1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/mutex.h> 24 #include <linux/log2.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/amd-iommu.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 #include "kfd_svm.h" 39 40 struct mm_struct; 41 42 #include "kfd_priv.h" 43 #include "kfd_device_queue_manager.h" 44 #include "kfd_dbgmgr.h" 45 #include "kfd_iommu.h" 46 #include "kfd_svm.h" 47 48 /* 49 * List of struct kfd_process (field kfd_process). 50 * Unique/indexed by mm_struct* 51 */ 52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 53 static DEFINE_MUTEX(kfd_processes_mutex); 54 55 DEFINE_SRCU(kfd_processes_srcu); 56 57 /* For process termination handling */ 58 static struct workqueue_struct *kfd_process_wq; 59 60 /* Ordered, single-threaded workqueue for restoring evicted 61 * processes. Restoring multiple processes concurrently under memory 62 * pressure can lead to processes blocking each other from validating 63 * their BOs and result in a live-lock situation where processes 64 * remain evicted indefinitely. 65 */ 66 static struct workqueue_struct *kfd_restore_wq; 67 68 static struct kfd_process *find_process(const struct task_struct *thread); 69 static void kfd_process_ref_release(struct kref *ref); 70 static struct kfd_process *create_process(const struct task_struct *thread); 71 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep); 72 73 static void evict_process_worker(struct work_struct *work); 74 static void restore_process_worker(struct work_struct *work); 75 76 struct kfd_procfs_tree { 77 struct kobject *kobj; 78 }; 79 80 static struct kfd_procfs_tree procfs; 81 82 /* 83 * Structure for SDMA activity tracking 84 */ 85 struct kfd_sdma_activity_handler_workarea { 86 struct work_struct sdma_activity_work; 87 struct kfd_process_device *pdd; 88 uint64_t sdma_activity_counter; 89 }; 90 91 struct temp_sdma_queue_list { 92 uint64_t __user *rptr; 93 uint64_t sdma_val; 94 unsigned int queue_id; 95 struct list_head list; 96 }; 97 98 static void kfd_sdma_activity_worker(struct work_struct *work) 99 { 100 struct kfd_sdma_activity_handler_workarea *workarea; 101 struct kfd_process_device *pdd; 102 uint64_t val; 103 struct mm_struct *mm; 104 struct queue *q; 105 struct qcm_process_device *qpd; 106 struct device_queue_manager *dqm; 107 int ret = 0; 108 struct temp_sdma_queue_list sdma_q_list; 109 struct temp_sdma_queue_list *sdma_q, *next; 110 111 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 112 sdma_activity_work); 113 if (!workarea) 114 return; 115 116 pdd = workarea->pdd; 117 if (!pdd) 118 return; 119 dqm = pdd->dev->dqm; 120 qpd = &pdd->qpd; 121 if (!dqm || !qpd) 122 return; 123 /* 124 * Total SDMA activity is current SDMA activity + past SDMA activity 125 * Past SDMA count is stored in pdd. 126 * To get the current activity counters for all active SDMA queues, 127 * we loop over all SDMA queues and get their counts from user-space. 128 * 129 * We cannot call get_user() with dqm_lock held as it can cause 130 * a circular lock dependency situation. To read the SDMA stats, 131 * we need to do the following: 132 * 133 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 134 * with dqm_lock/dqm_unlock(). 135 * 2. Call get_user() for each node in temporary list without dqm_lock. 136 * Save the SDMA count for each node and also add the count to the total 137 * SDMA count counter. 138 * Its possible, during this step, a few SDMA queue nodes got deleted 139 * from the qpd->queues_list. 140 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 141 * If any node got deleted, its SDMA count would be captured in the sdma 142 * past activity counter. So subtract the SDMA counter stored in step 2 143 * for this node from the total SDMA count. 144 */ 145 INIT_LIST_HEAD(&sdma_q_list.list); 146 147 /* 148 * Create the temp list of all SDMA queues 149 */ 150 dqm_lock(dqm); 151 152 list_for_each_entry(q, &qpd->queues_list, list) { 153 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 154 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 155 continue; 156 157 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 158 if (!sdma_q) { 159 dqm_unlock(dqm); 160 goto cleanup; 161 } 162 163 INIT_LIST_HEAD(&sdma_q->list); 164 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 165 sdma_q->queue_id = q->properties.queue_id; 166 list_add_tail(&sdma_q->list, &sdma_q_list.list); 167 } 168 169 /* 170 * If the temp list is empty, then no SDMA queues nodes were found in 171 * qpd->queues_list. Return the past activity count as the total sdma 172 * count 173 */ 174 if (list_empty(&sdma_q_list.list)) { 175 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 176 dqm_unlock(dqm); 177 return; 178 } 179 180 dqm_unlock(dqm); 181 182 /* 183 * Get the usage count for each SDMA queue in temp_list. 184 */ 185 mm = get_task_mm(pdd->process->lead_thread); 186 if (!mm) 187 goto cleanup; 188 189 kthread_use_mm(mm); 190 191 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 192 val = 0; 193 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 194 if (ret) { 195 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 196 sdma_q->queue_id); 197 } else { 198 sdma_q->sdma_val = val; 199 workarea->sdma_activity_counter += val; 200 } 201 } 202 203 kthread_unuse_mm(mm); 204 mmput(mm); 205 206 /* 207 * Do a second iteration over qpd_queues_list to check if any SDMA 208 * nodes got deleted while fetching SDMA counter. 209 */ 210 dqm_lock(dqm); 211 212 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 213 214 list_for_each_entry(q, &qpd->queues_list, list) { 215 if (list_empty(&sdma_q_list.list)) 216 break; 217 218 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 219 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 220 continue; 221 222 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 223 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 224 (sdma_q->queue_id == q->properties.queue_id)) { 225 list_del(&sdma_q->list); 226 kfree(sdma_q); 227 break; 228 } 229 } 230 } 231 232 dqm_unlock(dqm); 233 234 /* 235 * If temp list is not empty, it implies some queues got deleted 236 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 237 * count for each node from the total SDMA count. 238 */ 239 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 240 workarea->sdma_activity_counter -= sdma_q->sdma_val; 241 list_del(&sdma_q->list); 242 kfree(sdma_q); 243 } 244 245 return; 246 247 cleanup: 248 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 249 list_del(&sdma_q->list); 250 kfree(sdma_q); 251 } 252 } 253 254 /** 255 * @kfd_get_cu_occupancy - Collect number of waves in-flight on this device 256 * by current process. Translates acquired wave count into number of compute units 257 * that are occupied. 