1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #ifndef KFD_PRIV_H_INCLUDED 24 #define KFD_PRIV_H_INCLUDED 25 26 #include <linux/hashtable.h> 27 #include <linux/mmu_notifier.h> 28 #include <linux/mutex.h> 29 #include <linux/types.h> 30 #include <linux/atomic.h> 31 #include <linux/workqueue.h> 32 #include <linux/spinlock.h> 33 #include <linux/kfd_ioctl.h> 34 #include <linux/idr.h> 35 #include <linux/kfifo.h> 36 #include <linux/seq_file.h> 37 #include <linux/kref.h> 38 #include <linux/sysfs.h> 39 #include <linux/device_cgroup.h> 40 #include <drm/drm_file.h> 41 #include <drm/drm_drv.h> 42 #include <drm/drm_device.h> 43 #include <kgd_kfd_interface.h> 44 45 #include "amd_shared.h" 46 47 #define KFD_MAX_RING_ENTRY_SIZE 8 48 49 #define KFD_SYSFS_FILE_MODE 0444 50 51 /* GPU ID hash width in bits */ 52 #define KFD_GPU_ID_HASH_WIDTH 16 53 54 /* Use upper bits of mmap offset to store KFD driver specific information. 55 * BITS[63:62] - Encode MMAP type 56 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 57 * BITS[45:0] - MMAP offset value 58 * 59 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 60 * defines are w.r.t to PAGE_SIZE 61 */ 62 #define KFD_MMAP_TYPE_SHIFT 62 63 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 64 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 65 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 66 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 67 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 68 69 #define KFD_MMAP_GPU_ID_SHIFT 46 70 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 71 << KFD_MMAP_GPU_ID_SHIFT) 72 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 73 & KFD_MMAP_GPU_ID_MASK) 74 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 75 >> KFD_MMAP_GPU_ID_SHIFT) 76 77 /* 78 * When working with cp scheduler we should assign the HIQ manually or via 79 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 80 * definitions for Kaveri. In Kaveri only the first ME queues participates 81 * in the cp scheduling taking that in mind we set the HIQ slot in the 82 * second ME. 83 */ 84 #define KFD_CIK_HIQ_PIPE 4 85 #define KFD_CIK_HIQ_QUEUE 0 86 87 /* Macro for allocating structures */ 88 #define kfd_alloc_struct(ptr_to_struct) \ 89 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 90 91 #define KFD_MAX_NUM_OF_PROCESSES 512 92 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 93 94 /* 95 * Size of the per-process TBA+TMA buffer: 2 pages 96 * 97 * The first page is the TBA used for the CWSR ISA code. The second 98 * page is used as TMA for daisy changing a user-mode trap handler. 99 */ 100 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 101 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 102 103 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 104 (KFD_MAX_NUM_OF_PROCESSES * \ 105 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 106 107 #define KFD_KERNEL_QUEUE_SIZE 2048 108 109 #define KFD_UNMAP_LATENCY_MS (4000) 110 111 /* 112 * 512 = 0x200 113 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 114 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 115 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 116 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 117 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 118 */ 119 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 120 121 122 /* 123 * Kernel module parameter to specify maximum number of supported queues per 124 * device 125 */ 126 extern int max_num_of_queues_per_device; 127 128 129 /* Kernel module parameter to specify the scheduling policy */ 130 extern int sched_policy; 131 132 /* 133 * Kernel module parameter to specify the maximum process 134 * number per HW scheduler 135 */ 136 extern int hws_max_conc_proc; 137 138 extern int cwsr_enable; 139 140 /* 141 * Kernel module parameter to specify whether to send sigterm to HSA process on 142 * unhandled exception 143 */ 144 extern int send_sigterm; 145 146 /* 147 * This kernel module is used to simulate large bar machine on non-large bar 148 * enabled machines. 