1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/mutex.h>
24 #include <linux/log2.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/amd-iommu.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 
39 struct mm_struct;
40 
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_dbgmgr.h"
44 #include "kfd_iommu.h"
45 #include "kfd_svm.h"
46 
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 static DEFINE_MUTEX(kfd_processes_mutex);
53 
54 DEFINE_SRCU(kfd_processes_srcu);
55 
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58 
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66 
67 static struct kfd_process *find_process(const struct task_struct *thread);
68 static void kfd_process_ref_release(struct kref *ref);
69 static struct kfd_process *create_process(const struct task_struct *thread);
70 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
71 
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74 
75 struct kfd_procfs_tree {
76 	struct kobject *kobj;
77 };
78 
79 static struct kfd_procfs_tree procfs;
80 
81 /*
82  * Structure for SDMA activity tracking
83  */
84 struct kfd_sdma_activity_handler_workarea {
85 	struct work_struct sdma_activity_work;
86 	struct kfd_process_device *pdd;
87 	uint64_t sdma_activity_counter;
88 };
89 
90 struct temp_sdma_queue_list {
91 	uint64_t __user *rptr;
92 	uint64_t sdma_val;
93 	unsigned int queue_id;
94 	struct list_head list;
95 };
96 
97 static void kfd_sdma_activity_worker(struct work_struct *work)
98 {
99 	struct kfd_sdma_activity_handler_workarea *workarea;
100 	struct kfd_process_device *pdd;
101 	uint64_t val;
102 	struct mm_struct *mm;
103 	struct queue *q;
104 	struct qcm_process_device *qpd;
105 	struct device_queue_manager *dqm;
106 	int ret = 0;
107 	struct temp_sdma_queue_list sdma_q_list;
108 	struct temp_sdma_queue_list *sdma_q, *next;
109 
110 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
111 				sdma_activity_work);
112 
113 	pdd = workarea->pdd;
114 	if (!pdd)
115 		return;
116 	dqm = pdd->dev->dqm;
117 	qpd = &pdd->qpd;
118 	if (!dqm || !qpd)
119 		return;
120 	/*
121 	 * Total SDMA activity is current SDMA activity + past SDMA activity
122 	 * Past SDMA count is stored in pdd.
123 	 * To get the current activity counters for all active SDMA queues,
124 	 * we loop over all SDMA queues and get their counts from user-space.
125 	 *
126 	 * We cannot call get_user() with dqm_lock held as it can cause
127 	 * a circular lock dependency situation. To read the SDMA stats,
128 	 * we need to do the following:
129 	 *
130 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
131 	 *    with dqm_lock/dqm_unlock().
132 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
133 	 *    Save the SDMA count for each node and also add the count to the total
134 	 *    SDMA count counter.
135 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
136 	 *    from the qpd->queues_list.
137 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
138 	 *    If any node got deleted, its SDMA count would be captured in the sdma
139 	 *    past activity counter. So subtract the SDMA counter stored in step 2
140 	 *    for this node from the total SDMA count.
141 	 */
142 	INIT_LIST_HEAD(&sdma_q_list.list);
143 
144 	/*
145 	 * Create the temp list of all SDMA queues
146 	 */
147 	dqm_lock(dqm);
148 
149 	list_for_each_entry(q, &qpd->queues_list, list) {
150 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
151 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
152 			continue;
153 
154 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
155 		if (!sdma_q) {
156 			dqm_unlock(dqm);
157 			goto cleanup;
158 		}
159 
160 		INIT_LIST_HEAD(&sdma_q->list);
161 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
162 		sdma_q->queue_id = q->properties.queue_id;
163 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
164 	}
165 
166 	/*
167 	 * If the temp list is empty, then no SDMA queues nodes were found in
168 	 * qpd->queues_list. Return the past activity count as the total sdma
169 	 * count
170 	 */
171 	if (list_empty(&sdma_q_list.list)) {
172 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
173 		dqm_unlock(dqm);
174 		return;
175 	}
176 
177 	dqm_unlock(dqm);
178 
179 	/*
180 	 * Get the usage count for each SDMA queue in temp_list.
181 	 */
182 	mm = get_task_mm(pdd->process->lead_thread);
183 	if (!mm)
184 		goto cleanup;
185 
186 	kthread_use_mm(mm);
187 
188 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
189 		val = 0;
190 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
191 		if (ret) {
192 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
193 				 sdma_q->queue_id);
194 		} else {
195 			sdma_q->sdma_val = val;
196 			workarea->sdma_activity_counter += val;
197 		}
198 	}
199 
200 	kthread_unuse_mm(mm);
201 	mmput(mm);
202 
203 	/*
204 	 * Do a second iteration over qpd_queues_list to check if any SDMA
205 	 * nodes got deleted while fetching SDMA counter.
206 	 */
207 	dqm_lock(dqm);
208 
209 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
210 
211 	list_for_each_entry(q, &qpd->queues_list, list) {
212 		if (list_empty(&sdma_q_list.list))
213 			break;
214 
215 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
216 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
217 			continue;
218 
219 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
220 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
221 			     (sdma_q->queue_id == q->properties.queue_id)) {
222 				list_del(&sdma_q->list);
223 				kfree(sdma_q);
224 				break;
225 			}
226 		}
227 	}
228 
229 	dqm_unlock(dqm);
230 
231 	/*
232 	 * If temp list is not empty, it implies some queues got deleted
233 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
234 	 * count for each node from the total SDMA count.
235 	 */
236 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
237 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
238 		list_del(&sdma_q->list);
239 		kfree(sdma_q);
240 	}
241 
242 	return;
243 
244 cleanup:
245 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
246 		list_del(&sdma_q->list);
247 		kfree(sdma_q);
248 	}
249 }
250 
251 /**
252  * @kfd_get_cu_occupancy - Collect number of waves in-flight on this device
253  * by current process. Translates acquired wave count into number of compute units
254  * that are occupied.
