xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision fd1e77d9)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef KFD_PRIV_H_INCLUDED
25 #define KFD_PRIV_H_INCLUDED
26 
27 #include <linux/hashtable.h>
28 #include <linux/mmu_notifier.h>
29 #include <linux/mutex.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/workqueue.h>
33 #include <linux/spinlock.h>
34 #include <linux/kfd_ioctl.h>
35 #include <linux/idr.h>
36 #include <linux/kfifo.h>
37 #include <linux/seq_file.h>
38 #include <linux/kref.h>
39 #include <linux/sysfs.h>
40 #include <linux/device_cgroup.h>
41 #include <drm/drm_file.h>
42 #include <drm/drm_drv.h>
43 #include <drm/drm_device.h>
44 #include <drm/drm_ioctl.h>
45 #include <kgd_kfd_interface.h>
46 #include <linux/swap.h>
47 
48 #include "amd_shared.h"
49 #include "amdgpu.h"
50 
51 #define KFD_MAX_RING_ENTRY_SIZE	8
52 
53 #define KFD_SYSFS_FILE_MODE 0444
54 
55 /* GPU ID hash width in bits */
56 #define KFD_GPU_ID_HASH_WIDTH 16
57 
58 /* Use upper bits of mmap offset to store KFD driver specific information.
59  * BITS[63:62] - Encode MMAP type
60  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
61  * BITS[45:0]  - MMAP offset value
62  *
63  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
64  *  defines are w.r.t to PAGE_SIZE
65  */
66 #define KFD_MMAP_TYPE_SHIFT	62
67 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
68 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
71 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
72 
73 #define KFD_MMAP_GPU_ID_SHIFT 46
74 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
75 				<< KFD_MMAP_GPU_ID_SHIFT)
76 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
77 				& KFD_MMAP_GPU_ID_MASK)
78 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
79 				>> KFD_MMAP_GPU_ID_SHIFT)
80 
81 /*
82  * When working with cp scheduler we should assign the HIQ manually or via
83  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
84  * definitions for Kaveri. In Kaveri only the first ME queues participates
85  * in the cp scheduling taking that in mind we set the HIQ slot in the
86  * second ME.
87  */
88 #define KFD_CIK_HIQ_PIPE 4
89 #define KFD_CIK_HIQ_QUEUE 0
90 
91 /* Macro for allocating structures */
92 #define kfd_alloc_struct(ptr_to_struct)	\
93 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
94 
95 #define KFD_MAX_NUM_OF_PROCESSES 512
96 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
97 
98 /*
99  * Size of the per-process TBA+TMA buffer: 2 pages
100  *
101  * The first page is the TBA used for the CWSR ISA code. The second
102  * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
103  */
104 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
105 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
106 
107 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
108 	(KFD_MAX_NUM_OF_PROCESSES *			\
109 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
110 
111 #define KFD_KERNEL_QUEUE_SIZE 2048
112 
113 #define KFD_UNMAP_LATENCY_MS	(4000)
114 
115 /*
116  * 512 = 0x200
117  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
118  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
119  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
120  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
121  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
122  */
123 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
124 
125 /**
126  * enum kfd_ioctl_flags - KFD ioctl flags
127  * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
128  * userspace can use a given ioctl.
129  */
130 enum kfd_ioctl_flags {
131 	/*
132 	 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
133 	 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
134 	 * perform privileged operations and load arbitrary data into MQDs and
135 	 * eventually HQD registers when the queue is mapped by HWS. In order to
136 	 * prevent this we should perform additional security checks.
137 	 *
138 	 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
139 	 *
140 	 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
141 	 * we also allow ioctls with SYS_ADMIN capability.
142 	 */
143 	KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
144 };
145 /*
146  * Kernel module parameter to specify maximum number of supported queues per
147  * device
148  */
149 extern int max_num_of_queues_per_device;
150 
151 
152 /* Kernel module parameter to specify the scheduling policy */
153 extern int sched_policy;
154 
155 /*
156  * Kernel module parameter to specify the maximum process
157  * number per HW scheduler
158  */
159 extern int hws_max_conc_proc;
160 
161 extern int cwsr_enable;
162 
163 /*
164  * Kernel module parameter to specify whether to send sigterm to HSA process on
165  * unhandled exception
166  */
167 extern int send_sigterm;
168 
169 /*
170  * This kernel module is used to simulate large bar machine on non-large bar
171  * enabled machines.