149 */ 150 extern int debug_largebar; 151 152 /* 153 * Ignore CRAT table during KFD initialization, can be used to work around 154 * broken CRAT tables on some AMD systems 155 */ 156 extern int ignore_crat; 157 158 /* 159 * Set sh_mem_config.retry_disable on Vega10 160 */ 161 extern int amdgpu_noretry; 162 163 /* 164 * Halt if HWS hang is detected 165 */ 166 extern int halt_if_hws_hang; 167 168 /* 169 * Whether MEC FW support GWS barriers 170 */ 171 extern bool hws_gws_support; 172 173 /* 174 * Queue preemption timeout in ms 175 */ 176 extern int queue_preemption_timeout_ms; 177 178 enum cache_policy { 179 cache_policy_coherent, 180 cache_policy_noncoherent 181 }; 182 183 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10) 184 185 struct kfd_event_interrupt_class { 186 bool (*interrupt_isr)(struct kfd_dev *dev, 187 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 188 bool *patched_flag); 189 void (*interrupt_wq)(struct kfd_dev *dev, 190 const uint32_t *ih_ring_entry); 191 }; 192 193 struct kfd_device_info { 194 enum amd_asic_type asic_family; 195 const char *asic_name; 196 const struct kfd_event_interrupt_class *event_interrupt_class; 197 unsigned int max_pasid_bits; 198 unsigned int max_no_of_hqd; 199 unsigned int doorbell_size; 200 size_t ih_ring_entry_size; 201 uint8_t num_of_watch_points; 202 uint16_t mqd_size_aligned; 203 bool supports_cwsr; 204 bool needs_iommu_device; 205 bool needs_pci_atomics; 206 unsigned int num_sdma_engines; 207 unsigned int num_xgmi_sdma_engines; 208 unsigned int num_sdma_queues_per_engine; 209 }; 210 211 struct kfd_mem_obj { 212 uint32_t range_start; 213 uint32_t range_end; 214 uint64_t gpu_addr; 215 uint32_t *cpu_ptr; 216 void *gtt_mem; 217 }; 218 219 struct kfd_vmid_info { 220 uint32_t first_vmid_kfd; 221 uint32_t last_vmid_kfd; 222 uint32_t vmid_num_kfd; 223 }; 224 225 struct kfd_dev { 226 struct kgd_dev *kgd; 227 228 const struct kfd_device_info *device_info; 229 struct pci_dev *pdev; 230 struct drm_device *ddev; 231 232 unsigned int id; /* topology stub index */ 233 234 phys_addr_t doorbell_base; /* Start of actual doorbells used by 235 * KFD. It is aligned for mapping 236 * into user mode 237 */ 238 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI 239 * doorbell BAR to the first KFD 240 * doorbell in dwords. GFX reserves 241 * the segment before this offset. 242 */ 243 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 244 * page used by kernel queue 245 */ 246 247 struct kgd2kfd_shared_resources shared_resources; 248 struct kfd_vmid_info vm_info; 249 250 const struct kfd2kgd_calls *kfd2kgd; 251 struct mutex doorbell_mutex; 252 DECLARE_BITMAP(doorbell_available_index, 253 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 254 255 void *gtt_mem; 256 uint64_t gtt_start_gpu_addr; 257 void *gtt_start_cpu_ptr; 258 void *gtt_sa_bitmap; 259 struct mutex gtt_sa_lock; 260 unsigned int gtt_sa_chunk_size; 261 unsigned int gtt_sa_num_of_chunks; 262 263 /* Interrupts */ 264 struct kfifo ih_fifo; 265 struct workqueue_struct *ih_wq; 266 struct work_struct interrupt_work; 267 spinlock_t interrupt_lock; 268 269 /* QCM Device instance */ 270 struct device_queue_manager *dqm; 271 272 bool init_complete; 273 /* 274 * Interrupts of interest to KFD are copied 275 * from the HW ring into a SW ring. 276 */ 277 bool interrupts_active; 278 279 /* Debug manager */ 280 struct kfd_dbgmgr *dbgmgr; 281 282 /* Firmware versions */ 283 uint16_t mec_fw_version; 284 uint16_t sdma_fw_version; 285 286 /* Maximum process number mapped to HW scheduler */ 287 unsigned int max_proc_per_quantum; 288 289 /* CWSR */ 290 bool cwsr_enabled; 291 const void *cwsr_isa; 292 unsigned int cwsr_isa_size; 293 294 /* xGMI */ 295 uint64_t hive_id; 296 297 bool pci_atomic_requested; 298 299 /* SRAM ECC flag */ 300 atomic_t sram_ecc_flag; 301 302 /* Compute Profile ref. count */ 303 atomic_t compute_profile; 304 305 /* Global GWS resource shared b/t processes*/ 306 void *gws; 307 }; 308 309 enum kfd_mempool { 310 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 311 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 312 KFD_MEMPOOL_FRAMEBUFFER = 3, 313 }; 314 315 /* Character device interface */ 316 int kfd_chardev_init(void); 317 void kfd_chardev_exit(void); 318 struct device *kfd_chardev(void); 319 320 /** 321 * enum kfd_unmap_queues_filter 322 * 323 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue. 324 * 325 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 326 * running queues list. 327 * 328 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 329 * specific process. 