xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision f519f0be)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <linux/sysfs.h>
39 #include <kgd_kfd_interface.h>
40 
41 #include "amd_shared.h"
42 
43 #define KFD_MAX_RING_ENTRY_SIZE	8
44 
45 #define KFD_SYSFS_FILE_MODE 0444
46 
47 /* GPU ID hash width in bits */
48 #define KFD_GPU_ID_HASH_WIDTH 16
49 
50 /* Use upper bits of mmap offset to store KFD driver specific information.
51  * BITS[63:62] - Encode MMAP type
52  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
53  * BITS[45:0]  - MMAP offset value
54  *
55  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
56  *  defines are w.r.t to PAGE_SIZE
57  */
58 #define KFD_MMAP_TYPE_SHIFT	(62 - PAGE_SHIFT)
59 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
60 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
61 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
62 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
63 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
64 
65 #define KFD_MMAP_GPU_ID_SHIFT (46 - PAGE_SHIFT)
66 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
67 				<< KFD_MMAP_GPU_ID_SHIFT)
68 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
69 				& KFD_MMAP_GPU_ID_MASK)
70 #define KFD_MMAP_GPU_ID_GET(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
71 				>> KFD_MMAP_GPU_ID_SHIFT)
72 
73 #define KFD_MMAP_OFFSET_VALUE_MASK	(0x3FFFFFFFFFFFULL >> PAGE_SHIFT)
74 #define KFD_MMAP_OFFSET_VALUE_GET(offset) (offset & KFD_MMAP_OFFSET_VALUE_MASK)
75 
76 /*
77  * When working with cp scheduler we should assign the HIQ manually or via
78  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
79  * definitions for Kaveri. In Kaveri only the first ME queues participates
80  * in the cp scheduling taking that in mind we set the HIQ slot in the
81  * second ME.
82  */
83 #define KFD_CIK_HIQ_PIPE 4
84 #define KFD_CIK_HIQ_QUEUE 0
85 
86 /* Macro for allocating structures */
87 #define kfd_alloc_struct(ptr_to_struct)	\
88 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
89 
90 #define KFD_MAX_NUM_OF_PROCESSES 512
91 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
92 
93 /*
94  * Size of the per-process TBA+TMA buffer: 2 pages
95  *
96  * The first page is the TBA used for the CWSR ISA code. The second
97  * page is used as TMA for daisy changing a user-mode trap handler.
98  */
99 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
100 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
101 
102 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
103 	(KFD_MAX_NUM_OF_PROCESSES *			\
104 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
105 
106 #define KFD_KERNEL_QUEUE_SIZE 2048
107 
108 /*
109  * 512 = 0x200
110  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
111  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
112  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
113  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
114  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
115  */
116 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
117 
118 
119 /*
120  * Kernel module parameter to specify maximum number of supported queues per
121  * device
122  */
123 extern int max_num_of_queues_per_device;
124 
125 
126 /* Kernel module parameter to specify the scheduling policy */
127 extern int sched_policy;
128 
129 /*
130  * Kernel module parameter to specify the maximum process
131  * number per HW scheduler
132  */
133 extern int hws_max_conc_proc;
134 
135 extern int cwsr_enable;
136 
137 /*
138  * Kernel module parameter to specify whether to send sigterm to HSA process on
139  * unhandled exception
140  */
141 extern int send_sigterm;
142 
143 /*
144  * This kernel module is used to simulate large bar machine on non-large bar
145  * enabled machines.
