1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef KFD_PRIV_H_INCLUDED 25 #define KFD_PRIV_H_INCLUDED 26 27 #include <linux/hashtable.h> 28 #include <linux/mmu_notifier.h> 29 #include <linux/mutex.h> 30 #include <linux/types.h> 31 #include <linux/atomic.h> 32 #include <linux/workqueue.h> 33 #include <linux/spinlock.h> 34 #include <linux/kfd_ioctl.h> 35 #include <linux/idr.h> 36 #include <linux/kfifo.h> 37 #include <linux/seq_file.h> 38 #include <linux/kref.h> 39 #include <linux/sysfs.h> 40 #include <linux/device_cgroup.h> 41 #include <drm/drm_file.h> 42 #include <drm/drm_drv.h> 43 #include <drm/drm_device.h> 44 #include <drm/drm_ioctl.h> 45 #include <kgd_kfd_interface.h> 46 #include <linux/swap.h> 47 48 #include "amd_shared.h" 49 #include "amdgpu.h" 50 51 #define KFD_MAX_RING_ENTRY_SIZE 8 52 53 #define KFD_SYSFS_FILE_MODE 0444 54 55 /* GPU ID hash width in bits */ 56 #define KFD_GPU_ID_HASH_WIDTH 16 57 58 /* Use upper bits of mmap offset to store KFD driver specific information. 59 * BITS[63:62] - Encode MMAP type 60 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 61 * BITS[45:0] - MMAP offset value 62 * 63 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 64 * defines are w.r.t to PAGE_SIZE 65 */ 66 #define KFD_MMAP_TYPE_SHIFT 62 67 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 68 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 69 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 70 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 71 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 72 73 #define KFD_MMAP_GPU_ID_SHIFT 46 74 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 75 << KFD_MMAP_GPU_ID_SHIFT) 76 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 77 & KFD_MMAP_GPU_ID_MASK) 78 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 79 >> KFD_MMAP_GPU_ID_SHIFT) 80 81 /* 82 * When working with cp scheduler we should assign the HIQ manually or via 83 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 84 * definitions for Kaveri. In Kaveri only the first ME queues participates 85 * in the cp scheduling taking that in mind we set the HIQ slot in the 86 * second ME. 87 */ 88 #define KFD_CIK_HIQ_PIPE 4 89 #define KFD_CIK_HIQ_QUEUE 0 90 91 /* Macro for allocating structures */ 92 #define kfd_alloc_struct(ptr_to_struct) \ 93 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 94 95 #define KFD_MAX_NUM_OF_PROCESSES 512 96 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 97 98 /* 99 * Size of the per-process TBA+TMA buffer: 2 pages 100 * 101 * The first page is the TBA used for the CWSR ISA code. The second 102 * page is used as TMA for user-mode trap handler setup in daisy-chain mode. 103 */ 104 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 105 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 106 107 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 108 (KFD_MAX_NUM_OF_PROCESSES * \ 109 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 110 111 #define KFD_KERNEL_QUEUE_SIZE 2048 112 113 #define KFD_UNMAP_LATENCY_MS (4000) 114 115 /* 116 * 512 = 0x200 117 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 118 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 119 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 120 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 121 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 122 */ 123 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 124 125 /** 126 * enum kfd_ioctl_flags - KFD ioctl flags 127 * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how 128 * userspace can use a given ioctl. 129 */ 130 enum kfd_ioctl_flags { 131 /* 132 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE: 133 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially 134 * perform privileged operations and load arbitrary data into MQDs and 135 * eventually HQD registers when the queue is mapped by HWS. In order to 136 * prevent this we should perform additional security checks. 137 * 138 * This is equivalent to callers with the CHECKPOINT_RESTORE capability. 139 * 140 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE, 141 * we also allow ioctls with SYS_ADMIN capability. 142 */ 143 KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0), 144 }; 145 /* 146 * Kernel module parameter to specify maximum number of supported queues per 147 * device 148 */ 149 extern int max_num_of_queues_per_device; 150 151 152 /* Kernel module parameter to specify the scheduling policy */ 153 extern int sched_policy; 154 155 /* 156 * Kernel module parameter to specify the maximum process 157 * number per HW scheduler 158 */ 159 extern int hws_max_conc_proc; 160 161 extern int cwsr_enable; 162 163 /* 164 * Kernel module parameter to specify whether to send sigterm to HSA process on 165 * unhandled exception 166 */ 167 extern int send_sigterm; 168 169 /* 170 * This kernel module is used to simulate large bar machine on non-large bar 171 * enabled machines. 