1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/mutex.h> 24 #include <linux/log2.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/amd-iommu.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 39 struct mm_struct; 40 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_dbgmgr.h" 44 #include "kfd_iommu.h" 45 #include "kfd_svm.h" 46 47 /* 48 * List of struct kfd_process (field kfd_process). 49 * Unique/indexed by mm_struct* 50 */ 51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 52 static DEFINE_MUTEX(kfd_processes_mutex); 53 54 DEFINE_SRCU(kfd_processes_srcu); 55 56 /* For process termination handling */ 57 static struct workqueue_struct *kfd_process_wq; 58 59 /* Ordered, single-threaded workqueue for restoring evicted 60 * processes. Restoring multiple processes concurrently under memory 61 * pressure can lead to processes blocking each other from validating 62 * their BOs and result in a live-lock situation where processes 63 * remain evicted indefinitely. 64 */ 65 static struct workqueue_struct *kfd_restore_wq; 66 67 static struct kfd_process *find_process(const struct task_struct *thread); 68 static void kfd_process_ref_release(struct kref *ref); 69 static struct kfd_process *create_process(const struct task_struct *thread); 70 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep); 71 72 static void evict_process_worker(struct work_struct *work); 73 static void restore_process_worker(struct work_struct *work); 74 75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); 76 77 struct kfd_procfs_tree { 78 struct kobject *kobj; 79 }; 80 81 static struct kfd_procfs_tree procfs; 82 83 /* 84 * Structure for SDMA activity tracking 85 */ 86 struct kfd_sdma_activity_handler_workarea { 87 struct work_struct sdma_activity_work; 88 struct kfd_process_device *pdd; 89 uint64_t sdma_activity_counter; 90 }; 91 92 struct temp_sdma_queue_list { 93 uint64_t __user *rptr; 94 uint64_t sdma_val; 95 unsigned int queue_id; 96 struct list_head list; 97 }; 98 99 static void kfd_sdma_activity_worker(struct work_struct *work) 100 { 101 struct kfd_sdma_activity_handler_workarea *workarea; 102 struct kfd_process_device *pdd; 103 uint64_t val; 104 struct mm_struct *mm; 105 struct queue *q; 106 struct qcm_process_device *qpd; 107 struct device_queue_manager *dqm; 108 int ret = 0; 109 struct temp_sdma_queue_list sdma_q_list; 110 struct temp_sdma_queue_list *sdma_q, *next; 111 112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 113 sdma_activity_work); 114 115 pdd = workarea->pdd; 116 if (!pdd) 117 return; 118 dqm = pdd->dev->dqm; 119 qpd = &pdd->qpd; 120 if (!dqm || !qpd) 121 return; 122 /* 123 * Total SDMA activity is current SDMA activity + past SDMA activity 124 * Past SDMA count is stored in pdd. 125 * To get the current activity counters for all active SDMA queues, 126 * we loop over all SDMA queues and get their counts from user-space. 127 * 128 * We cannot call get_user() with dqm_lock held as it can cause 129 * a circular lock dependency situation. To read the SDMA stats, 130 * we need to do the following: 131 * 132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 133 * with dqm_lock/dqm_unlock(). 134 * 2. Call get_user() for each node in temporary list without dqm_lock. 135 * Save the SDMA count for each node and also add the count to the total 136 * SDMA count counter. 137 * Its possible, during this step, a few SDMA queue nodes got deleted 138 * from the qpd->queues_list. 139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 140 * If any node got deleted, its SDMA count would be captured in the sdma 141 * past activity counter. So subtract the SDMA counter stored in step 2 142 * for this node from the total SDMA count. 143 */ 144 INIT_LIST_HEAD(&sdma_q_list.list); 145 146 /* 147 * Create the temp list of all SDMA queues 148 */ 149 dqm_lock(dqm); 150 151 list_for_each_entry(q, &qpd->queues_list, list) { 152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 154 continue; 155 156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 157 if (!sdma_q) { 158 dqm_unlock(dqm); 159 goto cleanup; 160 } 161 162 INIT_LIST_HEAD(&sdma_q->list); 163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 164 sdma_q->queue_id = q->properties.queue_id; 165 list_add_tail(&sdma_q->list, &sdma_q_list.list); 166 } 167 168 /* 169 * If the temp list is empty, then no SDMA queues nodes were found in 170 * qpd->queues_list. Return the past activity count as the total sdma 171 * count 172 */ 173 if (list_empty(&sdma_q_list.list)) { 174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 175 dqm_unlock(dqm); 176 return; 177 } 178 179 dqm_unlock(dqm); 180 181 /* 182 * Get the usage count for each SDMA queue in temp_list. 183 */ 184 mm = get_task_mm(pdd->process->lead_thread); 185 if (!mm) 186 goto cleanup; 187 188 kthread_use_mm(mm); 189 190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 191 val = 0; 192 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 193 if (ret) { 194 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 195 sdma_q->queue_id); 196 } else { 197 sdma_q->sdma_val = val; 198 workarea->sdma_activity_counter += val; 199 } 200 } 201 202 kthread_unuse_mm(mm); 203 mmput(mm); 204 205 /* 206 * Do a second iteration over qpd_queues_list to check if any SDMA 207 * nodes got deleted while fetching SDMA counter. 208 */ 209 dqm_lock(dqm); 210 211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 212 213 list_for_each_entry(q, &qpd->queues_list, list) { 214 if (list_empty(&sdma_q_list.list)) 215 break; 216 217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 219 continue; 220 221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 223 (sdma_q->queue_id == q->properties.queue_id)) { 224 list_del(&sdma_q->list); 225 kfree(sdma_q); 226 break; 227 } 228 } 229 } 230 231 dqm_unlock(dqm); 232 233 /* 234 * If temp list is not empty, it implies some queues got deleted 235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 236 * count for each node from the total SDMA count. 237 */ 238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 239 workarea->sdma_activity_counter -= sdma_q->sdma_val; 240 list_del(&sdma_q->list); 241 kfree(sdma_q); 242 } 243 244 return; 245 246 cleanup: 247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 248 list_del(&sdma_q->list); 249 kfree(sdma_q); 250 } 251 } 252 253 /** 254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device 255 * by current process. Translates acquired wave count into number of compute units 256 * that are occupied. 