258 * 259 * @atr: Handle of attribute that allows reporting of wave count. The attribute 260 * handle encapsulates GPU device it is associated with, thereby allowing collection 261 * of waves in flight, etc 262 * 263 * @buffer: Handle of user provided buffer updated with wave count 264 * 265 * Return: Number of bytes written to user buffer or an error value 266 */ 267 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 268 { 269 int cu_cnt; 270 int wave_cnt; 271 int max_waves_per_cu; 272 struct kfd_dev *dev = NULL; 273 struct kfd_process *proc = NULL; 274 struct kfd_process_device *pdd = NULL; 275 276 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 277 dev = pdd->dev; 278 if (dev->kfd2kgd->get_cu_occupancy == NULL) 279 return -EINVAL; 280 281 cu_cnt = 0; 282 proc = pdd->process; 283 if (pdd->qpd.queue_count == 0) { 284 pr_debug("Gpu-Id: %d has no active queues for process %d\n", 285 dev->id, proc->pasid); 286 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 287 } 288 289 /* Collect wave count from device if it supports */ 290 wave_cnt = 0; 291 max_waves_per_cu = 0; 292 dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt, 293 &max_waves_per_cu); 294 295 /* Translate wave count to number of compute units */ 296 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 297 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 298 } 299 300 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 301 char *buffer) 302 { 303 if (strcmp(attr->name, "pasid") == 0) { 304 struct kfd_process *p = container_of(attr, struct kfd_process, 305 attr_pasid); 306 307 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 308 } else if (strncmp(attr->name, "vram_", 5) == 0) { 309 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 310 attr_vram); 311 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage)); 312 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 313 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 314 attr_sdma); 315 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 316 317 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work, 318 kfd_sdma_activity_worker); 319 320 sdma_activity_work_handler.pdd = pdd; 321 sdma_activity_work_handler.sdma_activity_counter = 0; 322 323 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 324 325 flush_work(&sdma_activity_work_handler.sdma_activity_work); 326 327 return snprintf(buffer, PAGE_SIZE, "%llu\n", 328 (sdma_activity_work_handler.sdma_activity_counter)/ 329 SDMA_ACTIVITY_DIVISOR); 330 } else { 331 pr_err("Invalid attribute"); 332 return -EINVAL; 333 } 334 335 return 0; 336 } 337 338 static void kfd_procfs_kobj_release(struct kobject *kobj) 339 { 340 kfree(kobj); 341 } 342 343 static const struct sysfs_ops kfd_procfs_ops = { 344 .show = kfd_procfs_show, 345 }; 346 347 static struct kobj_type procfs_type = { 348 .release = kfd_procfs_kobj_release, 349 .sysfs_ops = &kfd_procfs_ops, 350 }; 351 352 void kfd_procfs_init(void) 353 { 354 int ret = 0; 355 356 procfs.kobj = kfd_alloc_struct(procfs.kobj); 357 if (!procfs.kobj) 358 return; 359 360 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 361 &kfd_device->kobj, "proc"); 362 if (ret) { 363 pr_warn("Could not create procfs proc folder"); 364 /* If we fail to create the procfs, clean up */ 365 kfd_procfs_shutdown(); 366 } 367 } 368 369 void kfd_procfs_shutdown(void) 370 { 371 if (procfs.kobj) { 372 kobject_del(procfs.kobj); 373 kobject_put(procfs.kobj); 374 procfs.kobj = NULL; 375 } 376 } 377 378 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 379 struct attribute *attr, char *buffer) 380 { 381 struct queue *q = container_of(kobj, struct queue, kobj); 382 383 if (!strcmp(attr->name, "size")) 384 return snprintf(buffer, PAGE_SIZE, "%llu", 385 q->properties.queue_size); 386 else if (!strcmp(attr->name, "type")) 387 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 388 else if (!strcmp(attr->name, "gpuid")) 389 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 390 else 391 pr_err("Invalid attribute"); 392 393 return 0; 394 } 395 396 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 397 struct attribute *attr, char *buffer) 398 { 399 if (strcmp(attr->name, "evicted_ms") == 0) { 400 struct kfd_process_device *pdd = container_of(attr, 401 struct kfd_process_device, 402 attr_evict); 403 uint64_t evict_jiffies; 404 405 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 406 407 return snprintf(buffer, 408 PAGE_SIZE, 409 "%llu\n", 410 jiffies64_to_msecs(evict_jiffies)); 411 412 /* Sysfs handle that gets CU occupancy is per device */ 413 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 414 return kfd_get_cu_occupancy(attr, buffer); 415 } else { 416 pr_err("Invalid attribute"); 417 } 418 419 return 0; 420 } 421 422 static struct attribute attr_queue_size = { 423 .name = "size", 424 .mode = KFD_SYSFS_FILE_MODE 425 }; 426 427 static struct attribute attr_queue_type = { 428 .name = "type", 429 .mode = KFD_SYSFS_FILE_MODE 430 }; 431 432 static struct attribute attr_queue_gpuid = { 433 .name = "gpuid", 434 .mode = KFD_SYSFS_FILE_MODE 435 }; 436 437 static struct attribute *procfs_queue_attrs[] = { 438 &attr_queue_size, 439 &attr_queue_type, 440 &attr_queue_gpuid, 441 NULL 442 }; 443 444 static const struct sysfs_ops procfs_queue_ops = { 445 .show = kfd_procfs_queue_show, 446 }; 447 448 static struct kobj_type procfs_queue_type = { 449 .sysfs_ops = &procfs_queue_ops, 450 .default_attrs = procfs_queue_attrs, 451 }; 452 453 static const struct sysfs_ops procfs_stats_ops = { 454 .show = kfd_procfs_stats_show, 455 }; 456 457 static struct attribute *procfs_stats_attrs[] = { 458 NULL 459 }; 460 461 static struct kobj_type procfs_stats_type = { 462 .sysfs_ops = &procfs_stats_ops, 463 .default_attrs = procfs_stats_attrs, 464 }; 465 466 int kfd_procfs_add_queue(struct queue *q) 467 { 468 struct kfd_process *proc; 469 int ret; 470 471 if (!q || !q->process) 472 return -EINVAL; 473 proc = q->process; 474 475 /* Create proc/<pid>/queues/<queue id> folder */ 476 if (!proc->kobj_queues) 477 return -EFAULT; 478 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 479 proc->kobj_queues, "%u", q->properties.queue_id); 480 if (ret < 0) { 481 pr_warn("Creating proc/<pid>/queues/%u failed", 482 q->properties.queue_id); 483 kobject_put(&q->kobj); 484 return ret; 485 } 486 487 return 0; 488 } 489 490 static int kfd_sysfs_create_file(struct kfd_process *p, struct attribute *attr, 491 char *name) 492 { 493 int ret = 0; 494 495 if (!p || !attr || !name) 496 return -EINVAL; 497 498 attr->name = name; 499 attr->mode = KFD_SYSFS_FILE_MODE; 500 sysfs_attr_init(attr); 501 502 ret = sysfs_create_file(p->kobj, attr); 503 504 return ret; 505 } 506 507 static int kfd_procfs_add_sysfs_stats(struct kfd_process *p) 508 { 509 int ret = 0; 510 int i; 511 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 512 513 if (!p) 514 return -EINVAL; 515 516 if (!p->kobj) 517 return -EFAULT; 518 519 /* 520 * Create sysfs files for each GPU: 521 * - proc/<pid>/stats_<gpuid>/ 522 * - proc/<pid>/stats_<gpuid>/evicted_ms 523 * - proc/<pid>/stats_<gpuid>/cu_occupancy 524 */ 525 for (i = 0; i < p->n_pdds; i++) { 526 struct kfd_process_device *pdd = p->pdds[i]; 527 struct kobject *kobj_stats; 528 529 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 530 "stats_%u", pdd->dev->id); 531 kobj_stats = kfd_alloc_struct(kobj_stats); 532 if (!kobj_stats) 533 return -ENOMEM; 534 535 ret = kobject_init_and_add(kobj_stats, 536 &procfs_stats_type, 537 p->kobj, 538 stats_dir_filename); 539 540 if (ret) { 541 pr_warn("Creating KFD proc/stats_%s folder failed", 542 stats_dir_filename); 543 kobject_put(kobj_stats); 544 goto err; 545 } 546 547 pdd->kobj_stats = kobj_stats; 548 pdd->attr_evict.name = "evicted_ms"; 549 pdd->attr_evict.mode = KFD_SYSFS_FILE_MODE; 550 sysfs_attr_init(&pdd->attr_evict); 551 ret = sysfs_create_file(kobj_stats, &pdd->attr_evict); 552 if (ret) 553 pr_warn("Creating eviction stats for gpuid %d failed", 554 (int)pdd->dev->id); 555 556 /* Add sysfs file to report compute unit occupancy */ 557 if (pdd->dev->kfd2kgd->get_cu_occupancy != NULL) { 558 pdd->attr_cu_occupancy.name = "cu_occupancy"; 559 pdd->attr_cu_occupancy.mode = KFD_SYSFS_FILE_MODE; 560 sysfs_attr_init(&pdd->attr_cu_occupancy); 561 ret = sysfs_create_file(kobj_stats, 562 &pdd->attr_cu_occupancy); 563 if (ret) 564 pr_warn("Creating %s failed for gpuid: %d", 565 pdd->attr_cu_occupancy.name, 566 (int)pdd->dev->id); 567 } 568 } 569 err: 570 return ret; 571 } 572 573 574 static int kfd_procfs_add_sysfs_files(struct kfd_process *p) 575 { 576 int ret = 0; 577 int i; 578 579 if (!p) 580 return -EINVAL; 581 582 if (!p->kobj) 583 return -EFAULT; 584 585 /* 586 * Create sysfs files for each GPU: 587 * - proc/<pid>/vram_<gpuid> 588 * - proc/<pid>/sdma_<gpuid> 589 */ 590 for (i = 0; i < p->n_pdds; i++) { 591 struct kfd_process_device *pdd = p->pdds[i]; 592 593 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 594 pdd->dev->id); 595 ret = kfd_sysfs_create_file(p, &pdd->attr_vram, pdd->vram_filename); 596 if (ret) 597 pr_warn("Creating vram usage for gpu id %d failed", 598 (int)pdd->dev->id); 599 600 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 601 pdd->dev->id); 602 ret = kfd_sysfs_create_file(p, &pdd->attr_sdma, pdd->sdma_filename); 603 if (ret) 604 pr_warn("Creating sdma usage for gpu id %d failed", 605 (int)pdd->dev->id); 606 } 607 608 return ret; 609 } 610 611 void kfd_procfs_del_queue(struct queue *q) 612 { 613 if (!q) 614 return; 615 616 kobject_del(&q->kobj); 617 kobject_put(&q->kobj); 618 } 619 620 int kfd_process_create_wq(void) 621 { 622 if (!kfd_process_wq) 623 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 624 if (!kfd_restore_wq) 625 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0); 626 627 if (!kfd_process_wq || !kfd_restore_wq) { 628 kfd_process_destroy_wq(); 629 return -ENOMEM; 630 } 631 632 return 0; 633 } 634 635 void kfd_process_destroy_wq(void) 636 { 637 if (kfd_process_wq) { 638 destroy_workqueue(kfd_process_wq); 639 kfd_process_wq = NULL; 640 } 641 if (kfd_restore_wq) { 642 destroy_workqueue(kfd_restore_wq); 643 kfd_restore_wq = NULL; 644 } 645 } 646 647 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 648 struct kfd_process_device *pdd) 649 { 650 struct kfd_dev *dev = pdd->dev; 651 652 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->drm_priv); 653 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, pdd->drm_priv, 654 NULL); 655 } 656 657 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 658 * This function should be only called right after the process 659 * is created and when kfd_processes_mutex is still being held 660 * to avoid concurrency. Because of that exclusiveness, we do 661 * not need to take p->mutex. 662 */ 663 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 664 uint64_t gpu_va, uint32_t size, 665 uint32_t flags, void **kptr) 666 { 667 struct kfd_dev *kdev = pdd->dev; 668 struct kgd_mem *mem = NULL; 669 int handle; 670 int err; 671 672 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size, 673 pdd->drm_priv, &mem, NULL, flags); 674 if (err) 675 goto err_alloc_mem; 676 677 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->drm_priv); 678 if (err) 679 goto err_map_mem; 680 681 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true); 682 if (err) { 683 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 684 goto sync_memory_failed; 685 } 686 687 /* Create an obj handle so kfd_process_device_remove_obj_handle 688 * will take care of the bo removal when the process finishes. 689 * We do not need to take p->mutex, because the process is just 690 * created and the ioctls have not had the chance to run. 691 */ 692 handle = kfd_process_device_create_obj_handle(pdd, mem); 693 694 if (handle < 0) { 695 err = handle; 696 goto free_gpuvm; 697 } 698 699 if (kptr) { 700 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd, 701 (struct kgd_mem *)mem, kptr, NULL); 702 if (err) { 703 pr_debug("Map GTT BO to kernel failed\n"); 704 goto free_obj_handle; 705 } 706 } 707 708 return err; 709 710 free_obj_handle: 711 kfd_process_device_remove_obj_handle(pdd, handle); 712 free_gpuvm: 713 sync_memory_failed: 714 kfd_process_free_gpuvm(mem, pdd); 715 return err; 716 717 err_map_mem: 718 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, pdd->drm_priv, 719 NULL); 720 err_alloc_mem: 721 *kptr = NULL; 722 return err; 723 } 724 725 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 726 * process for IB usage The memory reserved is for KFD to submit 727 * IB to AMDGPU from kernel. If the memory is reserved 728 * successfully, ib_kaddr will have the CPU/kernel 729 * address. Check ib_kaddr before accessing the memory. 