172  */
173 extern int debug_largebar;
174 
175 /*
176  * Ignore CRAT table during KFD initialization, can be used to work around
177  * broken CRAT tables on some AMD systems
178  */
179 extern int ignore_crat;
180 
181 /* Set sh_mem_config.retry_disable on GFX v9 */
182 extern int amdgpu_noretry;
183 
184 /* Halt if HWS hang is detected */
185 extern int halt_if_hws_hang;
186 
187 /* Whether MEC FW support GWS barriers */
188 extern bool hws_gws_support;
189 
190 /* Queue preemption timeout in ms */
191 extern int queue_preemption_timeout_ms;
192 
193 /*
194  * Don't evict process queues on vm fault
195  */
196 extern int amdgpu_no_queue_eviction_on_vm_fault;
197 
198 /* Enable eviction debug messages */
199 extern bool debug_evictions;
200 
201 enum cache_policy {
202 	cache_policy_coherent,
203 	cache_policy_noncoherent
204 };
205 
206 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0])
207 #define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
208 
209 struct kfd_event_interrupt_class {
210 	bool (*interrupt_isr)(struct kfd_dev *dev,
211 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
212 			bool *patched_flag);
213 	void (*interrupt_wq)(struct kfd_dev *dev,
214 			const uint32_t *ih_ring_entry);
215 };
216 
217 struct kfd_device_info {
218 	uint32_t gfx_target_version;
219 	const struct kfd_event_interrupt_class *event_interrupt_class;
220 	unsigned int max_pasid_bits;
221 	unsigned int max_no_of_hqd;
222 	unsigned int doorbell_size;
223 	size_t ih_ring_entry_size;
224 	uint8_t num_of_watch_points;
225 	uint16_t mqd_size_aligned;
226 	bool supports_cwsr;
227 	bool needs_iommu_device;
228 	bool needs_pci_atomics;
229 	uint32_t no_atomic_fw_version;
230 	unsigned int num_sdma_queues_per_engine;
231 	unsigned int num_reserved_sdma_queues_per_engine;
232 	uint64_t reserved_sdma_queues_bitmap;
233 };
234 
235 unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev);
236 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev);
237 
238 struct kfd_mem_obj {
239 	uint32_t range_start;
240 	uint32_t range_end;
241 	uint64_t gpu_addr;
242 	uint32_t *cpu_ptr;
243 	void *gtt_mem;
244 };
245 
246 struct kfd_vmid_info {
247 	uint32_t first_vmid_kfd;
248 	uint32_t last_vmid_kfd;
249 	uint32_t vmid_num_kfd;
250 };
251 
252 struct kfd_dev {
253 	struct amdgpu_device *adev;
254 
255 	struct kfd_device_info device_info;
256 	struct pci_dev *pdev;
257 	struct drm_device *ddev;
258 
259 	unsigned int id;		/* topology stub index */
260 
261 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
262 					 * KFD. It is aligned for mapping
263 					 * into user mode
264 					 */
265 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
266 					 * doorbell BAR to the first KFD
267 					 * doorbell in dwords. GFX reserves
268 					 * the segment before this offset.
269 					 */
270 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
271 					   * page used by kernel queue
272 					   */
273 
274 	struct kgd2kfd_shared_resources shared_resources;
275 	struct kfd_vmid_info vm_info;
276 	struct kfd_local_mem_info local_mem_info;
277 
278 	const struct kfd2kgd_calls *kfd2kgd;
279 	struct mutex doorbell_mutex;
280 	DECLARE_BITMAP(doorbell_available_index,
281 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
282 
283 	void *gtt_mem;
284 	uint64_t gtt_start_gpu_addr;
285 	void *gtt_start_cpu_ptr;
286 	void *gtt_sa_bitmap;
287 	struct mutex gtt_sa_lock;
288 	unsigned int gtt_sa_chunk_size;
289 	unsigned int gtt_sa_num_of_chunks;
290 
291 	/* Interrupts */
292 	struct kfifo ih_fifo;
293 	struct workqueue_struct *ih_wq;
294 	struct work_struct interrupt_work;
295 	spinlock_t interrupt_lock;
296 
297 	/* QCM Device instance */
298 	struct device_queue_manager *dqm;
299 
300 	bool init_complete;
301 	/*
302 	 * Interrupts of interest to KFD are copied
303 	 * from the HW ring into a SW ring.
304 	 */
305 	bool interrupts_active;
306 
307 	/* Firmware versions */
308 	uint16_t mec_fw_version;
309 	uint16_t mec2_fw_version;
310 	uint16_t sdma_fw_version;
311 
312 	/* Maximum process number mapped to HW scheduler */
313 	unsigned int max_proc_per_quantum;
314 
315 	/* CWSR */
316 	bool cwsr_enabled;
317 	const void *cwsr_isa;
318 	unsigned int cwsr_isa_size;
319 
320 	/* xGMI */
321 	uint64_t hive_id;
322 
323 	bool pci_atomic_requested;
324 
325 	/* Use IOMMU v2 flag */
326 	bool use_iommu_v2;
327 
328 	/* SRAM ECC flag */
329 	atomic_t sram_ecc_flag;
330 
331 	/* Compute Profile ref. count */
332 	atomic_t compute_profile;
333 
334 	/* Global GWS resource shared between processes */
335 	void *gws;
336 
337 	/* Clients watching SMI events */
338 	struct list_head smi_clients;
339 	spinlock_t smi_lock;
340 
341 	uint32_t reset_seq_num;
342 
343 	struct ida doorbell_ida;
344 	unsigned int max_doorbell_slices;
345 
346 	int noretry;
347 
348 	/* HMM page migration MEMORY_DEVICE_PRIVATE mapping */
349 	struct dev_pagemap pgmap;
350 };
351 
352 enum kfd_mempool {
353 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
354 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
355 	KFD_MEMPOOL_FRAMEBUFFER = 3,
356 };
357 
358 /* Character device interface */
359 int kfd_chardev_init(void);
360 void kfd_chardev_exit(void);
361 
362 /**
363  * enum kfd_unmap_queues_filter - Enum for queue filters.
364  *
365  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
366  *						running queues list.
367  *
368  * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
369  *						in the run list.
370  *
371  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
372  *						specific process.
373  *
374  */
375 enum kfd_unmap_queues_filter {
376 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
377 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
378 	KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
379 };
380 
381 /**
382  * enum kfd_queue_type - Enum for various queue types.
