd->ib_base) 796 return; 797 798 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr); 799 } 800 801 struct kfd_process *kfd_create_process(struct file *filep) 802 { 803 struct kfd_process *process; 804 struct task_struct *thread = current; 805 int ret; 806 807 if (!thread->mm) 808 return ERR_PTR(-EINVAL); 809 810 /* Only the pthreads threading model is supported. */ 811 if (thread->group_leader->mm != thread->mm) 812 return ERR_PTR(-EINVAL); 813 814 /* 815 * take kfd processes mutex before starting of process creation 816 * so there won't be a case where two threads of the same process 817 * create two kfd_process structures 818 */ 819 mutex_lock(&kfd_processes_mutex); 820 821 if (kfd_is_locked()) { 822 mutex_unlock(&kfd_processes_mutex); 823 pr_debug("KFD is locked! Cannot create process"); 824 return ERR_PTR(-EINVAL); 825 } 826 827 /* A prior open of /dev/kfd could have already created the process. */ 828 process = find_process(thread, false); 829 if (process) { 830 pr_debug("Process already found\n"); 831 } else { 832 process = create_process(thread); 833 if (IS_ERR(process)) 834 goto out; 835 836 ret = kfd_process_init_cwsr_apu(process, filep); 837 if (ret) 838 goto out_destroy; 839 840 if (!procfs.kobj) 841 goto out; 842 843 process->kobj = kfd_alloc_struct(process->kobj); 844 if (!process->kobj) { 845 pr_warn("Creating procfs kobject failed"); 846 goto out; 847 } 848 ret = kobject_init_and_add(process->kobj, &procfs_type, 849 procfs.kobj, "%d", 850 (int)process->lead_thread->pid); 851 if (ret) { 852 pr_warn("Creating procfs pid directory failed"); 853 kobject_put(process->kobj); 854 goto out; 855 } 856 857 kfd_sysfs_create_file(process->kobj, &process->attr_pasid, 858 "pasid"); 859 860 process->kobj_queues = kobject_create_and_add("queues", 861 process->kobj); 862 if (!process->kobj_queues) 863 pr_warn("Creating KFD proc/queues folder failed"); 864 865 kfd_procfs_add_sysfs_stats(process); 866 kfd_procfs_add_sysfs_files(process); 867 kfd_procfs_add_sysfs_counters(process); 868 } 869 out: 870 if (!IS_ERR(process)) 871 kref_get(&process->ref); 872 mutex_unlock(&kfd_processes_mutex); 873 874 return process; 875 876 out_destroy: 877 hash_del_rcu(&process->kfd_processes); 878 mutex_unlock(&kfd_processes_mutex); 879 synchronize_srcu(&kfd_processes_srcu); 880 /* kfd_process_free_notifier will trigger the cleanup */ 881 mmu_notifier_put(&process->mmu_notifier); 882 return ERR_PTR(ret); 883 } 884 885 struct kfd_process *kfd_get_process(const struct task_struct *thread) 886 { 887 struct kfd_process *process; 888 889 if (!thread->mm) 890 return ERR_PTR(-EINVAL); 891 892 /* Only the pthreads threading model is supported. */ 893 if (thread->group_leader->mm != thread->mm) 894 return ERR_PTR(-EINVAL); 895 896 process = find_process(thread, false); 897 if (!process) 898 return ERR_PTR(-EINVAL); 899 900 return process; 901 } 902 903 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 904 { 905 struct kfd_process *process; 906 907 hash_for_each_possible_rcu(kfd_processes_table, process, 908 kfd_processes, (uintptr_t)mm) 909 if (process->mm == mm) 910 return process; 911 912 return NULL; 913 } 914 915 static struct kfd_process *find_process(const struct task_struct *thread, 916 bool ref) 917 { 918 struct kfd_process *p; 919 int idx; 920 921 idx = srcu_read_lock(&kfd_processes_srcu); 922 p = find_process_by_mm(thread->mm); 923 if (p && ref) 924 kref_get(&p->ref); 925 srcu_read_unlock(&kfd_processes_srcu, idx); 926 927 return p; 928 } 929 930 void kfd_unref_process(struct kfd_process *p) 931 { 932 kref_put(&p->ref, kfd_process_ref_release); 933 } 934 935 /* This increments the process->ref counter. */ 936 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid) 937 { 938 struct task_struct *task = NULL; 939 struct kfd_process *p = NULL; 940 941 if (!pid) { 942 task = current; 943 get_task_struct(task); 944 } else { 945 task = get_pid_task(pid, PIDTYPE_PID); 946 } 947 948 if (task) { 949 p = find_process(task, true); 950 put_task_struct(task); 951 } 952 953 return p; 954 } 955 956 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 957 { 958 struct kfd_process *p = pdd->process; 959 void *mem; 960 int id; 961 int i; 962 963 /* 964 * Remove all handles from idr and release appropriate 965 * local memory object 966 */ 967 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 968 969 for (i = 0; i < p->n_pdds; i++) { 970 struct kfd_process_device *peer_pdd = p->pdds[i]; 971 972 if (!peer_pdd->drm_priv) 973 continue; 974 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 975 peer_pdd->dev->adev, mem, peer_pdd->drm_priv); 976 } 977 978 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem, 979 pdd->drm_priv, NULL); 980 kfd_process_device_remove_obj_handle(pdd, id); 981 } 982 } 983 984 /* 985 * Just kunmap and unpin signal