257 * 258 * @attr: Handle of attribute that allows reporting of wave count. The attribute 259 * handle encapsulates GPU device it is associated with, thereby allowing collection 260 * of waves in flight, etc 261 * @buffer: Handle of user provided buffer updated with wave count 262 * 263 * Return: Number of bytes written to user buffer or an error value 264 */ 265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 266 { 267 int cu_cnt; 268 int wave_cnt; 269 int max_waves_per_cu; 270 struct kfd_dev *dev = NULL; 271 struct kfd_process *proc = NULL; 272 struct kfd_process_device *pdd = NULL; 273 274 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 275 dev = pdd->dev; 276 if (dev->kfd2kgd->get_cu_occupancy == NULL) 277 return -EINVAL; 278 279 cu_cnt = 0; 280 proc = pdd->process; 281 if (pdd->qpd.queue_count == 0) { 282 pr_debug("Gpu-Id: %d has no active queues for process %d\n", 283 dev->id, proc->pasid); 284 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 285 } 286 287 /* Collect wave count from device if it supports */ 288 wave_cnt = 0; 289 max_waves_per_cu = 0; 290 dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt, 291 &max_waves_per_cu); 292 293 /* Translate wave count to number of compute units */ 294 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 295 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 296 } 297 298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 299 char *buffer) 300 { 301 if (strcmp(attr->name, "pasid") == 0) { 302 struct kfd_process *p = container_of(attr, struct kfd_process, 303 attr_pasid); 304 305 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 306 } else if (strncmp(attr->name, "vram_", 5) == 0) { 307 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 308 attr_vram); 309 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage)); 310 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 311 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 312 attr_sdma); 313 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 314 315 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work, 316 kfd_sdma_activity_worker); 317 318 sdma_activity_work_handler.pdd = pdd; 319 sdma_activity_work_handler.sdma_activity_counter = 0; 320 321 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 322 323 flush_work(&sdma_activity_work_handler.sdma_activity_work); 324 325 return snprintf(buffer, PAGE_SIZE, "%llu\n", 326 (sdma_activity_work_handler.sdma_activity_counter)/ 327 SDMA_ACTIVITY_DIVISOR); 328 } else { 329 pr_err("Invalid attribute"); 330 return -EINVAL; 331 } 332 333 return 0; 334 } 335 336 static void kfd_procfs_kobj_release(struct kobject *kobj) 337 { 338 kfree(kobj); 339 } 340 341 static const struct sysfs_ops kfd_procfs_ops = { 342 .show = kfd_procfs_show, 343 }; 344 345 static struct kobj_type procfs_type = { 346 .release = kfd_procfs_kobj_release, 347 .sysfs_ops = &kfd_procfs_ops, 348 }; 349 350 void kfd_procfs_init(void) 351 { 352 int ret = 0; 353 354 procfs.kobj = kfd_alloc_struct(procfs.kobj); 355 if (!procfs.kobj) 356 return; 357 358 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 359 &kfd_device->kobj, "proc"); 360 if (ret) { 361 pr_warn("Could not create procfs proc folder"); 362 /* If we fail to create the procfs, clean up */ 363 kfd_procfs_shutdown(); 364 } 365 } 366 367 void kfd_procfs_shutdown(void) 368 { 369 if (procfs.kobj) { 370 kobject_del(procfs.kobj); 371 kobject_put(procfs.kobj); 372 procfs.kobj = NULL; 373 } 374 } 375 376 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 377 struct attribute *attr, char *buffer) 378 { 379 struct queue *q = container_of(kobj, struct queue, kobj); 380 381 if (!strcmp(attr->name, "size")) 382 return snprintf(buffer, PAGE_SIZE, "%llu", 383 q->properties.queue_size); 384 else if (!strcmp(attr->name, "type")) 385 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 386 else if (!strcmp(attr->name, "gpuid")) 387 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 388 else 389 pr_err("Invalid attribute"); 390 391 return 0; 392 } 393 394 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 395 struct attribute *attr, char *buffer) 396 { 397 if (strcmp(attr->name, "evicted_ms") == 0) { 398 struct kfd_process_device *pdd = container_of(attr, 399 struct kfd_process_device, 400 attr_evict); 401 uint64_t evict_jiffies; 402 403 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 404 405 return snprintf(buffer, 406 PAGE_SIZE, 407 "%llu\n", 408 jiffies64_to_msecs(evict_jiffies)); 409 410 /* Sysfs handle that gets CU occupancy is per device */ 411 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 412 return kfd_get_cu_occupancy(attr, buffer); 413 } else { 414 pr_err("Invalid attribute"); 415 } 416 417 return 0; 418 } 419 420 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, 421 struct attribute *attr, char *buf) 422 { 423 struct kfd_process_device *pdd; 424 425 if (!strcmp(attr->name, "faults")) { 426 pdd = container_of(attr, struct kfd_process_device, 427 attr_faults); 428 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); 429 } 430 if (!strcmp(attr->name, "page_in")) { 431 pdd = container_of(attr, struct kfd_process_device, 432 attr_page_in); 433 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); 434 } 435 if (!strcmp(attr->name, "page_out")) { 436 pdd = container_of(attr, struct kfd_process_device, 437 attr_page_out); 438 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); 439 } 440 return 0; 441 } 442 443 static struct attribute attr_queue_size = { 444 .name = "size", 445 .mode = KFD_SYSFS_FILE_MODE 446 }; 447 448 static struct attribute attr_queue_type = { 449 .name = "type", 450 .mode = KFD_SYSFS_FILE_MODE 451 }; 452 453 static struct attribute attr_queue_gpuid = { 454 .name = "gpuid", 455 .mode = KFD_SYSFS_FILE_MODE 456 }; 457 458 static struct attribute *procfs_queue_attrs[] = { 459 &attr_queue_size, 460 &attr_queue_type, 461 &attr_queue_gpuid, 462 NULL 463 }; 464 465 static const struct sysfs_ops procfs_queue_ops = { 466 .show = kfd_procfs_queue_show, 467 }; 468 469 static struct kobj_type procfs_queue_type = { 470 .sysfs_ops = &procfs_queue_ops, 471 .default_attrs = procfs_queue_attrs, 472 }; 473 474 static const struct sysfs_ops procfs_stats_ops = { 475 .show = kfd_procfs_stats_show, 476 }; 477 478 static struct kobj_type procfs_stats_type = { 479 .sysfs_ops = &procfs_stats_ops, 480 .release = kfd_procfs_kobj_release, 481 }; 482 483 static const struct sysfs_ops sysfs_counters_ops = { 484 .show = kfd_sysfs_counters_show, 485 }; 486 487 static struct kobj_type sysfs_counters_type = { 488 .sysfs_ops = &sysfs_counters_ops, 489 .release = kfd_procfs_kobj_release, 490 }; 491 492 int kfd_procfs_add_queue(struct queue *q) 493 { 494 struct kfd_process *proc; 495 int ret; 496 497 if (!q || !q->process) 498 return -EINVAL; 499 proc = q->process; 500 501 /* Create proc/<pid>/queues/<queue id> folder */ 502 if (!proc->kobj_queues) 503 return -EFAULT; 504 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 505 proc->kobj_queues, "%u", q->properties.queue_id); 506 if (ret < 0) { 507 pr_warn("Creating proc/<pid>/queues/%u failed", 508 q->properties.queue_id); 509 kobject_put(&q->kobj); 510 return ret; 511 } 512 513 return 0; 514 } 515 516 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, 517 