172 */ 173 extern int debug_largebar; 174 175 /* 176 * Ignore CRAT table during KFD initialization, can be used to work around 177 * broken CRAT tables on some AMD systems 178 */ 179 extern int ignore_crat; 180 181 /* Set sh_mem_config.retry_disable on GFX v9 */ 182 extern int amdgpu_noretry; 183 184 /* Halt if HWS hang is detected */ 185 extern int halt_if_hws_hang; 186 187 /* Whether MEC FW support GWS barriers */ 188 extern bool hws_gws_support; 189 190 /* Queue preemption timeout in ms */ 191 extern int queue_preemption_timeout_ms; 192 193 /* 194 * Don't evict process queues on vm fault 195 */ 196 extern int amdgpu_no_queue_eviction_on_vm_fault; 197 198 /* Enable eviction debug messages */ 199 extern bool debug_evictions; 200 201 enum cache_policy { 202 cache_policy_coherent, 203 cache_policy_noncoherent 204 }; 205 206 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0]) 207 #define KFD_IS_SOC15(dev) ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1))) 208 209 struct kfd_event_interrupt_class { 210 bool (*interrupt_isr)(struct kfd_dev *dev, 211 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 212 bool *patched_flag); 213 void (*interrupt_wq)(struct kfd_dev *dev, 214 const uint32_t *ih_ring_entry); 215 }; 216 217 struct kfd_device_info { 218 uint32_t gfx_target_version; 219 const struct kfd_event_interrupt_class *event_interrupt_class; 220 unsigned int max_pasid_bits; 221 unsigned int max_no_of_hqd; 222 unsigned int doorbell_size; 223 size_t ih_ring_entry_size; 224 uint8_t num_of_watch_points; 225 uint16_t mqd_size_aligned; 226 bool supports_cwsr; 227 bool needs_iommu_device; 228 bool needs_pci_atomics; 229 uint32_t no_atomic_fw_version; 230 unsigned int num_sdma_queues_per_engine; 231 unsigned int num_reserved_sdma_queues_per_engine; 232 uint64_t reserved_sdma_queues_bitmap; 233 }; 234 235 unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev); 236 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev); 237 238 struct kfd_mem_obj { 239 uint32_t range_start; 240 uint32_t range_end; 241 uint64_t gpu_addr; 242 uint32_t *cpu_ptr; 243 void *gtt_mem; 244 }; 245 246 struct kfd_vmid_info { 247 uint32_t first_vmid_kfd; 248 uint32_t last_vmid_kfd; 249 uint32_t vmid_num_kfd; 250 }; 251 252 struct kfd_dev { 253 struct amdgpu_device *adev; 254 255 struct kfd_device_info device_info; 256 struct pci_dev *pdev; 257 struct drm_device *ddev; 258 259 unsigned int id; /* topology stub index */ 260 261 phys_addr_t doorbell_base; /* Start of actual doorbells used by 262 * KFD. It is aligned for mapping 263 * into user mode 264 */ 265 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI 266 * doorbell BAR to the first KFD 267 * doorbell in dwords. GFX reserves 268 * the segment before this offset. 269 */ 270 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 271 * page used by kernel queue 272 */ 273 274 struct kgd2kfd_shared_resources shared_resources; 275 struct kfd_vmid_info vm_info; 276 struct kfd_local_mem_info local_mem_info; 277 278 const struct kfd2kgd_calls *kfd2kgd; 279 struct mutex doorbell_mutex; 280 DECLARE_BITMAP(doorbell_available_index, 281 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 282 283 void *gtt_mem; 284 uint64_t gtt_start_gpu_addr; 285 void *gtt_start_cpu_ptr; 286 void *gtt_sa_bitmap; 287 struct mutex gtt_sa_lock; 288 unsigned int gtt_sa_chunk_size; 289 unsigned int gtt_sa_num_of_chunks; 290 291 /* Interrupts */ 292 struct kfifo ih_fifo; 293 struct workqueue_struct *ih_wq; 294 struct work_struct interrupt_work; 295 spinlock_t interrupt_lock; 296 297 /* QCM Device instance */ 298 struct device_queue_manager *dqm; 299 300 bool init_complete; 301 /* 302 * Interrupts of interest to KFD are copied 303 * from the HW ring into a SW ring. 304 */ 305 bool interrupts_active; 306 307 /* Firmware versions */ 308 uint16_t mec_fw_version; 309 uint16_t mec2_fw_version; 310 uint16_t sdma_fw_version; 311 312 /* Maximum process number mapped to HW scheduler */ 313 unsigned int max_proc_per_quantum; 314 315 /* CWSR */ 316 bool cwsr_enabled; 317 const void *cwsr_isa; 318 unsigned int cwsr_isa_size; 319 320 /* xGMI */ 321 uint64_t hive_id; 322 323 bool pci_atomic_requested; 324 325 /* Use IOMMU v2 flag */ 326 bool use_iommu_v2; 327 328 /* SRAM ECC flag */ 329 atomic_t sram_ecc_flag; 330 331 /* Compute Profile ref. count */ 332 atomic_t compute_profile; 333 334 /* Global GWS resource shared between processes */ 335 void *gws; 336 337 /* Clients watching SMI events */ 338 struct list_head smi_clients; 339 spinlock_t smi_lock; 340 341 uint32_t reset_seq_num; 342 343 struct ida doorbell_ida; 344 unsigned int max_doorbell_slices; 345 346 int noretry; 347 348 /* HMM page migration MEMORY_DEVICE_PRIVATE mapping */ 349 struct dev_pagemap pgmap; 350 }; 351 352 enum kfd_mempool { 353 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 354 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 355 KFD_MEMPOOL_FRAMEBUFFER = 3, 356 }; 357 358 /* Character device interface */ 359 int kfd_chardev_init(void); 360 void kfd_chardev_exit(void); 361 362 /** 363 * enum kfd_unmap_queues_filter - Enum for queue filters. 364 * 365 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 366 * running queues list. 367 * 368 * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues 369 * in the run list. 370 * 371 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 372 * specific process. 373 * 374 */ 375 enum kfd_unmap_queues_filter { 376 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1, 377 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2, 378 KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3 379 }; 380 381 /** 382 * enum kfd_queue_type - Enum for various queue types. 