330 * 331 */ 332 enum kfd_unmap_queues_filter { 333 KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE, 334 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 335 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 336 KFD_UNMAP_QUEUES_FILTER_BY_PASID 337 }; 338 339 /** 340 * enum kfd_queue_type 341 * 342 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 343 * 344 * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type. 345 * 346 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 347 * 348 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 349 */ 350 enum kfd_queue_type { 351 KFD_QUEUE_TYPE_COMPUTE, 352 KFD_QUEUE_TYPE_SDMA, 353 KFD_QUEUE_TYPE_HIQ, 354 KFD_QUEUE_TYPE_DIQ, 355 KFD_QUEUE_TYPE_SDMA_XGMI 356 }; 357 358 enum kfd_queue_format { 359 KFD_QUEUE_FORMAT_PM4, 360 KFD_QUEUE_FORMAT_AQL 361 }; 362 363 enum KFD_QUEUE_PRIORITY { 364 KFD_QUEUE_PRIORITY_MINIMUM = 0, 365 KFD_QUEUE_PRIORITY_MAXIMUM = 15 366 }; 367 368 /** 369 * struct queue_properties 370 * 371 * @type: The queue type. 372 * 373 * @queue_id: Queue identifier. 374 * 375 * @queue_address: Queue ring buffer address. 376 * 377 * @queue_size: Queue ring buffer size. 378 * 379 * @priority: Defines the queue priority relative to other queues in the 380 * process. 381 * This is just an indication and HW scheduling may override the priority as 382 * necessary while keeping the relative prioritization. 383 * the priority granularity is from 0 to f which f is the highest priority. 384 * currently all queues are initialized with the highest priority. 385 * 386 * @queue_percent: This field is partially implemented and currently a zero in 387 * this field defines that the queue is non active. 388 * 389 * @read_ptr: User space address which points to the number of dwords the 390 * cp read from the ring buffer. This field updates automatically by the H/W. 391 * 392 * @write_ptr: Defines the number of dwords written to the ring buffer. 393 * 394 * @doorbell_ptr: This field aim is to notify the H/W of new packet written to 395 * the queue ring buffer. This field should be similar to write_ptr and the 396 * user should update this field after he updated the write_ptr. 397 * 398 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 399 * 400 * @is_interop: Defines if this is a interop queue. Interop queue means that 401 * the queue can access both graphics and compute resources. 402 * 403 * @is_evicted: Defines if the queue is evicted. Only active queues 404 * are evicted, rendering them inactive. 405 * 406 * @is_active: Defines if the queue is active or not. @is_active and 407 * @is_evicted are protected by the DQM lock. 408 * 409 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 410 * of the queue. 411 * 412 * This structure represents the queue properties for each queue no matter if 413 * it's user mode or kernel mode queue. 414 * 415 */ 416 struct queue_properties { 417 enum kfd_queue_type type; 418 enum kfd_queue_format format; 419 unsigned int queue_id; 420 uint64_t queue_address; 421 uint64_t queue_size; 422 uint32_t priority; 423 uint32_t queue_percent; 424 uint32_t *read_ptr; 425 uint32_t *write_ptr; 426 void __iomem *doorbell_ptr; 427 uint32_t doorbell_off; 428 bool is_interop; 429 bool is_evicted; 430 bool is_active; 431 /* Not relevant for user mode queues in cp scheduling */ 432 unsigned int vmid; 433 /* Relevant only for sdma queues*/ 434 uint32_t sdma_engine_id; 435 uint32_t sdma_queue_id; 436 uint32_t sdma_vm_addr; 437 /* Relevant only for VI */ 438 uint64_t eop_ring_buffer_address; 439 uint32_t eop_ring_buffer_size; 440 uint64_t ctx_save_restore_area_address; 441 uint32_t ctx_save_restore_area_size; 442 uint32_t ctl_stack_size; 443 uint64_t tba_addr; 444 uint64_t tma_addr; 445 /* Relevant for CU */ 446 uint32_t cu_mask_count; /* Must be a multiple of 32 */ 447 uint32_t *cu_mask; 448 }; 449 450 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 451 (q).queue_address != 0 && \ 452 (q).queue_percent > 0 && \ 453 !