255  *
256  * @atr: Handle of attribute that allows reporting of wave count. The attribute
257  * handle encapsulates GPU device it is associated with, thereby allowing collection
258  * of waves in flight, etc
259  *
260  * @buffer: Handle of user provided buffer updated with wave count
261  *
262  * Return: Number of bytes written to user buffer or an error value
263  */
264 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
265 {
266 	int cu_cnt;
267 	int wave_cnt;
268 	int max_waves_per_cu;
269 	struct kfd_dev *dev = NULL;
270 	struct kfd_process *proc = NULL;
271 	struct kfd_process_device *pdd = NULL;
272 
273 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
274 	dev = pdd->dev;
275 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
276 		return -EINVAL;
277 
278 	cu_cnt = 0;
279 	proc = pdd->process;
280 	if (pdd->qpd.queue_count == 0) {
281 		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
282 			 dev->id, proc->pasid);
283 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
284 	}
285 
286 	/* Collect wave count from device if it supports */
287 	wave_cnt = 0;
288 	max_waves_per_cu = 0;
289 	dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt,
290 			&max_waves_per_cu);
291 
292 	/* Translate wave count to number of compute units */
293 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
294 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
295 }
296 
297 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
298 			       char *buffer)
299 {
300 	if (strcmp(attr->name, "pasid") == 0) {
301 		struct kfd_process *p = container_of(attr, struct kfd_process,
302 						     attr_pasid);
303 
304 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
305 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
306 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
307 							      attr_vram);
308 		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
309 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
310 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
311 							      attr_sdma);
312 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
313 
314 		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
315 					kfd_sdma_activity_worker);
316 
317 		sdma_activity_work_handler.pdd = pdd;
318 		sdma_activity_work_handler.sdma_activity_counter = 0;
319 
320 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
321 
322 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
323 
324 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
325 				(sdma_activity_work_handler.sdma_activity_counter)/
326 				 SDMA_ACTIVITY_DIVISOR);
327 	} else {
328 		pr_err("Invalid attribute");
329 		return -EINVAL;
330 	}
331 
332 	return 0;
333 }
334 
335 static void kfd_procfs_kobj_release(struct kobject *kobj)
336 {
337 	kfree(kobj);
338 }
339 
340 static const struct sysfs_ops kfd_procfs_ops = {
341 	.show = kfd_procfs_show,
342 };
343 
344 static struct kobj_type procfs_type = {
345 	.release = kfd_procfs_kobj_release,
346 	.sysfs_ops = &kfd_procfs_ops,
347 };
348 
349 void kfd_procfs_init(void)
350 {
351 	int ret = 0;
352 
353 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
354 	if (!procfs.kobj)
355 		return;
356 
357 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
358 				   &kfd_device->kobj, "proc");
359 	if (ret) {
360 		pr_warn("Could not create procfs proc folder");
361 		/* If we fail to create the procfs, clean up */
362 		kfd_procfs_shutdown();
363 	}
364 }
365 
366 void kfd_procfs_shutdown(void)
367 {
368 	if (procfs.kobj) {
369 		kobject_del(procfs.kobj);
370 		kobject_put(procfs.kobj);
371 		procfs.kobj = NULL;
372 	}
373 }
374 
375 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
376 				     struct attribute *attr, char *buffer)
377 {
378 	struct queue *q = container_of(kobj, struct queue, kobj);
379 
380 	if (!strcmp(attr->name, "size"))
381 		return snprintf(buffer, PAGE_SIZE, "%llu",
382 				q->properties.queue_size);
383 	else if (!strcmp(attr->name, "type"))
384 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
385 	else if (!strcmp(attr->name, "gpuid"))
386 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
387 	else
388 		pr_err("Invalid attribute");
389 
390 	return 0;
391 }
392 
393 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
394 				     struct attribute *attr, char *buffer)
395 {
396 	if (strcmp(attr->name, "evicted_ms") == 0) {
397 		struct kfd_process_device *pdd = container_of(attr,
398 				struct kfd_process_device,
399 				attr_evict);
400 		uint64_t evict_jiffies;
401 
402 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
403 
404 		return snprintf(buffer,
405 				PAGE_SIZE,
406 				"%llu\n",
407 				jiffies64_to_msecs(evict_jiffies));
408 
409 	/* Sysfs handle that gets CU occupancy is per device */
410 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
411 		return kfd_get_cu_occupancy(attr, buffer);
412 	} else {
413 		pr_err("Invalid attribute");
414 	}
415 
416 	return 0;
417 }
418 
419 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
420 				       struct attribute *attr, char *buf)
421 {
422 	struct kfd_process_device *pdd;
423 
424 	if (!strcmp(attr->name, "faults")) {
425 		pdd = container_of(attr, struct kfd_process_device,
426 				   attr_faults);
427 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
428 	}
429 	if (!strcmp(attr->name, "page_in")) {
430 		pdd = container_of(attr, struct kfd_process_device,
431 				   attr_page_in);
432 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
433 	}
434 	if (!strcmp(attr->name, "page_out")) {
435 		pdd = container_of(attr, struct kfd_process_device,
436 				   attr_page_out);
437 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
438 	}
439 	return 0;
440 }
441 
442 static struct attribute attr_queue_size = {
443 	.name = "size",
444 	.mode = KFD_SYSFS_FILE_MODE
445 };
446 
447 static struct attribute attr_queue_type = {
448 	.name = "type",
449 	.mode = KFD_SYSFS_FILE_MODE
450 };
451 
452 static struct attribute attr_queue_gpuid = {
453 	.name = "gpuid",
454 	.mode = KFD_SYSFS_FILE_MODE
455 };
456 
457 static struct attribute *procfs_queue_attrs[] = {
458 	&attr_queue_size,
459 	&attr_queue_type,
460 	&attr_queue_gpuid,
461 	NULL
462 };
463 
464 static const struct sysfs_ops procfs_queue_ops = {
465 	.show = kfd_procfs_queue_show,
466 };
467 
468 static struct kobj_type procfs_queue_type = {
469 	.sysfs_ops = &procfs_queue_ops,
470 	.default_attrs = procfs_queue_attrs,
471 };
472 
473 static const struct sysfs_ops procfs_stats_ops = {
474 	.show = kfd_procfs_stats_show,
475 };
476 
477 static struct kobj_type procfs_stats_type = {
478 	.sysfs_ops = &procfs_stats_ops,
479 	.release = kfd_procfs_kobj_release,
480 };
481 
482 static const struct sysfs_ops sysfs_counters_ops = {
483 	.show = kfd_sysfs_counters_show,
484 };
485 
486 static struct kobj_type sysfs_counters_type = {
487 	.sysfs_ops = &sysfs_counters_ops,
488 	.release = kfd_procfs_kobj_release,
489 };
490 
491 int kfd_procfs_add_queue(struct queue *q)
492 {
493 	struct kfd_process *proc;
494 	int ret;
495 
496 	if (!q || !q->process)
497 		return -EINVAL;
498 	proc = q->process;
499 
500 	/* Create proc/<pid>/queues/<queue id> folder */
501 	if (!proc->kobj_queues)
502 		return -EFAULT;
503 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
504 			proc->kobj_queues, "%u", q->properties.queue_id);
505 	if (ret < 0) {
506 		pr_warn("Creating proc/<pid>/queues/%u failed",