char *name) 518 { 519 int ret; 520 521 if (!kobj || !attr || !name) 522 return; 523 524 attr->name = name; 525 attr->mode = KFD_SYSFS_FILE_MODE; 526 sysfs_attr_init(attr); 527 528 ret = sysfs_create_file(kobj, attr); 529 if (ret) 530 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); 531 } 532 533 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) 534 { 535 int ret; 536 int i; 537 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 538 539 if (!p || !p->kobj) 540 return; 541 542 /* 543 * Create sysfs files for each GPU: 544 * - proc/<pid>/stats_<gpuid>/ 545 * - proc/<pid>/stats_<gpuid>/evicted_ms 546 * - proc/<pid>/stats_<gpuid>/cu_occupancy 547 */ 548 for (i = 0; i < p->n_pdds; i++) { 549 struct kfd_process_device *pdd = p->pdds[i]; 550 551 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 552 "stats_%u", pdd->dev->id); 553 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); 554 if (!pdd->kobj_stats) 555 return; 556 557 ret = kobject_init_and_add(pdd->kobj_stats, 558 &procfs_stats_type, 559 p->kobj, 560 stats_dir_filename); 561 562 if (ret) { 563 pr_warn("Creating KFD proc/stats_%s folder failed", 564 stats_dir_filename); 565 kobject_put(pdd->kobj_stats); 566 pdd->kobj_stats = NULL; 567 return; 568 } 569 570 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, 571 "evicted_ms"); 572 /* Add sysfs file to report compute unit occupancy */ 573 if (pdd->dev->kfd2kgd->get_cu_occupancy) 574 kfd_sysfs_create_file(pdd->kobj_stats, 575 &pdd->attr_cu_occupancy, 576 "cu_occupancy"); 577 } 578 } 579 580 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) 581 { 582 int ret = 0; 583 int i; 584 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; 585 586 if (!p || !p->kobj) 587 return; 588 589 /* 590 * Create sysfs files for each GPU which supports SVM 591 * - proc/<pid>/counters_<gpuid>/ 592 * - proc/<pid>/counters_<gpuid>/faults 593 * - proc/<pid>/counters_<gpuid>/page_in 594 * - proc/<pid>/counters_<gpuid>/page_out 595 */ 596 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 597 struct kfd_process_device *pdd = p->pdds[i]; 598 struct kobject *kobj_counters; 599 600 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, 601 "counters_%u", pdd->dev->id); 602 kobj_counters = kfd_alloc_struct(kobj_counters); 603 if (!kobj_counters) 604 return; 605 606 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, 607 p->kobj, counters_dir_filename); 608 if (ret) { 609 pr_warn("Creating KFD proc/%s folder failed", 610 counters_dir_filename); 611 kobject_put(kobj_counters); 612 return; 613 } 614 615 pdd->kobj_counters = kobj_counters; 616 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, 617 "faults"); 618 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, 619 "page_in"); 620 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, 621 "page_out"); 622 } 623 } 624 625 static void kfd_procfs_add_sysfs_files(struct kfd_process *p) 626 { 627 int i; 628 629 if (!p || !p->kobj) 630 return; 631 632 /* 633 * Create sysfs files for each GPU: 634 * - proc/<pid>/vram_<gpuid> 635 * - proc/<pid>/sdma_<gpuid> 636 */ 637 for (i = 0; i < p->n_pdds; i++) { 638 struct kfd_process_device *pdd = p->pdds[i]; 639 640 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 641 pdd->dev->id); 642 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, 643 pdd->vram_filename); 644 645 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 646 pdd->dev->id); 647 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, 648 pdd->sdma_filename); 649 } 650 } 651 652 void kfd_procfs_del_queue(struct queue *q) 653 { 654 if (!q) 655 return; 656 657 kobject_del(&q->kobj); 658 kobject_put(&q->kobj); 659 } 660 661 int kfd_process_create_wq(void) 662 { 663 if (!kfd_process_wq) 664 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 665 if (!kfd_restore_wq) 666 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0); 667 668 if (!kfd_process_wq || !kfd_restore_wq) { 669 kfd_process_destroy_wq(); 670 return -ENOMEM; 671 } 672 673 return 0; 674 } 675 676 void kfd_process_destroy_wq(void) 677 { 678 if (kfd_process_wq) { 679 destroy_workqueue(kfd_process_wq); 680 kfd_process_wq = NULL; 681 } 682 if (kfd_restore_wq) { 683 destroy_workqueue(kfd_restore_wq); 684 kfd_restore_wq = NULL; 685 } 686 } 687 688 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 689 struct kfd_process_device *pdd, void *kptr) 690 { 691 struct kfd_dev *dev = pdd->dev; 692 693 if (kptr) { 694 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(dev->adev, mem); 695 kptr = NULL; 696 } 697 698 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv); 699 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv, 700 NULL); 701 } 702 703 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 704 * This function should be only called right after the process 705 * is created and when kfd_processes_mutex is still being held 706 * to avoid concurrency. Because of that exclusiveness, we do 707 * not need to take p->mutex. 708 */ 709 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 710 uint64_t gpu_va, uint32_t size, 711 uint32_t flags, struct kgd_mem **mem, void **kptr) 712 { 713 struct kfd_dev *kdev = pdd->dev; 714 int err; 715 716 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size, 717 pdd->drm_priv, mem, NULL, flags); 718 if (err) 719 goto err_alloc_mem; 720 721 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem, 722 pdd->drm_priv, NULL); 723 if (err) 724 goto err_map_mem; 725 726 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true); 727 if (err) { 728 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 729 goto sync_memory_failed; 730 } 731 732 if (kptr) { 733 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->adev, 734 (struct kgd_mem *)*mem, kptr, NULL); 735 if (err) { 736 pr_debug("Map GTT BO to kernel failed\n"); 737 goto sync_memory_failed; 738 } 739 } 740 741 return err; 742 743 sync_memory_failed: 744 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv); 745 746 err_map_mem: 747 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv, 748 NULL); 749 err_alloc_mem: 750 *mem = NULL; 751 *kptr = NULL; 752 return err; 753 } 754 755 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 756 * process for IB usage The memory reserved is for KFD to submit 757 * IB to AMDGPU from kernel. If the memory is reserved 758 * successfully, ib_kaddr will have the CPU/kernel 759 * address. Check ib_kaddr before accessing the memory. 