BO here. It will be freed in 986 * kfd_process_free_outstanding_kfd_bos() 987 */ 988 static void kfd_process_kunmap_signal_bo(struct kfd_process *p) 989 { 990 struct kfd_process_device *pdd; 991 struct kfd_node *kdev; 992 void *mem; 993 994 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); 995 if (!kdev) 996 return; 997 998 mutex_lock(&p->mutex); 999 1000 pdd = kfd_get_process_device_data(kdev, p); 1001 if (!pdd) 1002 goto out; 1003 1004 mem = kfd_process_device_translate_handle( 1005 pdd, GET_IDR_HANDLE(p->signal_handle)); 1006 if (!mem) 1007 goto out; 1008 1009 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 1010 1011 out: 1012 mutex_unlock(&p->mutex); 1013 } 1014 1015 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 1016 { 1017 int i; 1018 1019 for (i = 0; i < p->n_pdds; i++) 1020 kfd_process_device_free_bos(p->pdds[i]); 1021 } 1022 1023 static void kfd_process_destroy_pdds(struct kfd_process *p) 1024 { 1025 int i; 1026 1027 for (i = 0; i < p->n_pdds; i++) { 1028 struct kfd_process_device *pdd = p->pdds[i]; 1029 1030 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 1031 pdd->dev->id, p->pasid); 1032 1033 kfd_process_device_destroy_cwsr_dgpu(pdd); 1034 kfd_process_device_destroy_ib_mem(pdd); 1035 1036 if (pdd->drm_file) { 1037 amdgpu_amdkfd_gpuvm_release_process_vm( 1038 pdd->dev->adev, pdd->drm_priv); 1039 fput(pdd->drm_file); 1040 } 1041 1042 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 1043 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 1044 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1045 1046 bitmap_free(pdd->qpd.doorbell_bitmap); 1047 idr_destroy(&pdd->alloc_idr); 1048 1049 kfd_free_process_doorbells(pdd->dev->kfd, pdd->doorbell_index); 1050 1051 if (pdd->dev->kfd->shared_resources.enable_mes) 1052 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev, 1053 pdd->proc_ctx_bo); 1054 /* 1055 * before destroying pdd, make sure to report availability 1056 * for auto suspend 1057 */ 1058 if (pdd->runtime_inuse) { 1059 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev); 1060 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev); 1061 pdd->runtime_inuse = false; 1062 } 1063 1064 kfree(pdd); 1065 p->pdds[i] = NULL; 1066 } 1067 p->n_pdds = 0; 1068 } 1069 1070 static void kfd_process_remove_sysfs(struct kfd_process *p) 1071 { 1072 struct kfd_process_device *pdd; 1073 int i; 1074 1075 if (!p->kobj) 1076 return; 1077 1078 sysfs_remove_file(p->kobj, &p->attr_pasid); 1079 kobject_del(p->kobj_queues); 1080 kobject_put(p->kobj_queues); 1081 p->kobj_queues = NULL; 1082 1083 for (i = 0; i < p->n_pdds; i++) { 1084 pdd = p->pdds[i]; 1085 1086 sysfs_remove_file(p->kobj, &pdd->attr_vram); 1087 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 1088 1089 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 1090 if (pdd->dev->kfd2kgd->get_cu_occupancy) 1091 sysfs_remove_file(pdd->kobj_stats, 1092 &pdd->attr_cu_occupancy); 1093 kobject_del(pdd->kobj_stats); 1094 kobject_put(pdd->kobj_stats); 1095 pdd->kobj_stats = NULL; 1096 } 1097 1098 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 1099 pdd = p->pdds[i]; 1100 1101 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); 1102 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); 1103 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); 1104 kobject_del(pdd->kobj_counters); 1105 kobject_put(pdd->kobj_counters); 1106 pdd->kobj_counters = NULL; 1107 } 1108 1109 kobject_del(p->kobj); 1110 kobject_put(p->kobj); 1111 p->kobj = NULL; 1112 } 1113 1114 /* No process locking is needed in this function, because the process 1115 * is not findable any more. We must assume that no other thread is 1116 * using it any more, otherwise we couldn't safely free the process 1117 * structure in the end. 1118 */ 1119 static void kfd_process_wq_release(struct work_struct *work) 1120 { 1121 struct kfd_process *p = container_of(work, struct kfd_process, 1122 release_work); 1123 1124 kfd_process_dequeue_from_all_devices(p); 1125 pqm_uninit(&p->pqm); 1126 1127 /* Signal the eviction fence after user mode queues are 1128 * destroyed. This allows any BOs to be freed without 1129 * triggering pointless evictions or waiting for fences. 