146  */
147 extern int debug_largebar;
148 
149 /*
150  * Ignore CRAT table during KFD initialization, can be used to work around
151  * broken CRAT tables on some AMD systems
152  */
153 extern int ignore_crat;
154 
155 /*
156  * Set sh_mem_config.retry_disable on Vega10
157  */
158 extern int noretry;
159 
160 /*
161  * Halt if HWS hang is detected
162  */
163 extern int halt_if_hws_hang;
164 
165 /*
166  * Whether MEC FW support GWS barriers
167  */
168 extern bool hws_gws_support;
169 
170 enum cache_policy {
171 	cache_policy_coherent,
172 	cache_policy_noncoherent
173 };
174 
175 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
176 
177 struct kfd_event_interrupt_class {
178 	bool (*interrupt_isr)(struct kfd_dev *dev,
179 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
180 			bool *patched_flag);
181 	void (*interrupt_wq)(struct kfd_dev *dev,
182 			const uint32_t *ih_ring_entry);
183 };
184 
185 struct kfd_device_info {
186 	enum amd_asic_type asic_family;
187 	const struct kfd_event_interrupt_class *event_interrupt_class;
188 	unsigned int max_pasid_bits;
189 	unsigned int max_no_of_hqd;
190 	unsigned int doorbell_size;
191 	size_t ih_ring_entry_size;
192 	uint8_t num_of_watch_points;
193 	uint16_t mqd_size_aligned;
194 	bool supports_cwsr;
195 	bool needs_iommu_device;
196 	bool needs_pci_atomics;
197 	unsigned int num_sdma_engines;
198 	unsigned int num_xgmi_sdma_engines;
199 	unsigned int num_sdma_queues_per_engine;
200 };
201 
202 struct kfd_mem_obj {
203 	uint32_t range_start;
204 	uint32_t range_end;
205 	uint64_t gpu_addr;
206 	uint32_t *cpu_ptr;
207 	void *gtt_mem;
208 };
209 
210 struct kfd_vmid_info {
211 	uint32_t first_vmid_kfd;
212 	uint32_t last_vmid_kfd;
213 	uint32_t vmid_num_kfd;
214 };
215 
216 struct kfd_dev {
217 	struct kgd_dev *kgd;
218 
219 	const struct kfd_device_info *device_info;
220 	struct pci_dev *pdev;
221 
222 	unsigned int id;		/* topology stub index */
223 
224 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
225 					 * KFD. It is aligned for mapping
226 					 * into user mode
227 					 */
228 	size_t doorbell_id_offset;	/* Doorbell offset (from KFD doorbell
229 					 * to HW doorbell, GFX reserved some
230 					 * at the start)
231 					 */
232 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
233 					   * page used by kernel queue
234 					   */
235 
236 	struct kgd2kfd_shared_resources shared_resources;
237 	struct kfd_vmid_info vm_info;
238 
239 	const struct kfd2kgd_calls *kfd2kgd;
240 	struct mutex doorbell_mutex;
241 	DECLARE_BITMAP(doorbell_available_index,
242 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
243 
244 	void *gtt_mem;
245 	uint64_t gtt_start_gpu_addr;
246 	void *gtt_start_cpu_ptr;
247 	void *gtt_sa_bitmap;
248 	struct mutex gtt_sa_lock;
249 	unsigned int gtt_sa_chunk_size;
250 	unsigned int gtt_sa_num_of_chunks;
251 
252 	/* Interrupts */
253 	struct kfifo ih_fifo;
254 	struct workqueue_struct *ih_wq;
255 	struct work_struct interrupt_work;
256 	spinlock_t interrupt_lock;
257 
258 	/* QCM Device instance */
259 	struct device_queue_manager *dqm;
260 
261 	bool init_complete;
262 	/*
263 	 * Interrupts of interest to KFD are copied
264 	 * from the HW ring into a SW ring.
265 	 */
266 	bool interrupts_active;
267 
268 	/* Debug manager */
269 	struct kfd_dbgmgr *dbgmgr;
270 
271 	/* Firmware versions */
272 	uint16_t mec_fw_version;
273 	uint16_t sdma_fw_version;
274 
275 	/* Maximum process number mapped to HW scheduler */
276 	unsigned int max_proc_per_quantum;
277 
278 	/* CWSR */
279 	bool cwsr_enabled;
280 	const void *cwsr_isa;
281 	unsigned int cwsr_isa_size;
282 
283 	/* xGMI */
284 	uint64_t hive_id;
285 
286 	bool pci_atomic_requested;
287 
288 	/* SRAM ECC flag */
289 	atomic_t sram_ecc_flag;
290 
291 	/* Compute Profile ref. count */
292 	atomic_t compute_profile;
293 
294 	/* Global GWS resource shared b/t processes*/
295 	void *gws;
296 };
297 
298 enum kfd_mempool {
299 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
300 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
301 	KFD_MEMPOOL_FRAMEBUFFER = 3,
302 };
303 
304 /* Character device interface */
305 int kfd_chardev_init(void);
306 void kfd_chardev_exit(void);
307 struct device *kfd_chardev(void);
308 
309 /**
310  * enum kfd_unmap_queues_filter
311  *
312  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
313  *
314  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
315  *						running queues list.
