1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef KFD_PRIV_H_INCLUDED 25 #define KFD_PRIV_H_INCLUDED 26 27 #include <linux/hashtable.h> 28 #include <linux/mmu_notifier.h> 29 #include <linux/memremap.h> 30 #include <linux/mutex.h> 31 #include <linux/types.h> 32 #include <linux/atomic.h> 33 #include <linux/workqueue.h> 34 #include <linux/spinlock.h> 35 #include <linux/kfd_ioctl.h> 36 #include <linux/idr.h> 37 #include <linux/kfifo.h> 38 #include <linux/seq_file.h> 39 #include <linux/kref.h> 40 #include <linux/sysfs.h> 41 #include <linux/device_cgroup.h> 42 #include <drm/drm_file.h> 43 #include <drm/drm_drv.h> 44 #include <drm/drm_device.h> 45 #include <drm/drm_ioctl.h> 46 #include <kgd_kfd_interface.h> 47 #include <linux/swap.h> 48 49 #include "amd_shared.h" 50 #include "amdgpu.h" 51 52 #define KFD_MAX_RING_ENTRY_SIZE 8 53 54 #define KFD_SYSFS_FILE_MODE 0444 55 56 /* GPU ID hash width in bits */ 57 #define KFD_GPU_ID_HASH_WIDTH 16 58 59 /* Use upper bits of mmap offset to store KFD driver specific information. 60 * BITS[63:62] - Encode MMAP type 61 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 62 * BITS[45:0] - MMAP offset value 63 * 64 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 65 * defines are w.r.t to PAGE_SIZE 66 */ 67 #define KFD_MMAP_TYPE_SHIFT 62 68 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 69 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 70 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 71 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 72 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 73 74 #define KFD_MMAP_GPU_ID_SHIFT 46 75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 76 << KFD_MMAP_GPU_ID_SHIFT) 77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 78 & KFD_MMAP_GPU_ID_MASK) 79 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 80 >> KFD_MMAP_GPU_ID_SHIFT) 81 82 /* 83 * When working with cp scheduler we should assign the HIQ manually or via 84 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 85 * definitions for Kaveri. In Kaveri only the first ME queues participates 86 * in the cp scheduling taking that in mind we set the HIQ slot in the 87 * second ME. 88 */ 89 #define KFD_CIK_HIQ_PIPE 4 90 #define KFD_CIK_HIQ_QUEUE 0 91 92 /* Macro for allocating structures */ 93 #define kfd_alloc_struct(ptr_to_struct) \ 94 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 95 96 #define KFD_MAX_NUM_OF_PROCESSES 512 97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 98 99 /* 100 * Size of the per-process TBA+TMA buffer: 2 pages 101 * 102 * The first page is the TBA used for the CWSR ISA code. The second 103 * page is used as TMA for user-mode trap handler setup in daisy-chain mode. 104 */ 105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 106 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 107 108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 109 (KFD_MAX_NUM_OF_PROCESSES * \ 110 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 111 112 #define KFD_KERNEL_QUEUE_SIZE 2048 113 114 #define KFD_UNMAP_LATENCY_MS (4000) 115 116 #define KFD_MAX_SDMA_QUEUES 128 117 118 /* 119 * 512 = 0x200 120 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 121 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 122 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 123 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 124 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 125 */ 126 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 127 128 /** 129 * enum kfd_ioctl_flags - KFD ioctl flags 130 * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how 131 * userspace can use a given ioctl. 132 */ 133 enum kfd_ioctl_flags { 134 /* 135 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE: 136 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially 137 * perform privileged operations and load arbitrary data into MQDs and 138 * eventually HQD registers when the queue is mapped by HWS. In order to 139 * prevent this we should perform additional security checks. 140 * 141 * This is equivalent to callers with the CHECKPOINT_RESTORE capability. 142 * 143 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE, 144 * we also allow ioctls with SYS_ADMIN capability. 145 */ 146 KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0), 147 }; 148 /* 149 * Kernel module parameter to specify maximum number of supported queues per 150 * device 151 */ 152 extern int max_num_of_queues_per_device; 153 154 155 /* Kernel module parameter to specify the scheduling policy */ 156 extern int sched_policy; 157 158 /* 159 * Kernel module parameter to specify the maximum process 160 * number per HW scheduler 161 */ 162 extern int hws_max_conc_proc; 163 164 extern int cwsr_enable; 165 166 /* 167 * Kernel module parameter to specify whether to send sigterm to HSA process on 168 * unhandled exception 169 */ 170 extern int send_sigterm; 171 172 /* 173 * This kernel module is used to simulate large bar machine on non-large bar 174 * enabled machines. 175 */ 176 extern int debug_largebar; 177 178 /* 179 * Ignore CRAT table during KFD initialization, can be used to work around 180 * broken CRAT tables on some AMD systems 181 */ 182 extern int ignore_crat; 183 184 /* Set sh_mem_config.retry_disable on GFX v9 */ 185 extern int amdgpu_noretry; 186 187 /* Halt if HWS hang is detected */ 188 extern int halt_if_hws_hang; 189 190 /* Whether MEC FW support GWS barriers */ 191 extern bool hws_gws_support; 192 193 /* Queue preemption timeout in ms */ 194 extern int queue_preemption_timeout_ms; 195 196 /* 197 * Don't evict process queues on vm fault 198 */ 199 extern int amdgpu_no_queue_eviction_on_vm_fault; 200 201 /* Enable eviction debug messages */ 202 extern bool debug_evictions; 203 204 extern struct mutex kfd_processes_mutex; 205 206 enum cache_policy { 207 cache_policy_coherent, 208 cache_policy_noncoherent 209 }; 210 211 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0]) 212 #define KFD_IS_SOC15(dev) ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1))) 213 #define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\ 