1130 */ 1131 dma_fence_signal(p->ef); 1132 1133 kfd_process_remove_sysfs(p); 1134 kfd_iommu_unbind_process(p); 1135 1136 kfd_process_kunmap_signal_bo(p); 1137 kfd_process_free_outstanding_kfd_bos(p); 1138 svm_range_list_fini(p); 1139 1140 kfd_process_destroy_pdds(p); 1141 dma_fence_put(p->ef); 1142 1143 kfd_event_free_process(p); 1144 1145 kfd_pasid_free(p->pasid); 1146 mutex_destroy(&p->mutex); 1147 1148 put_task_struct(p->lead_thread); 1149 1150 kfree(p); 1151 } 1152 1153 static void kfd_process_ref_release(struct kref *ref) 1154 { 1155 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1156 1157 INIT_WORK(&p->release_work, kfd_process_wq_release); 1158 queue_work(kfd_process_wq, &p->release_work); 1159 } 1160 1161 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1162 { 1163 int idx = srcu_read_lock(&kfd_processes_srcu); 1164 struct kfd_process *p = find_process_by_mm(mm); 1165 1166 srcu_read_unlock(&kfd_processes_srcu, idx); 1167 1168 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1169 } 1170 1171 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1172 { 1173 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1174 } 1175 1176 static void kfd_process_notifier_release_internal(struct kfd_process *p) 1177 { 1178 cancel_delayed_work_sync(&p->eviction_work); 1179 cancel_delayed_work_sync(&p->restore_work); 1180 1181 /* Indicate to other users that MM is no longer valid */ 1182 p->mm = NULL; 1183 1184 mmu_notifier_put(&p->mmu_notifier); 1185 } 1186 1187 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1188 struct mm_struct *mm) 1189 { 1190 struct kfd_process *p; 1191 1192 /* 1193 * The kfd_process structure can not be free because the 1194 * mmu_notifier srcu is read locked 1195 */ 1196 p = container_of(mn, struct kfd_process, mmu_notifier); 1197 if (WARN_ON(p->mm != mm)) 1198 return; 1199 1200 mutex_lock(&kfd_processes_mutex); 1201 /* 1202 * Do early return if table is empty. 1203 * 1204 * This could potentially happen if this function is called concurrently 1205 * by mmu_notifier and by kfd_cleanup_pocesses. 1206 * 1207 */ 1208 if (hash_empty(kfd_processes_table)) { 1209 mutex_unlock(&kfd_processes_mutex); 1210 return; 1211 } 1212 hash_del_rcu(&p->kfd_processes); 1213 mutex_unlock(&kfd_processes_mutex); 1214 synchronize_srcu(&kfd_processes_srcu); 1215 1216 kfd_process_notifier_release_internal(p); 1217 } 1218 1219 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1220 .release = kfd_process_notifier_release, 1221 .alloc_notifier = kfd_process_alloc_notifier, 1222 .free_notifier = kfd_process_free_notifier, 1223 }; 1224 1225 /* 1226 * This code handles the case when driver is being unloaded before all 1227 * mm_struct are released. We need to safely free the kfd_process and 1228 * avoid race conditions with mmu_notifier that might try to free them. 1229 * 1230 */ 1231 void kfd_cleanup_processes(void) 1232 { 1233 struct kfd_process *p; 1234 struct hlist_node *p_temp; 1235 unsigned int temp; 1236 HLIST_HEAD(cleanup_list); 1237 1238 /* 1239 * Move all remaining kfd_process from the process table to a 1240 * temp list for processing. Once done, callback from mmu_notifier 1241 * release will not see the kfd_process in the table and do early return, 1242 * avoiding double free issues. 1243 */ 1244 mutex_lock(&kfd_processes_mutex); 1245 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) { 1246 hash_del_rcu(&p->kfd_processes); 1247 synchronize_srcu(&kfd_processes_srcu); 1248 hlist_add_head(&p->kfd_processes, &cleanup_list); 1249 } 1250 mutex_unlock(&kfd_processes_mutex); 1251 1252 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes) 1253 kfd_process_notifier_release_internal(p); 1254 1255 /* 1256 * Ensures that all outstanding free_notifier get called, triggering 1257 * the release of the kfd_process struct. 1258 */ 1259 mmu_notifier_synchronize(); 1260 } 1261 1262 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1263 { 1264 unsigned long offset; 1265 int i; 1266 1267 for (i = 0; i < p->n_pdds; i++) { 1268 struct kfd_node *dev = p->pdds[i]->dev; 1269 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1270 1271 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1272 continue; 1273 1274 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1275 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1276 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1277 MAP_SHARED, offset); 1278 1279 if (IS_ERR_VALUE(qpd->tba_addr)) { 1280 int err = qpd->tba_addr; 1281 1282 pr_err("Failure to set tba address. error %d.\n", err); 1283 qpd->tba_addr = 0; 1284 qpd->cwsr_kaddr = NULL; 1285 return err; 1286 } 1287 1288 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1289 1290 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1291 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1292 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1293 } 1294 1295 return 0; 1296 } 1297 1298 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1299 { 1300 struct kfd_node *dev = pdd->dev; 1301 struct qcm_process_device *qpd = &pdd->qpd; 1302 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1303 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1304 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1305 struct kgd_mem *mem; 1306 void *kaddr; 1307 int ret; 1308 1309 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1310 return 0; 1311 1312 /* cwsr_base is only set for dGPU */ 1313 