316  *
317  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
318  *						specific process.
319  *
320  */
321 enum kfd_unmap_queues_filter {
322 	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
323 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
324 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
325 	KFD_UNMAP_QUEUES_FILTER_BY_PASID
326 };
327 
328 /**
329  * enum kfd_queue_type
330  *
331  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
332  *
333  * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
334  *
335  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
336  *
337  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
338  */
339 enum kfd_queue_type  {
340 	KFD_QUEUE_TYPE_COMPUTE,
341 	KFD_QUEUE_TYPE_SDMA,
342 	KFD_QUEUE_TYPE_HIQ,
343 	KFD_QUEUE_TYPE_DIQ,
344 	KFD_QUEUE_TYPE_SDMA_XGMI
345 };
346 
347 enum kfd_queue_format {
348 	KFD_QUEUE_FORMAT_PM4,
349 	KFD_QUEUE_FORMAT_AQL
350 };
351 
352 enum KFD_QUEUE_PRIORITY {
353 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
354 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
355 };
356 
357 /**
358  * struct queue_properties
359  *
360  * @type: The queue type.
361  *
362  * @queue_id: Queue identifier.
363  *
364  * @queue_address: Queue ring buffer address.
365  *
366  * @queue_size: Queue ring buffer size.
367  *
368  * @priority: Defines the queue priority relative to other queues in the
369  * process.
370  * This is just an indication and HW scheduling may override the priority as
371  * necessary while keeping the relative prioritization.
372  * the priority granularity is from 0 to f which f is the highest priority.
373  * currently all queues are initialized with the highest priority.
374  *
375  * @queue_percent: This field is partially implemented and currently a zero in
376  * this field defines that the queue is non active.
377  *
378  * @read_ptr: User space address which points to the number of dwords the
379  * cp read from the ring buffer. This field updates automatically by the H/W.
380  *
381  * @write_ptr: Defines the number of dwords written to the ring buffer.
382  *
383  * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
384  * the queue ring buffer. This field should be similar to write_ptr and the
385  * user should update this field after he updated the write_ptr.
386  *
387  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
388  *
389  * @is_interop: Defines if this is a interop queue. Interop queue means that
390  * the queue can access both graphics and compute resources.
391  *
392  * @is_evicted: Defines if the queue is evicted. Only active queues
393  * are evicted, rendering them inactive.
394  *
395  * @is_active: Defines if the queue is active or not. @is_active and
396  * @is_evicted are protected by the DQM lock.
397  *
398  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
399  * of the queue.
400  *
401  * This structure represents the queue properties for each queue no matter if
402  * it's user mode or kernel mode queue.