383  *
384  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
385  *
386  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
387  *
388  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
389  *
390  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
391  *
392  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
393  */
394 enum kfd_queue_type  {
395 	KFD_QUEUE_TYPE_COMPUTE,
396 	KFD_QUEUE_TYPE_SDMA,
397 	KFD_QUEUE_TYPE_HIQ,
398 	KFD_QUEUE_TYPE_DIQ,
399 	KFD_QUEUE_TYPE_SDMA_XGMI
400 };
401 
402 enum kfd_queue_format {
403 	KFD_QUEUE_FORMAT_PM4,
404 	KFD_QUEUE_FORMAT_AQL
405 };
406 
407 enum KFD_QUEUE_PRIORITY {
408 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
409 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
410 };
411 
412 /**
413  * struct queue_properties
414  *
415  * @type: The queue type.
416  *
417  * @queue_id: Queue identifier.
418  *
419  * @queue_address: Queue ring buffer address.
420  *
421  * @queue_size: Queue ring buffer size.
422  *
423  * @priority: Defines the queue priority relative to other queues in the
424  * process.
425  * This is just an indication and HW scheduling may override the priority as
426  * necessary while keeping the relative prioritization.
427  * the priority granularity is from 0 to f which f is the highest priority.
428  * currently all queues are initialized with the highest priority.
429  *
430  * @queue_percent: This field is partially implemented and currently a zero in
431  * this field defines that the queue is non active.
432  *
433  * @read_ptr: User space address which points to the number of dwords the
434  * cp read from the ring buffer. This field updates automatically by the H/W.
435  *
436  * @write_ptr: Defines the number of dwords written to the ring buffer.
437  *
438  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
439  * buffer. This field should be similar to write_ptr and the user should
440  * update this field after updating the write_ptr.
441  *
442  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
443  *
444  * @is_interop: Defines if this is a interop queue. Interop queue means that
445  * the queue can access both graphics and compute resources.
446  *
447  * @is_evicted: Defines if the queue is evicted. Only active queues
448  * are evicted, rendering them inactive.
449  *
450  * @is_active: Defines if the queue is active or not. @is_active and
451  * @is_evicted are protected by the DQM lock.
452  *
453  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
454  * @is_gws should be protected by the DQM lock, since changing it can yield the
455  * possibility of updating DQM state on number of GWS queues.
456  *
457  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
458  * of the queue.
459  *
460  * This structure represents the queue properties for each queue no matter if
461  * it's user mode or kernel mode queue.
462  *
463  */
464 
465 struct queue_properties {
466 	enum kfd_queue_type type;
467 	enum kfd_queue_format format;
468 	unsigned int queue_id;
469 	uint64_t queue_address;
470 	uint64_t  queue_size;
471 	uint32_t priority;
472 	uint32_t queue_percent;
473 	uint32_t *read_ptr;
474 	uint32_t *write_ptr;
475 	void __iomem *doorbell_ptr;
476 	uint32_t doorbell_off;
477 	bool is_interop;
478 	bool is_evicted;
479 	bool is_active;
480 	bool is_gws;
481 	/* Not relevant for user mode queues in cp scheduling */
482 	unsigned int vmid;
483 	/* Relevant only for sdma queues*/
484 	uint32_t sdma_engine_id;
485 	uint32_t sdma_queue_id;
486 	uint32_t sdma_vm_addr;
487 	/* Relevant only for VI */
488 	uint64_t eop_ring_buffer_address;
489 	uint32_t eop_ring_buffer_size;
490 	uint64_t ctx_save_restore_area_address;
491 	uint32_t ctx_save_restore_area_size;
492 	uint32_t ctl_stack_size;
493 	uint64_t tba_addr;
494 	uint64_t tma_addr;
495 };
496 
497 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
498 			    (q).queue_address != 0 &&	\
499 			    (q).queue_percent > 0 &&	\
500 			    !(q).is_evicted)
501 
502 enum mqd_update_flag {
503 	UPDATE_FLAG_CU_MASK = 0,
504 };
505 
506 struct mqd_update_info {
507 	union {
508 		struct {
509 			uint32_t count; /* Must be a multiple of 32 */
510 			uint32_t *ptr;
511 		} cu_mask;
512 	};
513 	enum mqd_update_flag update_flag;
514 };
515 
516 /**
517  * struct queue
518  *
519  * @list: Queue linked list.
520  *
521  * @mqd: The queue MQD (memory queue descriptor).
522  *
523  * @mqd_mem_obj: The MQD local gpu memory object.
524  *
525  * @gart_mqd_addr: The MQD gart mc address.
526  *
527  * @properties: The queue properties.
528  *
529  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
530  *	 that the queue should be executed on.
531  *
532  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
533  *	  id.
534  *
535  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
536  *
537  * @process: The kfd process that created this queue.
538  *
539  * @device: The kfd device that created this queue.
540  *
541  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
542  * otherwise.
543  *
544  * This structure represents user mode compute queues.
545  * It contains all the necessary data to handle such queues.