730 */ 731 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 732 { 733 struct qcm_process_device *qpd = &pdd->qpd; 734 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 735 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 736 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 737 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 738 void *kaddr; 739 int ret; 740 741 if (qpd->ib_kaddr || !qpd->ib_base) 742 return 0; 743 744 /* ib_base is only set for dGPU */ 745 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 746 &kaddr); 747 if (ret) 748 return ret; 749 750 qpd->ib_kaddr = kaddr; 751 752 return 0; 753 } 754 755 struct kfd_process *kfd_create_process(struct file *filep) 756 { 757 struct kfd_process *process; 758 struct task_struct *thread = current; 759 int ret; 760 761 if (!thread->mm) 762 return ERR_PTR(-EINVAL); 763 764 /* Only the pthreads threading model is supported. */ 765 if (thread->group_leader->mm != thread->mm) 766 return ERR_PTR(-EINVAL); 767 768 /* 769 * take kfd processes mutex before starting of process creation 770 * so there won't be a case where two threads of the same process 771 * create two kfd_process structures 772 */ 773 mutex_lock(&kfd_processes_mutex); 774 775 /* A prior open of /dev/kfd could have already created the process. */ 776 process = find_process(thread); 777 if (process) { 778 pr_debug("Process already found\n"); 779 } else { 780 process = create_process(thread); 781 if (IS_ERR(process)) 782 goto out; 783 784 ret = kfd_process_init_cwsr_apu(process, filep); 785 if (ret) 786 goto out_destroy; 787 788 if (!procfs.kobj) 789 goto out; 790 791 process->kobj = kfd_alloc_struct(process->kobj); 792 if (!process->kobj) { 793 pr_warn("Creating procfs kobject failed"); 794 goto out; 795 } 796 ret = kobject_init_and_add(process->kobj, &procfs_type, 797 procfs.kobj, "%d", 798 (int)process->lead_thread->pid); 799 if (ret) { 800 pr_warn("Creating procfs pid directory failed"); 801 kobject_put(process->kobj); 802 goto out; 803 } 804 805 process->attr_pasid.name = "pasid"; 806 process->attr_pasid.mode = KFD_SYSFS_FILE_MODE; 807 sysfs_attr_init(&process->attr_pasid); 808 ret = sysfs_create_file(process->kobj, &process->attr_pasid); 809 if (ret) 810 pr_warn("Creating pasid for pid %d failed", 811 (int)process->lead_thread->pid); 812 813 process->kobj_queues = kobject_create_and_add("queues", 814 process->kobj); 815 if (!process->kobj_queues) 816 pr_warn("Creating KFD proc/queues folder failed"); 817 818 ret = kfd_procfs_add_sysfs_stats(process); 819 if (ret) 820 pr_warn("Creating sysfs stats dir for pid %d failed", 821 (int)process->lead_thread->pid); 822 823 ret = kfd_procfs_add_sysfs_files(process); 824 if (ret) 825 pr_warn("Creating sysfs usage file for pid %d failed", 826 (int)process->lead_thread->pid); 827 } 828 out: 829 if (!IS_ERR(process)) 830 kref_get(&process->ref); 831 mutex_unlock(&kfd_processes_mutex); 832 833 return process; 834 835 out_destroy: 836 hash_del_rcu(&process->kfd_processes); 837 mutex_unlock(&kfd_processes_mutex); 838 synchronize_srcu(&kfd_processes_srcu); 839 /* kfd_process_free_notifier will trigger the cleanup */ 840 mmu_notifier_put(&process->mmu_notifier); 841 return ERR_PTR(ret); 842 } 843 844 struct kfd_process *kfd_get_process(const struct task_struct *thread) 845 { 846 struct kfd_process *process; 847 848 if (!thread->mm) 849 return ERR_PTR(-EINVAL); 850 851 /* Only the pthreads threading model is supported. */ 852 if (thread->group_leader->mm != thread->mm) 853 return ERR_PTR(-EINVAL); 854 855 process = find_process(thread); 856 if (!process) 857 return ERR_PTR(-EINVAL); 858 859 return process; 860 } 861 862 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 863 { 864 struct kfd_process *process; 865 866 hash_for_each_possible_rcu(kfd_processes_table, process, 867 kfd_processes, (uintptr_t)mm) 868 if (process->mm == mm) 869 return process; 870 871 return NULL; 872 } 873 874 static struct kfd_process *find_process(const struct task_struct *thread) 875 { 876 struct kfd_process *p; 877 int idx; 878 879 idx = srcu_read_lock(&kfd_processes_srcu); 880 p = find_process_by_mm(thread->mm); 881 srcu_read_unlock(&kfd_processes_srcu, idx); 882 883 return p; 884 } 885 886 void kfd_unref_process(struct kfd_process *p) 887 { 888 kref_put(&p->ref, kfd_process_ref_release); 889 } 890 891 892 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 893 { 894 struct kfd_process *p = pdd->process; 895 void *mem; 896 int id; 897 int i; 898 899 /* 900 * Remove all handles from idr and release appropriate 901 * local memory object 902 */ 903 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 904 905 for (i = 0; i < p->n_pdds; i++) { 906 struct kfd_process_device *peer_pdd = p->pdds[i]; 907 908 if (!peer_pdd->drm_priv) 909 continue; 910 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 911 peer_pdd->dev->kgd, mem, peer_pdd->drm_priv); 912 } 913 914 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem, 915 pdd->drm_priv, NULL); 916 kfd_process_device_remove_obj_handle(pdd, id); 917 } 918 } 919 920 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 921 { 922 int i; 923 924 for (i = 0; i < p->n_pdds; i++) 925 kfd_process_device_free_bos(p->pdds[i]); 926 } 927 928 static void kfd_process_destroy_pdds(struct kfd_process *p) 929 { 930 int i; 931 932 for (i = 0; i < p->n_pdds; i++) { 933 struct kfd_process_device *pdd = p->pdds[i]; 934 935 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 936 pdd->dev->id, p->pasid); 937 938 if (pdd->drm_file) { 939 amdgpu_amdkfd_gpuvm_release_process_vm( 940 pdd->dev->kgd, pdd->drm_priv); 941 fput(pdd->drm_file); 942 } 943 944 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 945 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 946 get_order(KFD_CWSR_TBA_TMA_SIZE)); 947 948 kfree(pdd->qpd.doorbell_bitmap); 949 idr_destroy(&pdd->alloc_idr); 950 951 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index); 952 953 /* 954 * before destroying pdd, make sure to report availability 955 * for auto suspend 956 */ 957 if (pdd->runtime_inuse) { 958 pm_runtime_mark_last_busy(pdd->dev->ddev->dev); 959 pm_runtime_put_autosuspend(pdd->dev->ddev->dev); 960 pdd->runtime_inuse = false; 961 } 962 963 kfree(pdd); 964 p->pdds[i] = NULL; 965 } 966 p->n_pdds = 0; 967 } 968 969 /* No process locking is needed in this function, because the process 970 * is not findable any more. We must assume that no other thread is 971 * using it any more, otherwise we couldn't safely free the process 972 * structure in the end. 973 */ 974 static void kfd_process_wq_release(struct work_struct *work) 975 { 976 struct kfd_process *p = container_of(work, struct kfd_process, 977 release_work); 978 int i; 979 980 /* Remove the procfs files */ 981 if (p->kobj) { 982 sysfs_remove_file(p->kobj, &p->attr_pasid); 983 kobject_del(p->kobj_queues); 984 