(q).is_evicted) 454 455 /** 456 * struct queue 457 * 458 * @list: Queue linked list. 459 * 460 * @mqd: The queue MQD. 461 * 462 * @mqd_mem_obj: The MQD local gpu memory object. 463 * 464 * @gart_mqd_addr: The MQD gart mc address. 465 * 466 * @properties: The queue properties. 467 * 468 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 469 * that the queue should be execute on. 470 * 471 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 472 * id. 473 * 474 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 475 * 476 * @process: The kfd process that created this queue. 477 * 478 * @device: The kfd device that created this queue. 479 * 480 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 481 * otherwise. 482 * 483 * This structure represents user mode compute queues. 484 * It contains all the necessary data to handle such queues. 485 * 486 */ 487 488 struct queue { 489 struct list_head list; 490 void *mqd; 491 struct kfd_mem_obj *mqd_mem_obj; 492 uint64_t gart_mqd_addr; 493 struct queue_properties properties; 494 495 uint32_t mec; 496 uint32_t pipe; 497 uint32_t queue; 498 499 unsigned int sdma_id; 500 unsigned int doorbell_id; 501 502 struct kfd_process *process; 503 struct kfd_dev *device; 504 void *gws; 505 }; 506 507 /* 508 * Please read the kfd_mqd_manager.h description. 509 */ 510 enum KFD_MQD_TYPE { 511 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 512 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 513 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 514 KFD_MQD_TYPE_DIQ, /* for diq */ 515 KFD_MQD_TYPE_MAX 516 }; 517 518 enum KFD_PIPE_PRIORITY { 519 KFD_PIPE_PRIORITY_CS_LOW = 0, 520 KFD_PIPE_PRIORITY_CS_MEDIUM, 521 KFD_PIPE_PRIORITY_CS_HIGH 522 }; 523 524 struct scheduling_resources { 525 unsigned int vmid_mask; 526 enum kfd_queue_type type; 527 uint64_t queue_mask; 528 uint64_t gws_mask; 529 uint32_t oac_mask; 530 uint32_t gds_heap_base; 531 uint32_t gds_heap_size; 532 }; 533 534 struct process_queue_manager { 535 /* data */ 536 struct kfd_process *process; 537 struct list_head queues; 538 unsigned long *queue_slot_bitmap; 539 }; 540 541 struct qcm_process_device { 542 /* The Device Queue Manager that owns this data */ 543 struct device_queue_manager *dqm; 544 struct process_queue_manager *pqm; 545 /* Queues list */ 546 struct list_head queues_list; 547 struct list_head priv_queue_list; 548 549 unsigned int queue_count; 550 unsigned int vmid; 551 bool is_debug; 552 unsigned int evicted; /* eviction counter, 0=active */ 553 554 /* This flag tells if we should reset all wavefronts on 555 * process termination 556 */ 557 bool reset_wavefronts; 558 559 /* 560 * All the memory management data should be here too 561 */ 562 uint64_t gds_context_area; 563 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 564 uint64_t page_table_base; 565 uint32_t sh_mem_config; 566 uint32_t sh_mem_bases; 567 uint32_t sh_mem_ape1_base; 568 uint32_t sh_mem_ape1_limit; 569 uint32_t gds_size; 570 uint32_t num_gws; 571 uint32_t num_oac; 572 uint32_t sh_hidden_private_base; 573 574 /* CWSR memory */ 575 void *cwsr_kaddr; 576 uint64_t cwsr_base; 577 uint64_t tba_addr; 578 uint64_t tma_addr; 579 580 /* IB memory */ 581 uint64_t ib_base; 582 void *ib_kaddr; 583 584 /* doorbell resources per process per device */ 585 unsigned long *doorbell_bitmap; 586 }; 587 588 /* KFD Memory Eviction */ 589 590 /* Approx. wait time before attempting to restore evicted BOs */ 591 #define PROCESS_RESTORE_TIME_MS 100 592 /* Approx. back off time if restore fails due to lack of memory */ 593 #define PROCESS_BACK_OFF_TIME_MS 100 594 /* Approx. time before evicting the process again */ 595 #define PROCESS_ACTIVE_TIME_MS 10 596 597 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 598 * idr_handle in the least significant 4 bytes 599 */ 600 #define MAKE_HANDLE(gpu_id, idr_handle) \ 601 (((uint64_t)(gpu_id) << 32) + idr_handle) 602 #define GET_GPU_ID(handle) (handle >> 32) 603 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 604 605 enum kfd_pdd_bound { 606 PDD_UNBOUND = 0, 607 PDD_BOUND, 608 PDD_BOUND_SUSPENDED, 609 }; 610 611 /* Data that is per-process-per device. */ 612 struct kfd_process_device { 613 /* 614 * List of all per-device data for a process. 