383 * 384 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 385 * 386 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type. 387 * 388 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 389 * 390 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 391 * 392 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface. 393 */ 394 enum kfd_queue_type { 395 KFD_QUEUE_TYPE_COMPUTE, 396 KFD_QUEUE_TYPE_SDMA, 397 KFD_QUEUE_TYPE_HIQ, 398 KFD_QUEUE_TYPE_DIQ, 399 KFD_QUEUE_TYPE_SDMA_XGMI 400 }; 401 402 enum kfd_queue_format { 403 KFD_QUEUE_FORMAT_PM4, 404 KFD_QUEUE_FORMAT_AQL 405 }; 406 407 enum KFD_QUEUE_PRIORITY { 408 KFD_QUEUE_PRIORITY_MINIMUM = 0, 409 KFD_QUEUE_PRIORITY_MAXIMUM = 15 410 }; 411 412 /** 413 * struct queue_properties 414 * 415 * @type: The queue type. 416 * 417 * @queue_id: Queue identifier. 418 * 419 * @queue_address: Queue ring buffer address. 420 * 421 * @queue_size: Queue ring buffer size. 422 * 423 * @priority: Defines the queue priority relative to other queues in the 424 * process. 425 * This is just an indication and HW scheduling may override the priority as 426 * necessary while keeping the relative prioritization. 427 * the priority granularity is from 0 to f which f is the highest priority. 428 * currently all queues are initialized with the highest priority. 429 * 430 * @queue_percent: This field is partially implemented and currently a zero in 431 * this field defines that the queue is non active. 432 * 433 * @read_ptr: User space address which points to the number of dwords the 434 * cp read from the ring buffer. This field updates automatically by the H/W. 435 * 436 * @write_ptr: Defines the number of dwords written to the ring buffer. 437 * 438 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring 439 * buffer. This field should be similar to write_ptr and the user should 440 * update this field after updating the write_ptr. 441 * 442 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 443 * 444 * @is_interop: Defines if this is a interop queue. Interop queue means that 445 * the queue can access both graphics and compute resources. 446 * 447 * @is_evicted: Defines if the queue is evicted. Only active queues 448 * are evicted, rendering them inactive. 449 * 450 * @is_active: Defines if the queue is active or not. @is_active and 451 * @is_evicted are protected by the DQM lock. 452 * 453 * @is_gws: Defines if the queue has been updated to be GWS-capable or not. 454 * @is_gws should be protected by the DQM lock, since changing it can yield the 455 * possibility of updating DQM state on number of GWS queues. 456 * 457 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 458 * of the queue. 459 * 460 * This structure represents the queue properties for each queue no matter if 461 * it's user mode or kernel mode queue. 462 * 463 */ 464 465 struct queue_properties { 466 enum kfd_queue_type type; 467 enum kfd_queue_format format; 468 unsigned int queue_id; 469 uint64_t queue_address; 470 uint64_t queue_size; 471 uint32_t priority; 472 uint32_t queue_percent; 473 uint32_t *read_ptr; 474 uint32_t *write_ptr; 475 void __iomem *doorbell_ptr; 476 uint32_t doorbell_off; 477 bool is_interop; 478 bool is_evicted; 479 bool is_active; 480 bool is_gws; 481 /* Not relevant for user mode queues in cp scheduling */ 482 unsigned int vmid; 483 /* Relevant only for sdma queues*/ 484 uint32_t sdma_engine_id; 485 uint32_t sdma_queue_id; 486 uint32_t sdma_vm_addr; 487 /* Relevant only for VI */ 488 uint64_t eop_ring_buffer_address; 489 uint32_t eop_ring_buffer_size; 490 uint64_t ctx_save_restore_area_address; 491 uint32_t ctx_save_restore_area_size; 492 uint32_t ctl_stack_size; 493 uint64_t tba_addr; 494 uint64_t tma_addr; 495 }; 496 497 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 498 (q).queue_address != 0 && \ 499 (q).queue_percent > 0 && \ 500 !(q).is_evicted) 501 502 enum mqd_update_flag { 503 UPDATE_FLAG_CU_MASK = 0, 504 }; 505 506 struct mqd_update_info { 507 union { 508 struct { 509 uint32_t count; /* Must be a multiple of 32 */ 510 uint32_t *ptr; 511 } cu_mask; 512 }; 513 enum mqd_update_flag update_flag; 514 }; 515 516 /** 517 * struct queue 518 * 519 * @list: Queue linked list. 520 * 521 * @mqd: The queue MQD (memory queue descriptor). 522 * 523 * @mqd_mem_obj: The MQD local gpu memory object. 524 * 525 * @gart_mqd_addr: The MQD gart mc address. 526 * 527 * @properties: The queue properties. 528 * 529 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 530 * that the queue should be executed on. 531 * 532 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 533 * id. 534 * 535 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 536 * 537 * @process: The kfd process that created this queue. 538 * 539 * @device: The kfd device that created this queue. 540 * 541 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 542 * otherwise. 543 * 544 * This structure represents user mode compute queues. 545 * It contains all the necessary data to handle such queues. 