546  *
547  */
548 
549 struct queue {
550 	struct list_head list;
551 	void *mqd;
552 	struct kfd_mem_obj *mqd_mem_obj;
553 	uint64_t gart_mqd_addr;
554 	struct queue_properties properties;
555 
556 	uint32_t mec;
557 	uint32_t pipe;
558 	uint32_t queue;
559 
560 	unsigned int sdma_id;
561 	unsigned int doorbell_id;
562 
563 	struct kfd_process	*process;
564 	struct kfd_dev		*device;
565 	void *gws;
566 
567 	/* procfs */
568 	struct kobject kobj;
569 
570 	void *gang_ctx_bo;
571 	uint64_t gang_ctx_gpu_addr;
572 	void *gang_ctx_cpu_ptr;
573 };
574 
575 enum KFD_MQD_TYPE {
576 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
577 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
578 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
579 	KFD_MQD_TYPE_DIQ,		/* for diq */
580 	KFD_MQD_TYPE_MAX
581 };
582 
583 enum KFD_PIPE_PRIORITY {
584 	KFD_PIPE_PRIORITY_CS_LOW = 0,
585 	KFD_PIPE_PRIORITY_CS_MEDIUM,
586 	KFD_PIPE_PRIORITY_CS_HIGH
587 };
588 
589 struct scheduling_resources {
590 	unsigned int vmid_mask;
591 	enum kfd_queue_type type;
592 	uint64_t queue_mask;
593 	uint64_t gws_mask;
594 	uint32_t oac_mask;
595 	uint32_t gds_heap_base;
596 	uint32_t gds_heap_size;
597 };
598 
599 struct process_queue_manager {
600 	/* data */
601 	struct kfd_process	*process;
602 	struct list_head	queues;
603 	unsigned long		*queue_slot_bitmap;
604 };
605 
606 struct qcm_process_device {
607 	/* The Device Queue Manager that owns this data */
608 	struct device_queue_manager *dqm;
609 	struct process_queue_manager *pqm;
610 	/* Queues list */
611 	struct list_head queues_list;
612 	struct list_head priv_queue_list;
613 
614 	unsigned int queue_count;
615 	unsigned int vmid;
616 	bool is_debug;
617 	unsigned int evicted; /* eviction counter, 0=active */
618 
619 	/* This flag tells if we should reset all wavefronts on
620 	 * process termination
621 	 */
622 	bool reset_wavefronts;
623 
624 	/* This flag tells us if this process has a GWS-capable
625 	 * queue that will be mapped into the runlist. It's
626 	 * possible to request a GWS BO, but not have the queue
627 	 * currently mapped, and this changes how the MAP_PROCESS
628 	 * PM4 packet is configured.
629 	 */
630 	bool mapped_gws_queue;
631 
632 	/* All the memory management data should be here too */
633 	uint64_t gds_context_area;
634 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
635 	uint64_t page_table_base;
636 	uint32_t sh_mem_config;
637 	uint32_t sh_mem_bases;
638 	uint32_t sh_mem_ape1_base;
639 	uint32_t sh_mem_ape1_limit;
640 	uint32_t gds_size;
641 	uint32_t num_gws;
642 	uint32_t num_oac;
643 	uint32_t sh_hidden_private_base;
644 
645 	/* CWSR memory */
646 	struct kgd_mem *cwsr_mem;
647 	void *cwsr_kaddr;
648 	uint64_t cwsr_base;
649 	uint64_t tba_addr;
650 	uint64_t tma_addr;
651 
652 	/* IB memory */
653 	struct kgd_mem *ib_mem;
654 	uint64_t ib_base;
655 	void *ib_kaddr;
656 
657 	/* doorbell resources per process per device */
658 	unsigned long *doorbell_bitmap;
659 };
660 
661 /* KFD Memory Eviction */
662 
663 /* Approx. wait time before attempting to restore evicted BOs */
664 #define PROCESS_RESTORE_TIME_MS 100
665 /* Approx. back off time if restore fails due to lack of memory */
666 #define PROCESS_BACK_OFF_TIME_MS 100
667 /* Approx. time before evicting the process again */
668 #define PROCESS_ACTIVE_TIME_MS 10
669 
670 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
671  * idr_handle in the least significant 4 bytes
672  */
673 #define MAKE_HANDLE(gpu_id, idr_handle) \
674 	(((uint64_t)(gpu_id) << 32) + idr_handle)
675 #define GET_GPU_ID(handle) (handle >> 32)
676 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
677 
678 enum kfd_pdd_bound {
679 	PDD_UNBOUND = 0,
680 	PDD_BOUND,
681 	PDD_BOUND_SUSPENDED,
682 };
683 
684 #define MAX_SYSFS_FILENAME_LEN 15
685 
686 /*
687  * SDMA counter runs at 100MHz frequency.
688  * We display SDMA activity in microsecond granularity in sysfs.
689  * As a result, the divisor is 100.
690  */
691 #define SDMA_ACTIVITY_DIVISOR  100
692 
693 /* Data that is per-process-per device. */
694 struct kfd_process_device {
695 	/* The device that owns this data. */
696 	struct kfd_dev *dev;
697 
698 	/* The process that owns this kfd_process_device. */
699 	struct kfd_process *process;
700 
701 	/* per-process-per device QCM data structure */
702 	struct qcm_process_device qpd;
703 
704 	/*Apertures*/
705 	uint64_t lds_base;
706 	uint64_t lds_limit;
707 	uint64_t gpuvm_base;
708 	uint64_t gpuvm_limit;
709 	uint64_t scratch_base;
710 	uint64_t scratch_limit;
711 
712 	/* VM context for GPUVM allocations */
713 	struct file *drm_file;
714 	void *drm_priv;
715 	atomic64_t tlb_seq;
716 
717 	/* GPUVM allocations storage */
718 	struct idr alloc_idr;
719 
720 	/* Flag used to tell the pdd has dequeued from the dqm.