214 ((KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) || \ 215 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3))) 216 217 struct kfd_node; 218 219 struct kfd_event_interrupt_class { 220 bool (*interrupt_isr)(struct kfd_node *dev, 221 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 222 bool *patched_flag); 223 void (*interrupt_wq)(struct kfd_node *dev, 224 const uint32_t *ih_ring_entry); 225 }; 226 227 struct kfd_device_info { 228 uint32_t gfx_target_version; 229 const struct kfd_event_interrupt_class *event_interrupt_class; 230 unsigned int max_pasid_bits; 231 unsigned int max_no_of_hqd; 232 unsigned int doorbell_size; 233 size_t ih_ring_entry_size; 234 uint8_t num_of_watch_points; 235 uint16_t mqd_size_aligned; 236 bool supports_cwsr; 237 bool needs_iommu_device; 238 bool needs_pci_atomics; 239 uint32_t no_atomic_fw_version; 240 unsigned int num_sdma_queues_per_engine; 241 unsigned int num_reserved_sdma_queues_per_engine; 242 DECLARE_BITMAP(reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES); 243 }; 244 245 unsigned int kfd_get_num_sdma_engines(struct kfd_node *kdev); 246 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *kdev); 247 248 struct kfd_mem_obj { 249 uint32_t range_start; 250 uint32_t range_end; 251 uint64_t gpu_addr; 252 uint32_t *cpu_ptr; 253 void *gtt_mem; 254 }; 255 256 struct kfd_vmid_info { 257 uint32_t first_vmid_kfd; 258 uint32_t last_vmid_kfd; 259 uint32_t vmid_num_kfd; 260 }; 261 262 #define MAX_KFD_NODES 8 263 264 struct kfd_dev; 265 266 struct kfd_node { 267 unsigned int node_id; 268 struct amdgpu_device *adev; /* Duplicated here along with keeping 269 * a copy in kfd_dev to save a hop 270 */ 271 const struct kfd2kgd_calls *kfd2kgd; /* Duplicated here along with 272 * keeping a copy in kfd_dev to 273 * save a hop 274 */ 275 struct kfd_vmid_info vm_info; 276 unsigned int id; /* topology stub index */ 277 uint32_t xcc_mask; /* Instance mask of XCCs present */ 278 struct amdgpu_xcp *xcp; 279 280 /* Interrupts */ 281 struct kfifo ih_fifo; 282 struct workqueue_struct *ih_wq; 283 struct work_struct interrupt_work; 284 spinlock_t interrupt_lock; 285 286 /* 287 * Interrupts of interest to KFD are copied 288 * from the HW ring into a SW ring. 289 */ 290 bool interrupts_active; 291 uint32_t interrupt_bitmap; /* Only used for GFX 9.4.3 */ 292 293 /* QCM Device instance */ 294 struct device_queue_manager *dqm; 295 296 /* Global GWS resource shared between processes */ 297 void *gws; 298 bool gws_debug_workaround; 299 300 /* Clients watching SMI events */ 301 struct list_head smi_clients; 302 spinlock_t smi_lock; 303 uint32_t reset_seq_num; 304 305 /* SRAM ECC flag */ 306 atomic_t sram_ecc_flag; 307 308 /*spm process id */ 309 unsigned int spm_pasid; 310 311 /* Maximum process number mapped to HW scheduler */ 312 unsigned int max_proc_per_quantum; 313 314 unsigned int compute_vmid_bitmap; 315 316 struct kfd_local_mem_info local_mem_info; 317 318 struct kfd_dev *kfd; 319 }; 320 321 struct kfd_dev { 322 struct amdgpu_device *adev; 323 324 struct kfd_device_info device_info; 325 326 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 327 * page used by kernel queue 328 */ 329 330 struct kgd2kfd_shared_resources shared_resources; 331 332 const struct kfd2kgd_calls *kfd2kgd; 333 struct mutex doorbell_mutex; 334 335 void *gtt_mem; 336 uint64_t gtt_start_gpu_addr; 337 void *gtt_start_cpu_ptr; 338 void *gtt_sa_bitmap; 339 struct mutex gtt_sa_lock; 340 unsigned int gtt_sa_chunk_size; 341 unsigned int gtt_sa_num_of_chunks; 342 343 bool init_complete; 344 345 /* Firmware versions */ 346 uint16_t mec_fw_version; 347 uint16_t mec2_fw_version; 348 uint16_t sdma_fw_version; 349 350 /* CWSR */ 351 bool cwsr_enabled; 352 const void *cwsr_isa; 353 unsigned int cwsr_isa_size; 354 355 /* xGMI */ 356 uint64_t hive_id; 357 358 bool pci_atomic_requested; 359 360 /* Use IOMMU v2 flag */ 361 bool use_iommu_v2; 362 363 /* Compute Profile ref. count */ 364 atomic_t compute_profile; 365 366 struct ida doorbell_ida; 367 unsigned int max_doorbell_slices; 368 369 int noretry; 370 371 struct kfd_node *nodes[MAX_KFD_NODES]; 372 unsigned int num_nodes; 373 374 /* Track per device allocated watch points */ 375 uint32_t alloc_watch_ids; 376 spinlock_t watch_points_lock; 377 378 /* Kernel doorbells for KFD device */ 379 struct amdgpu_bo *doorbells; 380 381 /* bitmap for dynamic doorbell allocation from doorbell object */ 382 unsigned long *doorbell_bitmap; 383 }; 384 385 enum kfd_mempool { 386 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 387 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 388 KFD_MEMPOOL_FRAMEBUFFER = 3, 389 }; 390 391 /* Character device interface */ 392 int kfd_chardev_init(void); 393 void kfd_chardev_exit(void); 394 395 /** 396 * enum kfd_unmap_queues_filter - Enum for queue filters. 397 * 398 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 399 * running queues list. 400 * 401 * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues 402 * in the run list. 403 * 404 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 405 * specific process. 406 * 407 */ 408 enum kfd_unmap_queues_filter { 409 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1, 410 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2, 411 KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3 412 }; 413 414 /** 415 * enum kfd_queue_type - Enum for various queue types. 416 * 417 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 418 * 419 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type. 420 * 421 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 422 * 423 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 424 * 425 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface. 426 */ 427 enum kfd_queue_type { 428 KFD_QUEUE_TYPE_COMPUTE, 429 KFD_QUEUE_TYPE_SDMA, 430 KFD_QUEUE_TYPE_HIQ, 431 KFD_QUEUE_TYPE_DIQ, 432 KFD_QUEUE_TYPE_SDMA_XGMI 433 }; 434 435 enum kfd_queue_format { 436 KFD_QUEUE_FORMAT_PM4, 437 KFD_QUEUE_FORMAT_AQL 438 }; 439 440 enum KFD_QUEUE_PRIORITY { 441 KFD_QUEUE_PRIORITY_MINIMUM = 0, 442 KFD_QUEUE_PRIORITY_MAXIMUM = 15 443 }; 444 445 /** 446 * struct queue_properties 447 * 448 * @type: The queue type. 449 * 450 * @queue_id: Queue identifier. 