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1314 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr); 1315 if (ret) 1316 return ret; 1317 1318 qpd->cwsr_mem = mem; 1319 qpd->cwsr_kaddr = kaddr; 1320 qpd->tba_addr = qpd->cwsr_base; 1321 1322 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1323 1324 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1325 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1326 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1327 1328 return 0; 1329 } 1330 1331 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) 1332 { 1333 struct kfd_node *dev = pdd->dev; 1334 struct qcm_process_device *qpd = &pdd->qpd; 1335 1336 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) 1337 return; 1338 1339 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr); 1340 } 1341 1342 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1343 uint64_t tba_addr, 1344 uint64_t tma_addr) 1345 { 1346 if (qpd->cwsr_kaddr) { 1347 /* KFD trap handler is bound, record as second-level TBA/TMA 1348 * in first-level TMA. First-level trap will jump to second. 1349 */ 1350 uint64_t *tma = 1351 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1352 tma[0] = tba_addr; 1353 tma[1] = tma_addr; 1354 } else { 1355 /* No trap handler bound, bind as first-level TBA/TMA. */ 1356 qpd->tba_addr = tba_addr; 1357 qpd->tma_addr = tma_addr; 1358 } 1359 } 1360 1361 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1362 { 1363 int i; 1364 1365 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1366 * boot time retry setting. Mixing processes with different 1367 * XNACK/retry settings can hang the GPU. 1368 * 1369 * Different GPUs can have different noretry settings depending 1370 * on HW bugs or limitations. We need to find at least one 1371 * XNACK mode for this process that's compatible with all GPUs. 1372 * Fortunately GPUs with retry enabled (noretry=0) can run code 1373 * built for XNACK-off. On GFXv9 it may perform slower. 1374 * 1375 * Therefore applications built for XNACK-off can always be 1376 * supported and will be our fallback if any GPU does not 1377 * support retry. 1378 */ 1379 for (i = 0; i < p->n_pdds; i++) { 1380 struct kfd_node *dev = p->pdds[i]->dev; 1381 1382 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1383 * support the SVM APIs and don't need to be considered 1384 * for the XNACK mode selection. 1385 */ 1386 if (!KFD_IS_SOC15(dev)) 1387 continue; 1388 /* Aldebaran can always support XNACK because it can support 1389 * per-process XNACK mode selection. But let the dev->noretry 1390 * setting still influence the default XNACK mode. 1391 */ 1392 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) 1393 continue; 1394 1395 /* GFXv10 and later GPUs do not support shader preemption 1396 * during page faults. This can lead to poor QoS for queue 1397 * management and memory-manager-related preemptions or 1398 * even deadlocks. 1399 */ 1400 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 1401 return false; 1402 1403 if (dev->kfd->noretry) 1404 return false; 1405 } 1406 1407 return true; 1408 } 1409 1410 /* 1411 * On return the kfd_process is fully operational and will be freed when the 1412 * mm is released 1413 */ 1414 static struct kfd_process *create_process(const struct task_struct *thread) 1415 { 1416 struct kfd_process *process; 1417 struct mmu_notifier *mn; 1418 int err = -ENOMEM; 1419 1420 process = kzalloc(sizeof(*process), GFP_KERNEL); 1421 if (!process) 1422 goto err_alloc_process; 1423 1424 kref_init(&process->ref); 1425 mutex_init(&process->mutex); 1426 process->mm = thread->mm; 1427 process->lead_thread = thread->group_leader; 1428 process->n_pdds = 0; 1429 process->queues_paused = false; 1430 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1431 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1432 process->last_restore_timestamp = get_jiffies_64(); 1433 err = kfd_event_init_process(process); 1434 if (err) 1435 goto err_event_init; 1436 process->is_32bit_user_mode = in_compat_syscall(); 1437 1438 process->pasid = kfd_pasid_alloc(); 1439 if (process->pasid == 0) { 1440 err = -ENOSPC; 1441 goto err_alloc_pasid; 1442 } 1443 1444 err = pqm_init(&process->pqm, process); 1445 if (err != 0) 1446 goto err_process_pqm_init; 1447 1448 /* init process apertures*/ 1449 err = kfd_init_apertures(process); 1450 if (err != 0) 1451 goto err_init_apertures; 1452 1453 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1454 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1455 1456 err = svm_range_list_init(process); 1457 if (err) 1458 goto err_init_svm_range_list; 1459 1460 /* alloc_notifier needs to find the process in the hash table */ 1461 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1462 (uintptr_t)process->mm); 1463 1464 /* Avoid free_notifier to start kfd_process_wq_release if 1465 * mmu_notifier_get failed because of pending signal. 