403  *
404  */
405 struct queue_properties {
406 	enum kfd_queue_type type;
407 	enum kfd_queue_format format;
408 	unsigned int queue_id;
409 	uint64_t queue_address;
410 	uint64_t  queue_size;
411 	uint32_t priority;
412 	uint32_t queue_percent;
413 	uint32_t *read_ptr;
414 	uint32_t *write_ptr;
415 	void __iomem *doorbell_ptr;
416 	uint32_t doorbell_off;
417 	bool is_interop;
418 	bool is_evicted;
419 	bool is_active;
420 	/* Not relevant for user mode queues in cp scheduling */
421 	unsigned int vmid;
422 	/* Relevant only for sdma queues*/
423 	uint32_t sdma_engine_id;
424 	uint32_t sdma_queue_id;
425 	uint32_t sdma_vm_addr;
426 	/* Relevant only for VI */
427 	uint64_t eop_ring_buffer_address;
428 	uint32_t eop_ring_buffer_size;
429 	uint64_t ctx_save_restore_area_address;
430 	uint32_t ctx_save_restore_area_size;
431 	uint32_t ctl_stack_size;
432 	uint64_t tba_addr;
433 	uint64_t tma_addr;
434 	/* Relevant for CU */
435 	uint32_t cu_mask_count; /* Must be a multiple of 32 */
436 	uint32_t *cu_mask;
437 };
438 
439 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
440 			    (q).queue_address != 0 &&	\
441 			    (q).queue_percent > 0 &&	\
442 			    !(q).is_evicted)
443 
444 /**
445  * struct queue
446  *
447  * @list: Queue linked list.
448  *
449  * @mqd: The queue MQD.
450  *
451  * @mqd_mem_obj: The MQD local gpu memory object.
452  *
453  * @gart_mqd_addr: The MQD gart mc address.
454  *
455  * @properties: The queue properties.
456  *
457  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
458  *	 that the queue should be execute on.
459  *
460  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
461  *	  id.
462  *
463  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
464  *
465  * @process: The kfd process that created this queue.
466  *
467  * @device: The kfd device that created this queue.
468  *
469  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
470  * otherwise.
471  *
472  * This structure represents user mode compute queues.
473  * It contains all the necessary data to handle such queues.
474  *
475  */
476 
477 struct queue {
478 	struct list_head list;
479 	void *mqd;
480 	struct kfd_mem_obj *mqd_mem_obj;
481 	uint64_t gart_mqd_addr;
482 	struct queue_properties properties;
483 
484 	uint32_t mec;
485 	uint32_t pipe;
486 	uint32_t queue;
487 
488 	unsigned int sdma_id;
489 	unsigned int doorbell_id;
490 
491 	struct kfd_process	*process;
492 	struct kfd_dev		*device;
493 	void *gws;
494 };
495 
496 /*
497  * Please read the kfd_mqd_manager.h description.
498  */
499 enum KFD_MQD_TYPE {
500 	KFD_MQD_TYPE_COMPUTE = 0,	/* for no cp scheduling */
501 	KFD_MQD_TYPE_HIQ,		/* for hiq */
502 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
503 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
504 	KFD_MQD_TYPE_DIQ,		/* for diq */
505 	KFD_MQD_TYPE_MAX
506 };
507 
508 enum KFD_PIPE_PRIORITY {
509 	KFD_PIPE_PRIORITY_CS_LOW = 0,
510 	KFD_PIPE_PRIORITY_CS_MEDIUM,
511 	KFD_PIPE_PRIORITY_CS_HIGH
512 };
513 
514 struct scheduling_resources {
515 	unsigned int vmid_mask;
516 	enum kfd_queue_type type;
517 	uint64_t queue_mask;
518 	uint64_t gws_mask;
519 	uint32_t oac_mask;
520 	uint32_t gds_heap_base;
521 	uint32_t gds_heap_size;
522 };
523 
524 struct process_queue_manager {
525 	/* data */
526 	struct kfd_process	*process;
527 	struct list_head	queues;
528 	unsigned long		*queue_slot_bitmap;
529 };
530 
531 struct qcm_process_device {
532 	/* The Device Queue Manager that owns this data */
533 	struct device_queue_manager *dqm;
534 	struct process_queue_manager *pqm;
535 	/* Queues list */
536 	struct list_head queues_list;
537 	struct list_head priv_queue_list;
538 
539 	unsigned int queue_count;
540 	unsigned int vmid;
541 	bool is_debug;