kobject_put(p->kobj_queues); 985 p->kobj_queues = NULL; 986 987 for (i = 0; i < p->n_pdds; i++) { 988 struct kfd_process_device *pdd = p->pdds[i]; 989 990 sysfs_remove_file(p->kobj, &pdd->attr_vram); 991 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 992 sysfs_remove_file(p->kobj, &pdd->attr_evict); 993 if (pdd->dev->kfd2kgd->get_cu_occupancy != NULL) 994 sysfs_remove_file(p->kobj, &pdd->attr_cu_occupancy); 995 kobject_del(pdd->kobj_stats); 996 kobject_put(pdd->kobj_stats); 997 pdd->kobj_stats = NULL; 998 } 999 1000 kobject_del(p->kobj); 1001 kobject_put(p->kobj); 1002 p->kobj = NULL; 1003 } 1004 1005 kfd_iommu_unbind_process(p); 1006 1007 kfd_process_free_outstanding_kfd_bos(p); 1008 svm_range_list_fini(p); 1009 1010 kfd_process_destroy_pdds(p); 1011 dma_fence_put(p->ef); 1012 1013 kfd_event_free_process(p); 1014 1015 kfd_pasid_free(p->pasid); 1016 mutex_destroy(&p->mutex); 1017 1018 put_task_struct(p->lead_thread); 1019 1020 kfree(p); 1021 } 1022 1023 static void kfd_process_ref_release(struct kref *ref) 1024 { 1025 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1026 1027 INIT_WORK(&p->release_work, kfd_process_wq_release); 1028 queue_work(kfd_process_wq, &p->release_work); 1029 } 1030 1031 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1032 { 1033 int idx = srcu_read_lock(&kfd_processes_srcu); 1034 struct kfd_process *p = find_process_by_mm(mm); 1035 1036 srcu_read_unlock(&kfd_processes_srcu, idx); 1037 1038 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1039 } 1040 1041 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1042 { 1043 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1044 } 1045 1046 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1047 struct mm_struct *mm) 1048 { 1049 struct kfd_process *p; 1050 int i; 1051 1052 /* 1053 * The kfd_process structure can not be free because the 1054 * mmu_notifier srcu is read locked 1055 */ 1056 p = container_of(mn, struct kfd_process, mmu_notifier); 1057 if (WARN_ON(p->mm != mm)) 1058 return; 1059 1060 mutex_lock(&kfd_processes_mutex); 1061 hash_del_rcu(&p->kfd_processes); 1062 mutex_unlock(&kfd_processes_mutex); 1063 synchronize_srcu(&kfd_processes_srcu); 1064 1065 cancel_delayed_work_sync(&p->eviction_work); 1066 cancel_delayed_work_sync(&p->restore_work); 1067 cancel_delayed_work_sync(&p->svms.restore_work); 1068 1069 mutex_lock(&p->mutex); 1070 1071 /* Iterate over all process device data structures and if the 1072 * pdd is in debug mode, we should first force unregistration, 1073 * then we will be able to destroy the queues 1074 */ 1075 for (i = 0; i < p->n_pdds; i++) { 1076 struct kfd_dev *dev = p->pdds[i]->dev; 1077 1078 mutex_lock(kfd_get_dbgmgr_mutex()); 1079 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) { 1080 if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) { 1081 kfd_dbgmgr_destroy(dev->dbgmgr); 1082 dev->dbgmgr = NULL; 1083 } 1084 } 1085 mutex_unlock(kfd_get_dbgmgr_mutex()); 1086 } 1087 1088 kfd_process_dequeue_from_all_devices(p); 1089 pqm_uninit(&p->pqm); 1090 1091 /* Indicate to other users that MM is no longer valid */ 1092 p->mm = NULL; 1093 /* Signal the eviction fence after user mode queues are 1094 * destroyed. This allows any BOs to be freed without 1095 * triggering pointless evictions or waiting for fences. 1096 */ 1097 dma_fence_signal(p->ef); 1098 1099 mutex_unlock(&p->mutex); 1100 1101 mmu_notifier_put(&p->mmu_notifier); 1102 } 1103 1104 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1105 .release = kfd_process_notifier_release, 1106 .alloc_notifier = kfd_process_alloc_notifier, 1107 .free_notifier = kfd_process_free_notifier, 1108 }; 1109 1110 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1111 { 1112 unsigned long offset; 1113 int i; 1114 1115 for (i = 0; i < p->n_pdds; i++) { 1116 struct kfd_dev *dev = p->pdds[i]->dev; 1117 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1118 1119 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1120 continue; 1121 1122 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1123 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1124 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1125 MAP_SHARED, offset); 1126 1127 if (IS_ERR_VALUE(qpd->tba_addr)) { 1128 int err = qpd->tba_addr; 1129 1130 pr_err("Failure to set tba address. error %d.\n", err); 1131 qpd->tba_addr = 0; 1132 qpd->cwsr_kaddr = NULL; 1133 return err; 1134 } 1135 1136 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1137 1138 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1139 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1140 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1141 } 1142 1143 return 0; 1144 } 1145 1146 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1147 { 1148 struct kfd_dev *dev = pdd->dev; 1149 struct qcm_process_device *qpd = &pdd->qpd; 1150 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1151 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1152 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1153 void *kaddr; 1154 int ret; 1155 1156 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1157 return 0; 1158 1159 /* cwsr_base is only set for dGPU */ 1160 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1161 KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr); 1162 if (ret) 1163 return ret; 1164 1165 qpd->cwsr_kaddr = kaddr; 1166 qpd->tba_addr = qpd->cwsr_base; 1167 1168 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1169 1170 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1171 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1172 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1173 1174 return 0; 1175 } 1176 1177 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1178 uint64_t tba_addr, 1179 uint64_t tma_addr) 1180 { 1181 if (qpd->cwsr_kaddr) { 1182 /* KFD trap handler is bound, record as second-level TBA/TMA 1183 * in first-level TMA. First-level trap will jump to second. 1184 */ 1185 uint64_t *tma = 1186 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1187 tma[0] = tba_addr; 1188 tma[1] = tma_addr; 1189 } else { 1190 /* No trap handler bound, bind as first-level TBA/TMA. */ 1191 qpd->tba_addr = tba_addr; 1192 qpd->tma_addr = tma_addr; 1193 } 1194 } 1195 1196 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1197 { 1198 int i; 1199 1200 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1201 * boot time retry setting. Mixing processes with different 1202 * XNACK/retry settings can hang the GPU. 1203 * 1204 * Different GPUs can have different noretry settings depending 1205 * on HW bugs or limitations. We need to find at least one 1206 * XNACK mode for this process that's compatible with all GPUs. 1207 * Fortunately GPUs with retry enabled (noretry=0) can run code 1208 * built for XNACK-off. On GFXv9 it may perform slower. 