760 */ 761 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 762 { 763 struct qcm_process_device *qpd = &pdd->qpd; 764 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 765 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 766 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 767 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 768 struct kgd_mem *mem; 769 void *kaddr; 770 int ret; 771 772 if (qpd->ib_kaddr || !qpd->ib_base) 773 return 0; 774 775 /* ib_base is only set for dGPU */ 776 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 777 &mem, &kaddr); 778 if (ret) 779 return ret; 780 781 qpd->ib_mem = mem; 782 qpd->ib_kaddr = kaddr; 783 784 return 0; 785 } 786 787 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) 788 { 789 struct qcm_process_device *qpd = &pdd->qpd; 790 791 if (!qpd->ib_kaddr || !qpd->ib_base) 792 return; 793 794 kfd_process_free_gpuvm(qpd->ib_mem, pdd, qpd->ib_kaddr); 795 } 796 797 struct kfd_process *kfd_create_process(struct file *filep) 798 { 799 struct kfd_process *process; 800 struct task_struct *thread = current; 801 int ret; 802 803 if (!thread->mm) 804 return ERR_PTR(-EINVAL); 805 806 /* Only the pthreads threading model is supported. */ 807 if (thread->group_leader->mm != thread->mm) 808 return ERR_PTR(-EINVAL); 809 810 /* 811 * take kfd processes mutex before starting of process creation 812 * so there won't be a case where two threads of the same process 813 * create two kfd_process structures 814 */ 815 mutex_lock(&kfd_processes_mutex); 816 817 /* A prior open of /dev/kfd could have already created the process. */ 818 process = find_process(thread); 819 if (process) { 820 pr_debug("Process already found\n"); 821 } else { 822 process = create_process(thread); 823 if (IS_ERR(process)) 824 goto out; 825 826 ret = kfd_process_init_cwsr_apu(process, filep); 827 if (ret) 828 goto out_destroy; 829 830 if (!procfs.kobj) 831 goto out; 832 833 process->kobj = kfd_alloc_struct(process->kobj); 834 if (!process->kobj) { 835 pr_warn("Creating procfs kobject failed"); 836 goto out; 837 } 838 ret = kobject_init_and_add(process->kobj, &procfs_type, 839 procfs.kobj, "%d", 840 (int)process->lead_thread->pid); 841 if (ret) { 842 pr_warn("Creating procfs pid directory failed"); 843 kobject_put(process->kobj); 844 goto out; 845 } 846 847 kfd_sysfs_create_file(process->kobj, &process->attr_pasid, 848 "pasid"); 849 850 process->kobj_queues = kobject_create_and_add("queues", 851 process->kobj); 852 if (!process->kobj_queues) 853 pr_warn("Creating KFD proc/queues folder failed"); 854 855 kfd_procfs_add_sysfs_stats(process); 856 kfd_procfs_add_sysfs_files(process); 857 kfd_procfs_add_sysfs_counters(process); 858 } 859 out: 860 if (!IS_ERR(process)) 861 kref_get(&process->ref); 862 mutex_unlock(&kfd_processes_mutex); 863 864 return process; 865 866 out_destroy: 867 hash_del_rcu(&process->kfd_processes); 868 mutex_unlock(&kfd_processes_mutex); 869 synchronize_srcu(&kfd_processes_srcu); 870 /* kfd_process_free_notifier will trigger the cleanup */ 871 mmu_notifier_put(&process->mmu_notifier); 872 return ERR_PTR(ret); 873 } 874 875 struct kfd_process *kfd_get_process(const struct task_struct *thread) 876 { 877 struct kfd_process *process; 878 879 if (!thread->mm) 880 return ERR_PTR(-EINVAL); 881 882 /* Only the pthreads threading model is supported. */ 883 if (thread->group_leader->mm != thread->mm) 884 return ERR_PTR(-EINVAL); 885 886 process = find_process(thread); 887 if (!process) 888 return ERR_PTR(-EINVAL); 889 890 return process; 891 } 892 893 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 894 { 895 struct kfd_process *process; 896 897 hash_for_each_possible_rcu(kfd_processes_table, process, 898 kfd_processes, (uintptr_t)mm) 899 if (process->mm == mm) 900 return process; 901 902 return NULL; 903 } 904 905 static struct kfd_process *find_process(const struct task_struct *thread) 906 { 907 struct kfd_process *p; 908 int idx; 909 910 idx = srcu_read_lock(&kfd_processes_srcu); 911 p = find_process_by_mm(thread->mm); 912 srcu_read_unlock(&kfd_processes_srcu, idx); 913 914 return p; 915 } 916 917 void kfd_unref_process(struct kfd_process *p) 918 { 919 kref_put(&p->ref, kfd_process_ref_release); 920 } 921 922 923 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 924 { 925 struct kfd_process *p = pdd->process; 926 void *mem; 927 int id; 928 int i; 929 930 /* 931 * Remove all handles from idr and release appropriate 932 * local memory object 933 */ 934 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 935 936 for (i = 0; i < p->n_pdds; i++) { 937 struct kfd_process_device *peer_pdd = p->pdds[i]; 938 939 if (!peer_pdd->drm_priv) 940 continue; 941 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 942 peer_pdd->dev->adev, mem, peer_pdd->drm_priv); 943 } 944 945 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem, 946 pdd->drm_priv, NULL); 947 kfd_process_device_remove_obj_handle(pdd, id); 948 } 949 } 950 951 /* 952 * Just kunmap and unpin signal BO here. It will be freed in 953 * kfd_process_free_outstanding_kfd_bos() 954 */ 955 static void kfd_process_kunmap_signal_bo(struct kfd_process *p) 956 { 957 struct kfd_process_device *pdd; 958 struct kfd_dev *kdev; 959 void *mem; 960 961 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); 962 if (!kdev) 963 return; 964 965 mutex_lock(&p->mutex); 966 967 pdd = kfd_get_process_device_data(kdev, p); 968 if (!pdd) 969 goto out; 970 971 mem = kfd_process_device_translate_handle( 972 pdd, GET_IDR_HANDLE(p->signal_handle)); 973 if (!mem) 974 goto out; 975 976 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(kdev->adev, mem); 977 978 out: 979 mutex_unlock(&p->mutex); 980 } 981 982 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 983 { 984 int i; 985 986 for (i = 0; i < p->n_pdds; i++) 987 kfd_process_device_free_bos(p->pdds[i]); 988 } 989 990 static void kfd_process_destroy_pdds(struct kfd_process *p) 991 { 992 int i; 993 994 for (i = 0; i < p->n_pdds; i++) { 995 struct kfd_process_device *pdd = p->pdds[i]; 996 997 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 998 pdd->dev->id, p->pasid); 999 1000 kfd_process_device_destroy_cwsr_dgpu(pdd); 1001 kfd_process_device_destroy_ib_mem(pdd); 1002 1003 if (pdd->drm_file) { 1004 amdgpu_amdkfd_gpuvm_release_process_vm( 1005 pdd->dev->adev, pdd->drm_priv); 1006 fput(pdd->drm_file); 1007 } 1008 1009 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 1010 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 1011 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1012 1013 bitmap_free(pdd->qpd.doorbell_bitmap); 1014 idr_destroy(&pdd->alloc_idr); 1015 1016 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index); 1017 1018 /* 1019 * before destroying pdd, make sure to report availability 1020 * for auto suspend 1021 */ 1022 if (pdd->runtime_inuse) { 1023 pm_runtime_mark_last_busy(pdd->dev->ddev->dev); 1024 pm_runtime_put_autosuspend(pdd->dev->ddev->dev); 1025 pdd->runtime_inuse = false; 1026 } 1027 1028 kfree(pdd); 1029 p->pdds[i] = NULL; 1030 } 1031 p->n_pdds = 0; 1032 } 1033 1034 static void kfd_process_remove_sysfs(struct kfd_process *p) 1035 { 1036 struct kfd_process_device *pdd; 1037 int i; 1038 1039 if (!p->kobj) 1040 return; 1041 1042 sysfs_remove_file(p->kobj, &p->attr_pasid); 1043 kobject_del(p->kobj_queues); 1044 kobject_put(p->kobj_queues); 1045 p->kobj_queues = NULL; 1046 1047 for (i = 0; i < p->n_pdds; i++) { 1048 pdd = p->pdds[i]; 1049 1050 sysfs_remove_file(p->kobj, &pdd->attr_vram); 1051 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 1052 1053 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 1054 if (pdd->dev->kfd2kgd->get_cu_occupancy) 1055 sysfs_remove_file(pdd->kobj_stats, 1056 &pdd->attr_cu_occupancy); 1057 kobject_del(pdd->kobj_stats); 1058 kobject_put(pdd->kobj_stats); 1059 pdd->kobj_stats = NULL; 1060 } 1061 1062 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 1063 pdd = p->pdds[i]; 1064 1065 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); 1066 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); 1067 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); 1068 kobject_del(pdd->kobj_counters); 1069 kobject_put(pdd->kobj_counters); 1070 pdd->kobj_counters = NULL; 1071 } 1072 1073 kobject_del(p->kobj); 1074 kobject_put(p->kobj); 1075 p->kobj = NULL; 1076 } 1077 1078 /* No process locking is needed in this function, because the process 1079 * is not findable any more. We must assume that no other thread is 1080 * using it any more, otherwise we couldn't safely free the process 1081 * structure in the end. 1082 */ 1083 static void kfd_process_wq_release(struct work_struct *work) 1084 { 1085 struct kfd_process *p = container_of(work, struct kfd_process, 1086 release_work); 1087 1088 kfd_process_remove_sysfs(p); 1089 kfd_iommu_unbind_process(p); 1090 1091 kfd_process_kunmap_signal_bo(p); 1092 kfd_process_free_outstanding_kfd_bos(p); 1093 svm_range_list_fini(p); 1094 1095 kfd_process_destroy_pdds(p); 1096 dma_fence_put(p->ef); 1097 1098 kfd_event_free_process(p); 1099 1100 kfd_pasid_free(p->pasid); 1101 mutex_destroy(&p->mutex); 1102 1103 put_task_struct(p->lead_thread); 1104 1105 kfree(p); 1106 } 1107 1108 static void kfd_process_ref_release(struct kref *ref) 1109 { 1110 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1111 1112 INIT_WORK(&p->release_work, kfd_process_wq_release); 1113 queue_work(kfd_process_wq, &p->release_work); 1114 } 1115 1116 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1117 { 1118 int idx = srcu_read_lock(&kfd_processes_srcu); 1119 struct kfd_process *p = find_process_by_mm(mm); 1120 1121 srcu_read_unlock(&kfd_processes_srcu, idx); 1122 1123 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1124 } 1125 1126 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1127 { 1128 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1129 } 1130 1131 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1132 struct mm_struct *mm) 1133 { 1134 struct kfd_process *p; 1135 int i; 1136 1137 /* 1138 * The kfd_process structure can not be free because the 1139 * mmu_notifier srcu is read locked 1140 */ 1141 p = container_of(mn, struct kfd_process, mmu_notifier); 1142 if (WARN_ON(p->mm != mm)) 1143 return; 1144 1145 mutex_lock(&kfd_processes_mutex); 1146 hash_del_rcu(&p->kfd_processes); 1147 mutex_unlock(&kfd_processes_mutex); 1148 synchronize_srcu(&kfd_processes_srcu); 1149 1150 cancel_delayed_work_sync(&p->eviction_work); 1151 cancel_delayed_work_sync(&p->restore_work); 1152 cancel_delayed_work_sync(&p->svms.restore_work); 1153 1154 mutex_lock(&p->mutex); 1155 1156 /* Iterate over all process device data structures and if the 1157 * pdd is in debug mode, we should first force unregistration, 1158 * then we will be able to destroy the queues 1159 */ 1160 for (i = 0; i < p->n_pdds; i++) { 1161 struct kfd_dev *dev = p->pdds[i]->dev; 1162 1163 mutex_lock(kfd_get_dbgmgr_mutex()); 1164 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) { 1165 if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) { 1166 kfd_dbgmgr_destroy(dev->dbgmgr); 1167 dev->dbgmgr = NULL; 1168 } 1169 } 1170 mutex_unlock(kfd_get_dbgmgr_mutex()); 1171 } 1172 1173 kfd_process_dequeue_from_all_devices(p); 1174 pqm_uninit(&p->pqm); 1175 1176 /* Indicate to other users that MM is no longer valid */ 1177 p->mm = NULL; 1178 /* Signal the eviction fence after user mode queues are 1179 * destroyed. This allows any BOs to be freed without 1180 * triggering pointless evictions or waiting for fences. 1181 */ 1182 dma_fence_signal(p->ef); 1183 1184 mutex_unlock(&p->mutex); 1185 1186 mmu_notifier_put(&p->mmu_notifier); 1187 } 1188 1189 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1190 .release = kfd_process_notifier_release, 1191 .alloc_notifier = kfd_process_alloc_notifier, 1192 .free_notifier = kfd_process_free_notifier, 1193 }; 1194 1195 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1196 { 1197 unsigned long offset; 1198 int i; 1199 1200 for (i = 0; i < p->n_pdds; i++) { 1201 struct kfd_dev *dev = p->pdds[i]->dev; 1202 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1203 1204 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1205 continue; 1206 1207 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1208 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1209 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1210 MAP_SHARED, offset); 1211 1212 if (IS_ERR_VALUE(qpd->tba_addr)) { 1213 int err = qpd->tba_addr; 1214 1215 pr_err("Failure to set tba address. error %d.\n", err); 1216 qpd->tba_addr = 0; 1217 qpd->cwsr_kaddr = NULL; 1218 return err; 1219 } 1220 1221 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1222 1223 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1224 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1225 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1226 } 1227 1228 return 0; 1229 } 1230 1231 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1232 { 1233 struct kfd_dev *dev = pdd->dev; 1234 struct qcm_process_device *qpd = &pdd->qpd; 1235 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1236 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1237 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1238 struct kgd_mem *mem; 1239 void *kaddr; 1240 int ret; 1241 1242 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1243 return 0; 1244 1245 /* cwsr_base is only set for dGPU */ 1246 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1247 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr); 1248 if (ret) 1249 return ret; 1250 1251 qpd->cwsr_mem = mem; 1252 qpd->cwsr_kaddr = kaddr; 1253 qpd->tba_addr = qpd->cwsr_base; 1254 1255 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1256 1257 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1258 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1259 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1260 1261 return 0; 1262 } 1263 1264 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) 1265 { 1266 struct kfd_dev *dev = pdd->dev; 1267 struct qcm_process_device *qpd = &pdd->qpd; 1268 1269 if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) 1270 return; 1271 1272 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, qpd->cwsr_kaddr); 1273 } 1274 1275 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1276 uint64_t tba_addr, 1277 uint64_t tma_addr) 1278 { 1279 if (qpd->cwsr_kaddr) { 1280 /* KFD trap handler is bound, record as second-level TBA/TMA 1281 * in first-level TMA. First-level trap will jump to second. 