721 	 * This is used to prevent dev->dqm->ops.process_termination() from
722 	 * being called twice when it is already called in IOMMU callback
723 	 * function.
724 	 */
725 	bool already_dequeued;
726 	bool runtime_inuse;
727 
728 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
729 	enum kfd_pdd_bound bound;
730 
731 	/* VRAM usage */
732 	uint64_t vram_usage;
733 	struct attribute attr_vram;
734 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
735 
736 	/* SDMA activity tracking */
737 	uint64_t sdma_past_activity_counter;
738 	struct attribute attr_sdma;
739 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
740 
741 	/* Eviction activity tracking */
742 	uint64_t last_evict_timestamp;
743 	atomic64_t evict_duration_counter;
744 	struct attribute attr_evict;
745 
746 	struct kobject *kobj_stats;
747 	unsigned int doorbell_index;
748 
749 	/*
750 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
751 	 * that is associated with device encoded by "this" struct instance. The
752 	 * value reflects CU usage by all of the waves launched by this process
753 	 * on this device. A very important property of occupancy parameter is
754 	 * that its value is a snapshot of current use.
755 	 *
756 	 * Following is to be noted regarding how this parameter is reported:
757 	 *
758 	 *  The number of waves that a CU can launch is limited by couple of
759 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
760 	 *  that is part of every device definition. For GFX9 devices this
761 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
762 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
763 	 *  when they do use scratch memory. This could change for future
764 	 *  devices and therefore this example should be considered as a guide.
765 	 *
766 	 *  All CU's of a device are available for the process. This may not be true
767 	 *  under certain conditions - e.g. CU masking.
768 	 *
769 	 *  Finally number of CU's that are occupied by a process is affected by both
770 	 *  number of CU's a device has along with number of other competing processes
771 	 */
772 	struct attribute attr_cu_occupancy;
773 
774 	/* sysfs counters for GPU retry fault and page migration tracking */
775 	struct kobject *kobj_counters;
776 	struct attribute attr_faults;
777 	struct attribute attr_page_in;
778 	struct attribute attr_page_out;
779 	uint64_t faults;
780 	uint64_t page_in;
781 	uint64_t page_out;
782 	/*
783 	 * If this process has been checkpointed before, then the user
784 	 * application will use the original gpu_id on the
785 	 * checkpointed node to refer to this device.
786 	 */
787 	uint32_t user_gpu_id;
788 
789 	void *proc_ctx_bo;
790 	uint64_t proc_ctx_gpu_addr;
791 	void *proc_ctx_cpu_ptr;
792 };
793 
794 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
795 
796 struct svm_range_list {
797 	struct mutex			lock;
798 	struct rb_root_cached		objects;
799 	struct list_head		list;
800 	struct work_struct		deferred_list_work;
801 	struct list_head		deferred_range_list;
802 	struct list_head                criu_svm_metadata_list;
803 	spinlock_t			deferred_list_lock;
804 	atomic_t			evicted_ranges;
805 	atomic_t			drain_pagefaults;
806 	struct delayed_work		restore_work;
807 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
808 	struct task_struct		*faulting_task;
809 };
810 
811 /* Process data */
812 struct kfd_process {
813 	/*
814 	 * kfd_process are stored in an mm_struct*->kfd_process*
815 	 * hash table (kfd_processes in kfd_process.c)
816 	 */
817 	struct hlist_node kfd_processes;
818 
819 	/*
820 	 * Opaque pointer to mm_struct. We don't hold a reference to
821 	 * it so it should never be dereferenced from here. This is
822 	 * only used for looking up processes by their mm.
823 	 */
824 	void *mm;
825 
826 	struct kref ref;
827 	struct work_struct release_work;
828 
829 	struct mutex mutex;
830 
831 	/*
832 	 * In any process, the thread that started main() is the lead
833 	 * thread and outlives the rest.
834 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
835 	 * It can also be used for safely getting a reference to the
836 	 * mm_struct of the process.
837 	 */
838 	struct task_struct *lead_thread;
839 
840 	/* We want to receive a notification when the mm_struct is destroyed */
841 	struct mmu_notifier mmu_notifier;
842 
843 	u32 pasid;
844 
845 	/*
846 	 * Array of kfd_process_device pointers,
847 	 * one for each device the process is using.
848 	 */
849 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
850 	uint32_t n_pdds;
851 
852 	struct process_queue_manager pqm;
853 
854 	/*Is the user space process 32 bit?*/
855 	bool is_32bit_user_mode;
856 
857 	/* Event-related data */
858 	struct mutex event_mutex;
859 	/* Event ID allocator and lookup */
860 	struct idr event_idr;
861 	/* Event page */
862 	u64 signal_handle;
863 	struct kfd_signal_page *signal_page;
864 	size_t signal_mapped_size;
865 	size_t signal_event_count;
866 	bool signal_event_limit_reached;
867 
868 	/* Information used for memory eviction */
869 	void *kgd_process_info;
870 	/* Eviction fence that is attached to all the BOs of this process. The
871 	 * fence will be triggered during eviction and new one will be created
872 	 * during restore
873 	 */
874 	struct dma_fence *ef;
875 
876 	/* Work items for evicting and restoring BOs */
877 	struct delayed_work eviction_work;
878 	struct delayed_work restore_work;
879 	/* seqno of the last scheduled eviction */
880 	unsigned int last_eviction_seqno;
881 	/* Approx. the last timestamp (in jiffies) when the process was
882 	 * restored after an eviction
883 	 */
884 	unsigned long last_restore_timestamp;
885 
886 	/* Kobj for our procfs */
887 	struct kobject *kobj;
888 	struct kobject *kobj_queues;
889 	struct attribute attr_pasid;
890 
891 	/* shared virtual memory registered by this process */
892 	struct svm_range_list svms;
893 
894 	bool xnack_enabled;
895 
896 	atomic_t poison;
897 	/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
898 	bool queues_paused;
899 };
900 
901 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
902 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
903 extern struct srcu_struct kfd_processes_srcu;
904 
905 /**
906  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
907  *
908  * @filep: pointer to file structure.