615 * Starts from kfd_process.per_device_data. 616 */ 617 struct list_head per_device_list; 618 619 /* The device that owns this data. */ 620 struct kfd_dev *dev; 621 622 /* The process that owns this kfd_process_device. */ 623 struct kfd_process *process; 624 625 /* per-process-per device QCM data structure */ 626 struct qcm_process_device qpd; 627 628 /*Apertures*/ 629 uint64_t lds_base; 630 uint64_t lds_limit; 631 uint64_t gpuvm_base; 632 uint64_t gpuvm_limit; 633 uint64_t scratch_base; 634 uint64_t scratch_limit; 635 636 /* VM context for GPUVM allocations */ 637 struct file *drm_file; 638 void *vm; 639 640 /* GPUVM allocations storage */ 641 struct idr alloc_idr; 642 643 /* Flag used to tell the pdd has dequeued from the dqm. 644 * This is used to prevent dev->dqm->ops.process_termination() from 645 * being called twice when it is already called in IOMMU callback 646 * function. 647 */ 648 bool already_dequeued; 649 650 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 651 enum kfd_pdd_bound bound; 652 }; 653 654 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 655 656 /* Process data */ 657 struct kfd_process { 658 /* 659 * kfd_process are stored in an mm_struct*->kfd_process* 660 * hash table (kfd_processes in kfd_process.c) 661 */ 662 struct hlist_node kfd_processes; 663 664 /* 665 * Opaque pointer to mm_struct. We don't hold a reference to 666 * it so it should never be dereferenced from here. This is 667 * only used for looking up processes by their mm. 668 */ 669 void *mm; 670 671 struct kref ref; 672 struct work_struct release_work; 673 674 struct mutex mutex; 675 676 /* 677 * In any process, the thread that started main() is the lead 678 * thread and outlives the rest. 679 * It is here because amd_iommu_bind_pasid wants a task_struct. 680 * It can also be used for safely getting a reference to the 681 * mm_struct of the process. 682 */ 683 struct task_struct *lead_thread; 684 685 /* We want to receive a notification when the mm_struct is destroyed */ 686 struct mmu_notifier mmu_notifier; 687 688 uint16_t pasid; 689 unsigned int doorbell_index; 690 691 /* 692 * List of kfd_process_device structures, 693 * one for each device the process is using. 694 */ 695 struct list_head per_device_data; 696 697 struct process_queue_manager pqm; 698 699 /*Is the user space process 32 bit?*/ 700 bool is_32bit_user_mode; 701 702 /* Event-related data */ 703 struct mutex event_mutex; 704 /* Event ID allocator and lookup */ 705 struct idr event_idr; 706 /* Event page */ 707 struct kfd_signal_page *signal_page; 708 size_t signal_mapped_size; 709 size_t signal_event_count; 710 bool signal_event_limit_reached; 711 712 /* Information used for memory eviction */ 713 void *kgd_process_info; 714 /* Eviction fence that is attached to all the BOs of this process. The 715 * fence will be triggered during eviction and new one will be created 716 * during restore 717 */ 718 struct dma_fence *ef; 719 720 /* Work items for evicting and restoring BOs */ 721 struct delayed_work eviction_work; 722 struct delayed_work restore_work; 723 /* seqno of the last scheduled eviction */ 724 unsigned int last_eviction_seqno; 725 /* Approx. the last timestamp (in jiffies) when the process was 726 * restored after an eviction 727 */ 728 unsigned long last_restore_timestamp; 729 730 /* Kobj for our procfs */ 731 struct kobject *kobj; 732 struct attribute attr_pasid; 733 }; 734 735 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 736 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 737 extern struct srcu_struct kfd_processes_srcu; 738 739 /** 740 * Ioctl function type. 741 * 742 * \param filep pointer to file structure. 743 * \param p amdkfd process pointer. 