1466 */ 1467 kref_get(&process->ref); 1468 1469 /* MMU notifier registration must be the last call that can fail 1470 * because after this point we cannot unwind the process creation. 1471 * After this point, mmu_notifier_put will trigger the cleanup by 1472 * dropping the last process reference in the free_notifier. 1473 */ 1474 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1475 if (IS_ERR(mn)) { 1476 err = PTR_ERR(mn); 1477 goto err_register_notifier; 1478 } 1479 BUG_ON(mn != &process->mmu_notifier); 1480 1481 kfd_unref_process(process); 1482 get_task_struct(process->lead_thread); 1483 1484 return process; 1485 1486 err_register_notifier: 1487 hash_del_rcu(&process->kfd_processes); 1488 svm_range_list_fini(process); 1489 err_init_svm_range_list: 1490 kfd_process_free_outstanding_kfd_bos(process); 1491 kfd_process_destroy_pdds(process); 1492 err_init_apertures: 1493 pqm_uninit(&process->pqm); 1494 err_process_pqm_init: 1495 kfd_pasid_free(process->pasid); 1496 err_alloc_pasid: 1497 kfd_event_free_process(process); 1498 err_event_init: 1499 mutex_destroy(&process->mutex); 1500 kfree(process); 1501 err_alloc_process: 1502 return ERR_PTR(err); 1503 } 1504 1505 static int init_doorbell_bitmap(struct qcm_process_device *qpd, 1506 struct kfd_dev *dev) 1507 { 1508 unsigned int i; 1509 int range_start = dev->shared_resources.non_cp_doorbells_start; 1510 int range_end = dev->shared_resources.non_cp_doorbells_end; 1511 1512 if (!KFD_IS_SOC15(dev)) 1513 return 0; 1514 1515 qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, 1516 GFP_KERNEL); 1517 if (!qpd->doorbell_bitmap) 1518 return -ENOMEM; 1519 1520 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */ 1521 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end); 1522 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", 1523 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1524 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET); 1525 1526 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) { 1527 if (i >= range_start && i <= range_end) { 1528 __set_bit(i, qpd->doorbell_bitmap); 1529 __set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1530 qpd->doorbell_bitmap); 1531 } 1532 } 1533 1534 return 0; 1535 } 1536 1537 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, 1538 struct kfd_process *p) 1539 { 1540 int i; 1541 1542 for (i = 0; i < p->n_pdds; i++) 1543 if (p->pdds[i]->dev == dev) 1544 return p->pdds[i]; 1545 1546 return NULL; 1547 } 1548 1549 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, 1550 struct kfd_process *p) 1551 { 1552 struct kfd_process_device *pdd = NULL; 1553 int retval = 0; 1554 1555 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1556 return NULL; 1557 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1558 if (!pdd) 1559 return NULL; 1560 1561 if (init_doorbell_bitmap(&pdd->qpd, dev->kfd)) { 1562 pr_err("Failed to init doorbell for process\n"); 1563 goto err_free_pdd; 1564 } 1565 1566 pdd->dev = dev; 1567 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1568 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1569 pdd->qpd.dqm = dev->dqm; 1570 pdd->qpd.pqm = &p->pqm; 1571 pdd->qpd.evicted = 0; 1572 pdd->qpd.mapped_gws_queue = false; 1573 pdd->process = p; 1574 pdd->bound = PDD_UNBOUND; 1575 pdd->already_dequeued = false; 1576 pdd->runtime_inuse = false; 1577 pdd->vram_usage = 0; 1578 pdd->sdma_past_activity_counter = 0; 1579 pdd->user_gpu_id = dev->id; 1580 atomic64_set(&pdd->evict_duration_counter, 0); 1581 1582 if (dev->kfd->shared_resources.enable_mes) { 1583 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, 1584 AMDGPU_MES_PROC_CTX_SIZE, 1585 &pdd->proc_ctx_bo, 1586 &pdd->proc_ctx_gpu_addr, 1587 &pdd->proc_ctx_cpu_ptr, 1588 false); 1589 if (retval) { 1590 pr_err("failed to allocate process context bo\n"); 1591 goto err_free_pdd; 1592 } 1593 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE); 1594 } 1595 1596 p->pdds[p->n_pdds++] = pdd; 1597 1598 /* Init idr used for memory handle translation */ 1599 idr_init(&pdd->alloc_idr); 1600 1601 return pdd; 1602 1603 err_free_pdd: 1604 kfree(pdd); 1605 return NULL; 1606 } 1607 1608 /** 1609 * kfd_process_device_init_vm - Initialize a VM for a process-device 1610 * 1611 * @pdd: The process-device 1612 * @drm_file: Optional pointer to a DRM file descriptor 1613 * 1614 * If @drm_file is specified, it will be used to acquire the VM from 1615 * that file descriptor. If successful, the @pdd takes ownership of 1616 * the file descriptor. 1617 * 1618 * If @drm_file is NULL, a new VM is created. 1619 * 1620 * Returns 0 on success, -errno on failure. 