546 * 547 */ 548 549 struct queue { 550 struct list_head list; 551 void *mqd; 552 struct kfd_mem_obj *mqd_mem_obj; 553 uint64_t gart_mqd_addr; 554 struct queue_properties properties; 555 556 uint32_t mec; 557 uint32_t pipe; 558 uint32_t queue; 559 560 unsigned int sdma_id; 561 unsigned int doorbell_id; 562 563 struct kfd_process *process; 564 struct kfd_dev *device; 565 void *gws; 566 567 /* procfs */ 568 struct kobject kobj; 569 570 void *gang_ctx_bo; 571 uint64_t gang_ctx_gpu_addr; 572 void *gang_ctx_cpu_ptr; 573 }; 574 575 enum KFD_MQD_TYPE { 576 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 577 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 578 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 579 KFD_MQD_TYPE_DIQ, /* for diq */ 580 KFD_MQD_TYPE_MAX 581 }; 582 583 enum KFD_PIPE_PRIORITY { 584 KFD_PIPE_PRIORITY_CS_LOW = 0, 585 KFD_PIPE_PRIORITY_CS_MEDIUM, 586 KFD_PIPE_PRIORITY_CS_HIGH 587 }; 588 589 struct scheduling_resources { 590 unsigned int vmid_mask; 591 enum kfd_queue_type type; 592 uint64_t queue_mask; 593 uint64_t gws_mask; 594 uint32_t oac_mask; 595 uint32_t gds_heap_base; 596 uint32_t gds_heap_size; 597 }; 598 599 struct process_queue_manager { 600 /* data */ 601 struct kfd_process *process; 602 struct list_head queues; 603 unsigned long *queue_slot_bitmap; 604 }; 605 606 struct qcm_process_device { 607 /* The Device Queue Manager that owns this data */ 608 struct device_queue_manager *dqm; 609 struct process_queue_manager *pqm; 610 /* Queues list */ 611 struct list_head queues_list; 612 struct list_head priv_queue_list; 613 614 unsigned int queue_count; 615 unsigned int vmid; 616 bool is_debug; 617 unsigned int evicted; /* eviction counter, 0=active */ 618 619 /* This flag tells if we should reset all wavefronts on 620 * process termination 621 */ 622 bool reset_wavefronts; 623 624 /* This flag tells us if this process has a GWS-capable 625 * queue that will be mapped into the runlist. It's 626 * possible to request a GWS BO, but not have the queue 627 * currently mapped, and this changes how the MAP_PROCESS 628 * PM4 packet is configured. 629 */ 630 bool mapped_gws_queue; 631 632 /* All the memory management data should be here too */ 633 uint64_t gds_context_area; 634 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 635 uint64_t page_table_base; 636 uint32_t sh_mem_config; 637 uint32_t sh_mem_bases; 638 uint32_t sh_mem_ape1_base; 639 uint32_t sh_mem_ape1_limit; 640 uint32_t gds_size; 641 uint32_t num_gws; 642 uint32_t num_oac; 643 uint32_t sh_hidden_private_base; 644 645 /* CWSR memory */ 646 struct kgd_mem *cwsr_mem; 647 void *cwsr_kaddr; 648 uint64_t cwsr_base; 649 uint64_t tba_addr; 650 uint64_t tma_addr; 651 652 /* IB memory */ 653 struct kgd_mem *ib_mem; 654 uint64_t ib_base; 655 void *ib_kaddr; 656 657 /* doorbell resources per process per device */ 658 unsigned long *doorbell_bitmap; 659 }; 660 661 /* KFD Memory Eviction */ 662 663 /* Approx. wait time before attempting to restore evicted BOs */ 664 #define PROCESS_RESTORE_TIME_MS 100 665 /* Approx. back off time if restore fails due to lack of memory */ 666 #define PROCESS_BACK_OFF_TIME_MS 100 667 /* Approx. time before evicting the process again */ 668 #define PROCESS_ACTIVE_TIME_MS 10 669 670 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 671 * idr_handle in the least significant 4 bytes 672 */ 673 #define MAKE_HANDLE(gpu_id, idr_handle) \ 674 (((uint64_t)(gpu_id) << 32) + idr_handle) 675 #define GET_GPU_ID(handle) (handle >> 32) 676 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 677 678 enum kfd_pdd_bound { 679 PDD_UNBOUND = 0, 680 PDD_BOUND, 681 PDD_BOUND_SUSPENDED, 682 }; 683 684 #define MAX_SYSFS_FILENAME_LEN 15 685 686 /* 687 * SDMA counter runs at 100MHz frequency. 688 * We display SDMA activity in microsecond granularity in sysfs. 689 * As a result, the divisor is 100. 690 */ 691 #define SDMA_ACTIVITY_DIVISOR 100 692 693 /* Data that is per-process-per device. */ 694 struct kfd_process_device { 695 /* The device that owns this data. */ 696 struct kfd_dev *dev; 697 698 /* The process that owns this kfd_process_device. */ 699 struct kfd_process *process; 700 701 /* per-process-per device QCM data structure */ 702 struct qcm_process_device qpd; 703 704 /*Apertures*/ 705 uint64_t lds_base; 706 uint64_t lds_limit; 707 uint64_t gpuvm_base; 708 uint64_t gpuvm_limit; 709 uint64_t scratch_base; 710 uint64_t scratch_limit; 711 712 /* VM context for GPUVM allocations */ 713 struct file *drm_file; 714 void *drm_priv; 715 atomic64_t tlb_seq; 716 717 /* GPUVM allocations storage */ 718 struct idr alloc_idr; 719 720 /* Flag used to tell the pdd has dequeued from the dqm. 721 * This is used to prevent dev->dqm->ops.process_termination() from 722 * being called twice when it is already called in IOMMU callback 723 * function. 724 */ 725 bool already_dequeued; 726 bool runtime_inuse; 727 728 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 729 enum kfd_pdd_bound bound; 730 731 /* VRAM usage */ 732 uint64_t vram_usage; 733 struct attribute attr_vram; 734 char vram_filename[MAX_SYSFS_FILENAME_LEN]; 735 736 /* SDMA activity tracking */ 737 uint64_t sdma_past_activity_counter; 738 struct attribute attr_sdma; 739 char sdma_filename[MAX_SYSFS_FILENAME_LEN]; 740 741 /* Eviction activity tracking */ 742 uint64_t last_evict_timestamp; 743 atomic64_t evict_duration_counter; 744 struct attribute attr_evict; 745 746 struct kobject *kobj_stats; 747 unsigned int doorbell_index; 748 749 /* 750 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process 751 * that is associated with device encoded by "this" struct instance. The 752 * value reflects CU usage by all of the waves launched by this process 753 * on this device. A very important property of occupancy parameter is 754 * that its value is a snapshot of current use. 755 * 756 * Following is to be noted regarding how this parameter is reported: 757 * 758 * The number of waves that a CU can launch is limited by couple of 759 * parameters. These are encoded by struct amdgpu_cu_info instance 760 * that is part of every device definition. For GFX9 devices this 761 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves 762 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu) 763 * when they do use scratch memory. This could change for future 764 * devices and therefore this example should be considered as a guide. 