744 * \param data pointer to arg that was copied from user. 745 */ 746 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 747 void *data); 748 749 struct amdkfd_ioctl_desc { 750 unsigned int cmd; 751 int flags; 752 amdkfd_ioctl_t *func; 753 unsigned int cmd_drv; 754 const char *name; 755 }; 756 bool kfd_dev_is_large_bar(struct kfd_dev *dev); 757 758 int kfd_process_create_wq(void); 759 void kfd_process_destroy_wq(void); 760 struct kfd_process *kfd_create_process(struct file *filep); 761 struct kfd_process *kfd_get_process(const struct task_struct *); 762 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid); 763 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 764 void kfd_unref_process(struct kfd_process *p); 765 int kfd_process_evict_queues(struct kfd_process *p); 766 int kfd_process_restore_queues(struct kfd_process *p); 767 void kfd_suspend_all_processes(void); 768 int kfd_resume_all_processes(void); 769 770 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 771 struct file *drm_file); 772 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 773 struct kfd_process *p); 774 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 775 struct kfd_process *p); 776 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 777 struct kfd_process *p); 778 779 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 780 struct vm_area_struct *vma); 781 782 /* KFD process API for creating and translating handles */ 783 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 784 void *mem); 785 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 786 int handle); 787 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 788 int handle); 789 790 /* Process device data iterator */ 791 struct kfd_process_device *kfd_get_first_process_device_data( 792 struct kfd_process *p); 793 struct kfd_process_device *kfd_get_next_process_device_data( 794 struct kfd_process *p, 795 struct kfd_process_device *pdd); 796 bool kfd_has_process_device_data(struct kfd_process *p); 797 798 /* PASIDs */ 799 int kfd_pasid_init(void); 800 void kfd_pasid_exit(void); 801 bool kfd_set_pasid_limit(unsigned int new_limit); 802 unsigned int kfd_get_pasid_limit(void); 803 unsigned int kfd_pasid_alloc(void); 804 void kfd_pasid_free(unsigned int pasid); 805 806 /* Doorbells */ 807 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 808 int kfd_doorbell_init(struct kfd_dev *kfd); 809 void kfd_doorbell_fini(struct kfd_dev *kfd); 810 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, 811 struct vm_area_struct *vma); 812 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 813 unsigned int *doorbell_off); 814 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 815 u32 read_kernel_doorbell(u32 __iomem *db); 816 void write_kernel_doorbell(void __iomem *db, u32 value); 817 void write_kernel_doorbell64(void __iomem *db, u64 value); 818 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 819 struct kfd_process *process, 820 unsigned int doorbell_id); 821 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev, 822 struct kfd_process *process); 823 int kfd_alloc_process_doorbells(struct kfd_process *process); 824 void kfd_free_process_doorbells(struct kfd_process *process); 825 826 /* GTT Sub-Allocator */ 827 828 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 829 struct kfd_mem_obj **mem_obj); 830 831 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 832 833 extern struct device *kfd_device; 834 835 /* KFD's procfs */ 836 void kfd_procfs_init(void); 837 void kfd_procfs_shutdown(void); 838 839 /* Topology */ 840 int kfd_topology_init(void); 841 void kfd_topology_shutdown(void); 842 int kfd_topology_add_device(struct kfd_dev *gpu); 843 int kfd_topology_remove_device(struct kfd_dev *gpu); 844 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 845 uint32_t proximity_domain); 846 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 847 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 848 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 849 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd); 850 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); 851 int kfd_numa_node_to_apic_id(int numa_node_id); 852 853 /* Interrupts */ 854 int kfd_interrupt_init(struct kfd_dev *dev); 