909  * @p: amdkfd process pointer.
910  * @data: pointer to arg that was copied from user.
911  *
912  * Return: returns ioctl completion code.
913  */
914 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
915 				void *data);
916 
917 struct amdkfd_ioctl_desc {
918 	unsigned int cmd;
919 	int flags;
920 	amdkfd_ioctl_t *func;
921 	unsigned int cmd_drv;
922 	const char *name;
923 };
924 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
925 
926 int kfd_process_create_wq(void);
927 void kfd_process_destroy_wq(void);
928 struct kfd_process *kfd_create_process(struct file *filep);
929 struct kfd_process *kfd_get_process(const struct task_struct *task);
930 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
931 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
932 
933 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
934 int kfd_process_gpuid_from_adev(struct kfd_process *p,
935 			       struct amdgpu_device *adev, uint32_t *gpuid,
936 			       uint32_t *gpuidx);
937 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
938 				uint32_t gpuidx, uint32_t *gpuid) {
939 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
940 }
941 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
942 				struct kfd_process *p, uint32_t gpuidx) {
943 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
944 }
945 
946 void kfd_unref_process(struct kfd_process *p);
947 int kfd_process_evict_queues(struct kfd_process *p);
948 int kfd_process_restore_queues(struct kfd_process *p);
949 void kfd_suspend_all_processes(void);
950 int kfd_resume_all_processes(void);
951 
952 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
953 							 uint32_t gpu_id);
954 
955 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
956 
957 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
958 			       struct file *drm_file);
959 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
960 						struct kfd_process *p);
961 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
962 							struct kfd_process *p);
963 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
964 							struct kfd_process *p);
965 
966 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
967 
968 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
969 			  struct vm_area_struct *vma);
970 
971 /* KFD process API for creating and translating handles */
972 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
973 					void *mem);
974 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
975 					int handle);
976 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
977 					int handle);
978 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
979 
980 /* PASIDs */
981 int kfd_pasid_init(void);
982 void kfd_pasid_exit(void);
983 bool kfd_set_pasid_limit(unsigned int new_limit);
984 unsigned int kfd_get_pasid_limit(void);
985 u32 kfd_pasid_alloc(void);
986 void kfd_pasid_free(u32 pasid);
987 
988 /* Doorbells */
989 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
990 int kfd_doorbell_init(struct kfd_dev *kfd);
991 void kfd_doorbell_fini(struct kfd_dev *kfd);
992 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
993 		      struct vm_area_struct *vma);
994 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
995 					unsigned int *doorbell_off);
996 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
997 u32 read_kernel_doorbell(u32 __iomem *db);
998 void write_kernel_doorbell(void __iomem *db, u32 value);
999 void write_kernel_doorbell64(void __iomem *db, u64 value);
1000 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
1001 					struct kfd_process_device *pdd,
1002 					unsigned int doorbell_id);
1003 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
1004 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
1005 				unsigned int *doorbell_index);
1006 void kfd_free_process_doorbells(struct kfd_dev *kfd,
1007 				unsigned int doorbell_index);
1008 /* GTT Sub-Allocator */
1009 
1010 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1011 			struct kfd_mem_obj **mem_obj);
1012 
1013 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
1014 
1015 extern struct device *kfd_device;
1016 
1017 /* KFD's procfs */
1018 void kfd_procfs_init(void);
1019 void kfd_procfs_shutdown(void);
1020 int kfd_procfs_add_queue(struct queue *q);
1021 void kfd_procfs_del_queue(struct queue *q);
1022 
1023 /* Topology */
1024 int kfd_topology_init(void);
1025 void kfd_topology_shutdown(void);
1026 int kfd_topology_add_device(struct kfd_dev *gpu);
1027 int kfd_topology_remove_device(struct kfd_dev *gpu);
1028 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1029 						uint32_t proximity_domain);
1030 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
1031 						uint32_t proximity_domain);
1032 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1033 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
1034 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
1035 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev);
1036 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
1037 int kfd_numa_node_to_apic_id(int numa_node_id);
1038 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
1039 
1040 /* Interrupts */
1041 int kfd_interrupt_init(struct kfd_dev *dev);
1042 void kfd_interrupt_exit(struct kfd_dev *dev);
1043 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
1044 bool interrupt_is_wanted(struct kfd_dev *dev,
1045 				const uint32_t *ih_ring_entry,
1046 				uint32_t *patched_ihre, bool *flag);
1047 
1048 /* amdkfd Apertures */
1049 int kfd_init_apertures(struct kfd_process *process);
1050 
1051 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1052 				  uint64_t tba_addr,
1053 				  uint64_t tma_addr);
1054 
1055 /* CRIU */
1056 /*
1057  * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1058  * structures:
1059  * kfd_criu_process_priv_data
1060  * kfd_criu_device_priv_data
1061  * kfd_criu_bo_priv_data
1062  * kfd_criu_queue_priv_data
1063  * kfd_criu_event_priv_data