507 			q->properties.queue_id);
508 		kobject_put(&q->kobj);
509 		return ret;
510 	}
511 
512 	return 0;
513 }
514 
515 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
516 				 char *name)
517 {
518 	int ret;
519 
520 	if (!kobj || !attr || !name)
521 		return;
522 
523 	attr->name = name;
524 	attr->mode = KFD_SYSFS_FILE_MODE;
525 	sysfs_attr_init(attr);
526 
527 	ret = sysfs_create_file(kobj, attr);
528 	if (ret)
529 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
530 }
531 
532 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
533 {
534 	int ret;
535 	int i;
536 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
537 
538 	if (!p || !p->kobj)
539 		return;
540 
541 	/*
542 	 * Create sysfs files for each GPU:
543 	 * - proc/<pid>/stats_<gpuid>/
544 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
545 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
546 	 */
547 	for (i = 0; i < p->n_pdds; i++) {
548 		struct kfd_process_device *pdd = p->pdds[i];
549 
550 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
551 				"stats_%u", pdd->dev->id);
552 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
553 		if (!pdd->kobj_stats)
554 			return;
555 
556 		ret = kobject_init_and_add(pdd->kobj_stats,
557 					   &procfs_stats_type,
558 					   p->kobj,
559 					   stats_dir_filename);
560 
561 		if (ret) {
562 			pr_warn("Creating KFD proc/stats_%s folder failed",
563 				stats_dir_filename);
564 			kobject_put(pdd->kobj_stats);
565 			pdd->kobj_stats = NULL;
566 			return;
567 		}
568 
569 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
570 				      "evicted_ms");
571 		/* Add sysfs file to report compute unit occupancy */
572 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
573 			kfd_sysfs_create_file(pdd->kobj_stats,
574 					      &pdd->attr_cu_occupancy,
575 					      "cu_occupancy");
576 	}
577 }
578 
579 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
580 {
581 	int ret = 0;
582 	int i;
583 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
584 
585 	if (!p || !p->kobj)
586 		return;
587 
588 	/*
589 	 * Create sysfs files for each GPU which supports SVM
590 	 * - proc/<pid>/counters_<gpuid>/
591 	 * - proc/<pid>/counters_<gpuid>/faults
592 	 * - proc/<pid>/counters_<gpuid>/page_in
593 	 * - proc/<pid>/counters_<gpuid>/page_out
594 	 */
595 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
596 		struct kfd_process_device *pdd = p->pdds[i];
597 		struct kobject *kobj_counters;
598 
599 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
600 			"counters_%u", pdd->dev->id);
601 		kobj_counters = kfd_alloc_struct(kobj_counters);
602 		if (!kobj_counters)
603 			return;
604 
605 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
606 					   p->kobj, counters_dir_filename);
607 		if (ret) {
608 			pr_warn("Creating KFD proc/%s folder failed",
609 				counters_dir_filename);
610 			kobject_put(kobj_counters);
611 			return;
612 		}
613 
614 		pdd->kobj_counters = kobj_counters;
615 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
616 				      "faults");
617 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
618 				      "page_in");
619 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
620 				      "page_out");
621 	}
622 }
623 
624 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
625 {
626 	int i;
627 
628 	if (!p || !p->kobj)
629 		return;
630 
631 	/*
632 	 * Create sysfs files for each GPU:
633 	 * - proc/<pid>/vram_<gpuid>
634 	 * - proc/<pid>/sdma_<gpuid>
635 	 */
636 	for (i = 0; i < p->n_pdds; i++) {
637 		struct kfd_process_device *pdd = p->pdds[i];
638 
639 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
640 			 pdd->dev->id);
641 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
642 				      pdd->vram_filename);
643 
644 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
645 			 pdd->dev->id);
646 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
647 					    pdd->sdma_filename);
648 	}
649 }
650 
651 void kfd_procfs_del_queue(struct queue *q)
652 {
653 	if (!q)
654 		return;
655 
656 	kobject_del(&q->kobj);
657 	kobject_put(&q->kobj);
658 }
659 
660 int kfd_process_create_wq(void)
661 {
662 	if (!kfd_process_wq)
663 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
664 	if (!kfd_restore_wq)
665 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
666 
667 	if (!kfd_process_wq || !kfd_restore_wq) {
668 		kfd_process_destroy_wq();
669 		return -ENOMEM;
670 	}
671 
672 	return 0;
673 }
674 
675 void kfd_process_destroy_wq(void)
676 {
677 	if (kfd_process_wq) {
678 		destroy_workqueue(kfd_process_wq);
679 		kfd_process_wq = NULL;
680 	}
681 	if (kfd_restore_wq) {
682 		destroy_workqueue(kfd_restore_wq);
683 		kfd_restore_wq = NULL;
684 	}
685 }
686 
687 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
688 			struct kfd_process_device *pdd)
689 {
690 	struct kfd_dev *dev = pdd->dev;
691 
692 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->drm_priv);
693 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, pdd->drm_priv,
694 					       NULL);
695 }
696 
697 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
698  *	This function should be only called right after the process
699  *	is created and when kfd_processes_mutex is still being held
700  *	to avoid concurrency. Because of that exclusiveness, we do
701  *	not need to take p->mutex.
702  */
703 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
704 				   uint64_t gpu_va, uint32_t size,
705 				   uint32_t flags, void **kptr)
706 {
707 	struct kfd_dev *kdev = pdd->dev;
708 	struct kgd_mem *mem = NULL;
709 	int handle;
710 	int err;
711 
712 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
713 						 pdd->drm_priv, &mem, NULL, flags);
714 	if (err)
715 		goto err_alloc_mem;
716 
717 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->drm_priv);
718 	if (err)
719 		goto err_map_mem;
720 
721 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true);
722 	if (err) {
723 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
724 		goto sync_memory_failed;
725 	}
726 
727 	/* Create an obj handle so kfd_process_device_remove_obj_handle
728 	 * will take care of the bo removal when the process finishes.
729 	 * We do not need to take p->mutex, because the process is just
730 	 * created and the ioctls have not had the chance to run.
731 	 */
732 	handle = kfd_process_device_create_obj_handle(pdd, mem);
733 
734 	if (handle < 0) {
735 		err = handle;
736 		goto free_gpuvm;
737 	}
738 
739 	if (kptr) {
740 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd,
741 				(struct kgd_mem *)mem, kptr, NULL);
742 		if (err) {
743 			pr_debug("Map GTT BO to kernel failed\n");
744 			goto free_obj_handle;
745 		}
746 	}
747 
748 	return err;
749 
750 free_obj_handle:
751 	kfd_process_device_remove_obj_handle(pdd, handle);
752 free_gpuvm:
753 sync_memory_failed:
754 	kfd_process_free_gpuvm(mem, pdd);
755 	return err;
756 
757 err_map_mem:
758 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, pdd->drm_priv,
759 					       NULL);
760 err_alloc_mem:
761 	*kptr = NULL;
762 	return err;
763 }
764 
765 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
766  *	process for IB usage The memory reserved is for KFD to submit
767  *	IB to AMDGPU from kernel.  If the memory is reserved
768  *	successfully, ib_kaddr will have the CPU/kernel
769  *	address. Check ib_kaddr before accessing the memory.