855 void kfd_interrupt_exit(struct kfd_dev *dev); 856 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 857 bool interrupt_is_wanted(struct kfd_dev *dev, 858 const uint32_t *ih_ring_entry, 859 uint32_t *patched_ihre, bool *flag); 860 861 /* amdkfd Apertures */ 862 int kfd_init_apertures(struct kfd_process *process); 863 864 /* Queue Context Management */ 865 int init_queue(struct queue **q, const struct queue_properties *properties); 866 void uninit_queue(struct queue *q); 867 void print_queue_properties(struct queue_properties *q); 868 void print_queue(struct queue *q); 869 870 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 871 struct kfd_dev *dev); 872 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 873 struct kfd_dev *dev); 874 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 875 struct kfd_dev *dev); 876 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 877 struct kfd_dev *dev); 878 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 879 struct kfd_dev *dev); 880 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 881 struct kfd_dev *dev); 882 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 883 void device_queue_manager_uninit(struct device_queue_manager *dqm); 884 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 885 enum kfd_queue_type type); 886 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging); 887 int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid); 888 889 /* Process Queue Manager */ 890 struct process_queue_node { 891 struct queue *q; 892 struct kernel_queue *kq; 893 struct list_head process_queue_list; 894 }; 895 896 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 897 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 898 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 899 void pqm_uninit(struct process_queue_manager *pqm); 900 int pqm_create_queue(struct process_queue_manager *pqm, 901 struct kfd_dev *dev, 902 struct file *f, 903 struct queue_properties *properties, 904 unsigned int *qid, 905 uint32_t *p_doorbell_offset_in_process); 906 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 907 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid, 908 struct queue_properties *p); 909 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid, 910 struct queue_properties *p); 911 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 912 void *gws); 913 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 914 unsigned int qid); 915 int pqm_get_wave_state(struct process_queue_manager *pqm, 916 unsigned int qid, 917 void __user *ctl_stack, 918 u32 *ctl_stack_used_size, 919 u32 *save_area_used_size); 920 921 int amdkfd_fence_wait_timeout(unsigned int *fence_addr, 922 unsigned int fence_value, 923 unsigned int timeout_ms); 924 925 /* Packet Manager */ 926 927 #define KFD_FENCE_COMPLETED (100) 928 #define KFD_FENCE_INIT (10) 929 930 struct packet_manager { 931 struct device_queue_manager *dqm; 932 struct kernel_queue *priv_queue; 933 struct mutex lock; 934 bool allocated; 935 struct kfd_mem_obj *ib_buffer_obj; 936 unsigned int ib_size_bytes; 937 bool is_over_subscription; 938 939 const struct packet_manager_funcs *pmf; 940 }; 941 942 struct packet_manager_funcs { 943 /* Support ASIC-specific packet formats for PM4 packets */ 944 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 945 struct qcm_process_device *qpd); 946 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 947 uint64_t ib, size_t ib_size_in_dwords, bool chain); 948 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 949 struct scheduling_resources *res); 950 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 951 struct queue *q, bool is_static); 952 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 953 enum kfd_queue_type type, 954 enum kfd_unmap_queues_filter mode, 955 uint32_t filter_param, bool reset, 956 unsigned int sdma_engine); 957 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 958 uint64_t fence_address, uint32_t fence_value); 959 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 960 961 /* Packet sizes */ 962 int map_process_size; 963 int runlist_size; 964 int set_resources_size; 965 