765 * 766 * All CU's of a device are available for the process. This may not be true 767 * under certain conditions - e.g. CU masking. 768 * 769 * Finally number of CU's that are occupied by a process is affected by both 770 * number of CU's a device has along with number of other competing processes 771 */ 772 struct attribute attr_cu_occupancy; 773 774 /* sysfs counters for GPU retry fault and page migration tracking */ 775 struct kobject *kobj_counters; 776 struct attribute attr_faults; 777 struct attribute attr_page_in; 778 struct attribute attr_page_out; 779 uint64_t faults; 780 uint64_t page_in; 781 uint64_t page_out; 782 /* 783 * If this process has been checkpointed before, then the user 784 * application will use the original gpu_id on the 785 * checkpointed node to refer to this device. 786 */ 787 uint32_t user_gpu_id; 788 789 void *proc_ctx_bo; 790 uint64_t proc_ctx_gpu_addr; 791 void *proc_ctx_cpu_ptr; 792 }; 793 794 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 795 796 struct svm_range_list { 797 struct mutex lock; 798 struct rb_root_cached objects; 799 struct list_head list; 800 struct work_struct deferred_list_work; 801 struct list_head deferred_range_list; 802 struct list_head criu_svm_metadata_list; 803 spinlock_t deferred_list_lock; 804 atomic_t evicted_ranges; 805 atomic_t drain_pagefaults; 806 struct delayed_work restore_work; 807 DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE); 808 struct task_struct *faulting_task; 809 }; 810 811 /* Process data */ 812 struct kfd_process { 813 /* 814 * kfd_process are stored in an mm_struct*->kfd_process* 815 * hash table (kfd_processes in kfd_process.c) 816 */ 817 struct hlist_node kfd_processes; 818 819 /* 820 * Opaque pointer to mm_struct. We don't hold a reference to 821 * it so it should never be dereferenced from here. This is 822 * only used for looking up processes by their mm. 823 */ 824 void *mm; 825 826 struct kref ref; 827 struct work_struct release_work; 828 829 struct mutex mutex; 830 831 /* 832 * In any process, the thread that started main() is the lead 833 * thread and outlives the rest. 834 * It is here because amd_iommu_bind_pasid wants a task_struct. 835 * It can also be used for safely getting a reference to the 836 * mm_struct of the process. 837 */ 838 struct task_struct *lead_thread; 839 840 /* We want to receive a notification when the mm_struct is destroyed */ 841 struct mmu_notifier mmu_notifier; 842 843 u32 pasid; 844 845 /* 846 * Array of kfd_process_device pointers, 847 * one for each device the process is using. 848 */ 849 struct kfd_process_device *pdds[MAX_GPU_INSTANCE]; 850 uint32_t n_pdds; 851 852 struct process_queue_manager pqm; 853 854 /*Is the user space process 32 bit?*/ 855 bool is_32bit_user_mode; 856 857 /* Event-related data */ 858 struct mutex event_mutex; 859 /* Event ID allocator and lookup */ 860 struct idr event_idr; 861 /* Event page */ 862 u64 signal_handle; 863 struct kfd_signal_page *signal_page; 864 size_t signal_mapped_size; 865 size_t signal_event_count; 866 bool signal_event_limit_reached; 867 868 /* Information used for memory eviction */ 869 void *kgd_process_info; 870 /* Eviction fence that is attached to all the BOs of this process. The 871 * fence will be triggered during eviction and new one will be created 872 * during restore 873 */ 874 struct dma_fence *ef; 875 876 /* Work items for evicting and restoring BOs */ 877 struct delayed_work eviction_work; 878 struct delayed_work restore_work; 879 /* seqno of the last scheduled eviction */ 880 unsigned int last_eviction_seqno; 881 /* Approx. the last timestamp (in jiffies) when the process was 882 * restored after an eviction 883 */ 884 unsigned long last_restore_timestamp; 885 886 /* Kobj for our procfs */ 887 struct kobject *kobj; 888 struct kobject *kobj_queues; 889 struct attribute attr_pasid; 890 891 /* shared virtual memory registered by this process */ 892 struct svm_range_list svms; 893 894 bool xnack_enabled; 895 896 atomic_t poison; 897 /* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */ 898 bool queues_paused; 899 }; 900 901 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 902 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 903 extern struct srcu_struct kfd_processes_srcu; 904 905 /** 906 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer. 907 * 908 * @filep: pointer to file structure. 909 * @p: amdkfd process pointer. 910 * @data: pointer to arg that was copied from user. 911 * 912 * Return: returns ioctl completion code. 913 */ 914 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 915 void *data); 916 917 struct amdkfd_ioctl_desc { 918 unsigned int cmd; 919 int flags; 920 amdkfd_ioctl_t *func; 921 unsigned int cmd_drv; 922 const char *name; 923 }; 924 bool kfd_dev_is_large_bar(struct kfd_dev *dev); 925 926 int kfd_process_create_wq(void); 927 void kfd_process_destroy_wq(void); 928 struct kfd_process *kfd_create_process(struct file *filep); 929 struct kfd_process *kfd_get_process(const struct task_struct *task); 930 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid); 931 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 932 933 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id); 934 int kfd_process_gpuid_from_adev(struct kfd_process *p, 935 struct amdgpu_device *adev, uint32_t *gpuid, 936 uint32_t *gpuidx); 937 