770  */
771 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
772 {
773 	struct qcm_process_device *qpd = &pdd->qpd;
774 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
775 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
776 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
777 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
778 	void *kaddr;
779 	int ret;
780 
781 	if (qpd->ib_kaddr || !qpd->ib_base)
782 		return 0;
783 
784 	/* ib_base is only set for dGPU */
785 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
786 				      &kaddr);
787 	if (ret)
788 		return ret;
789 
790 	qpd->ib_kaddr = kaddr;
791 
792 	return 0;
793 }
794 
795 struct kfd_process *kfd_create_process(struct file *filep)
796 {
797 	struct kfd_process *process;
798 	struct task_struct *thread = current;
799 	int ret;
800 
801 	if (!thread->mm)
802 		return ERR_PTR(-EINVAL);
803 
804 	/* Only the pthreads threading model is supported. */
805 	if (thread->group_leader->mm != thread->mm)
806 		return ERR_PTR(-EINVAL);
807 
808 	/*
809 	 * take kfd processes mutex before starting of process creation
810 	 * so there won't be a case where two threads of the same process
811 	 * create two kfd_process structures
812 	 */
813 	mutex_lock(&kfd_processes_mutex);
814 
815 	/* A prior open of /dev/kfd could have already created the process. */
816 	process = find_process(thread);
817 	if (process) {
818 		pr_debug("Process already found\n");
819 	} else {
820 		process = create_process(thread);
821 		if (IS_ERR(process))
822 			goto out;
823 
824 		ret = kfd_process_init_cwsr_apu(process, filep);
825 		if (ret)
826 			goto out_destroy;
827 
828 		if (!procfs.kobj)
829 			goto out;
830 
831 		process->kobj = kfd_alloc_struct(process->kobj);
832 		if (!process->kobj) {
833 			pr_warn("Creating procfs kobject failed");
834 			goto out;
835 		}
836 		ret = kobject_init_and_add(process->kobj, &procfs_type,
837 					   procfs.kobj, "%d",
838 					   (int)process->lead_thread->pid);
839 		if (ret) {
840 			pr_warn("Creating procfs pid directory failed");
841 			kobject_put(process->kobj);
842 			goto out;
843 		}
844 
845 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
846 				      "pasid");
847 
848 		process->kobj_queues = kobject_create_and_add("queues",
849 							process->kobj);
850 		if (!process->kobj_queues)
851 			pr_warn("Creating KFD proc/queues folder failed");
852 
853 		kfd_procfs_add_sysfs_stats(process);
854 		kfd_procfs_add_sysfs_files(process);
855 		kfd_procfs_add_sysfs_counters(process);
856 	}
857 out:
858 	if (!IS_ERR(process))
859 		kref_get(&process->ref);
860 	mutex_unlock(&kfd_processes_mutex);
861 
862 	return process;
863 
864 out_destroy:
865 	hash_del_rcu(&process->kfd_processes);
866 	mutex_unlock(&kfd_processes_mutex);
867 	synchronize_srcu(&kfd_processes_srcu);
868 	/* kfd_process_free_notifier will trigger the cleanup */
869 	mmu_notifier_put(&process->mmu_notifier);
870 	return ERR_PTR(ret);
871 }
872 
873 struct kfd_process *kfd_get_process(const struct task_struct *thread)
874 {
875 	struct kfd_process *process;
876 
877 	if (!thread->mm)
878 		return ERR_PTR(-EINVAL);
879 
880 	/* Only the pthreads threading model is supported. */
881 	if (thread->group_leader->mm != thread->mm)
882 		return ERR_PTR(-EINVAL);
883 
884 	process = find_process(thread);
885 	if (!process)
886 		return ERR_PTR(-EINVAL);
887 
888 	return process;
889 }
890 
891 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
892 {
893 	struct kfd_process *process;
894 
895 	hash_for_each_possible_rcu(kfd_processes_table, process,
896 					kfd_processes, (uintptr_t)mm)
897 		if (process->mm == mm)
898 			return process;
899 
900 	return NULL;
901 }
902 
903 static struct kfd_process *find_process(const struct task_struct *thread)
904 {
905 	struct kfd_process *p;
906 	int idx;
907 
908 	idx = srcu_read_lock(&kfd_processes_srcu);
909 	p = find_process_by_mm(thread->mm);
910 	srcu_read_unlock(&kfd_processes_srcu, idx);
911 
912 	return p;
913 }
914 
915 void kfd_unref_process(struct kfd_process *p)
916 {
917 	kref_put(&p->ref, kfd_process_ref_release);
918 }
919 
920 
921 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
922 {
923 	struct kfd_process *p = pdd->process;
924 	void *mem;
925 	int id;
926 	int i;
927 
928 	/*
929 	 * Remove all handles from idr and release appropriate
930 	 * local memory object
931 	 */
932 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
933 
934 		for (i = 0; i < p->n_pdds; i++) {
935 			struct kfd_process_device *peer_pdd = p->pdds[i];
936 
937 			if (!peer_pdd->drm_priv)
938 				continue;
939 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
940 				peer_pdd->dev->kgd, mem, peer_pdd->drm_priv);
941 		}
942 
943 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem,
944 						       pdd->drm_priv, NULL);
945 		kfd_process_device_remove_obj_handle(pdd, id);
946 	}
947 }
948 
949 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
950 {
951 	int i;
952 
953 	for (i = 0; i < p->n_pdds; i++)
954 		kfd_process_device_free_bos(p->pdds[i]);
955 }
956 
957 static void kfd_process_destroy_pdds(struct kfd_process *p)
958 {
959 	int i;
960 
961 	for (i = 0; i < p->n_pdds; i++) {
962 		struct kfd_process_device *pdd = p->pdds[i];
963 
964 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
965 				pdd->dev->id, p->pasid);
966 
967 		if (pdd->drm_file) {
968 			amdgpu_amdkfd_gpuvm_release_process_vm(
969 					pdd->dev->kgd, pdd->drm_priv);
970 			fput(pdd->drm_file);
971 		}
972 
973 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
974 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
975 				get_order(KFD_CWSR_TBA_TMA_SIZE));
976 
977 		kfree(pdd->qpd.doorbell_bitmap);
978 		idr_destroy(&pdd->alloc_idr);
979 
980 		kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
981 
982 		/*
983 		 * before destroying pdd, make sure to report availability
984 		 * for auto suspend
985 		 */
986 		if (pdd->runtime_inuse) {
987 			pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
988 			pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
989 			pdd->runtime_inuse = false;
990 		}
991 
992 		kfree(pdd);
993 		p->pdds[i] = NULL;
994 	}
995 	p->n_pdds = 0;
996 }
997 
998 static void kfd_process_remove_sysfs(struct kfd_process *p)
999 {
1000 	struct kfd_process_device *pdd;
1001 	int i;
1002 
1003 	if (!p->kobj)
1004 		return;
1005 
1006 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1007 	kobject_del(p->kobj_queues);
1008 	kobject_put(p->kobj_queues);
1009 	p->kobj_queues = NULL;
1010 
1011 	for (i = 0; i < p->n_pdds; i++) {
1012 		pdd = p->pdds[i];
1013 
1014 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1015 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1016 
1017 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1018 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1019 			sysfs_remove_file(pdd->kobj_stats,
1020 					  &pdd->attr_cu_occupancy);
1021 		kobject_del(pdd->kobj_stats);
1022 		kobject_put(pdd->kobj_stats);
1023 		pdd->kobj_stats = NULL;
1024 	}
1025 
1026 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1027 		pdd = p->pdds[i];
1028 
1029 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1030 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1031 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1032 		kobject_del(pdd->kobj_counters);
1033 		kobject_put(pdd->kobj_counters);
1034 		pdd->kobj_counters = NULL;
1035 	}
1036 
1037 	kobject_del(p->kobj);
1038 	kobject_put(p->kobj);
1039 	p->kobj = NULL;
1040 }
1041 
1042 /* No process locking is needed in this function, because the process
1043  * is not findable any more. We must assume that no other thread is
1044  * using it any more, otherwise we couldn't safely free the process
1045  * structure in the end.