542 	unsigned int evicted; /* eviction counter, 0=active */
543 
544 	/* This flag tells if we should reset all wavefronts on
545 	 * process termination
546 	 */
547 	bool reset_wavefronts;
548 
549 	/*
550 	 * All the memory management data should be here too
551 	 */
552 	uint64_t gds_context_area;
553 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
554 	uint64_t page_table_base;
555 	uint32_t sh_mem_config;
556 	uint32_t sh_mem_bases;
557 	uint32_t sh_mem_ape1_base;
558 	uint32_t sh_mem_ape1_limit;
559 	uint32_t gds_size;
560 	uint32_t num_gws;
561 	uint32_t num_oac;
562 	uint32_t sh_hidden_private_base;
563 
564 	/* CWSR memory */
565 	void *cwsr_kaddr;
566 	uint64_t cwsr_base;
567 	uint64_t tba_addr;
568 	uint64_t tma_addr;
569 
570 	/* IB memory */
571 	uint64_t ib_base;
572 	void *ib_kaddr;
573 
574 	/* doorbell resources per process per device */
575 	unsigned long *doorbell_bitmap;
576 };
577 
578 /* KFD Memory Eviction */
579 
580 /* Approx. wait time before attempting to restore evicted BOs */
581 #define PROCESS_RESTORE_TIME_MS 100
582 /* Approx. back off time if restore fails due to lack of memory */
583 #define PROCESS_BACK_OFF_TIME_MS 100
584 /* Approx. time before evicting the process again */
585 #define PROCESS_ACTIVE_TIME_MS 10
586 
587 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
588  * idr_handle in the least significant 4 bytes
589  */
590 #define MAKE_HANDLE(gpu_id, idr_handle) \
591 	(((uint64_t)(gpu_id) << 32) + idr_handle)
592 #define GET_GPU_ID(handle) (handle >> 32)
593 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
594 
595 enum kfd_pdd_bound {
596 	PDD_UNBOUND = 0,
597 	PDD_BOUND,
598 	PDD_BOUND_SUSPENDED,
599 };
600 
601 /* Data that is per-process-per device. */
602 struct kfd_process_device {
603 	/*
604 	 * List of all per-device data for a process.
605 	 * Starts from kfd_process.per_device_data.
606 	 */
607 	struct list_head per_device_list;
608 
609 	/* The device that owns this data. */
610 	struct kfd_dev *dev;
611 
612 	/* The process that owns this kfd_process_device. */
613 	struct kfd_process *process;
614 
615 	/* per-process-per device QCM data structure */
616 	struct qcm_process_device qpd;
617 
618 	/*Apertures*/
619 	uint64_t lds_base;
620 	uint64_t lds_limit;
621 	uint64_t gpuvm_base;
622 	uint64_t gpuvm_limit;
623 	uint64_t scratch_base;
624 	uint64_t scratch_limit;
625 
626 	/* VM context for GPUVM allocations */
627 	struct file *drm_file;
628 	void *vm;
629 
630 	/* GPUVM allocations storage */
631 	struct idr alloc_idr;
632 
633 	/* Flag used to tell the pdd has dequeued from the dqm.
634 	 * This is used to prevent dev->dqm->ops.process_termination() from
635 	 * being called twice when it is already called in IOMMU callback
636 	 * function.
637 	 */
638 	bool already_dequeued;
639 
640 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
641 	enum kfd_pdd_bound bound;
642 };
643 
644 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
645 
646 /* Process data */
647 struct kfd_process {
648 	/*
649 	 * kfd_process are stored in an mm_struct*->kfd_process*
650 	 * hash table (kfd_processes in kfd_process.c)
651 	 */
652 	struct hlist_node kfd_processes;
653 
654 	/*
655 	 * Opaque pointer to mm_struct. We don't hold a reference to
656 	 * it so it should never be dereferenced from here. This is
657 	 * only used for looking up processes by their mm.
658 	 */
659 	void *mm;
660 
661 	struct kref ref;
662 	struct work_struct release_work;
663 
664 	struct mutex mutex;
665 
666 	/*
667 	 * In any process, the thread that started main() is the lead
668 	 * thread and outlives the rest.
669 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
670 	 * It can also be used for safely getting a reference to the
671 	 * mm_struct of the process.