1282 */ 1283 uint64_t *tma = 1284 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1285 tma[0] = tba_addr; 1286 tma[1] = tma_addr; 1287 } else { 1288 /* No trap handler bound, bind as first-level TBA/TMA. */ 1289 qpd->tba_addr = tba_addr; 1290 qpd->tma_addr = tma_addr; 1291 } 1292 } 1293 1294 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1295 { 1296 int i; 1297 1298 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1299 * boot time retry setting. Mixing processes with different 1300 * XNACK/retry settings can hang the GPU. 1301 * 1302 * Different GPUs can have different noretry settings depending 1303 * on HW bugs or limitations. We need to find at least one 1304 * XNACK mode for this process that's compatible with all GPUs. 1305 * Fortunately GPUs with retry enabled (noretry=0) can run code 1306 * built for XNACK-off. On GFXv9 it may perform slower. 1307 * 1308 * Therefore applications built for XNACK-off can always be 1309 * supported and will be our fallback if any GPU does not 1310 * support retry. 1311 */ 1312 for (i = 0; i < p->n_pdds; i++) { 1313 struct kfd_dev *dev = p->pdds[i]->dev; 1314 1315 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1316 * support the SVM APIs and don't need to be considered 1317 * for the XNACK mode selection. 1318 */ 1319 if (!KFD_IS_SOC15(dev)) 1320 continue; 1321 /* Aldebaran can always support XNACK because it can support 1322 * per-process XNACK mode selection. But let the dev->noretry 1323 * setting still influence the default XNACK mode. 1324 */ 1325 if (supported && KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) 1326 continue; 1327 1328 /* GFXv10 and later GPUs do not support shader preemption 1329 * during page faults. This can lead to poor QoS for queue 1330 * management and memory-manager-related preemptions or 1331 * even deadlocks. 1332 */ 1333 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 1334 return false; 1335 1336 if (dev->noretry) 1337 return false; 1338 } 1339 1340 return true; 1341 } 1342 1343 /* 1344 * On return the kfd_process is fully operational and will be freed when the 1345 * mm is released 1346 */ 1347 static struct kfd_process *create_process(const struct task_struct *thread) 1348 { 1349 struct kfd_process *process; 1350 struct mmu_notifier *mn; 1351 int err = -ENOMEM; 1352 1353 process = kzalloc(sizeof(*process), GFP_KERNEL); 1354 if (!process) 1355 goto err_alloc_process; 1356 1357 kref_init(&process->ref); 1358 mutex_init(&process->mutex); 1359 process->mm = thread->mm; 1360 process->lead_thread = thread->group_leader; 1361 process->n_pdds = 0; 1362 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1363 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1364 process->last_restore_timestamp = get_jiffies_64(); 1365 kfd_event_init_process(process); 1366 process->is_32bit_user_mode = in_compat_syscall(); 1367 1368 process->pasid = kfd_pasid_alloc(); 1369 if (process->pasid == 0) 1370 goto err_alloc_pasid; 1371 1372 err = pqm_init(&process->pqm, process); 1373 if (err != 0) 1374 goto err_process_pqm_init; 1375 1376 /* init process apertures*/ 1377 err = kfd_init_apertures(process); 1378 if (err != 0) 1379 goto err_init_apertures; 1380 1381 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1382 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1383 1384 err = svm_range_list_init(process); 1385 if (err) 1386 goto err_init_svm_range_list; 1387 1388 /* alloc_notifier needs to find the process in the hash table */ 1389 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1390 (uintptr_t)process->mm); 1391 1392 /* MMU notifier registration must be the last call that can fail 1393 * because after this point we cannot unwind the process creation. 1394 * After this point, mmu_notifier_put will trigger the cleanup by 1395 * dropping the last process reference in the free_notifier. 1396 */ 1397 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1398 if (IS_ERR(mn)) { 1399 err = PTR_ERR(mn); 1400 goto err_register_notifier; 1401 } 1402 BUG_ON(mn != &process->mmu_notifier); 1403 1404 get_task_struct(process->lead_thread); 1405 1406 return process; 1407 1408 err_register_notifier: 1409 hash_del_rcu(&process->kfd_processes); 1410 svm_range_list_fini(process); 1411 err_init_svm_range_list: 1412 kfd_process_free_outstanding_kfd_bos(process); 1413 kfd_process_destroy_pdds(process); 1414 err_init_apertures: 1415 pqm_uninit(&process->pqm); 1416 err_process_pqm_init: 1417 kfd_pasid_free(process->pasid); 1418 err_alloc_pasid: 1419 mutex_destroy(&process->mutex); 1420 kfree(process); 1421 err_alloc_process: 1422 return ERR_PTR(err); 1423 } 1424 1425 static int init_doorbell_bitmap(struct qcm_process_device *qpd, 1426 struct kfd_dev *dev) 1427 { 1428 unsigned int i; 1429 int range_start = dev->shared_resources.non_cp_doorbells_start; 1430 int range_end = dev->shared_resources.non_cp_doorbells_end; 1431 1432 if (!KFD_IS_SOC15(dev)) 1433 return 0; 1434 1435 qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, 1436 GFP_KERNEL); 1437 if (!qpd->doorbell_bitmap) 1438 return -ENOMEM; 1439 1440 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */ 1441 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end); 1442 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", 1443 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1444 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET); 1445 1446 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) { 1447 if (i >= range_start && i <= range_end) { 1448 __set_bit(i, qpd->doorbell_bitmap); 1449 __set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1450 qpd->doorbell_bitmap); 1451 } 1452 } 1453 1454 return 0; 1455 } 1456 1457 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 1458 struct kfd_process *p) 1459 { 1460 int i; 1461 1462 for (i = 0; i < p->n_pdds; i++) 1463 if (p->pdds[i]->dev == dev) 1464 return p->pdds[i]; 1465 1466 return NULL; 1467 } 1468 1469 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 1470 struct kfd_process *p) 1471 { 1472 struct kfd_process_device *pdd = NULL; 1473 1474 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1475 return NULL; 1476 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1477 if (!pdd) 1478 return NULL; 1479 1480 if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) { 1481 pr_err("Failed to alloc doorbell for pdd\n"); 1482 goto err_free_pdd; 1483 } 1484 1485 if (init_doorbell_bitmap(&pdd->qpd, dev)) { 1486 pr_err("Failed to init doorbell for process\n"); 1487 goto err_free_pdd; 1488 } 1489 1490 pdd->dev = dev; 1491 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1492 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1493 pdd->qpd.dqm = dev->dqm; 1494 pdd->qpd.pqm = &p->pqm; 1495 pdd->qpd.evicted = 0; 1496 pdd->qpd.mapped_gws_queue = false; 1497 pdd->process = p; 1498 pdd->bound = PDD_UNBOUND; 1499 pdd->already_dequeued = false; 1500 pdd->runtime_inuse = false; 1501 pdd->vram_usage = 0; 1502 pdd->sdma_past_activity_counter = 0; 1503 atomic64_set(&pdd->evict_duration_counter, 0); 1504 p->pdds[p->n_pdds++] = pdd; 1505 1506 /* Init idr used for memory handle translation */ 1507 idr_init(&pdd->alloc_idr); 1508 1509 return pdd; 1510 1511 err_free_pdd: 1512 kfree(pdd); 1513 return NULL; 1514 } 1515 1516 /** 1517 * kfd_process_device_init_vm - Initialize a VM for a process-device 1518 * 1519 * @pdd: The process-device 1520 * @drm_file: Optional pointer to a DRM file descriptor 1521 * 1522 * If @drm_file is specified, it will be used to acquire the VM from 1523 * that file descriptor. If successful, the @pdd takes ownership of 1524 * the file descriptor. 