1621 */ 1622 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1623 struct file *drm_file) 1624 { 1625 struct amdgpu_fpriv *drv_priv; 1626 struct amdgpu_vm *avm; 1627 struct kfd_process *p; 1628 struct kfd_node *dev; 1629 int ret; 1630 1631 if (!drm_file) 1632 return -EINVAL; 1633 1634 if (pdd->drm_priv) 1635 return -EBUSY; 1636 1637 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv); 1638 if (ret) 1639 return ret; 1640 avm = &drv_priv->vm; 1641 1642 p = pdd->process; 1643 dev = pdd->dev; 1644 1645 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm, 1646 &p->kgd_process_info, 1647 &p->ef); 1648 if (ret) { 1649 pr_err("Failed to create process VM object\n"); 1650 return ret; 1651 } 1652 pdd->drm_priv = drm_file->private_data; 1653 atomic64_set(&pdd->tlb_seq, 0); 1654 1655 ret = kfd_process_device_reserve_ib_mem(pdd); 1656 if (ret) 1657 goto err_reserve_ib_mem; 1658 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1659 if (ret) 1660 goto err_init_cwsr; 1661 1662 ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid); 1663 if (ret) 1664 goto err_set_pasid; 1665 1666 pdd->drm_file = drm_file; 1667 1668 return 0; 1669 1670 err_set_pasid: 1671 kfd_process_device_destroy_cwsr_dgpu(pdd); 1672 err_init_cwsr: 1673 kfd_process_device_destroy_ib_mem(pdd); 1674 err_reserve_ib_mem: 1675 pdd->drm_priv = NULL; 1676 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm); 1677 1678 return ret; 1679 } 1680 1681 /* 1682 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1683 * to the device. 1684 * Unbinding occurs when the process dies or the device is removed. 1685 * 1686 * Assumes that the process lock is held. 1687 */ 1688 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, 1689 struct kfd_process *p) 1690 { 1691 struct kfd_process_device *pdd; 1692 int err; 1693 1694 pdd = kfd_get_process_device_data(dev, p); 1695 if (!pdd) { 1696 pr_err("Process device data doesn't exist\n"); 1697 return ERR_PTR(-ENOMEM); 1698 } 1699 1700 if (!pdd->drm_priv) 1701 return ERR_PTR(-ENODEV); 1702 1703 /* 1704 * signal runtime-pm system to auto resume and prevent 1705 * further runtime suspend once device pdd is created until 1706 * pdd is destroyed. 1707 */ 1708 if (!pdd->runtime_inuse) { 1709 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev); 1710 if (err < 0) { 1711 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev); 1712 return ERR_PTR(err); 1713 } 1714 } 1715 1716 err = kfd_iommu_bind_process_to_device(pdd); 1717 if (err) 1718 goto out; 1719 1720 /* 1721 * make sure that runtime_usage counter is incremented just once 1722 * per pdd 1723 */ 1724 pdd->runtime_inuse = true; 1725 1726 return pdd; 1727 1728 out: 1729 /* balance runpm reference count and exit with error */ 1730 if (!pdd->runtime_inuse) { 1731 pm_runtime_mark_last_busy(adev_to_drm(dev->adev)->dev); 1732 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev); 1733 } 1734 1735 return ERR_PTR(err); 1736 } 1737 1738 /* Create specific handle mapped to mem from process local memory idr 1739 * Assumes that the process lock is held. 1740 */ 1741 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1742 void *mem) 1743 { 1744 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1745 } 1746 1747 /* Translate specific handle from process local memory idr 1748 * Assumes that the process lock is held. 1749 */ 1750 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1751 int handle) 1752 { 1753 if (handle < 0) 1754 return NULL; 1755 1756 return idr_find(&pdd->alloc_idr, handle); 1757 } 1758 1759 /* Remove specific handle from process local memory idr 1760 * Assumes that the process lock is held. 1761 */ 1762 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1763 int handle) 1764 { 1765 if (handle >= 0) 1766 idr_remove(&pdd->alloc_idr, handle); 1767 } 1768 1769 /* This increments the process->ref counter. */ 1770 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) 1771 { 1772 struct kfd_process *p, *ret_p = NULL; 1773 unsigned int temp; 1774 1775 int idx = srcu_read_lock(&kfd_processes_srcu); 1776 1777 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1778 if (p->pasid == pasid) { 1779 kref_get(&p->ref); 1780 ret_p = p; 1781 break; 1782 } 1783 } 1784 1785 srcu_read_unlock(&kfd_processes_srcu, idx); 1786 1787 return ret_p; 1788 } 1789 1790 /* This increments the process->ref counter. */ 1791 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1792 { 1793 struct kfd_process *p; 1794 1795 int idx = srcu_read_lock(&kfd_processes_srcu); 1796 1797 p = find_process_by_mm(mm); 1798 if (p) 1799 kref_get(&p->ref); 1800 1801 srcu_read_unlock(&kfd_processes_srcu, idx); 1802 1803 return p; 1804 } 1805 1806 /* kfd_process_evict_queues - Evict all user queues of a process 1807 * 1808 * Eviction is reference-counted per process-device. This means multiple 1809 * evictions from different sources can be nested safely. 