451 * 452 * @queue_address: Queue ring buffer address. 453 * 454 * @queue_size: Queue ring buffer size. 455 * 456 * @priority: Defines the queue priority relative to other queues in the 457 * process. 458 * This is just an indication and HW scheduling may override the priority as 459 * necessary while keeping the relative prioritization. 460 * the priority granularity is from 0 to f which f is the highest priority. 461 * currently all queues are initialized with the highest priority. 462 * 463 * @queue_percent: This field is partially implemented and currently a zero in 464 * this field defines that the queue is non active. 465 * 466 * @read_ptr: User space address which points to the number of dwords the 467 * cp read from the ring buffer. This field updates automatically by the H/W. 468 * 469 * @write_ptr: Defines the number of dwords written to the ring buffer. 470 * 471 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring 472 * buffer. This field should be similar to write_ptr and the user should 473 * update this field after updating the write_ptr. 474 * 475 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 476 * 477 * @is_interop: Defines if this is a interop queue. Interop queue means that 478 * the queue can access both graphics and compute resources. 479 * 480 * @is_evicted: Defines if the queue is evicted. Only active queues 481 * are evicted, rendering them inactive. 482 * 483 * @is_active: Defines if the queue is active or not. @is_active and 484 * @is_evicted are protected by the DQM lock. 485 * 486 * @is_gws: Defines if the queue has been updated to be GWS-capable or not. 487 * @is_gws should be protected by the DQM lock, since changing it can yield the 488 * possibility of updating DQM state on number of GWS queues. 489 * 490 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 491 * of the queue. 492 * 493 * This structure represents the queue properties for each queue no matter if 494 * it's user mode or kernel mode queue. 495 * 496 */ 497 498 struct queue_properties { 499 enum kfd_queue_type type; 500 enum kfd_queue_format format; 501 unsigned int queue_id; 502 uint64_t queue_address; 503 uint64_t queue_size; 504 uint32_t priority; 505 uint32_t queue_percent; 506 uint32_t *read_ptr; 507 uint32_t *write_ptr; 508 void __iomem *doorbell_ptr; 509 uint32_t doorbell_off; 510 bool is_interop; 511 bool is_evicted; 512 bool is_suspended; 513 bool is_being_destroyed; 514 bool is_active; 515 bool is_gws; 516 uint32_t pm4_target_xcc; 517 bool is_dbg_wa; 518 bool is_user_cu_masked; 519 /* Not relevant for user mode queues in cp scheduling */ 520 unsigned int vmid; 521 /* Relevant only for sdma queues*/ 522 uint32_t sdma_engine_id; 523 uint32_t sdma_queue_id; 524 uint32_t sdma_vm_addr; 525 /* Relevant only for VI */ 526 uint64_t eop_ring_buffer_address; 527 uint32_t eop_ring_buffer_size; 528 uint64_t ctx_save_restore_area_address; 529 uint32_t ctx_save_restore_area_size; 530 uint32_t ctl_stack_size; 531 uint64_t tba_addr; 532 uint64_t tma_addr; 533 uint64_t exception_status; 534 }; 535 536 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 537 (q).queue_address != 0 && \ 538 (q).queue_percent > 0 && \ 539 !(q).is_evicted && \ 540 !(q).is_suspended) 541 542 enum mqd_update_flag { 543 UPDATE_FLAG_DBG_WA_ENABLE = 1, 544 UPDATE_FLAG_DBG_WA_DISABLE = 2, 545 }; 546 547 struct mqd_update_info { 548 union { 549 struct { 550 uint32_t count; /* Must be a multiple of 32 */ 551 uint32_t *ptr; 552 } cu_mask; 553 }; 554 enum mqd_update_flag update_flag; 555 }; 556 557 /** 558 * struct queue 559 * 560 * @list: Queue linked list. 561 * 562 * @mqd: The queue MQD (memory queue descriptor). 563 * 564 * @mqd_mem_obj: The MQD local gpu memory object. 565 * 566 * @gart_mqd_addr: The MQD gart mc address. 567 * 568 * @properties: The queue properties. 569 * 570 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 571 * that the queue should be executed on. 572 * 573 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 574 * id. 575 * 576 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 577 * 578 * @process: The kfd process that created this queue. 579 * 580 * @device: The kfd device that created this queue. 581 * 582 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 583 * otherwise. 584 * 585 * This structure represents user mode compute queues. 586 * It contains all the necessary data to handle such queues. 587 * 588 */ 589 590 struct queue { 591 struct list_head list; 592 void *mqd; 593 struct kfd_mem_obj *mqd_mem_obj; 594 uint64_t gart_mqd_addr; 595 struct queue_properties properties; 596 597 uint32_t mec; 598 uint32_t pipe; 599 uint32_t queue; 600 601 unsigned int sdma_id; 602 unsigned int doorbell_id; 603 604 struct kfd_process *process; 605 struct kfd_node *device; 606 void *gws; 607 608 /* procfs */ 609 struct kobject kobj; 610 611 void *gang_ctx_bo; 612 uint64_t gang_ctx_gpu_addr; 613 void *gang_ctx_cpu_ptr; 614 615 struct amdgpu_bo *wptr_bo; 616 }; 617 618 enum KFD_MQD_TYPE { 619 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 620 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 621 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 622 KFD_MQD_TYPE_DIQ, /* for diq */ 623 KFD_MQD_TYPE_MAX 624 }; 625 626 enum KFD_PIPE_PRIORITY { 627 KFD_PIPE_PRIORITY_CS_LOW = 0, 628 KFD_PIPE_PRIORITY_CS_MEDIUM, 629 KFD_PIPE_PRIORITY_CS_HIGH 630 }; 631 632 struct scheduling_resources { 633 unsigned int vmid_mask; 634 enum kfd_queue_type type; 635 uint64_t queue_mask; 636 uint64_t gws_mask; 637 uint32_t oac_mask; 638 uint32_t gds_heap_base; 639 uint32_t gds_heap_size; 640 }; 641 642 struct process_queue_manager { 643 /* data */ 644 struct kfd_process *process; 645 struct list_head queues; 646 unsigned long *queue_slot_bitmap; 647 }; 648 649 struct qcm_process_device { 650 /* The Device Queue Manager that owns this data */ 651 struct device_queue_manager *dqm; 652 struct process_queue_manager *pqm; 653 /* Queues list */ 654 struct list_head queues_list; 655 struct list_head priv_queue_list; 656 657 unsigned int queue_count; 658 unsigned int vmid; 659 bool is_debug; 660 unsigned int evicted; /* eviction counter, 0=active */ 661 662 /* This flag tells if we should reset all wavefronts on 663 * process termination 664 */ 665 bool reset_wavefronts; 666 667 /* This flag tells us if this process has a GWS-capable 668 * queue that will be mapped into the runlist. It's 669 * possible to request a GWS BO, but not have the queue 670 * currently mapped, and this changes how the MAP_PROCESS 671 * PM4 packet is configured. 