1046  */
1047 static void kfd_process_wq_release(struct work_struct *work)
1048 {
1049 	struct kfd_process *p = container_of(work, struct kfd_process,
1050 					     release_work);
1051 	kfd_process_remove_sysfs(p);
1052 	kfd_iommu_unbind_process(p);
1053 
1054 	kfd_process_free_outstanding_kfd_bos(p);
1055 	svm_range_list_fini(p);
1056 
1057 	kfd_process_destroy_pdds(p);
1058 	dma_fence_put(p->ef);
1059 
1060 	kfd_event_free_process(p);
1061 
1062 	kfd_pasid_free(p->pasid);
1063 	mutex_destroy(&p->mutex);
1064 
1065 	put_task_struct(p->lead_thread);
1066 
1067 	kfree(p);
1068 }
1069 
1070 static void kfd_process_ref_release(struct kref *ref)
1071 {
1072 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1073 
1074 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1075 	queue_work(kfd_process_wq, &p->release_work);
1076 }
1077 
1078 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1079 {
1080 	int idx = srcu_read_lock(&kfd_processes_srcu);
1081 	struct kfd_process *p = find_process_by_mm(mm);
1082 
1083 	srcu_read_unlock(&kfd_processes_srcu, idx);
1084 
1085 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1086 }
1087 
1088 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1089 {
1090 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1091 }
1092 
1093 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1094 					struct mm_struct *mm)
1095 {
1096 	struct kfd_process *p;
1097 	int i;
1098 
1099 	/*
1100 	 * The kfd_process structure can not be free because the
1101 	 * mmu_notifier srcu is read locked
1102 	 */
1103 	p = container_of(mn, struct kfd_process, mmu_notifier);
1104 	if (WARN_ON(p->mm != mm))
1105 		return;
1106 
1107 	mutex_lock(&kfd_processes_mutex);
1108 	hash_del_rcu(&p->kfd_processes);
1109 	mutex_unlock(&kfd_processes_mutex);
1110 	synchronize_srcu(&kfd_processes_srcu);
1111 
1112 	cancel_delayed_work_sync(&p->eviction_work);
1113 	cancel_delayed_work_sync(&p->restore_work);
1114 	cancel_delayed_work_sync(&p->svms.restore_work);
1115 
1116 	mutex_lock(&p->mutex);
1117 
1118 	/* Iterate over all process device data structures and if the
1119 	 * pdd is in debug mode, we should first force unregistration,
1120 	 * then we will be able to destroy the queues
1121 	 */
1122 	for (i = 0; i < p->n_pdds; i++) {
1123 		struct kfd_dev *dev = p->pdds[i]->dev;
1124 
1125 		mutex_lock(kfd_get_dbgmgr_mutex());
1126 		if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
1127 			if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
1128 				kfd_dbgmgr_destroy(dev->dbgmgr);
1129 				dev->dbgmgr = NULL;
1130 			}
1131 		}
1132 		mutex_unlock(kfd_get_dbgmgr_mutex());
1133 	}
1134 
1135 	kfd_process_dequeue_from_all_devices(p);
1136 	pqm_uninit(&p->pqm);
1137 
1138 	/* Indicate to other users that MM is no longer valid */
1139 	p->mm = NULL;
1140 	/* Signal the eviction fence after user mode queues are
1141 	 * destroyed. This allows any BOs to be freed without
1142 	 * triggering pointless evictions or waiting for fences.
1143 	 */
1144 	dma_fence_signal(p->ef);
1145 
1146 	mutex_unlock(&p->mutex);
1147 
1148 	mmu_notifier_put(&p->mmu_notifier);
1149 }
1150 
1151 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1152 	.release = kfd_process_notifier_release,
1153 	.alloc_notifier = kfd_process_alloc_notifier,
1154 	.free_notifier = kfd_process_free_notifier,
1155 };
1156 
1157 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1158 {
1159 	unsigned long  offset;
1160 	int i;
1161 
1162 	for (i = 0; i < p->n_pdds; i++) {
1163 		struct kfd_dev *dev = p->pdds[i]->dev;
1164 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1165 
1166 		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1167 			continue;
1168 
1169 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1170 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1171 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1172 			MAP_SHARED, offset);
1173 
1174 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1175 			int err = qpd->tba_addr;
1176 
1177 			pr_err("Failure to set tba address. error %d.\n", err);
1178 			qpd->tba_addr = 0;
1179 			qpd->cwsr_kaddr = NULL;
1180 			return err;
1181 		}
1182 
1183 		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1184 
1185 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1186 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1187 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1188 	}
1189 
1190 	return 0;
1191 }
1192 
1193 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1194 {
1195 	struct kfd_dev *dev = pdd->dev;
1196 	struct qcm_process_device *qpd = &pdd->qpd;
1197 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1198 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1199 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1200 	void *kaddr;
1201 	int ret;
1202 
1203 	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1204 		return 0;
1205 
1206 	/* cwsr_base is only set for dGPU */
1207 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1208 				      KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
1209 	if (ret)
1210 		return ret;
1211 
1212 	qpd->cwsr_kaddr = kaddr;
1213 	qpd->tba_addr = qpd->cwsr_base;
1214 
1215 	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1216 
1217 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1218 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1219 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1220 
1221 	return 0;
1222 }
1223 
1224 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1225 				  uint64_t tba_addr,
1226 				  uint64_t tma_addr)
1227 {
1228 	if (qpd->cwsr_kaddr) {
1229 		/* KFD trap handler is bound, record as second-level TBA/TMA
1230 		 * in first-level TMA. First-level trap will jump to second.
1231 		 */
1232 		uint64_t *tma =
1233 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1234 		tma[0] = tba_addr;
1235 		tma[1] = tma_addr;
1236 	} else {
1237 		/* No trap handler bound, bind as first-level TBA/TMA. */
1238 		qpd->tba_addr = tba_addr;
1239 		qpd->tma_addr = tma_addr;
1240 	}
1241 }
1242 
1243 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1244 {
1245 	int i;
1246 
1247 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1248 	 * boot time retry setting. Mixing processes with different
1249 	 * XNACK/retry settings can hang the GPU.
1250 	 *
1251 	 * Different GPUs can have different noretry settings depending
1252 	 * on HW bugs or limitations. We need to find at least one
1253 	 * XNACK mode for this process that's compatible with all GPUs.
1254 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1255 	 * built for XNACK-off. On GFXv9 it may perform slower.