1209 * 1210 * Therefore applications built for XNACK-off can always be 1211 * supported and will be our fallback if any GPU does not 1212 * support retry. 1213 */ 1214 for (i = 0; i < p->n_pdds; i++) { 1215 struct kfd_dev *dev = p->pdds[i]->dev; 1216 1217 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1218 * support the SVM APIs and don't need to be considered 1219 * for the XNACK mode selection. 1220 */ 1221 if (dev->device_info->asic_family < CHIP_VEGA10) 1222 continue; 1223 /* Aldebaran can always support XNACK because it can support 1224 * per-process XNACK mode selection. But let the dev->noretry 1225 * setting still influence the default XNACK mode. 1226 */ 1227 if (supported && 1228 dev->device_info->asic_family == CHIP_ALDEBARAN) 1229 continue; 1230 1231 /* GFXv10 and later GPUs do not support shader preemption 1232 * during page faults. This can lead to poor QoS for queue 1233 * management and memory-manager-related preemptions or 1234 * even deadlocks. 1235 */ 1236 if (dev->device_info->asic_family >= CHIP_NAVI10) 1237 return false; 1238 1239 if (dev->noretry) 1240 return false; 1241 } 1242 1243 return true; 1244 } 1245 1246 /* 1247 * On return the kfd_process is fully operational and will be freed when the 1248 * mm is released 1249 */ 1250 static struct kfd_process *create_process(const struct task_struct *thread) 1251 { 1252 struct kfd_process *process; 1253 struct mmu_notifier *mn; 1254 int err = -ENOMEM; 1255 1256 process = kzalloc(sizeof(*process), GFP_KERNEL); 1257 if (!process) 1258 goto err_alloc_process; 1259 1260 kref_init(&process->ref); 1261 mutex_init(&process->mutex); 1262 process->mm = thread->mm; 1263 process->lead_thread = thread->group_leader; 1264 process->n_pdds = 0; 1265 process->svm_disabled = false; 1266 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1267 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1268 process->last_restore_timestamp = get_jiffies_64(); 1269 kfd_event_init_process(process); 1270 process->is_32bit_user_mode = in_compat_syscall(); 1271 1272 process->pasid = kfd_pasid_alloc(); 1273 if (process->pasid == 0) 1274 goto err_alloc_pasid; 1275 1276 err = pqm_init(&process->pqm, process); 1277 if (err != 0) 1278 goto err_process_pqm_init; 1279 1280 /* init process apertures*/ 1281 err = kfd_init_apertures(process); 1282 if (err != 0) 1283 goto err_init_apertures; 1284 1285 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1286 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1287 1288 err = svm_range_list_init(process); 1289 if (err) 1290 goto err_init_svm_range_list; 1291 1292 /* alloc_notifier needs to find the process in the hash table */ 1293 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1294 (uintptr_t)process->mm); 1295 1296 /* MMU notifier registration must be the last call that can fail 1297 * because after this point we cannot unwind the process creation. 1298 * After this point, mmu_notifier_put will trigger the cleanup by 1299 * dropping the last process reference in the free_notifier. 1300 */ 1301 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1302 if (IS_ERR(mn)) { 1303 err = PTR_ERR(mn); 1304 goto err_register_notifier; 1305 } 1306 BUG_ON(mn != &process->mmu_notifier); 1307 1308 get_task_struct(process->lead_thread); 1309 1310 return process; 1311 1312 err_register_notifier: 1313 hash_del_rcu(&process->kfd_processes); 1314 svm_range_list_fini(process); 1315 err_init_svm_range_list: 1316 kfd_process_free_outstanding_kfd_bos(process); 1317 kfd_process_destroy_pdds(process); 1318 err_init_apertures: 1319 pqm_uninit(&process->pqm); 1320 err_process_pqm_init: 1321 kfd_pasid_free(process->pasid); 1322 err_alloc_pasid: 1323 mutex_destroy(&process->mutex); 1324 kfree(process); 1325 err_alloc_process: 1326 return ERR_PTR(err); 1327 } 1328 1329 static int init_doorbell_bitmap(struct qcm_process_device *qpd, 1330 struct kfd_dev *dev) 1331 { 1332 unsigned int i; 1333 int range_start = dev->shared_resources.non_cp_doorbells_start; 1334 int range_end = dev->shared_resources.non_cp_doorbells_end; 1335 1336 if (!KFD_IS_SOC15(dev->device_info->asic_family)) 1337 return 0; 1338 1339 qpd->doorbell_bitmap = 1340 kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, 1341 BITS_PER_BYTE), GFP_KERNEL); 1342 if (!qpd->doorbell_bitmap) 1343 return -ENOMEM; 1344 1345 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */ 1346 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end); 1347 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", 1348 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1349 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET); 1350 1351 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) { 1352 if (i >= range_start && i <= range_end) { 1353 set_bit(i, qpd->doorbell_bitmap); 1354 set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1355 qpd->doorbell_bitmap); 1356 } 1357 } 1358 1359 return 0; 1360 } 1361 1362 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 1363 struct kfd_process *p) 1364 { 1365 int i; 1366 1367 for (i = 0; i < p->n_pdds; i++) 1368 if (p->pdds[i]->dev == dev) 1369 return p->pdds[i]; 1370 1371 return NULL; 1372 } 1373 1374 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 1375 struct kfd_process *p) 1376 { 1377 struct kfd_process_device *pdd = NULL; 1378 1379 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1380 return NULL; 1381 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1382 if (!pdd) 1383 return NULL; 1384 1385 if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) { 1386 pr_err("Failed to alloc doorbell for pdd\n"); 1387 goto err_free_pdd; 1388 } 1389 1390 if (init_doorbell_bitmap(&pdd->qpd, dev)) { 1391 pr_err("Failed to init doorbell for process\n"); 1392 goto err_free_pdd; 1393 } 1394 1395 pdd->dev = dev; 1396 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1397 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1398 pdd->qpd.dqm = dev->dqm; 1399 pdd->qpd.pqm = &p->pqm; 1400 pdd->qpd.evicted = 0; 1401 pdd->qpd.mapped_gws_queue = false; 1402 pdd->process = p; 1403 pdd->bound = PDD_UNBOUND; 1404 pdd->already_dequeued = false; 1405 pdd->runtime_inuse = false; 1406 pdd->vram_usage = 0; 1407 pdd->sdma_past_activity_counter = 0; 1408 atomic64_set(&pdd->evict_duration_counter, 0); 1409 p->pdds[p->n_pdds++] = pdd; 1410 1411 /* Init idr used for memory handle translation */ 1412 idr_init(&pdd->alloc_idr); 1413 1414 return pdd; 1415 1416 err_free_pdd: 1417 kfree(pdd); 1418 return NULL; 1419 } 1420 1421 /** 1422 * kfd_process_device_init_vm - Initialize a VM for a process-device 1423 * 1424 * @pdd: The process-device 1425 * @drm_file: Optional pointer to a DRM file descriptor 1426 * 1427 * If @drm_file is specified, it will be used to acquire the VM from 1428 * that file descriptor. If successful, the @pdd takes ownership of 1429 * the file descriptor. 