672 */ 673 bool mapped_gws_queue; 674 675 /* All the memory management data should be here too */ 676 uint64_t gds_context_area; 677 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 678 uint64_t page_table_base; 679 uint32_t sh_mem_config; 680 uint32_t sh_mem_bases; 681 uint32_t sh_mem_ape1_base; 682 uint32_t sh_mem_ape1_limit; 683 uint32_t gds_size; 684 uint32_t num_gws; 685 uint32_t num_oac; 686 uint32_t sh_hidden_private_base; 687 688 /* CWSR memory */ 689 struct kgd_mem *cwsr_mem; 690 void *cwsr_kaddr; 691 uint64_t cwsr_base; 692 uint64_t tba_addr; 693 uint64_t tma_addr; 694 695 /* IB memory */ 696 struct kgd_mem *ib_mem; 697 uint64_t ib_base; 698 void *ib_kaddr; 699 700 /* doorbells for kfd process */ 701 struct amdgpu_bo *proc_doorbells; 702 703 /* bitmap for dynamic doorbell allocation from the bo */ 704 unsigned long *doorbell_bitmap; 705 }; 706 707 /* KFD Memory Eviction */ 708 709 /* Approx. wait time before attempting to restore evicted BOs */ 710 #define PROCESS_RESTORE_TIME_MS 100 711 /* Approx. back off time if restore fails due to lack of memory */ 712 #define PROCESS_BACK_OFF_TIME_MS 100 713 /* Approx. time before evicting the process again */ 714 #define PROCESS_ACTIVE_TIME_MS 10 715 716 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 717 * idr_handle in the least significant 4 bytes 718 */ 719 #define MAKE_HANDLE(gpu_id, idr_handle) \ 720 (((uint64_t)(gpu_id) << 32) + idr_handle) 721 #define GET_GPU_ID(handle) (handle >> 32) 722 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 723 724 enum kfd_pdd_bound { 725 PDD_UNBOUND = 0, 726 PDD_BOUND, 727 PDD_BOUND_SUSPENDED, 728 }; 729 730 #define MAX_SYSFS_FILENAME_LEN 15 731 732 /* 733 * SDMA counter runs at 100MHz frequency. 734 * We display SDMA activity in microsecond granularity in sysfs. 735 * As a result, the divisor is 100. 736 */ 737 #define SDMA_ACTIVITY_DIVISOR 100 738 739 /* Data that is per-process-per device. */ 740 struct kfd_process_device { 741 /* The device that owns this data. */ 742 struct kfd_node *dev; 743 744 /* The process that owns this kfd_process_device. */ 745 struct kfd_process *process; 746 747 /* per-process-per device QCM data structure */ 748 struct qcm_process_device qpd; 749 750 /*Apertures*/ 751 uint64_t lds_base; 752 uint64_t lds_limit; 753 uint64_t gpuvm_base; 754 uint64_t gpuvm_limit; 755 uint64_t scratch_base; 756 uint64_t scratch_limit; 757 758 /* VM context for GPUVM allocations */ 759 struct file *drm_file; 760 void *drm_priv; 761 atomic64_t tlb_seq; 762 763 /* GPUVM allocations storage */ 764 struct idr alloc_idr; 765 766 /* Flag used to tell the pdd has dequeued from the dqm. 767 * This is used to prevent dev->dqm->ops.process_termination() from 768 * being called twice when it is already called in IOMMU callback 769 * function. 770 */ 771 bool already_dequeued; 772 bool runtime_inuse; 773 774 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 775 enum kfd_pdd_bound bound; 776 777 /* VRAM usage */ 778 uint64_t vram_usage; 779 struct attribute attr_vram; 780 char vram_filename[MAX_SYSFS_FILENAME_LEN]; 781 782 /* SDMA activity tracking */ 783 uint64_t sdma_past_activity_counter; 784 struct attribute attr_sdma; 785 char sdma_filename[MAX_SYSFS_FILENAME_LEN]; 786 787 /* Eviction activity tracking */ 788 uint64_t last_evict_timestamp; 789 atomic64_t evict_duration_counter; 790 struct attribute attr_evict; 791 792 struct kobject *kobj_stats; 793 794 /* 795 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process 796 * that is associated with device encoded by "this" struct instance. The 797 * value reflects CU usage by all of the waves launched by this process 798 * on this device. A very important property of occupancy parameter is 799 * that its value is a snapshot of current use. 800 * 801 * Following is to be noted regarding how this parameter is reported: 802 * 803 * The number of waves that a CU can launch is limited by couple of 804 * parameters. These are encoded by struct amdgpu_cu_info instance 805 * that is part of every device definition. For GFX9 devices this 806 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves 807 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu) 808 * when they do use scratch memory. This could change for future 809 * devices and therefore this example should be considered as a guide. 810 * 811 * All CU's of a device are available for the process. This may not be true 812 * under certain conditions - e.g. CU masking. 813 * 814 * Finally number of CU's that are occupied by a process is affected by both 815 * number of CU's a device has along with number of other competing processes 816 */ 817 struct attribute attr_cu_occupancy; 818 819 /* sysfs counters for GPU retry fault and page migration tracking */ 820 struct kobject *kobj_counters; 821 struct attribute attr_faults; 822 struct attribute attr_page_in; 823 struct attribute attr_page_out; 824 uint64_t faults; 825 uint64_t page_in; 826 uint64_t page_out; 827 828 /* Exception code status*/ 829 uint64_t exception_status; 830 void *vm_fault_exc_data; 831 size_t vm_fault_exc_data_size; 832 833 /* Tracks debug per-vmid request settings */ 834 uint32_t spi_dbg_override; 835 uint32_t spi_dbg_launch_mode; 836 uint32_t watch_points[4]; 837 uint32_t alloc_watch_ids; 838 839 /* 840 * If this process has been checkpointed before, then the user 841 * application will use the original gpu_id on the 842 * checkpointed node to refer to this device. 