1256 	 *
1257 	 * Therefore applications built for XNACK-off can always be
1258 	 * supported and will be our fallback if any GPU does not
1259 	 * support retry.
1260 	 */
1261 	for (i = 0; i < p->n_pdds; i++) {
1262 		struct kfd_dev *dev = p->pdds[i]->dev;
1263 
1264 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1265 		 * support the SVM APIs and don't need to be considered
1266 		 * for the XNACK mode selection.
1267 		 */
1268 		if (dev->device_info->asic_family < CHIP_VEGA10)
1269 			continue;
1270 		/* Aldebaran can always support XNACK because it can support
1271 		 * per-process XNACK mode selection. But let the dev->noretry
1272 		 * setting still influence the default XNACK mode.
1273 		 */
1274 		if (supported &&
1275 		    dev->device_info->asic_family == CHIP_ALDEBARAN)
1276 			continue;
1277 
1278 		/* GFXv10 and later GPUs do not support shader preemption
1279 		 * during page faults. This can lead to poor QoS for queue
1280 		 * management and memory-manager-related preemptions or
1281 		 * even deadlocks.
1282 		 */
1283 		if (dev->device_info->asic_family >= CHIP_NAVI10)
1284 			return false;
1285 
1286 		if (dev->noretry)
1287 			return false;
1288 	}
1289 
1290 	return true;
1291 }
1292 
1293 /*
1294  * On return the kfd_process is fully operational and will be freed when the
1295  * mm is released
1296  */
1297 static struct kfd_process *create_process(const struct task_struct *thread)
1298 {
1299 	struct kfd_process *process;
1300 	struct mmu_notifier *mn;
1301 	int err = -ENOMEM;
1302 
1303 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1304 	if (!process)
1305 		goto err_alloc_process;
1306 
1307 	kref_init(&process->ref);
1308 	mutex_init(&process->mutex);
1309 	process->mm = thread->mm;
1310 	process->lead_thread = thread->group_leader;
1311 	process->n_pdds = 0;
1312 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1313 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1314 	process->last_restore_timestamp = get_jiffies_64();
1315 	kfd_event_init_process(process);
1316 	process->is_32bit_user_mode = in_compat_syscall();
1317 
1318 	process->pasid = kfd_pasid_alloc();
1319 	if (process->pasid == 0)
1320 		goto err_alloc_pasid;
1321 
1322 	err = pqm_init(&process->pqm, process);
1323 	if (err != 0)
1324 		goto err_process_pqm_init;
1325 
1326 	/* init process apertures*/
1327 	err = kfd_init_apertures(process);
1328 	if (err != 0)
1329 		goto err_init_apertures;
1330 
1331 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1332 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1333 
1334 	err = svm_range_list_init(process);
1335 	if (err)
1336 		goto err_init_svm_range_list;
1337 
1338 	/* alloc_notifier needs to find the process in the hash table */
1339 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1340 			(uintptr_t)process->mm);
1341 
1342 	/* MMU notifier registration must be the last call that can fail
1343 	 * because after this point we cannot unwind the process creation.
1344 	 * After this point, mmu_notifier_put will trigger the cleanup by
1345 	 * dropping the last process reference in the free_notifier.
1346 	 */
1347 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1348 	if (IS_ERR(mn)) {
1349 		err = PTR_ERR(mn);
1350 		goto err_register_notifier;
1351 	}
1352 	BUG_ON(mn != &process->mmu_notifier);
1353 
1354 	get_task_struct(process->lead_thread);
1355 
1356 	return process;
1357 
1358 err_register_notifier:
1359 	hash_del_rcu(&process->kfd_processes);
1360 	svm_range_list_fini(process);
1361 err_init_svm_range_list:
1362 	kfd_process_free_outstanding_kfd_bos(process);
1363 	kfd_process_destroy_pdds(process);
1364 err_init_apertures:
1365 	pqm_uninit(&process->pqm);
1366 err_process_pqm_init:
1367 	kfd_pasid_free(process->pasid);
1368 err_alloc_pasid:
1369 	mutex_destroy(&process->mutex);
1370 	kfree(process);
1371 err_alloc_process:
1372 	return ERR_PTR(err);
1373 }
1374 
1375 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1376 			struct kfd_dev *dev)
1377 {
1378 	unsigned int i;
1379 	int range_start = dev->shared_resources.non_cp_doorbells_start;
1380 	int range_end = dev->shared_resources.non_cp_doorbells_end;
1381 
1382 	if (!KFD_IS_SOC15(dev->device_info->asic_family))
1383 		return 0;
1384 
1385 	qpd->doorbell_bitmap =
1386 		kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1387 				     BITS_PER_BYTE), GFP_KERNEL);
1388 	if (!qpd->doorbell_bitmap)
1389 		return -ENOMEM;
1390 
1391 	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1392 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1393 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1394 			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1395 			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1396 
1397 	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1398 		if (i >= range_start && i <= range_end) {
1399 			set_bit(i, qpd->doorbell_bitmap);
1400 			set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1401 				qpd->doorbell_bitmap);
1402 		}
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1409 							struct kfd_process *p)
1410 {
1411 	int i;
1412 
1413 	for (i = 0; i < p->n_pdds; i++)
1414 		if (p->pdds[i]->dev == dev)
1415 			return p->pdds[i];
1416 
1417 	return NULL;
1418 }
1419 
1420 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1421 							struct kfd_process *p)
1422 {
1423 	struct kfd_process_device *pdd = NULL;
1424 
1425 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1426 		return NULL;
1427 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1428 	if (!pdd)
1429 		return NULL;
1430 
1431 	if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
1432 		pr_err("Failed to alloc doorbell for pdd\n");
1433 		goto err_free_pdd;
1434 	}
1435 
1436 	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1437 		pr_err("Failed to init doorbell for process\n");
1438 		goto err_free_pdd;
1439 	}
1440 
1441 	pdd->dev = dev;
1442 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1443 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1444 	pdd->qpd.dqm = dev->dqm;
1445 	pdd->qpd.pqm = &p->pqm;
1446 	pdd->qpd.evicted = 0;
1447 	pdd->qpd.mapped_gws_queue = false;
1448 	pdd->process = p;
1449 	pdd->bound = PDD_UNBOUND;
1450 	pdd->already_dequeued = false;
1451 	pdd->runtime_inuse = false;
1452 	pdd->vram_usage = 0;
1453 	pdd->sdma_past_activity_counter = 0;
1454 	atomic64_set(&pdd->evict_duration_counter, 0);
1455 	p->pdds[p->n_pdds++] = pdd;
1456 
1457 	/* Init idr used for memory handle translation */
1458 	idr_init(&pdd->alloc_idr);
1459 
1460 	return pdd;
1461 
1462 err_free_pdd:
1463 	kfree(pdd);
1464 	return NULL;
1465 }
1466 
1467 /**
1468  * kfd_process_device_init_vm - Initialize a VM for a process-device
1469  *
1470  * @pdd: The process-device
1471  * @drm_file: Optional pointer to a DRM file descriptor
1472  *
1473  * If @drm_file is specified, it will be used to acquire the VM from
1474  * that file descriptor. If successful, the @pdd takes ownership of
1475  * the file descriptor.