1810 */ 1811 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger) 1812 { 1813 int r = 0; 1814 int i; 1815 unsigned int n_evicted = 0; 1816 1817 for (i = 0; i < p->n_pdds; i++) { 1818 struct kfd_process_device *pdd = p->pdds[i]; 1819 1820 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid, 1821 trigger); 1822 1823 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1824 &pdd->qpd); 1825 /* evict return -EIO if HWS is hang or asic is resetting, in this case 1826 * we would like to set all the queues to be in evicted state to prevent 1827 * them been add back since they actually not be saved right now. 1828 */ 1829 if (r && r != -EIO) { 1830 pr_err("Failed to evict process queues\n"); 1831 goto fail; 1832 } 1833 n_evicted++; 1834 } 1835 1836 return r; 1837 1838 fail: 1839 /* To keep state consistent, roll back partial eviction by 1840 * restoring queues 1841 */ 1842 for (i = 0; i < p->n_pdds; i++) { 1843 struct kfd_process_device *pdd = p->pdds[i]; 1844 1845 if (n_evicted == 0) 1846 break; 1847 1848 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1849 1850 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1851 &pdd->qpd)) 1852 pr_err("Failed to restore queues\n"); 1853 1854 n_evicted--; 1855 } 1856 1857 return r; 1858 } 1859 1860 /* kfd_process_restore_queues - Restore all user queues of a process */ 1861 int kfd_process_restore_queues(struct kfd_process *p) 1862 { 1863 int r, ret = 0; 1864 int i; 1865 1866 for (i = 0; i < p->n_pdds; i++) { 1867 struct kfd_process_device *pdd = p->pdds[i]; 1868 1869 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1870 1871 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1872 &pdd->qpd); 1873 if (r) { 1874 pr_err("Failed to restore process queues\n"); 1875 if (!ret) 1876 ret = r; 1877 } 1878 } 1879 1880 return ret; 1881 } 1882 1883 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 1884 { 1885 int i; 1886 1887 for (i = 0; i < p->n_pdds; i++) 1888 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id) 1889 return i; 1890 return -EINVAL; 1891 } 1892 1893 int 1894 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, 1895 uint32_t *gpuid, uint32_t *gpuidx) 1896 { 1897 int i; 1898 1899 for (i = 0; i < p->n_pdds; i++) 1900 if (p->pdds[i] && p->pdds[i]->dev == node) { 1901 *gpuid = p->pdds[i]->user_gpu_id; 1902 *gpuidx = i; 1903 return 0; 1904 } 1905 return -EINVAL; 1906 } 1907 1908 static void evict_process_worker(struct work_struct *work) 1909 { 1910 int ret; 1911 struct kfd_process *p; 1912 struct delayed_work *dwork; 1913 1914 dwork = to_delayed_work(work); 1915 1916 /* Process termination destroys this worker thread. So during the 1917 * lifetime of this thread, kfd_process p will be valid 1918 */ 1919 p = container_of(dwork, struct kfd_process, eviction_work); 1920 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, 1921 "Eviction fence mismatch\n"); 1922 1923 /* Narrow window of overlap between restore and evict work 1924 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos 1925 * unreserves KFD BOs, it is possible to evicted again. But 1926 * restore has few more steps of finish. So lets wait for any 1927 * previous restore work to complete 1928 */ 1929 flush_delayed_work(&p->restore_work); 1930 1931 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1932 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM); 1933 if (!ret) { 1934 dma_fence_signal(p->ef); 1935 dma_fence_put(p->ef); 1936 p->ef = NULL; 1937 queue_delayed_work(kfd_restore_wq, &p->restore_work, 1938 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); 1939 1940 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 1941 } else 1942 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 1943 } 1944 1945 static void restore_process_worker(struct work_struct *work) 1946 { 1947 struct delayed_work *dwork; 1948 struct kfd_process *p; 1949 int ret = 0; 1950 1951 dwork = to_delayed_work(work); 1952 1953 /* Process termination destroys this worker thread. So during the 1954 * lifetime of this thread, kfd_process p will be valid 1955 */ 1956 p = container_of(dwork, struct kfd_process, restore_work); 1957 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 1958 1959 /* Setting last_restore_timestamp before successful restoration. 