1430 * 1431 * If @drm_file is NULL, a new VM is created. 1432 * 1433 * Returns 0 on success, -errno on failure. 1434 */ 1435 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1436 struct file *drm_file) 1437 { 1438 struct kfd_process *p; 1439 struct kfd_dev *dev; 1440 int ret; 1441 1442 if (!drm_file) 1443 return -EINVAL; 1444 1445 if (pdd->drm_priv) 1446 return -EBUSY; 1447 1448 p = pdd->process; 1449 dev = pdd->dev; 1450 1451 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm( 1452 dev->kgd, drm_file, p->pasid, 1453 &p->kgd_process_info, &p->ef); 1454 if (ret) { 1455 pr_err("Failed to create process VM object\n"); 1456 return ret; 1457 } 1458 pdd->drm_priv = drm_file->private_data; 1459 1460 ret = kfd_process_device_reserve_ib_mem(pdd); 1461 if (ret) 1462 goto err_reserve_ib_mem; 1463 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1464 if (ret) 1465 goto err_init_cwsr; 1466 1467 pdd->drm_file = drm_file; 1468 1469 return 0; 1470 1471 err_init_cwsr: 1472 err_reserve_ib_mem: 1473 kfd_process_device_free_bos(pdd); 1474 pdd->drm_priv = NULL; 1475 1476 return ret; 1477 } 1478 1479 /* 1480 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1481 * to the device. 1482 * Unbinding occurs when the process dies or the device is removed. 1483 * 1484 * Assumes that the process lock is held. 1485 */ 1486 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 1487 struct kfd_process *p) 1488 { 1489 struct kfd_process_device *pdd; 1490 int err; 1491 1492 pdd = kfd_get_process_device_data(dev, p); 1493 if (!pdd) { 1494 pr_err("Process device data doesn't exist\n"); 1495 return ERR_PTR(-ENOMEM); 1496 } 1497 1498 if (!pdd->drm_priv) 1499 return ERR_PTR(-ENODEV); 1500 1501 /* 1502 * signal runtime-pm system to auto resume and prevent 1503 * further runtime suspend once device pdd is created until 1504 * pdd is destroyed. 1505 */ 1506 if (!pdd->runtime_inuse) { 1507 err = pm_runtime_get_sync(dev->ddev->dev); 1508 if (err < 0) { 1509 pm_runtime_put_autosuspend(dev->ddev->dev); 1510 return ERR_PTR(err); 1511 } 1512 } 1513 1514 err = kfd_iommu_bind_process_to_device(pdd); 1515 if (err) 1516 goto out; 1517 1518 /* 1519 * make sure that runtime_usage counter is incremented just once 1520 * per pdd 1521 */ 1522 pdd->runtime_inuse = true; 1523 1524 return pdd; 1525 1526 out: 1527 /* balance runpm reference count and exit with error */ 1528 if (!pdd->runtime_inuse) { 1529 pm_runtime_mark_last_busy(dev->ddev->dev); 1530 pm_runtime_put_autosuspend(dev->ddev->dev); 1531 } 1532 1533 return ERR_PTR(err); 1534 } 1535 1536 /* Create specific handle mapped to mem from process local memory idr 1537 * Assumes that the process lock is held. 1538 */ 1539 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1540 void *mem) 1541 { 1542 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1543 } 1544 1545 /* Translate specific handle from process local memory idr 1546 * Assumes that the process lock is held. 1547 */ 1548 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1549 int handle) 1550 { 1551 if (handle < 0) 1552 return NULL; 1553 1554 return idr_find(&pdd->alloc_idr, handle); 1555 } 1556 1557 /* Remove specific handle from process local memory idr 1558 * Assumes that the process lock is held. 1559 */ 1560 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1561 int handle) 1562 { 1563 if (handle >= 0) 1564 idr_remove(&pdd->alloc_idr, handle); 1565 } 1566 1567 /* This increments the process->ref counter. */ 1568 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) 1569 { 1570 struct kfd_process *p, *ret_p = NULL; 1571 unsigned int temp; 1572 1573 int idx = srcu_read_lock(&kfd_processes_srcu); 1574 1575 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1576 if (p->pasid == pasid) { 1577 kref_get(&p->ref); 1578 ret_p = p; 1579 break; 1580 } 1581 } 1582 1583 srcu_read_unlock(&kfd_processes_srcu, idx); 1584 1585 return ret_p; 1586 } 1587 1588 /* This increments the process->ref counter. */ 1589 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1590 { 1591 struct kfd_process *p; 1592 1593 int idx = srcu_read_lock(&kfd_processes_srcu); 1594 1595 p = find_process_by_mm(mm); 1596 if (p) 1597 kref_get(&p->ref); 1598 1599 srcu_read_unlock(&kfd_processes_srcu, idx); 1600 1601 return p; 1602 } 1603 1604 /* kfd_process_evict_queues - Evict all user queues of a process 1605 * 1606 * Eviction is reference-counted per process-device. This means multiple 1607 * evictions from different sources can be nested safely. 1608 */ 1609 int kfd_process_evict_queues(struct kfd_process *p) 1610 { 1611 int r = 0; 1612 int i; 1613 unsigned int n_evicted = 0; 1614 1615 for (i = 0; i < p->n_pdds; i++) { 1616 struct kfd_process_device *pdd = p->pdds[i]; 1617 1618 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1619 &pdd->qpd); 1620 if (r) { 1621 pr_err("Failed to evict process queues\n"); 1622 goto fail; 1623 } 1624 n_evicted++; 1625 } 1626 1627 return r; 1628 1629 fail: 1630 /* To keep state consistent, roll back partial eviction by 1631 * restoring queues 1632 */ 1633 for (i = 0; i < p->n_pdds; i++) { 1634 struct kfd_process_device *pdd = p->pdds[i]; 1635 1636 if (n_evicted == 0) 1637 break; 1638 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1639 &pdd->qpd)) 1640 pr_err("Failed to restore queues\n"); 1641 1642 n_evicted--; 1643 } 1644 1645 return r; 1646 } 1647 1648 /* kfd_process_restore_queues - Restore all user queues of a process */ 1649 int kfd_process_restore_queues(struct kfd_process *p) 1650 { 1651 int r, ret = 0; 1652 int i; 1653 1654 for (i = 0; i < p->n_pdds; i++) { 1655 struct kfd_process_device *pdd = p->pdds[i]; 1656 1657 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1658 &pdd->qpd); 1659 if (r) { 1660 pr_err("Failed to restore process queues\n"); 1661 if (!ret) 1662 ret = r; 1663 } 1664 } 1665 1666 return ret; 1667 } 1668 1669 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 1670 { 1671 int i; 1672 1673 for (i = 0; i < p->n_pdds; i++) 1674 if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id) 1675 return i; 1676 return -EINVAL; 