1476  *
1477  * If @drm_file is NULL, a new VM is created.
1478  *
1479  * Returns 0 on success, -errno on failure.
1480  */
1481 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1482 			       struct file *drm_file)
1483 {
1484 	struct kfd_process *p;
1485 	struct kfd_dev *dev;
1486 	int ret;
1487 
1488 	if (!drm_file)
1489 		return -EINVAL;
1490 
1491 	if (pdd->drm_priv)
1492 		return -EBUSY;
1493 
1494 	p = pdd->process;
1495 	dev = pdd->dev;
1496 
1497 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1498 		dev->kgd, drm_file, p->pasid,
1499 		&p->kgd_process_info, &p->ef);
1500 	if (ret) {
1501 		pr_err("Failed to create process VM object\n");
1502 		return ret;
1503 	}
1504 	pdd->drm_priv = drm_file->private_data;
1505 
1506 	ret = kfd_process_device_reserve_ib_mem(pdd);
1507 	if (ret)
1508 		goto err_reserve_ib_mem;
1509 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1510 	if (ret)
1511 		goto err_init_cwsr;
1512 
1513 	pdd->drm_file = drm_file;
1514 
1515 	return 0;
1516 
1517 err_init_cwsr:
1518 err_reserve_ib_mem:
1519 	kfd_process_device_free_bos(pdd);
1520 	pdd->drm_priv = NULL;
1521 
1522 	return ret;
1523 }
1524 
1525 /*
1526  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1527  * to the device.
1528  * Unbinding occurs when the process dies or the device is removed.
1529  *
1530  * Assumes that the process lock is held.
1531  */
1532 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1533 							struct kfd_process *p)
1534 {
1535 	struct kfd_process_device *pdd;
1536 	int err;
1537 
1538 	pdd = kfd_get_process_device_data(dev, p);
1539 	if (!pdd) {
1540 		pr_err("Process device data doesn't exist\n");
1541 		return ERR_PTR(-ENOMEM);
1542 	}
1543 
1544 	if (!pdd->drm_priv)
1545 		return ERR_PTR(-ENODEV);
1546 
1547 	/*
1548 	 * signal runtime-pm system to auto resume and prevent
1549 	 * further runtime suspend once device pdd is created until
1550 	 * pdd is destroyed.
1551 	 */
1552 	if (!pdd->runtime_inuse) {
1553 		err = pm_runtime_get_sync(dev->ddev->dev);
1554 		if (err < 0) {
1555 			pm_runtime_put_autosuspend(dev->ddev->dev);
1556 			return ERR_PTR(err);
1557 		}
1558 	}
1559 
1560 	err = kfd_iommu_bind_process_to_device(pdd);
1561 	if (err)
1562 		goto out;
1563 
1564 	/*
1565 	 * make sure that runtime_usage counter is incremented just once
1566 	 * per pdd
1567 	 */
1568 	pdd->runtime_inuse = true;
1569 
1570 	return pdd;
1571 
1572 out:
1573 	/* balance runpm reference count and exit with error */
1574 	if (!pdd->runtime_inuse) {
1575 		pm_runtime_mark_last_busy(dev->ddev->dev);
1576 		pm_runtime_put_autosuspend(dev->ddev->dev);
1577 	}
1578 
1579 	return ERR_PTR(err);
1580 }
1581 
1582 /* Create specific handle mapped to mem from process local memory idr
1583  * Assumes that the process lock is held.
1584  */
1585 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1586 					void *mem)
1587 {
1588 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1589 }
1590 
1591 /* Translate specific handle from process local memory idr
1592  * Assumes that the process lock is held.
1593  */
1594 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1595 					int handle)
1596 {
1597 	if (handle < 0)
1598 		return NULL;
1599 
1600 	return idr_find(&pdd->alloc_idr, handle);
1601 }
1602 
1603 /* Remove specific handle from process local memory idr
1604  * Assumes that the process lock is held.
1605  */
1606 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1607 					int handle)
1608 {
1609 	if (handle >= 0)
1610 		idr_remove(&pdd->alloc_idr, handle);
1611 }
1612 
1613 /* This increments the process->ref counter. */
1614 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1615 {
1616 	struct kfd_process *p, *ret_p = NULL;
1617 	unsigned int temp;
1618 
1619 	int idx = srcu_read_lock(&kfd_processes_srcu);
1620 
1621 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1622 		if (p->pasid == pasid) {
1623 			kref_get(&p->ref);
1624 			ret_p = p;
1625 			break;
1626 		}
1627 	}
1628 
1629 	srcu_read_unlock(&kfd_processes_srcu, idx);
1630 
1631 	return ret_p;
1632 }
1633 
1634 /* This increments the process->ref counter. */
1635 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1636 {
1637 	struct kfd_process *p;
1638 
1639 	int idx = srcu_read_lock(&kfd_processes_srcu);
1640 
1641 	p = find_process_by_mm(mm);
1642 	if (p)
1643 		kref_get(&p->ref);
1644 
1645 	srcu_read_unlock(&kfd_processes_srcu, idx);
1646 
1647 	return p;
1648 }
1649 
1650 /* kfd_process_evict_queues - Evict all user queues of a process
1651  *
1652  * Eviction is reference-counted per process-device. This means multiple
1653  * evictions from different sources can be nested safely.