1064  * kfd_criu_svm_range_priv_data
1065  */
1066 
1067 #define KFD_CRIU_PRIV_VERSION 1
1068 
1069 struct kfd_criu_process_priv_data {
1070 	uint32_t version;
1071 	uint32_t xnack_mode;
1072 };
1073 
1074 struct kfd_criu_device_priv_data {
1075 	/* For future use */
1076 	uint64_t reserved;
1077 };
1078 
1079 struct kfd_criu_bo_priv_data {
1080 	uint64_t user_addr;
1081 	uint32_t idr_handle;
1082 	uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1083 };
1084 
1085 /*
1086  * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1087  * kfd_criu_svm_range_priv_data is the object type
1088  */
1089 enum kfd_criu_object_type {
1090 	KFD_CRIU_OBJECT_TYPE_QUEUE,
1091 	KFD_CRIU_OBJECT_TYPE_EVENT,
1092 	KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1093 };
1094 
1095 struct kfd_criu_svm_range_priv_data {
1096 	uint32_t object_type;
1097 	uint64_t start_addr;
1098 	uint64_t size;
1099 	/* Variable length array of attributes */
1100 	struct kfd_ioctl_svm_attribute attrs[];
1101 };
1102 
1103 struct kfd_criu_queue_priv_data {
1104 	uint32_t object_type;
1105 	uint64_t q_address;
1106 	uint64_t q_size;
1107 	uint64_t read_ptr_addr;
1108 	uint64_t write_ptr_addr;
1109 	uint64_t doorbell_off;
1110 	uint64_t eop_ring_buffer_address;
1111 	uint64_t ctx_save_restore_area_address;
1112 	uint32_t gpu_id;
1113 	uint32_t type;
1114 	uint32_t format;
1115 	uint32_t q_id;
1116 	uint32_t priority;
1117 	uint32_t q_percent;
1118 	uint32_t doorbell_id;
1119 	uint32_t gws;
1120 	uint32_t sdma_id;
1121 	uint32_t eop_ring_buffer_size;
1122 	uint32_t ctx_save_restore_area_size;
1123 	uint32_t ctl_stack_size;
1124 	uint32_t mqd_size;
1125 };
1126 
1127 struct kfd_criu_event_priv_data {
1128 	uint32_t object_type;
1129 	uint64_t user_handle;
1130 	uint32_t event_id;
1131 	uint32_t auto_reset;
1132 	uint32_t type;
1133 	uint32_t signaled;
1134 
1135 	union {
1136 		struct kfd_hsa_memory_exception_data memory_exception_data;
1137 		struct kfd_hsa_hw_exception_data hw_exception_data;
1138 	};
1139 };
1140 
1141 int kfd_process_get_queue_info(struct kfd_process *p,
1142 			       uint32_t *num_queues,
1143 			       uint64_t *priv_data_sizes);
1144 
1145 int kfd_criu_checkpoint_queues(struct kfd_process *p,
1146 			 uint8_t __user *user_priv_data,
1147 			 uint64_t *priv_data_offset);
1148 
1149 int kfd_criu_restore_queue(struct kfd_process *p,
1150 			   uint8_t __user *user_priv_data,
1151 			   uint64_t *priv_data_offset,
1152 			   uint64_t max_priv_data_size);
1153 
1154 int kfd_criu_checkpoint_events(struct kfd_process *p,
1155 			 uint8_t __user *user_priv_data,
1156 			 uint64_t *priv_data_offset);
1157 
1158 int kfd_criu_restore_event(struct file *devkfd,
1159 			   struct kfd_process *p,
1160 			   uint8_t __user *user_priv_data,
1161 			   uint64_t *priv_data_offset,
1162 			   uint64_t max_priv_data_size);
1163 /* CRIU - End */
1164 
1165 /* Queue Context Management */
1166 int init_queue(struct queue **q, const struct queue_properties *properties);
1167 void uninit_queue(struct queue *q);
1168 void print_queue_properties(struct queue_properties *q);
1169 void print_queue(struct queue *q);
1170 
1171 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1172 		struct kfd_dev *dev);
1173 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
1174 		struct kfd_dev *dev);
1175 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1176 		struct kfd_dev *dev);
1177 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1178 		struct kfd_dev *dev);
1179 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1180 		struct kfd_dev *dev);
1181 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1182 		struct kfd_dev *dev);
1183 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type,
1184 		struct kfd_dev *dev);
1185 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
1186 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1187 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
1188 					enum kfd_queue_type type);
1189 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1190 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid);
1191 
1192 /* Process Queue Manager */
1193 struct process_queue_node {
1194 	struct queue *q;
1195 	struct kernel_queue *kq;
1196 	struct list_head process_queue_list;
1197 };
1198 
1199 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1200 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1201 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1202 void pqm_uninit(struct process_queue_manager *pqm);
1203 int pqm_create_queue(struct process_queue_manager *pqm,
1204 			    struct kfd_dev *dev,
1205 			    struct file *f,
1206 			    struct queue_properties *properties,
1207 			    unsigned int *qid,
1208 			    const struct kfd_criu_queue_priv_data *q_data,
1209 			    const void *restore_mqd,
1210 			    const void *restore_ctl_stack,
1211 			    uint32_t *p_doorbell_offset_in_process);
1212 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1213 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1214 			struct queue_properties *p);
1215 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1216 			struct mqd_update_info *minfo);
1217 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1218 			void *gws);
1219 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1220 						unsigned int qid);
1221 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1222 						unsigned int qid);
1223 int pqm_get_wave_state(struct process_queue_manager *pqm,
1224 		       unsigned int qid,
1225 		       void __user *ctl_stack,
1226 		       u32 *ctl_stack_used_size,
1227 		       u32 *save_area_used_size);
1228 
1229 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1230 			      uint64_t fence_value,
1231 			      unsigned int timeout_ms);
1232 
1233 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1234 				  unsigned int qid,
1235 				  u32 *mqd_size,
1236 				  u32 *ctl_stack_size);
1237 /* Packet Manager */
1238 
1239 #define KFD_FENCE_COMPLETED (100)
1240 #define KFD_FENCE_INIT   (10)