1677 } 1678 1679 int 1680 kfd_process_gpuid_from_kgd(struct kfd_process *p, struct amdgpu_device *adev, 1681 uint32_t *gpuid, uint32_t *gpuidx) 1682 { 1683 struct kgd_dev *kgd = (struct kgd_dev *)adev; 1684 int i; 1685 1686 for (i = 0; i < p->n_pdds; i++) 1687 if (p->pdds[i] && p->pdds[i]->dev->kgd == kgd) { 1688 *gpuid = p->pdds[i]->dev->id; 1689 *gpuidx = i; 1690 return 0; 1691 } 1692 return -EINVAL; 1693 } 1694 1695 static void evict_process_worker(struct work_struct *work) 1696 { 1697 int ret; 1698 struct kfd_process *p; 1699 struct delayed_work *dwork; 1700 1701 dwork = to_delayed_work(work); 1702 1703 /* Process termination destroys this worker thread. So during the 1704 * lifetime of this thread, kfd_process p will be valid 1705 */ 1706 p = container_of(dwork, struct kfd_process, eviction_work); 1707 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, 1708 "Eviction fence mismatch\n"); 1709 1710 /* Narrow window of overlap between restore and evict work 1711 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos 1712 * unreserves KFD BOs, it is possible to evicted again. But 1713 * restore has few more steps of finish. So lets wait for any 1714 * previous restore work to complete 1715 */ 1716 flush_delayed_work(&p->restore_work); 1717 1718 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1719 ret = kfd_process_evict_queues(p); 1720 if (!ret) { 1721 dma_fence_signal(p->ef); 1722 dma_fence_put(p->ef); 1723 p->ef = NULL; 1724 queue_delayed_work(kfd_restore_wq, &p->restore_work, 1725 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); 1726 1727 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 1728 } else 1729 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 1730 } 1731 1732 static void restore_process_worker(struct work_struct *work) 1733 { 1734 struct delayed_work *dwork; 1735 struct kfd_process *p; 1736 int ret = 0; 1737 1738 dwork = to_delayed_work(work); 1739 1740 /* Process termination destroys this worker thread. So during the 1741 * lifetime of this thread, kfd_process p will be valid 1742 */ 1743 p = container_of(dwork, struct kfd_process, restore_work); 1744 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 1745 1746 /* Setting last_restore_timestamp before successful restoration. 1747 * Otherwise this would have to be set by KGD (restore_process_bos) 1748 * before KFD BOs are unreserved. If not, the process can be evicted 1749 * again before the timestamp is set. 1750 * If restore fails, the timestamp will be set again in the next 1751 * attempt. This would mean that the minimum GPU quanta would be 1752 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 1753 * functions) 1754 */ 1755 1756 p->last_restore_timestamp = get_jiffies_64(); 1757 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info, 1758 &p->ef); 1759 if (ret) { 1760 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 1761 p->pasid, PROCESS_BACK_OFF_TIME_MS); 1762 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work, 1763 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); 1764 WARN(!ret, "reschedule restore work failed\n"); 1765 return; 1766 } 1767 1768 ret = kfd_process_restore_queues(p); 1769 if (!ret) 1770 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 1771 else 1772 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 1773 } 1774 1775 void kfd_suspend_all_processes(void) 1776 { 1777 struct kfd_process *p; 1778 unsigned int temp; 1779 int idx = srcu_read_lock(&kfd_processes_srcu); 1780 1781 WARN(debug_evictions, "Evicting all processes"); 1782 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1783 cancel_delayed_work_sync(&p->eviction_work); 1784 cancel_delayed_work_sync(&p->restore_work); 1785 1786 if (kfd_process_evict_queues(p)) 1787 pr_err("Failed to suspend process 0x%x\n", p->pasid); 1788 dma_fence_signal(p->ef); 1789 dma_fence_put(p->ef); 1790 p->ef = NULL; 1791 } 1792 srcu_read_unlock(&kfd_processes_srcu, idx); 1793 } 1794 1795 int kfd_resume_all_processes(void) 1796 { 1797 struct kfd_process *p; 1798 unsigned int temp; 1799 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 1800 1801 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1802 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) { 1803 pr_err("Restore process %d failed during resume\n", 1804 p->pasid); 1805 ret = -EFAULT; 1806 } 1807 } 1808 srcu_read_unlock(&kfd_processes_srcu, idx); 1809 return ret; 1810 } 1811 1812 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 1813 struct vm_area_struct *vma) 1814 { 1815 struct kfd_process_device *pdd; 1816 struct qcm_process_device *qpd; 1817 1818 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 1819 pr_err("Incorrect CWSR mapping size.\n"); 1820 return -EINVAL; 1821 } 1822 1823 pdd = kfd_get_process_device_data(dev, process); 1824 if (!pdd) 1825 return -EINVAL; 1826 qpd = &pdd->qpd; 1827 1828 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1829 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1830 if (!qpd->cwsr_kaddr) { 1831 pr_err("Error allocating per process CWSR buffer.\n"); 1832 return -ENOMEM; 1833 } 1834 1835 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND 1836 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; 1837 /* Mapping pages to user process */ 1838 return remap_pfn_range(vma, vma->vm_start, 1839 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 1840 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 1841 } 1842 1843 void kfd_flush_tlb(struct kfd_process_device *pdd) 1844 { 1845 struct kfd_dev *dev = pdd->dev; 1846 1847 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1848 /* Nothing to flush until a VMID is assigned, which 1849 * only happens when the first queue is created. 1850 */ 1851 if (pdd->qpd.vmid) 1852 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd, 1853 pdd->qpd.vmid); 1854 } else { 1855 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd, 1856 pdd->process->pasid, TLB_FLUSH_LEGACY); 1857 } 1858 } 1859 1860 #if defined(CONFIG_DEBUG_FS) 1861 1862 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 1863 { 1864 struct kfd_process *p; 1865 unsigned int temp; 1866 int r = 0; 1867 1868 int idx = srcu_read_lock(&kfd_processes_srcu); 1869 1870 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1871 seq_printf(m, "Process %d PASID 0x%x:\n", 1872 p->lead_thread->tgid, p->pasid); 1873 1874 mutex_lock(&p->mutex); 1875 r = pqm_debugfs_mqds(m, &p->pqm); 1876 mutex_unlock(&p->mutex); 1877 1878 if (r) 1879 break; 1880 } 1881 1882 srcu_read_unlock(&kfd_processes_srcu, idx); 1883 1884 return r; 1885 } 1886 1887 #endif 1888 1889