1525 * 1526 * If @drm_file is NULL, a new VM is created. 1527 * 1528 * Returns 0 on success, -errno on failure. 1529 */ 1530 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1531 struct file *drm_file) 1532 { 1533 struct kfd_process *p; 1534 struct kfd_dev *dev; 1535 int ret; 1536 1537 if (!drm_file) 1538 return -EINVAL; 1539 1540 if (pdd->drm_priv) 1541 return -EBUSY; 1542 1543 p = pdd->process; 1544 dev = pdd->dev; 1545 1546 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm( 1547 dev->adev, drm_file, p->pasid, 1548 &p->kgd_process_info, &p->ef); 1549 if (ret) { 1550 pr_err("Failed to create process VM object\n"); 1551 return ret; 1552 } 1553 pdd->drm_priv = drm_file->private_data; 1554 1555 ret = kfd_process_device_reserve_ib_mem(pdd); 1556 if (ret) 1557 goto err_reserve_ib_mem; 1558 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1559 if (ret) 1560 goto err_init_cwsr; 1561 1562 pdd->drm_file = drm_file; 1563 1564 return 0; 1565 1566 err_init_cwsr: 1567 err_reserve_ib_mem: 1568 kfd_process_device_free_bos(pdd); 1569 pdd->drm_priv = NULL; 1570 1571 return ret; 1572 } 1573 1574 /* 1575 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1576 * to the device. 1577 * Unbinding occurs when the process dies or the device is removed. 1578 * 1579 * Assumes that the process lock is held. 1580 */ 1581 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 1582 struct kfd_process *p) 1583 { 1584 struct kfd_process_device *pdd; 1585 int err; 1586 1587 pdd = kfd_get_process_device_data(dev, p); 1588 if (!pdd) { 1589 pr_err("Process device data doesn't exist\n"); 1590 return ERR_PTR(-ENOMEM); 1591 } 1592 1593 if (!pdd->drm_priv) 1594 return ERR_PTR(-ENODEV); 1595 1596 /* 1597 * signal runtime-pm system to auto resume and prevent 1598 * further runtime suspend once device pdd is created until 1599 * pdd is destroyed. 1600 */ 1601 if (!pdd->runtime_inuse) { 1602 err = pm_runtime_get_sync(dev->ddev->dev); 1603 if (err < 0) { 1604 pm_runtime_put_autosuspend(dev->ddev->dev); 1605 return ERR_PTR(err); 1606 } 1607 } 1608 1609 err = kfd_iommu_bind_process_to_device(pdd); 1610 if (err) 1611 goto out; 1612 1613 /* 1614 * make sure that runtime_usage counter is incremented just once 1615 * per pdd 1616 */ 1617 pdd->runtime_inuse = true; 1618 1619 return pdd; 1620 1621 out: 1622 /* balance runpm reference count and exit with error */ 1623 if (!pdd->runtime_inuse) { 1624 pm_runtime_mark_last_busy(dev->ddev->dev); 1625 pm_runtime_put_autosuspend(dev->ddev->dev); 1626 } 1627 1628 return ERR_PTR(err); 1629 } 1630 1631 /* Create specific handle mapped to mem from process local memory idr 1632 * Assumes that the process lock is held. 1633 */ 1634 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1635 void *mem) 1636 { 1637 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1638 } 1639 1640 /* Translate specific handle from process local memory idr 1641 * Assumes that the process lock is held. 1642 */ 1643 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1644 int handle) 1645 { 1646 if (handle < 0) 1647 return NULL; 1648 1649 return idr_find(&pdd->alloc_idr, handle); 1650 } 1651 1652 /* Remove specific handle from process local memory idr 1653 * Assumes that the process lock is held. 1654 */ 1655 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1656 int handle) 1657 { 1658 if (handle >= 0) 1659 idr_remove(&pdd->alloc_idr, handle); 1660 } 1661 1662 /* This increments the process->ref counter. */ 1663 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) 1664 { 1665 struct kfd_process *p, *ret_p = NULL; 1666 unsigned int temp; 1667 1668 int idx = srcu_read_lock(&kfd_processes_srcu); 1669 1670 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1671 if (p->pasid == pasid) { 1672 kref_get(&p->ref); 1673 ret_p = p; 1674 break; 1675 } 1676 } 1677 1678 srcu_read_unlock(&kfd_processes_srcu, idx); 1679 1680 return ret_p; 1681 } 1682 1683 /* This increments the process->ref counter. */ 1684 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1685 { 1686 struct kfd_process *p; 1687 1688 int idx = srcu_read_lock(&kfd_processes_srcu); 1689 1690 p = find_process_by_mm(mm); 1691 if (p) 1692 kref_get(&p->ref); 1693 1694 srcu_read_unlock(&kfd_processes_srcu, idx); 1695 1696 return p; 1697 } 1698 1699 /* kfd_process_evict_queues - Evict all user queues of a process 1700 * 1701 * Eviction is reference-counted per process-device. This means multiple 1702 * evictions from different sources can be nested safely. 1703 */ 1704 int kfd_process_evict_queues(struct kfd_process *p) 1705 { 1706 int r = 0; 1707 int i; 1708 unsigned int n_evicted = 0; 1709 1710 for (i = 0; i < p->n_pdds; i++) { 1711 struct kfd_process_device *pdd = p->pdds[i]; 1712 1713 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1714 &pdd->qpd); 1715 /* evict return -EIO if HWS is hang or asic is resetting, in this case 1716 * we would like to set all the queues to be in evicted state to prevent 1717 * them been add back since they actually not be saved right now. 1718 */ 1719 if (r && r != -EIO) { 1720 pr_err("Failed to evict process queues\n"); 1721 goto fail; 1722 } 1723 n_evicted++; 1724 } 1725 1726 return r; 1727 1728 fail: 1729 /* To keep state consistent, roll back partial eviction by 1730 * restoring queues 1731 */ 1732 for (i = 0; i < p->n_pdds; i++) { 1733 struct kfd_process_device *pdd = p->pdds[i]; 1734 1735 if (n_evicted == 0) 1736 break; 1737 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1738 &pdd->qpd)) 1739 pr_err("Failed to restore queues\n"); 1740 1741 n_evicted--; 1742 } 1743 1744 return r; 1745 } 1746 1747 /* kfd_process_restore_queues - Restore all user queues of a process */ 1748 int kfd_process_restore_queues(struct kfd_process *p) 1749 { 1750 int r, ret = 0; 1751 int i; 1752 1753 for (i = 0; i < p->n_pdds; i++) { 1754 struct kfd_process_device *pdd = p->pdds[i]; 1755 1756 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1757 &pdd->qpd); 1758 if (r) { 1759 pr_err("Failed to restore process queues\n"); 1760 if (!ret) 1761 ret = r; 1762 } 1763 } 1764 1765 return ret; 1766 } 1767 1768 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 1769 { 1770 int i; 1771 1772 for (i = 0; i < p->n_pdds; i++) 1773 if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id) 1774 return i; 1775 return -EINVAL; 1776 } 1777 1778 int 1779 kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev, 1780 uint32_t *gpuid, uint32_t *gpuidx) 1781 { 1782 int i; 1783 1784 for (i = 0; i < p->n_pdds; i++) 1785 if (p->pdds[i] && p->pdds[i]->dev->adev == adev) { 1786 *gpuid = p->pdds[i]->dev->id; 1787 *gpuidx = i; 1788 return 0; 1789 } 1790 return -EINVAL; 1791 } 1792 1793 static void evict_process_worker(struct work_struct *work) 1794 { 1795 int ret; 1796 struct kfd_process *p; 1797 struct delayed_work *dwork; 1798 1799 dwork = to_delayed_work(work); 1800 1801 /* Process termination destroys this worker thread. So during the 1802 * lifetime of this thread, kfd_process p will be valid 1803 */ 1804 p = container_of(dwork, struct kfd_process, eviction_work); 1805 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, 1806 "Eviction fence mismatch\n"); 1807 1808 /* Narrow window of overlap between restore and evict work 1809 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos 1810 * unreserves KFD BOs, it is possible to evicted again. But 1811 * restore has few more steps of finish. So lets wait for any 1812 * previous restore work to complete 1813 */ 1814 flush_delayed_work(&p->restore_work); 1815 1816 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1817 ret = kfd_process_evict_queues(p); 1818 if (!ret) { 1819 dma_fence_signal(p->ef); 1820 dma_fence_put(p->ef); 1821 p->ef = NULL; 1822 queue_delayed_work(kfd_restore_wq, &p->restore_work, 1823 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); 1824 1825 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 1826 } else 1827 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 1828 } 1829 1830 static void restore_process_worker(struct work_struct *work) 1831 { 1832 struct delayed_work *dwork; 1833 struct kfd_process *p; 1834 int ret = 0; 1835 1836 dwork = to_delayed_work(work); 1837 1838 /* Process termination destroys this worker thread. So during the 1839 * lifetime of this thread, kfd_process p will be valid 1840 */ 1841 p = container_of(dwork, struct kfd_process, restore_work); 1842 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 1843 1844 /* Setting last_restore_timestamp before successful restoration. 1845 * Otherwise this would have to be set by KGD (restore_process_bos) 1846 * before KFD BOs are unreserved. If not, the process can be evicted 1847 * again before the timestamp is set. 1848 * If restore fails, the timestamp will be set again in the next 1849 * attempt. This would mean that the minimum GPU quanta would be 1850 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 1851 * functions) 1852 */ 1853 1854 p->last_restore_timestamp = get_jiffies_64(); 1855 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info, 1856 &p->ef); 1857 if (ret) { 1858 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 1859 p->pasid, PROCESS_BACK_OFF_TIME_MS); 1860 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work, 1861 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); 1862 WARN(!ret, "reschedule restore work failed\n"); 1863 return; 1864 } 1865 1866 ret = kfd_process_restore_queues(p); 1867 if (!ret) 1868 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 1869 else 1870 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 1871 } 1872 1873 void kfd_suspend_all_processes(void) 1874 { 1875 struct kfd_process *p; 1876 unsigned int temp; 1877 int idx = srcu_read_lock(&kfd_processes_srcu); 1878 1879 WARN(debug_evictions, "Evicting all processes"); 1880 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1881 cancel_delayed_work_sync(&p->eviction_work); 1882 cancel_delayed_work_sync(&p->restore_work); 1883 1884 if (kfd_process_evict_queues(p)) 1885 pr_err("Failed to suspend process 0x%x\n", p->pasid); 1886 dma_fence_signal(p->ef); 1887 dma_fence_put(p->ef); 1888 p->ef = NULL; 1889 } 1890 srcu_read_unlock(&kfd_processes_srcu, idx); 1891 } 1892 1893 int kfd_resume_all_processes(void) 1894 { 1895 struct kfd_process *p; 1896 unsigned int temp; 1897 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 1898 1899 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1900 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) { 1901 pr_err("Restore process %d failed during resume\n", 1902 p->pasid); 1903 ret = -EFAULT; 1904 } 1905 } 1906 srcu_read_unlock(&kfd_processes_srcu, idx); 1907 return ret; 1908 } 1909 1910 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 1911 struct vm_area_struct *vma) 1912 { 1913 struct kfd_process_device *pdd; 1914 struct qcm_process_device *qpd; 1915 1916 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 1917 pr_err("Incorrect CWSR mapping size.\n"); 1918 return -EINVAL; 1919 } 1920 1921 pdd = kfd_get_process_device_data(dev, process); 1922 if (!pdd) 1923 return -EINVAL; 1924 qpd = &pdd->qpd; 1925 1926 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1927 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1928 if (!qpd->cwsr_kaddr) { 1929 pr_err("Error allocating per process CWSR buffer.\n"); 1930 return -ENOMEM; 1931 } 1932 1933 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND 1934 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; 1935 /* Mapping pages to user process */ 1936 return remap_pfn_range(vma, vma->vm_start, 1937 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 1938 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 1939 } 1940 1941 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type) 1942 { 1943 struct kfd_dev *dev = pdd->dev; 1944 1945 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1946 /* Nothing to flush until a VMID is assigned, which 1947 * only happens when the first queue is created. 1948 */ 1949 if (pdd->qpd.vmid) 1950 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev, 1951 pdd->qpd.vmid); 1952 } else { 1953 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->adev, 1954 pdd->process->pasid, type); 1955 } 1956 } 1957 1958 #if defined(CONFIG_DEBUG_FS) 1959 1960 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 1961 { 1962 struct kfd_process *p; 1963 unsigned int temp; 1964 int r = 0; 1965 1966 int idx = srcu_read_lock(&kfd_processes_srcu); 1967 1968 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1969 seq_printf(m, "Process %d PASID 0x%x:\n", 1970 p->lead_thread->tgid, p->pasid); 1971 1972 mutex_lock(&p->mutex); 1973 r = pqm_debugfs_mqds(m, &p->pqm); 1974 mutex_unlock(&p->mutex); 1975 1976 if (r) 1977 break; 1978 } 1979 1980 srcu_read_unlock(&kfd_processes_srcu, idx); 1981 1982 return r; 1983 } 1984 1985 #endif 1986 1987