1960 * Otherwise this would have to be set by KGD (restore_process_bos) 1961 * before KFD BOs are unreserved. If not, the process can be evicted 1962 * again before the timestamp is set. 1963 * If restore fails, the timestamp will be set again in the next 1964 * attempt. This would mean that the minimum GPU quanta would be 1965 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 1966 * functions) 1967 */ 1968 1969 p->last_restore_timestamp = get_jiffies_64(); 1970 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info, 1971 &p->ef); 1972 if (ret) { 1973 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 1974 p->pasid, PROCESS_BACK_OFF_TIME_MS); 1975 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work, 1976 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); 1977 WARN(!ret, "reschedule restore work failed\n"); 1978 return; 1979 } 1980 1981 ret = kfd_process_restore_queues(p); 1982 if (!ret) 1983 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 1984 else 1985 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 1986 } 1987 1988 void kfd_suspend_all_processes(void) 1989 { 1990 struct kfd_process *p; 1991 unsigned int temp; 1992 int idx = srcu_read_lock(&kfd_processes_srcu); 1993 1994 WARN(debug_evictions, "Evicting all processes"); 1995 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1996 cancel_delayed_work_sync(&p->eviction_work); 1997 cancel_delayed_work_sync(&p->restore_work); 1998 1999 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND)) 2000 pr_err("Failed to suspend process 0x%x\n", p->pasid); 2001 dma_fence_signal(p->ef); 2002 dma_fence_put(p->ef); 2003 p->ef = NULL; 2004 } 2005 srcu_read_unlock(&kfd_processes_srcu, idx); 2006 } 2007 2008 int kfd_resume_all_processes(void) 2009 { 2010 struct kfd_process *p; 2011 unsigned int temp; 2012 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 2013 2014 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2015 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) { 2016 pr_err("Restore process %d failed during resume\n", 2017 p->pasid); 2018 ret = -EFAULT; 2019 } 2020 } 2021 srcu_read_unlock(&kfd_processes_srcu, idx); 2022 return ret; 2023 } 2024 2025 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, 2026 struct vm_area_struct *vma) 2027 { 2028 struct kfd_process_device *pdd; 2029 struct qcm_process_device *qpd; 2030 2031 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 2032 pr_err("Incorrect CWSR mapping size.\n"); 2033 return -EINVAL; 2034 } 2035 2036 pdd = kfd_get_process_device_data(dev, process); 2037 if (!pdd) 2038 return -EINVAL; 2039 qpd = &pdd->qpd; 2040 2041 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2042 get_order(KFD_CWSR_TBA_TMA_SIZE)); 2043 if (!qpd->cwsr_kaddr) { 2044 pr_err("Error allocating per process CWSR buffer.\n"); 2045 return -ENOMEM; 2046 } 2047 2048 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND 2049 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); 2050 /* Mapping pages to user process */ 2051 return remap_pfn_range(vma, vma->vm_start, 2052 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 2053 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 2054 } 2055 2056 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type) 2057 { 2058 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv); 2059 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); 2060 struct kfd_node *dev = pdd->dev; 2061 uint32_t xcc_mask = dev->xcc_mask; 2062 int xcc = 0; 2063 2064 /* 2065 * It can be that we race and lose here, but that is extremely unlikely 2066 * and the worst thing which could happen is that we flush the changes 2067 * into the TLB once more which is harmless. 2068 */ 2069 if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq) 2070 return; 2071 2072 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 2073 /* Nothing to flush until a VMID is assigned, which 2074 * only happens when the first queue is created. 2075 */ 2076 if (pdd->qpd.vmid) 2077 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev, 2078 pdd->qpd.vmid); 2079 } else { 2080 for_each_inst(xcc, xcc_mask) 2081 amdgpu_amdkfd_flush_gpu_tlb_pasid( 2082 dev->adev, pdd->process->pasid, type, xcc); 2083 } 2084 } 2085 2086 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id) 2087 { 2088 int i; 2089 2090 if (gpu_id) { 2091 for (i = 0; i < p->n_pdds; i++) { 2092 struct kfd_process_device *pdd = p->pdds[i]; 2093 2094 if (pdd->user_gpu_id == gpu_id) 2095 return pdd; 2096 } 2097 } 2098 return NULL; 2099 } 2100 2101 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id) 2102 { 2103 int i; 2104 2105 if (!actual_gpu_id) 2106 return 0; 2107 2108 for (i = 0; i < p->n_pdds; i++) { 2109 struct kfd_process_device *pdd = p->pdds[i]; 2110 2111 if (pdd->dev->id == actual_gpu_id) 2112 return pdd->user_gpu_id; 2113 } 2114 return -EINVAL; 2115 } 2116 2117 #if defined(CONFIG_DEBUG_FS) 2118 2119 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 2120 { 2121 struct kfd_process *p; 2122 unsigned int temp; 2123 int r = 0; 2124 2125 int idx = srcu_read_lock(&kfd_processes_srcu); 2126 2127 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2128 seq_printf(m, "Process %d PASID 0x%x:\n", 2129 p->lead_thread->tgid, p->pasid); 2130 2131 mutex_lock(&p->mutex); 2132 r = pqm_debugfs_mqds(m, &p->pqm); 2133 mutex_unlock(&p->mutex); 2134 2135 if (r) 2136 break; 2137 } 2138 2139 srcu_read_unlock(&kfd_processes_srcu, idx); 2140 2141 return r; 2142 } 2143 2144 #endif 2145 2146