672 	 */
673 	struct task_struct *lead_thread;
674 
675 	/* We want to receive a notification when the mm_struct is destroyed */
676 	struct mmu_notifier mmu_notifier;
677 
678 	/* Use for delayed freeing of kfd_process structure */
679 	struct rcu_head	rcu;
680 
681 	unsigned int pasid;
682 	unsigned int doorbell_index;
683 
684 	/*
685 	 * List of kfd_process_device structures,
686 	 * one for each device the process is using.
687 	 */
688 	struct list_head per_device_data;
689 
690 	struct process_queue_manager pqm;
691 
692 	/*Is the user space process 32 bit?*/
693 	bool is_32bit_user_mode;
694 
695 	/* Event-related data */
696 	struct mutex event_mutex;
697 	/* Event ID allocator and lookup */
698 	struct idr event_idr;
699 	/* Event page */
700 	struct kfd_signal_page *signal_page;
701 	size_t signal_mapped_size;
702 	size_t signal_event_count;
703 	bool signal_event_limit_reached;
704 
705 	/* Information used for memory eviction */
706 	void *kgd_process_info;
707 	/* Eviction fence that is attached to all the BOs of this process. The
708 	 * fence will be triggered during eviction and new one will be created
709 	 * during restore
710 	 */
711 	struct dma_fence *ef;
712 
713 	/* Work items for evicting and restoring BOs */
714 	struct delayed_work eviction_work;
715 	struct delayed_work restore_work;
716 	/* seqno of the last scheduled eviction */
717 	unsigned int last_eviction_seqno;
718 	/* Approx. the last timestamp (in jiffies) when the process was
719 	 * restored after an eviction
720 	 */
721 	unsigned long last_restore_timestamp;
722 
723 	/* Kobj for our procfs */
724 	struct kobject *kobj;
725 	struct attribute attr_pasid;
726 };
727 
728 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
729 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
730 extern struct srcu_struct kfd_processes_srcu;
731 
732 /**
733  * Ioctl function type.
734  *
735  * \param filep pointer to file structure.
736  * \param p amdkfd process pointer.
737  * \param data pointer to arg that was copied from user.
738  */
739 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
740 				void *data);
741 
742 struct amdkfd_ioctl_desc {
743 	unsigned int cmd;
744 	int flags;
745 	amdkfd_ioctl_t *func;
746 	unsigned int cmd_drv;
747 	const char *name;
748 };
749 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
750 
751 int kfd_process_create_wq(void);
752 void kfd_process_destroy_wq(void);
753 struct kfd_process *kfd_create_process(struct file *filep);
754 struct kfd_process *kfd_get_process(const struct task_struct *);
755 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
756 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
757 void kfd_unref_process(struct kfd_process *p);
758 int kfd_process_evict_queues(struct kfd_process *p);
759 int kfd_process_restore_queues(struct kfd_process *p);
760 void kfd_suspend_all_processes(void);
761 int kfd_resume_all_processes(void);
762 
763 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
764 			       struct file *drm_file);
765 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
766 						struct kfd_process *p);
767 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
768 							struct kfd_process *p);
769 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
770 							struct kfd_process *p);
771 
772 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
773 			  struct vm_area_struct *vma);
774 
775 /* KFD process API for creating and translating handles */
776 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
777 					void *mem);
778 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
779 					int handle);
780 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
781 					int handle);
782 
783 /* Process device data iterator */
784 struct kfd_process_device *kfd_get_first_process_device_data(
785 							struct kfd_process *p);
786 struct kfd_process_device *kfd_get_next_process_device_data(
787 						struct kfd_process *p,
788 						struct kfd_process_device *pdd);
789 bool kfd_has_process_device_data(struct kfd_process *p);
790 
791 /* PASIDs */
792 int kfd_pasid_init(void);
793 void kfd_pasid_exit(void);
794 bool kfd_set_pasid_limit(unsigned int new_limit);
795 unsigned int kfd_get_pasid_limit(void);
796 unsigned int kfd_pasid_alloc(void);
797 void kfd_pasid_free(unsigned int pasid);
798 
799 /* Doorbells */
800 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
801 int kfd_doorbell_init(struct kfd_dev *kfd);
802 void kfd_doorbell_fini(struct kfd_dev *kfd);
803 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
804 		      struct vm_area_struct *vma);
805 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
806 					unsigned int *doorbell_off);
807 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