843 */ 844 uint32_t user_gpu_id; 845 846 void *proc_ctx_bo; 847 uint64_t proc_ctx_gpu_addr; 848 void *proc_ctx_cpu_ptr; 849 }; 850 851 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 852 853 struct svm_range_list { 854 struct mutex lock; 855 struct rb_root_cached objects; 856 struct list_head list; 857 struct work_struct deferred_list_work; 858 struct list_head deferred_range_list; 859 struct list_head criu_svm_metadata_list; 860 spinlock_t deferred_list_lock; 861 atomic_t evicted_ranges; 862 atomic_t drain_pagefaults; 863 struct delayed_work restore_work; 864 DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE); 865 struct task_struct *faulting_task; 866 }; 867 868 /* Process data */ 869 struct kfd_process { 870 /* 871 * kfd_process are stored in an mm_struct*->kfd_process* 872 * hash table (kfd_processes in kfd_process.c) 873 */ 874 struct hlist_node kfd_processes; 875 876 /* 877 * Opaque pointer to mm_struct. We don't hold a reference to 878 * it so it should never be dereferenced from here. This is 879 * only used for looking up processes by their mm. 880 */ 881 void *mm; 882 883 struct kref ref; 884 struct work_struct release_work; 885 886 struct mutex mutex; 887 888 /* 889 * In any process, the thread that started main() is the lead 890 * thread and outlives the rest. 891 * It is here because amd_iommu_bind_pasid wants a task_struct. 892 * It can also be used for safely getting a reference to the 893 * mm_struct of the process. 894 */ 895 struct task_struct *lead_thread; 896 897 /* We want to receive a notification when the mm_struct is destroyed */ 898 struct mmu_notifier mmu_notifier; 899 900 u32 pasid; 901 902 /* 903 * Array of kfd_process_device pointers, 904 * one for each device the process is using. 905 */ 906 struct kfd_process_device *pdds[MAX_GPU_INSTANCE]; 907 uint32_t n_pdds; 908 909 struct process_queue_manager pqm; 910 911 /*Is the user space process 32 bit?*/ 912 bool is_32bit_user_mode; 913 914 /* Event-related data */ 915 struct mutex event_mutex; 916 /* Event ID allocator and lookup */ 917 struct idr event_idr; 918 /* Event page */ 919 u64 signal_handle; 920 struct kfd_signal_page *signal_page; 921 size_t signal_mapped_size; 922 size_t signal_event_count; 923 bool signal_event_limit_reached; 924 925 /* Information used for memory eviction */ 926 void *kgd_process_info; 927 /* Eviction fence that is attached to all the BOs of this process. The 928 * fence will be triggered during eviction and new one will be created 929 * during restore 930 */ 931 struct dma_fence *ef; 932 933 /* Work items for evicting and restoring BOs */ 934 struct delayed_work eviction_work; 935 struct delayed_work restore_work; 936 /* seqno of the last scheduled eviction */ 937 unsigned int last_eviction_seqno; 938 /* Approx. the last timestamp (in jiffies) when the process was 939 * restored after an eviction 940 */ 941 unsigned long last_restore_timestamp; 942 943 /* Indicates device process is debug attached with reserved vmid. */ 944 bool debug_trap_enabled; 945 946 /* per-process-per device debug event fd file */ 947 struct file *dbg_ev_file; 948 949 /* If the process is a kfd debugger, we need to know so we can clean 950 * up at exit time. If a process enables debugging on itself, it does 951 * its own clean-up, so we don't set the flag here. We track this by 952 * counting the number of processes this process is debugging. 953 */ 954 atomic_t debugged_process_count; 955 956 /* If the process is a debugged, this is the debugger process */ 957 struct kfd_process *debugger_process; 958 959 /* Kobj for our procfs */ 960 struct kobject *kobj; 961 struct kobject *kobj_queues; 962 struct attribute attr_pasid; 963 964 /* Keep track cwsr init */ 965 bool has_cwsr; 966 967 /* Exception code enable mask and status */ 968 uint64_t exception_enable_mask; 969 uint64_t exception_status; 970 971 /* Used to drain stale interrupts */ 972 wait_queue_head_t wait_irq_drain; 973 bool irq_drain_is_open; 974 975 /* shared virtual memory registered by this process */ 976 struct svm_range_list svms; 977 978 bool xnack_enabled; 979 980 /* Work area for debugger event writer worker. */ 981 struct work_struct debug_event_workarea; 982 983 /* Tracks debug per-vmid request for debug flags */ 984 bool dbg_flags; 985 986 atomic_t poison; 987 /* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */ 988 bool queues_paused; 989 990 /* Tracks runtime enable status */ 991 struct semaphore runtime_enable_sema; 992 bool is_runtime_retry; 993 struct kfd_runtime_info runtime_info; 994 }; 995 996 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 997 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 998 extern struct srcu_struct kfd_processes_srcu; 999 1000 /** 1001 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer. 1002 * 1003 * @filep: pointer to file structure. 1004 * @p: amdkfd process pointer. 1005 * @data: pointer to arg that was copied from user. 1006 * 1007 * Return: returns ioctl completion code. 1008 */ 1009 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 1010 void *data); 1011 1012 struct amdkfd_ioctl_desc { 1013 unsigned int cmd; 1014 int flags; 1015 amdkfd_ioctl_t *func; 1016 unsigned int cmd_drv; 1017 const char *name; 1018 }; 1019 bool kfd_dev_is_large_bar(struct kfd_node *dev); 1020 1021 int kfd_process_create_wq(void); 1022 void kfd_process_destroy_wq(void); 1023 void kfd_cleanup_processes(void); 1024 struct kfd_process *kfd_create_process(struct task_struct *thread); 1025 struct kfd_process *kfd_get_process(const struct task_struct *task); 1026 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid); 1027 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 1028 1029 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id); 1030 int kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, 1031 uint32_t *gpuid, uint32_t *gpuidx); 1032 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p, 1033 uint32_t gpuidx, uint32_t *gpuid) { 1034 return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL; 1035 } 1036 static inline struct kfd_process_device *kfd_process_device_from_gpuidx( 1037 struct kfd_process *p, uint32_t gpuidx) { 1038 return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL; 1039 } 1040 1041 void kfd_unref_process(struct