1654  */
1655 int kfd_process_evict_queues(struct kfd_process *p)
1656 {
1657 	int r = 0;
1658 	int i;
1659 	unsigned int n_evicted = 0;
1660 
1661 	for (i = 0; i < p->n_pdds; i++) {
1662 		struct kfd_process_device *pdd = p->pdds[i];
1663 
1664 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1665 							    &pdd->qpd);
1666 		if (r) {
1667 			pr_err("Failed to evict process queues\n");
1668 			goto fail;
1669 		}
1670 		n_evicted++;
1671 	}
1672 
1673 	return r;
1674 
1675 fail:
1676 	/* To keep state consistent, roll back partial eviction by
1677 	 * restoring queues
1678 	 */
1679 	for (i = 0; i < p->n_pdds; i++) {
1680 		struct kfd_process_device *pdd = p->pdds[i];
1681 
1682 		if (n_evicted == 0)
1683 			break;
1684 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1685 							      &pdd->qpd))
1686 			pr_err("Failed to restore queues\n");
1687 
1688 		n_evicted--;
1689 	}
1690 
1691 	return r;
1692 }
1693 
1694 /* kfd_process_restore_queues - Restore all user queues of a process */
1695 int kfd_process_restore_queues(struct kfd_process *p)
1696 {
1697 	int r, ret = 0;
1698 	int i;
1699 
1700 	for (i = 0; i < p->n_pdds; i++) {
1701 		struct kfd_process_device *pdd = p->pdds[i];
1702 
1703 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1704 							      &pdd->qpd);
1705 		if (r) {
1706 			pr_err("Failed to restore process queues\n");
1707 			if (!ret)
1708 				ret = r;
1709 		}
1710 	}
1711 
1712 	return ret;
1713 }
1714 
1715 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1716 {
1717 	int i;
1718 
1719 	for (i = 0; i < p->n_pdds; i++)
1720 		if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id)
1721 			return i;
1722 	return -EINVAL;
1723 }
1724 
1725 int
1726 kfd_process_gpuid_from_kgd(struct kfd_process *p, struct amdgpu_device *adev,
1727 			   uint32_t *gpuid, uint32_t *gpuidx)
1728 {
1729 	struct kgd_dev *kgd = (struct kgd_dev *)adev;
1730 	int i;
1731 
1732 	for (i = 0; i < p->n_pdds; i++)
1733 		if (p->pdds[i] && p->pdds[i]->dev->kgd == kgd) {
1734 			*gpuid = p->pdds[i]->dev->id;
1735 			*gpuidx = i;
1736 			return 0;
1737 		}
1738 	return -EINVAL;
1739 }
1740 
1741 static void evict_process_worker(struct work_struct *work)
1742 {
1743 	int ret;
1744 	struct kfd_process *p;
1745 	struct delayed_work *dwork;
1746 
1747 	dwork = to_delayed_work(work);
1748 
1749 	/* Process termination destroys this worker thread. So during the
1750 	 * lifetime of this thread, kfd_process p will be valid
1751 	 */
1752 	p = container_of(dwork, struct kfd_process, eviction_work);
1753 	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1754 		  "Eviction fence mismatch\n");
1755 
1756 	/* Narrow window of overlap between restore and evict work
1757 	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1758 	 * unreserves KFD BOs, it is possible to evicted again. But
1759 	 * restore has few more steps of finish. So lets wait for any
1760 	 * previous restore work to complete
1761 	 */
1762 	flush_delayed_work(&p->restore_work);
1763 
1764 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1765 	ret = kfd_process_evict_queues(p);
1766 	if (!ret) {
1767 		dma_fence_signal(p->ef);
1768 		dma_fence_put(p->ef);
1769 		p->ef = NULL;
1770 		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1771 				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1772 
1773 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1774 	} else
1775 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1776 }
1777 
1778 static void restore_process_worker(struct work_struct *work)
1779 {
1780 	struct delayed_work *dwork;
1781 	struct kfd_process *p;
1782 	int ret = 0;
1783 
1784 	dwork = to_delayed_work(work);
1785 
1786 	/* Process termination destroys this worker thread. So during the
1787 	 * lifetime of this thread, kfd_process p will be valid
1788 	 */
1789 	p = container_of(dwork, struct kfd_process, restore_work);
1790 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1791 
1792 	/* Setting last_restore_timestamp before successful restoration.
1793 	 * Otherwise this would have to be set by KGD (restore_process_bos)
1794 	 * before KFD BOs are unreserved. If not, the process can be evicted
1795 	 * again before the timestamp is set.
1796 	 * If restore fails, the timestamp will be set again in the next
1797 	 * attempt. This would mean that the minimum GPU quanta would be
1798 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1799 	 * functions)
1800 	 */
1801 
1802 	p->last_restore_timestamp = get_jiffies_64();
1803 	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1804 						     &p->ef);
1805 	if (ret) {
1806 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1807 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1808 		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1809 				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1810 		WARN(!ret, "reschedule restore work failed\n");
1811 		return;
1812 	}
1813 
1814 	ret = kfd_process_restore_queues(p);
1815 	if (!ret)
1816 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1817 	else
1818 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1819 }
1820 
1821 void kfd_suspend_all_processes(void)
1822 {
1823 	struct kfd_process *p;
1824 	unsigned int temp;
1825 	int idx = srcu_read_lock(&kfd_processes_srcu);
1826 
1827 	WARN(debug_evictions, "Evicting all processes");
1828 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1829 		cancel_delayed_work_sync(&p->eviction_work);
1830 		cancel_delayed_work_sync(&p->restore_work);
1831 
1832 		if (kfd_process_evict_queues(p))
1833 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1834 		dma_fence_signal(p->ef);
1835 		dma_fence_put(p->ef);
1836 		p->ef = NULL;
1837 	}
1838 	srcu_read_unlock(&kfd_processes_srcu, idx);
1839 }
1840 
1841 int kfd_resume_all_processes(void)
1842 {
1843 	struct kfd_process *p;
1844 	unsigned int temp;
1845 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1846 
1847 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1848 		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1849 			pr_err("Restore process %d failed during resume\n",
1850 			       p->pasid);
1851 			ret = -EFAULT;
1852 		}
1853 	}
1854 	srcu_read_unlock(&kfd_processes_srcu, idx);
1855 	return ret;
1856 }
1857 
1858 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1859 			  struct vm_area_struct *vma)
1860 {
1861 	struct kfd_process_device *pdd;
1862 	struct qcm_process_device *qpd;
1863 
1864 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1865 		pr_err("Incorrect CWSR mapping size.\n");
1866 		return -EINVAL;
1867 	}
1868 
1869 	pdd = kfd_get_process_device_data(dev, process);
1870 	if (!pdd)
1871 		return -EINVAL;
1872 	qpd = &pdd->qpd;
1873 
1874 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1875 					get_order(KFD_CWSR_TBA_TMA_SIZE));
1876 	if (!qpd->cwsr_kaddr) {
1877 		pr_err("Error allocating per process CWSR buffer.\n");
1878 		return -ENOMEM;
1879 	}
1880 
1881 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1882 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1883 	/* Mapping pages to user process */
1884 	return remap_pfn_range(vma, vma->vm_start,
1885 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1886 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1887 }
1888 
1889 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1890 {
1891 	struct kfd_dev *dev = pdd->dev;
1892 
1893 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1894 		/* Nothing to flush until a VMID is assigned, which
1895 		 * only happens when the first queue is created.
1896 		 */
1897 		if (pdd->qpd.vmid)
1898 			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd,
1899 							pdd->qpd.vmid);
1900 	} else {
1901 		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd,
1902 					pdd->process->pasid, type);
1903 	}
1904 }
1905 
1906 #if defined(CONFIG_DEBUG_FS)
1907 
1908 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1909 {
1910 	struct kfd_process *p;
1911 	unsigned int temp;
1912 	int r = 0;
1913 
1914 	int idx = srcu_read_lock(&kfd_processes_srcu);
1915 
1916 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1917 		seq_printf(m, "Process %d PASID 0x%x:\n",
1918 			   p->lead_thread->tgid, p->pasid);
1919 
1920 		mutex_lock(&p->mutex);
1921 		r = pqm_debugfs_mqds(m, &p->pqm);
1922 		mutex_unlock(&p->mutex);
1923 
1924 		if (r)
1925 			break;
1926 	}
1927 
1928 	srcu_read_unlock(&kfd_processes_srcu, idx);
1929 
1930 	return r;
1931 }
1932 
1933 #endif
1934 
1935