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p, 938 uint32_t gpuidx, uint32_t *gpuid) { 939 return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL; 940 } 941 static inline struct kfd_process_device *kfd_process_device_from_gpuidx( 942 struct kfd_process *p, uint32_t gpuidx) { 943 return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL; 944 } 945 946 void kfd_unref_process(struct kfd_process *p); 947 int kfd_process_evict_queues(struct kfd_process *p); 948 int kfd_process_restore_queues(struct kfd_process *p); 949 void kfd_suspend_all_processes(void); 950 int kfd_resume_all_processes(void); 951 952 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process, 953 uint32_t gpu_id); 954 955 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id); 956 957 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 958 struct file *drm_file); 959 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 960 struct kfd_process *p); 961 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 962 struct kfd_process *p); 963 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 964 struct kfd_process *p); 965 966 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported); 967 968 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 969 struct vm_area_struct *vma); 970 971 /* KFD process API for creating and translating handles */ 972 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 973 void *mem); 974 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 975 int handle); 976 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 977 int handle); 978 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid); 979 980 /* PASIDs */ 981 int kfd_pasid_init(void); 982 void kfd_pasid_exit(void); 983 bool kfd_set_pasid_limit(unsigned int new_limit); 984 unsigned int kfd_get_pasid_limit(void); 985 u32 kfd_pasid_alloc(void); 986 void kfd_pasid_free(u32 pasid); 987 988 /* Doorbells */ 989 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 990 int kfd_doorbell_init(struct kfd_dev *kfd); 991 void kfd_doorbell_fini(struct kfd_dev *kfd); 992 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, 993 struct vm_area_struct *vma); 994 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 995 unsigned int *doorbell_off); 996 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 997 u32 read_kernel_doorbell(u32 __iomem *db); 998 void write_kernel_doorbell(void __iomem *db, u32 value); 999 void write_kernel_doorbell64(void __iomem *db, u64 value); 1000 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 1001 struct kfd_process_device *pdd, 1002 unsigned int doorbell_id); 1003 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd); 1004 int kfd_alloc_process_doorbells(struct kfd_dev *kfd, 1005 unsigned int *doorbell_index); 1006 void kfd_free_process_doorbells(struct kfd_dev *kfd, 1007 unsigned int doorbell_index); 1008 /* GTT Sub-Allocator */ 1009 1010 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 1011 struct kfd_mem_obj **mem_obj); 1012 1013 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 1014 1015 extern struct device *kfd_device; 1016 1017 /* KFD's procfs */ 1018 void kfd_procfs_init(void); 1019 void kfd_procfs_shutdown(void); 1020 int kfd_procfs_add_queue(struct queue *q); 1021 void kfd_procfs_del_queue(struct queue *q); 1022 1023 /* Topology */ 1024 int kfd_topology_init(void); 1025 void kfd_topology_shutdown(void); 1026 int kfd_topology_add_device(struct kfd_dev *gpu); 1027 int kfd_topology_remove_device(struct kfd_dev *gpu); 1028 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 1029 uint32_t proximity_domain); 1030 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock( 1031 uint32_t proximity_domain); 1032 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 1033 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 1034 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 1035 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev); 1036 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); 1037 int kfd_numa_node_to_apic_id(int numa_node_id); 1038 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu); 1039 1040 /* Interrupts */ 1041 int kfd_interrupt_init(struct kfd_dev *dev); 1042 void kfd_interrupt_exit(struct kfd_dev *dev); 1043 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 1044 bool interrupt_is_wanted(struct kfd_dev *dev, 1045 const uint32_t *ih_ring_entry, 1046 uint32_t *patched_ihre, bool *flag); 1047 1048 /* amdkfd Apertures */ 1049 int kfd_init_apertures(struct kfd_process *process); 1050 1051 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1052 uint64_t tba_addr, 1053 uint64_t tma_addr); 1054 1055 /* CRIU */ 1056 /* 1057 * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private 1058 * structures: 1059 * kfd_criu_process_priv_data 1060 * kfd_criu_device_priv_data 1061 * kfd_criu_bo_priv_data 1062 * kfd_criu_queue_priv_data 1063 * kfd_criu_event_priv_data 1064 * kfd_criu_svm_range_priv_data 1065 */ 1066 1067 #define KFD_CRIU_PRIV_VERSION 1 1068 1069 struct kfd_criu_process_priv_data { 1070 uint32_t version; 1071 uint32_t xnack_mode; 1072 }; 1073 1074 struct kfd_criu_device_priv_data { 1075 /* For future use */ 1076 uint64_t reserved; 1077 }; 1078 1079 struct kfd_criu_bo_priv_data { 1080 uint64_t user_addr; 1081 uint32_t idr_handle; 1082 uint32_t mapped_gpuids[MAX_GPU_INSTANCE]; 1083 }; 1084 1085 /* 1086 * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data, 1087 * kfd_criu_svm_range_priv_data is the object type 1088 */ 1089 enum kfd_criu_object_type { 1090 KFD_CRIU_OBJECT_TYPE_QUEUE, 1091 KFD_CRIU_OBJECT_TYPE_EVENT, 1092 KFD_CRIU_OBJECT_TYPE_SVM_RANGE, 1093 }; 1094 1095 struct kfd_criu_svm_range_priv_data { 1096 uint32_t object_type; 1097 uint64_t start_addr; 1098 uint64_t size; 1099 /* Variable length array of attributes */ 1100 struct kfd_ioctl_svm_attribute attrs[]; 1101 }; 1102 1103 struct kfd_criu_queue_priv_data { 1104 uint32_t object_type; 1105 uint64_t q_address; 1106 uint64_t q_size; 1107 uint64_t read_ptr_addr; 1108 uint64_t write_ptr_addr; 1109 uint64_t doorbell_off; 1110 uint64_t eop_ring_buffer_address; 1111 uint64_t ctx_save_restore_area_address; 1112 uint32_t gpu_id; 1113 uint32_t type; 1114 uint32_t format; 1115 uint32_t q_id; 1116 uint32_t priority; 1117 uint32_t q_percent; 1118 uint32_t doorbell_id; 1119 uint32_t gws; 1120 uint32_t sdma_id; 1121 uint32_t eop_ring_buffer_size; 1122 uint32_t ctx_save_restore_area_size; 1123 uint32_t ctl_stack_size; 1124 uint32_t mqd_size; 1125 }; 1126 1127 struct kfd_criu_event_priv_data { 1128 uint32_t object_type; 1129 uint64_t user_handle; 1130 uint32_t event_id; 1131 uint32_t auto_reset; 1132 uint32_t type; 1133 uint32_t signaled; 1134 1135 union { 1136 struct kfd_hsa_memory_exception_data memory_exception_data; 1137 struct kfd_hsa_hw_exception_data hw_exception_data; 1138 }; 1139 }; 1140 1141 int kfd_process_get_queue_info(struct kfd_process *p, 1142 uint32_t *num_queues, 1143 uint64_t *priv_data_sizes); 1144 1145 int kfd_criu_checkpoint_queues(struct kfd_process *p, 1146 uint8_t __user *user_priv_data, 1147 uint64_t *priv_data_offset); 1148 1149 int kfd_criu_restore_queue(struct kfd_process *p, 1150 uint8_t __user *user_priv_data, 1151 uint64_t *priv_data_offset, 1152 uint64_t max_priv_data_size); 1153 1154 int kfd_criu_checkpoint_events(struct kfd_process *p, 1155 uint8_t __user *user_priv_data, 1156 uint64_t *priv_data_offset); 1157 1158 int kfd_criu_restore_event(struct file *devkfd, 1159 struct kfd_process *p, 1160 uint8_t __user *user_priv_data, 1161 uint64_t *priv_data_offset, 1162 uint64_t max_priv_data_size); 1163 /* CRIU - End */ 1164 1165 /* Queue Context Management */ 1166 int init_queue(struct queue **q, const struct queue_properties *properties); 1167 void uninit_queue(struct queue *q); 1168 void print_queue_properties(struct queue_properties *q); 1169 void print_queue(struct queue *q); 1170 1171 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 1172 struct kfd_dev *dev); 1173 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 1174 struct kfd_dev *dev); 1175 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 1176 struct kfd_dev *dev); 1177 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 1178 struct kfd_dev *dev); 1179 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 1180 struct kfd_dev *dev); 1181 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 1182 struct kfd_dev *dev); 1183 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type, 1184 struct kfd_dev *dev); 1185 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 1186 void device_queue_manager_uninit(struct device_queue_manager *dqm); 1187 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 1188 enum kfd_queue_type type); 1189 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging); 1190 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid); 1191 1192 /* Process Queue Manager */ 1193 struct process_queue_node { 1194 struct queue *q; 1195 struct kernel_queue *kq; 1196 struct list_head process_queue_list; 1197 }; 1198 1199 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 1200 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 1201 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 1202 void pqm_uninit(struct process_queue_manager *pqm); 1203 int pqm_create_queue(struct process_queue_manager *pqm, 1204 struct kfd_dev *dev, 1205 struct file *f, 1206 struct queue_properties *properties, 1207 unsigned int *qid, 1208 const struct kfd_criu_queue_priv_data *q_data, 1209 const void *restore_mqd, 1210 const void *restore_ctl_stack, 1211 uint32_t *p_doorbell_offset_in_process); 1212 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 1213 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid, 1214 struct queue_properties *p); 1215 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid, 1216 struct mqd_update_info *minfo); 1217 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 1218 void *gws); 1219 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 1220 unsigned int qid); 1221 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm, 1222 unsigned int qid); 1223 int pqm_get_wave_state(struct process_queue_manager *pqm, 1224 unsigned int qid, 1225 void __user *ctl_stack, 1226 u32 *ctl_stack_used_size, 1227 u32 *save_area_used_size); 1228 1229 int amdkfd_fence_wait_timeout(uint64_t *fence_addr, 1230 uint64_t fence_value, 1231 unsigned int timeout_ms); 1232 1233 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm, 1234 unsigned int qid, 1235 u32 *mqd_size, 1236 u32 *ctl_stack_size); 1237 /* Packet Manager */ 1238 1239 #define KFD_FENCE_COMPLETED (100) 1240 #define KFD_FENCE_INIT (10) 1241 1242 struct packet_manager { 1243 struct device_queue_manager *dqm; 1244 struct kernel_queue *priv_queue; 1245 struct mutex lock; 1246 bool allocated; 1247 struct kfd_mem_obj *ib_buffer_obj; 1248 unsigned int ib_size_bytes; 1249 bool is_over_subscription; 1250 1251 const struct packet_manager_funcs *pmf; 1252 }; 1253 1254 struct packet_manager_funcs { 1255 /* Support ASIC-specific packet formats for PM4 packets */ 1256 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 1257 struct qcm_process_device *qpd); 1258 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 1259 uint64_t ib, size_t ib_size_in_dwords, bool chain); 1260 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 1261 struct scheduling_resources *res); 1262 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 1263 struct queue *q, bool is_static); 1264 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 1265 enum kfd_unmap_queues_filter mode, 1266 uint32_t filter_param, bool reset); 1267 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 1268 uint64_t fence_address, uint64_t fence_value); 1269 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 1270 1271 /* Packet sizes */ 1272 int map_process_size; 1273 int runlist_size; 1274 int set_resources_size; 1275 int map_queues_size; 1276 int unmap_queues_size; 1277 int query_status_size; 1278 int release_mem_size; 1279 }; 1280 1281 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 1282 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 1283 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs; 1284 1285 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 1286 void pm_uninit(struct packet_manager *pm, bool hanging); 1287 int pm_send_set_resources(struct packet_manager *pm, 1288 struct scheduling_resources *res); 1289 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 1290 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 1291 uint64_t fence_value); 1292 1293 int pm_send_unmap_queue(struct packet_manager *pm, 1294 enum kfd_unmap_queues_filter mode, 1295 uint32_t filter_param, bool reset); 1296 1297 void pm_release_ib(struct packet_manager *pm); 1298 1299 /* Following PM funcs can be shared among VI and AI */ 1300 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 1301 1302 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1303 1304 /* Events */ 1305 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1306 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1307 extern const struct kfd_event_interrupt_class event_interrupt_class_v11; 1308 1309 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1310 1311 int kfd_event_init_process(struct kfd_process *p); 1312 void kfd_event_free_process(struct kfd_process *p); 1313 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1314 int kfd_wait_on_events(struct kfd_process *p, 1315 uint32_t num_events, void __user *data, 1316 bool all, uint32_t user_timeout_ms, 1317 uint32_t *wait_result); 1318 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 1319 uint32_t valid_id_bits); 1320 void kfd_signal_iommu_event(struct kfd_dev *dev, 1321 u32 pasid, unsigned long address, 1322 bool is_write_requested, bool is_execute_requested); 1323 void kfd_signal_hw_exception_event(u32 pasid); 1324 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1325 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1326 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset); 1327 1328 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1329 uint32_t event_type, bool auto_reset, uint32_t node_id, 1330 uint32_t *event_id, uint32_t *event_trigger_data, 1331 uint64_t *event_page_offset, uint32_t *event_slot_index); 1332 1333 int kfd_get_num_events(struct kfd_process *p); 1334 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1335 1336 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid, 1337 struct kfd_vm_fault_info *info); 1338 1339 void kfd_signal_reset_event(struct kfd_dev *dev); 1340 1341 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid); 1342 1343 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type); 1344 1345 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev) 1346 { 1347 return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) || 1348 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && 1349 dev->adev->sdma.instance[0].fw_version >= 18) || 1350 KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0); 1351 } 1352 1353 bool kfd_is_locked(void); 1354 1355 /* Compute profile */ 1356 void kfd_inc_compute_active(struct kfd_dev *dev); 1357 void kfd_dec_compute_active(struct kfd_dev *dev); 1358 1359 /* Cgroup Support */ 1360 /* Check with device cgroup if @kfd device is accessible */ 1361 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd) 1362 { 1363 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) 1364 struct drm_device *ddev = kfd->ddev; 1365 1366 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, 1367 ddev->render->index, 1368 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1369 #else 1370 return 0; 1371 #endif 1372 } 1373 1374 /* Debugfs */ 1375 #if defined(CONFIG_DEBUG_FS) 1376 1377 void kfd_debugfs_init(void); 1378 void kfd_debugfs_fini(void); 1379 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1380 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1381 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1382 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1383 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1384 int pm_debugfs_runlist(struct seq_file *m, void *data); 1385 1386 int kfd_debugfs_hang_hws(struct kfd_dev *dev); 1387 int pm_debugfs_hang_hws(struct packet_manager *pm); 1388 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm); 1389 1390 #else 1391 1392 static inline void kfd_debugfs_init(void) {} 1393 static inline void kfd_debugfs_fini(void) {} 1394 1395 #endif 1396 1397 #endif 1398