kfd_process *p); 1042 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger); 1043 int kfd_process_restore_queues(struct kfd_process *p); 1044 void kfd_suspend_all_processes(void); 1045 int kfd_resume_all_processes(void); 1046 1047 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process, 1048 uint32_t gpu_id); 1049 1050 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id); 1051 1052 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1053 struct file *drm_file); 1054 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, 1055 struct kfd_process *p); 1056 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, 1057 struct kfd_process *p); 1058 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, 1059 struct kfd_process *p); 1060 1061 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported); 1062 1063 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, 1064 struct vm_area_struct *vma); 1065 1066 /* KFD process API for creating and translating handles */ 1067 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1068 void *mem); 1069 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 1070 int handle); 1071 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1072 int handle); 1073 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid); 1074 1075 /* PASIDs */ 1076 int kfd_pasid_init(void); 1077 void kfd_pasid_exit(void); 1078 bool kfd_set_pasid_limit(unsigned int new_limit); 1079 unsigned int kfd_get_pasid_limit(void); 1080 u32 kfd_pasid_alloc(void); 1081 void kfd_pasid_free(u32 pasid); 1082 1083 /* Doorbells */ 1084 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 1085 int kfd_doorbell_init(struct kfd_dev *kfd); 1086 void kfd_doorbell_fini(struct kfd_dev *kfd); 1087 int kfd_doorbell_mmap(struct kfd_node *dev, struct kfd_process *process, 1088 struct vm_area_struct *vma); 1089 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 1090 unsigned int *doorbell_off); 1091 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 1092 u32 read_kernel_doorbell(u32 __iomem *db); 1093 void write_kernel_doorbell(void __iomem *db, u32 value); 1094 void write_kernel_doorbell64(void __iomem *db, u64 value); 1095 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 1096 struct kfd_process_device *pdd, 1097 unsigned int doorbell_id); 1098 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd); 1099 int kfd_alloc_process_doorbells(struct kfd_dev *kfd, 1100 struct kfd_process_device *pdd); 1101 void kfd_free_process_doorbells(struct kfd_dev *kfd, 1102 struct kfd_process_device *pdd); 1103 /* GTT Sub-Allocator */ 1104 1105 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size, 1106 struct kfd_mem_obj **mem_obj); 1107 1108 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj); 1109 1110 extern struct device *kfd_device; 1111 1112 /* KFD's procfs */ 1113 void kfd_procfs_init(void); 1114 void kfd_procfs_shutdown(void); 1115 int kfd_procfs_add_queue(struct queue *q); 1116 void kfd_procfs_del_queue(struct queue *q); 1117 1118 /* Topology */ 1119 int kfd_topology_init(void); 1120 void kfd_topology_shutdown(void); 1121 int kfd_topology_add_device(struct kfd_node *gpu); 1122 int kfd_topology_remove_device(struct kfd_node *gpu); 1123 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 1124 uint32_t proximity_domain); 1125 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock( 1126 uint32_t proximity_domain); 1127 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 1128 struct kfd_node *kfd_device_by_id(uint32_t gpu_id); 1129 struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev); 1130 static inline bool kfd_irq_is_from_node(struct kfd_node *node, uint32_t node_id, 1131 uint32_t vmid) 1132 { 1133 return (node->interrupt_bitmap & (1 << node_id)) != 0 && 1134 (node->compute_vmid_bitmap & (1 << vmid)) != 0; 1135 } 1136 static inline struct kfd_node *kfd_node_by_irq_ids(struct amdgpu_device *adev, 1137 uint32_t node_id, uint32_t vmid) { 1138 struct kfd_dev *dev = adev->kfd.dev; 1139 uint32_t i; 1140 1141 if (adev->ip_versions[GC_HWIP][0] != IP_VERSION(9, 4, 3)) 1142 return dev->nodes[0]; 1143 1144 for (i = 0; i < dev->num_nodes; i++) 1145 if (kfd_irq_is_from_node(dev->nodes[i], node_id, vmid)) 1146 return dev->nodes[i]; 1147 1148 return NULL; 1149 } 1150 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev); 1151 int kfd_numa_node_to_apic_id(int numa_node_id); 1152 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu); 1153 1154 /* Interrupts */ 1155 #define KFD_IRQ_FENCE_CLIENTID 0xff 1156 #define KFD_IRQ_FENCE_SOURCEID 0xff 1157 #define KFD_IRQ_IS_FENCE(client, source) \ 1158 ((client) == KFD_IRQ_FENCE_CLIENTID && \ 1159 (source) == KFD_IRQ_FENCE_SOURCEID) 1160 int kfd_interrupt_init(struct kfd_node *dev); 1161 void kfd_interrupt_exit(struct kfd_node *dev); 1162 bool enqueue_ih_ring_entry(struct kfd_node *kfd, const void *ih_ring_entry); 1163 bool interrupt_is_wanted(struct kfd_node *dev, 1164 const uint32_t *ih_ring_entry, 1165 uint32_t *patched_ihre, bool *flag); 1166 int kfd_process_drain_interrupts(struct kfd_process_device *pdd); 1167 void kfd_process_close_interrupt_drain(unsigned int pasid); 1168 1169 /* amdkfd Apertures */ 1170 int kfd_init_apertures(struct kfd_process *process); 1171 1172 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1173 uint64_t tba_addr, 1174 uint64_t tma_addr); 1175 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd, 1176 bool enabled); 1177 1178 /* CWSR initialization */ 1179 int kfd_process_init_cwsr_apu(struct kfd_process *process, struct file *filep); 1180 1181 /* CRIU */ 1182 /* 1183 * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private 1184 * structures: 1185 * kfd_criu_process_priv_data 1186 * kfd_criu_device_priv_data 1187 * kfd_criu_bo_priv_data 1188 * kfd_criu_queue_priv_data 1189 * kfd_criu_event_priv_data 1190 * kfd_criu_svm_range_priv_data 1191 */ 1192 1193 #define KFD_CRIU_PRIV_VERSION 1 1194 1195 struct kfd_criu_process_priv_data { 1196 uint32_t version; 1197 uint32_t xnack_mode; 1198 }; 1199 1200 struct kfd_criu_device_priv_data { 1201 /* For future use */ 1202 uint64_t reserved; 1203 }; 1204 1205 struct