808 u32 read_kernel_doorbell(u32 __iomem *db);
809 void write_kernel_doorbell(void __iomem *db, u32 value);
810 void write_kernel_doorbell64(void __iomem *db, u64 value);
811 unsigned int kfd_doorbell_id_to_offset(struct kfd_dev *kfd,
812 					struct kfd_process *process,
813 					unsigned int doorbell_id);
814 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
815 					struct kfd_process *process);
816 int kfd_alloc_process_doorbells(struct kfd_process *process);
817 void kfd_free_process_doorbells(struct kfd_process *process);
818 
819 /* GTT Sub-Allocator */
820 
821 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
822 			struct kfd_mem_obj **mem_obj);
823 
824 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
825 
826 extern struct device *kfd_device;
827 
828 /* KFD's procfs */
829 void kfd_procfs_init(void);
830 void kfd_procfs_shutdown(void);
831 
832 /* Topology */
833 int kfd_topology_init(void);
834 void kfd_topology_shutdown(void);
835 int kfd_topology_add_device(struct kfd_dev *gpu);
836 int kfd_topology_remove_device(struct kfd_dev *gpu);
837 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
838 						uint32_t proximity_domain);
839 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
840 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
841 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
842 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
843 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
844 int kfd_numa_node_to_apic_id(int numa_node_id);
845 
846 /* Interrupts */
847 int kfd_interrupt_init(struct kfd_dev *dev);
848 void kfd_interrupt_exit(struct kfd_dev *dev);
849 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
850 bool interrupt_is_wanted(struct kfd_dev *dev,
851 				const uint32_t *ih_ring_entry,
852 				uint32_t *patched_ihre, bool *flag);
853 
854 /* amdkfd Apertures */
855 int kfd_init_apertures(struct kfd_process *process);
856 
857 /* Queue Context Management */
858 int init_queue(struct queue **q, const struct queue_properties *properties);
859 void uninit_queue(struct queue *q);
860 void print_queue_properties(struct queue_properties *q);
861 void print_queue(struct queue *q);
862 
863 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
864 		struct kfd_dev *dev);
865 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
866 		struct kfd_dev *dev);
867 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
868 		struct kfd_dev *dev);
869 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
870 		struct kfd_dev *dev);
871 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
872 		struct kfd_dev *dev);
873 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
874 void device_queue_manager_uninit(struct device_queue_manager *dqm);
875 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
876 					enum kfd_queue_type type);
877 void kernel_queue_uninit(struct kernel_queue *kq);
878 int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid);
879 
880 /* Process Queue Manager */
881 struct process_queue_node {
882 	struct queue *q;
883 	struct kernel_queue *kq;
884 	struct list_head process_queue_list;
885 };
886 
887 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
888 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
889 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
890 void pqm_uninit(struct process_queue_manager *pqm);
891 int pqm_create_queue(struct process_queue_manager *pqm,
892 			    struct kfd_dev *dev,
893 			    struct file *f,
894 			    struct queue_properties *properties,
895 			    unsigned int *qid);
896 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
897 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
898 			struct queue_properties *p);
899 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
900 			struct queue_properties *p);
901 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
902 			void *gws);
903 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
904 						unsigned int qid);
905 int pqm_get_wave_state(struct process_queue_manager *pqm,
906 		       unsigned int qid,
907 		       void __user *ctl_stack,
908 		       u32 *ctl_stack_used_size,
909 		       u32 *save_area_used_size);
910 
911 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
912 				unsigned int fence_value,
913 				unsigned int timeout_ms);
914 
915 /* Packet Manager */
916 
917 #define KFD_FENCE_COMPLETED (100)
918 #define KFD_FENCE_INIT   (10)
919 
920 struct packet_manager {
921 	struct device_queue_manager *dqm;
922 	struct kernel_queue *priv_queue;
923 	struct mutex lock;
924 	bool allocated;
925 	struct kfd_mem_obj *ib_buffer_obj;
926 	unsigned int ib_size_bytes;
927 
928 	const struct packet_manager_funcs *pmf;
929 };
930 
931 struct packet_manager_funcs {