1241 
1242 struct packet_manager {
1243 	struct device_queue_manager *dqm;
1244 	struct kernel_queue *priv_queue;
1245 	struct mutex lock;
1246 	bool allocated;
1247 	struct kfd_mem_obj *ib_buffer_obj;
1248 	unsigned int ib_size_bytes;
1249 	bool is_over_subscription;
1250 
1251 	const struct packet_manager_funcs *pmf;
1252 };
1253 
1254 struct packet_manager_funcs {
1255 	/* Support ASIC-specific packet formats for PM4 packets */
1256 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1257 			struct qcm_process_device *qpd);
1258 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1259 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1260 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1261 			struct scheduling_resources *res);
1262 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1263 			struct queue *q, bool is_static);
1264 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1265 			enum kfd_unmap_queues_filter mode,
1266 			uint32_t filter_param, bool reset);
1267 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1268 			uint64_t fence_address,	uint64_t fence_value);
1269 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1270 
1271 	/* Packet sizes */
1272 	int map_process_size;
1273 	int runlist_size;
1274 	int set_resources_size;
1275 	int map_queues_size;
1276 	int unmap_queues_size;
1277 	int query_status_size;
1278 	int release_mem_size;
1279 };
1280 
1281 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1282 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1283 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1284 
1285 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1286 void pm_uninit(struct packet_manager *pm, bool hanging);
1287 int pm_send_set_resources(struct packet_manager *pm,
1288 				struct scheduling_resources *res);
1289 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1290 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1291 				uint64_t fence_value);
1292 
1293 int pm_send_unmap_queue(struct packet_manager *pm,
1294 			enum kfd_unmap_queues_filter mode,
1295 			uint32_t filter_param, bool reset);
1296 
1297 void pm_release_ib(struct packet_manager *pm);
1298 
1299 /* Following PM funcs can be shared among VI and AI */
1300 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1301 
1302 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1303 
1304 /* Events */
1305 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1306 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1307 extern const struct kfd_event_interrupt_class event_interrupt_class_v11;
1308 
1309 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1310 
1311 int kfd_event_init_process(struct kfd_process *p);
1312 void kfd_event_free_process(struct kfd_process *p);
1313 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1314 int kfd_wait_on_events(struct kfd_process *p,
1315 		       uint32_t num_events, void __user *data,
1316 		       bool all, uint32_t user_timeout_ms,
1317 		       uint32_t *wait_result);
1318 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1319 				uint32_t valid_id_bits);
1320 void kfd_signal_iommu_event(struct kfd_dev *dev,
1321 			    u32 pasid, unsigned long address,
1322 			    bool is_write_requested, bool is_execute_requested);
1323 void kfd_signal_hw_exception_event(u32 pasid);
1324 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1325 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1326 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1327 
1328 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1329 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1330 		     uint32_t *event_id, uint32_t *event_trigger_data,
1331 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1332 
1333 int kfd_get_num_events(struct kfd_process *p);
1334 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1335 
1336 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1337 				struct kfd_vm_fault_info *info);
1338 
1339 void kfd_signal_reset_event(struct kfd_dev *dev);
1340 
1341 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid);
1342 
1343 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1344 
1345 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev)
1346 {
1347 	return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) ||
1348 	       (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) &&
1349 	       dev->adev->sdma.instance[0].fw_version >= 18) ||
1350 	       KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0);
1351 }
1352 
1353 bool kfd_is_locked(void);
1354 
1355 /* Compute profile */
1356 void kfd_inc_compute_active(struct kfd_dev *dev);
1357 void kfd_dec_compute_active(struct kfd_dev *dev);
1358 
1359 /* Cgroup Support */
1360 /* Check with device cgroup if @kfd device is accessible */
1361 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1362 {
1363 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1364 	struct drm_device *ddev = kfd->ddev;
1365 
1366 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1367 					  ddev->render->index,
1368 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1369 #else
1370 	return 0;
1371 #endif
1372 }
1373 
1374 /* Debugfs */
1375 #if defined(CONFIG_DEBUG_FS)
1376 
1377 void kfd_debugfs_init(void);
1378 void kfd_debugfs_fini(void);
1379 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1380 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1381 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1382 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1383 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1384 int pm_debugfs_runlist(struct seq_file *m, void *data);
1385 
1386 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1387 int pm_debugfs_hang_hws(struct packet_manager *pm);
1388 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1389 
1390 #else
1391 
1392 static inline void kfd_debugfs_init(void) {}
1393 static inline void kfd_debugfs_fini(void) {}
1394 
1395 #endif
1396 
1397 #endif
1398