int map_queues_size; 966 int unmap_queues_size; 967 int query_status_size; 968 int release_mem_size; 969 }; 970 971 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 972 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 973 974 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 975 void pm_uninit(struct packet_manager *pm, bool hanging); 976 int pm_send_set_resources(struct packet_manager *pm, 977 struct scheduling_resources *res); 978 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 979 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 980 uint32_t fence_value); 981 982 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type, 983 enum kfd_unmap_queues_filter mode, 984 uint32_t filter_param, bool reset, 985 unsigned int sdma_engine); 986 987 void pm_release_ib(struct packet_manager *pm); 988 989 /* Following PM funcs can be shared among VI and AI */ 990 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 991 992 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 993 994 /* Events */ 995 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 996 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 997 998 extern const struct kfd_device_global_init_class device_global_init_class_cik; 999 1000 void kfd_event_init_process(struct kfd_process *p); 1001 void kfd_event_free_process(struct kfd_process *p); 1002 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1003 int kfd_wait_on_events(struct kfd_process *p, 1004 uint32_t num_events, void __user *data, 1005 bool all, uint32_t user_timeout_ms, 1006 uint32_t *wait_result); 1007 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, 1008 uint32_t valid_id_bits); 1009 void kfd_signal_iommu_event(struct kfd_dev *dev, 1010 unsigned int pasid, unsigned long address, 1011 bool is_write_requested, bool is_execute_requested); 1012 void kfd_signal_hw_exception_event(unsigned int pasid); 1013 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1014 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1015 int kfd_event_page_set(struct kfd_process *p, void *kernel_address, 1016 uint64_t size); 1017 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1018 uint32_t event_type, bool auto_reset, uint32_t node_id, 1019 uint32_t *event_id, uint32_t *event_trigger_data, 1020 uint64_t *event_page_offset, uint32_t *event_slot_index); 1021 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1022 1023 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid, 1024 struct kfd_vm_fault_info *info); 1025 1026 void kfd_signal_reset_event(struct kfd_dev *dev); 1027 1028 void kfd_flush_tlb(struct kfd_process_device *pdd); 1029 1030 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p); 1031 1032 bool kfd_is_locked(void); 1033 1034 /* Compute profile */ 1035 void kfd_inc_compute_active(struct kfd_dev *dev); 1036 void kfd_dec_compute_active(struct kfd_dev *dev); 1037 1038 /* Cgroup Support */ 1039 /* Check with device cgroup if @kfd device is accessible */ 1040 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd) 1041 { 1042 #if defined(CONFIG_CGROUP_DEVICE) 1043 struct drm_device *ddev = kfd->ddev; 1044 1045 return devcgroup_check_permission(DEVCG_DEV_CHAR, ddev->driver->major, 1046 ddev->render->index, 1047 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1048 #else 1049 return 0; 1050 #endif 1051 } 1052 1053 /* Debugfs */ 1054 #if defined(CONFIG_DEBUG_FS) 1055 1056 void kfd_debugfs_init(void); 1057 void kfd_debugfs_fini(void); 1058 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1059 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1060 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1061 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1062 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1063 int pm_debugfs_runlist(struct seq_file *m, void *data); 1064 1065 int kfd_debugfs_hang_hws(struct kfd_dev *dev); 1066 int pm_debugfs_hang_hws(struct packet_manager *pm); 1067 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm); 1068 1069 #else 1070 1071 static inline void kfd_debugfs_init(void) {} 1072 static inline void kfd_debugfs_fini(void) {} 1073 1074 #endif 1075 1076 #endif 1077