932 	/* Support ASIC-specific packet formats for PM4 packets */
933 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
934 			struct qcm_process_device *qpd);
935 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
936 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
937 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
938 			struct scheduling_resources *res);
939 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
940 			struct queue *q, bool is_static);
941 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
942 			enum kfd_queue_type type,
943 			enum kfd_unmap_queues_filter mode,
944 			uint32_t filter_param, bool reset,
945 			unsigned int sdma_engine);
946 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
947 			uint64_t fence_address,	uint32_t fence_value);
948 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
949 
950 	/* Packet sizes */
951 	int map_process_size;
952 	int runlist_size;
953 	int set_resources_size;
954 	int map_queues_size;
955 	int unmap_queues_size;
956 	int query_status_size;
957 	int release_mem_size;
958 };
959 
960 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
961 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
962 
963 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
964 void pm_uninit(struct packet_manager *pm);
965 int pm_send_set_resources(struct packet_manager *pm,
966 				struct scheduling_resources *res);
967 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
968 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
969 				uint32_t fence_value);
970 
971 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
972 			enum kfd_unmap_queues_filter mode,
973 			uint32_t filter_param, bool reset,
974 			unsigned int sdma_engine);
975 
976 void pm_release_ib(struct packet_manager *pm);
977 
978 /* Following PM funcs can be shared among VI and AI */
979 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
980 int pm_set_resources_vi(struct packet_manager *pm, uint32_t *buffer,
981 				struct scheduling_resources *res);
982 
983 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
984 
985 /* Events */
986 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
987 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
988 
989 extern const struct kfd_device_global_init_class device_global_init_class_cik;
990 
991 void kfd_event_init_process(struct kfd_process *p);
992 void kfd_event_free_process(struct kfd_process *p);
993 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
994 int kfd_wait_on_events(struct kfd_process *p,
995 		       uint32_t num_events, void __user *data,
996 		       bool all, uint32_t user_timeout_ms,
997 		       uint32_t *wait_result);
998 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
999 				uint32_t valid_id_bits);
1000 void kfd_signal_iommu_event(struct kfd_dev *dev,
1001 		unsigned int pasid, unsigned long address,
1002 		bool is_write_requested, bool is_execute_requested);
1003 void kfd_signal_hw_exception_event(unsigned int pasid);
1004 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1005 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1006 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1007 		       uint64_t size);
1008 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1009 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1010 		     uint32_t *event_id, uint32_t *event_trigger_data,
1011 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1012 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1013 
1014 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
1015 				struct kfd_vm_fault_info *info);
1016 
1017 void kfd_signal_reset_event(struct kfd_dev *dev);
1018 
1019 void kfd_flush_tlb(struct kfd_process_device *pdd);
1020 
1021 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1022 
1023 bool kfd_is_locked(void);
1024 
1025 /* Compute profile */
1026 void kfd_inc_compute_active(struct kfd_dev *dev);
1027 void kfd_dec_compute_active(struct kfd_dev *dev);
1028 
1029 /* Debugfs */
1030 #if defined(CONFIG_DEBUG_FS)
1031 
1032 void kfd_debugfs_init(void);
1033 void kfd_debugfs_fini(void);
1034 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1035 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1036 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1037 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1038 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1039 int pm_debugfs_runlist(struct seq_file *m, void *data);
1040 
1041 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1042 int pm_debugfs_hang_hws(struct packet_manager *pm);
1043 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1044 
1045 #else
1046 
1047 static inline void kfd_debugfs_init(void) {}
1048 static inline void kfd_debugfs_fini(void) {}
1049 
1050 #endif
1051 
1052 #endif
1053