kfd_criu_bo_priv_data { 1206 uint64_t user_addr; 1207 uint32_t idr_handle; 1208 uint32_t mapped_gpuids[MAX_GPU_INSTANCE]; 1209 }; 1210 1211 /* 1212 * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data, 1213 * kfd_criu_svm_range_priv_data is the object type 1214 */ 1215 enum kfd_criu_object_type { 1216 KFD_CRIU_OBJECT_TYPE_QUEUE, 1217 KFD_CRIU_OBJECT_TYPE_EVENT, 1218 KFD_CRIU_OBJECT_TYPE_SVM_RANGE, 1219 }; 1220 1221 struct kfd_criu_svm_range_priv_data { 1222 uint32_t object_type; 1223 uint64_t start_addr; 1224 uint64_t size; 1225 /* Variable length array of attributes */ 1226 struct kfd_ioctl_svm_attribute attrs[]; 1227 }; 1228 1229 struct kfd_criu_queue_priv_data { 1230 uint32_t object_type; 1231 uint64_t q_address; 1232 uint64_t q_size; 1233 uint64_t read_ptr_addr; 1234 uint64_t write_ptr_addr; 1235 uint64_t doorbell_off; 1236 uint64_t eop_ring_buffer_address; 1237 uint64_t ctx_save_restore_area_address; 1238 uint32_t gpu_id; 1239 uint32_t type; 1240 uint32_t format; 1241 uint32_t q_id; 1242 uint32_t priority; 1243 uint32_t q_percent; 1244 uint32_t doorbell_id; 1245 uint32_t gws; 1246 uint32_t sdma_id; 1247 uint32_t eop_ring_buffer_size; 1248 uint32_t ctx_save_restore_area_size; 1249 uint32_t ctl_stack_size; 1250 uint32_t mqd_size; 1251 }; 1252 1253 struct kfd_criu_event_priv_data { 1254 uint32_t object_type; 1255 uint64_t user_handle; 1256 uint32_t event_id; 1257 uint32_t auto_reset; 1258 uint32_t type; 1259 uint32_t signaled; 1260 1261 union { 1262 struct kfd_hsa_memory_exception_data memory_exception_data; 1263 struct kfd_hsa_hw_exception_data hw_exception_data; 1264 }; 1265 }; 1266 1267 int kfd_process_get_queue_info(struct kfd_process *p, 1268 uint32_t *num_queues, 1269 uint64_t *priv_data_sizes); 1270 1271 int kfd_criu_checkpoint_queues(struct kfd_process *p, 1272 uint8_t __user *user_priv_data, 1273 uint64_t *priv_data_offset); 1274 1275 int kfd_criu_restore_queue(struct kfd_process *p, 1276 uint8_t __user *user_priv_data, 1277 uint64_t *priv_data_offset, 1278 uint64_t max_priv_data_size); 1279 1280 int kfd_criu_checkpoint_events(struct kfd_process *p, 1281 uint8_t __user *user_priv_data, 1282 uint64_t *priv_data_offset); 1283 1284 int kfd_criu_restore_event(struct file *devkfd, 1285 struct kfd_process *p, 1286 uint8_t __user *user_priv_data, 1287 uint64_t *priv_data_offset, 1288 uint64_t max_priv_data_size); 1289 /* CRIU - End */ 1290 1291 /* Queue Context Management */ 1292 int init_queue(struct queue **q, const struct queue_properties *properties); 1293 void uninit_queue(struct queue *q); 1294 void print_queue_properties(struct queue_properties *q); 1295 void print_queue(struct queue *q); 1296 1297 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 1298 struct kfd_node *dev); 1299 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 1300 struct kfd_node *dev); 1301 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 1302 struct kfd_node *dev); 1303 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 1304 struct kfd_node *dev); 1305 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 1306 struct kfd_node *dev); 1307 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 1308 struct kfd_node *dev); 1309 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type, 1310 struct kfd_node *dev); 1311 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev); 1312 void device_queue_manager_uninit(struct device_queue_manager *dqm); 1313 struct kernel_queue *kernel_queue_init(struct kfd_node *dev, 1314 enum kfd_queue_type type); 1315 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging); 1316 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid); 1317 1318 /* Process Queue Manager */ 1319 struct process_queue_node { 1320 struct queue *q; 1321 struct kernel_queue *kq; 1322 struct list_head process_queue_list; 1323 }; 1324 1325 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 1326 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 1327 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 1328 void pqm_uninit(struct process_queue_manager *pqm); 1329 int pqm_create_queue(struct process_queue_manager *pqm, 1330 struct kfd_node *dev, 1331 struct file *f, 1332 struct queue_properties *properties, 1333 unsigned int *qid, 1334 struct amdgpu_bo *wptr_bo, 1335 const struct kfd_criu_queue_priv_data *q_data, 1336 const void *restore_mqd, 1337 const void *restore_ctl_stack, 1338 uint32_t *p_doorbell_offset_in_process); 1339 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 1340 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid, 1341 struct queue_properties *p); 1342 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid, 1343 struct mqd_update_info *minfo); 1344 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 1345 void *gws); 1346 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 1347 unsigned int qid); 1348 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm, 1349 unsigned int qid); 1350 int pqm_get_wave_state(struct process_queue_manager *pqm, 1351 unsigned int qid, 1352 void __user *ctl_stack, 1353 u32 *ctl_stack_used_size, 1354 u32 *save_area_used_size); 1355 int pqm_get_queue_snapshot(struct process_queue_manager *pqm, 1356 uint64_t exception_clear_mask, 1357 void __user *buf, 1358 int *num_qss_entries, 1359 uint32_t *entry_size); 1360 1361 int amdkfd_fence_wait_timeout(uint64_t *fence_addr, 1362 uint64_t fence_value, 1363 unsigned int timeout_ms); 1364 1365 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm, 1366 unsigned int qid, 1367 u32 *mqd_size, 1368 u32 *ctl_stack_size); 1369 /* Packet Manager */ 1370 1371 #define KFD_FENCE_COMPLETED (100) 1372 #define KFD_FENCE_INIT (10) 1373 1374 struct packet_manager { 1375 struct device_queue_manager *dqm; 1376 struct kernel_queue *priv_queue; 1377 struct mutex lock; 1378 bool allocated; 1379 struct kfd_mem_obj *ib_buffer_obj; 1380 unsigned int ib_size_bytes; 1381 bool is_over_subscription; 1382 1383 const struct packet_manager_funcs *pmf; 1384 }; 1385 1386 struct packet_manager_funcs { 1387 /* Support ASIC-specific packet formats for PM4 packets */ 1388 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 1389 struct qcm_process_device *qpd); 1390 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 1391 uint64_t ib, size_t ib_size_in_dwords, bool chain); 1392 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 1393 struct scheduling_resources *res); 1394 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 1395 struct queue *q, bool is_static); 1396 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 1397 enum kfd_unmap_queues_filter mode, 1398 uint32_t filter_param, bool reset); 1399 int (*set_grace_period)(struct packet_manager *pm, uint32_t *buffer, 1400 uint32_t grace_period); 1401 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 1402 uint64_t fence_address, uint64_t fence_value); 1403 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 1404 1405 /* Packet sizes */ 1406 int map_process_size; 1407 int runlist_size; 1408 int set_resources_size; 1409 int map_queues_size; 1410 int unmap_queues_size; 1411 int set_grace_period_size; 1412 int query_status_size; 1413 int release_mem_size; 1414 }; 1415 1416 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 1417 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 1418 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs; 1419 1420 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 1421 void pm_uninit(struct packet_manager *pm, bool hanging); 1422 int pm_send_set_resources(struct packet_manager *pm, 1423 struct scheduling_resources *res); 1424 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 1425 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 1426 uint64_t fence_value); 1427 1428 int pm_send_unmap_queue(struct packet_manager *pm, 1429 enum kfd_unmap_queues_filter mode, 1430 uint32_t filter_param, bool reset); 1431 1432 void pm_release_ib(struct packet_manager *pm); 1433 1434 int pm_update_grace_period(struct packet_manager *pm, uint32_t grace_period); 1435 1436 /* Following PM funcs can be shared among VI and AI */ 1437 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 1438 1439 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1440 1441 /* Events */ 1442 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1443 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1444 extern const struct kfd_event_interrupt_class event_interrupt_class_v9_4_3; 1445 extern const struct kfd_event_interrupt_class event_interrupt_class_v10; 1446 extern const struct kfd_event_interrupt_class event_interrupt_class_v11; 1447 1448 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1449 1450 int kfd_event_init_process(struct kfd_process *p); 1451 void kfd_event_free_process(struct kfd_process *p); 1452 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1453 int kfd_wait_on_events(struct kfd_process *p, 1454 uint32_t num_events, void __user *data, 1455 bool all, uint32_t *user_timeout_ms, 1456 uint32_t *wait_result); 1457 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 1458 uint32_t valid_id_bits); 1459 void kfd_signal_iommu_event(struct kfd_node *dev, 1460 u32 pasid, unsigned long address, 1461 bool is_write_requested, bool is_execute_requested); 1462 void kfd_signal_hw_exception_event(u32 pasid); 1463 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1464 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1465 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset); 1466 1467 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1468 uint32_t event_type, bool auto_reset, uint32_t node_id, 1469 uint32_t *event_id, uint32_t *event_trigger_data, 1470 uint64_t *event_page_offset, uint32_t *event_slot_index); 1471 1472 int kfd_get_num_events(struct kfd_process *p); 1473 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1474 1475 void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid, 1476 struct kfd_vm_fault_info *info, 1477 struct kfd_hsa_memory_exception_data *data); 1478 1479 void kfd_signal_reset_event(struct kfd_node *dev); 1480 1481 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid); 1482 1483 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type); 1484 1485 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev) 1486 { 1487 return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3) || 1488 KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) || 1489 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && dev->sdma_fw_version >= 18) || 1490 KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0); 1491 } 1492 1493 int kfd_send_exception_to_runtime(struct kfd_process *p, 1494 unsigned int queue_id, 1495 uint64_t error_reason); 1496 bool kfd_is_locked(void); 1497 1498 /* Compute profile */ 1499 void kfd_inc_compute_active(struct kfd_node *dev); 1500 void kfd_dec_compute_active(struct kfd_node *dev); 1501 1502 /* Cgroup Support */ 1503 /* Check with device cgroup if @kfd device is accessible */ 1504 static inline int kfd_devcgroup_check_permission(struct kfd_node *kfd) 1505 { 1506 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) 1507 struct drm_device *ddev = adev_to_drm(kfd->adev); 1508 1509 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, 1510 ddev->render->index, 1511 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1512 #else 1513 return 0; 1514 #endif 1515 } 1516 1517 static inline bool kfd_is_first_node(struct kfd_node *node) 1518 { 1519 return (node == node->kfd->nodes[0]); 1520 } 1521 1522 /* Debugfs */ 1523 #if defined(CONFIG_DEBUG_FS) 1524 1525 void kfd_debugfs_init(void); 1526 void kfd_debugfs_fini(void); 1527 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1528 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1529 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1530 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1531 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1532 int pm_debugfs_runlist(struct seq_file *m, void *data); 1533 1534 int kfd_debugfs_hang_hws(struct kfd_node *dev); 1535 int pm_debugfs_hang_hws(struct packet_manager *pm); 1536 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm); 1537 1538 #else 1539 1540 static inline void kfd_debugfs_init(void) {} 1541 static inline void kfd_debugfs_fini(void) {} 1542 1543 #endif 1544 1545 #endif 1546