xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision e142bd91)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <linux/sysfs.h>
39 #include <linux/device_cgroup.h>
40 #include <drm/drm_file.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_device.h>
43 #include <drm/drm_ioctl.h>
44 #include <kgd_kfd_interface.h>
45 #include <linux/swap.h>
46 
47 #include "amd_shared.h"
48 #include "amdgpu.h"
49 
50 #define KFD_MAX_RING_ENTRY_SIZE	8
51 
52 #define KFD_SYSFS_FILE_MODE 0444
53 
54 /* GPU ID hash width in bits */
55 #define KFD_GPU_ID_HASH_WIDTH 16
56 
57 /* Use upper bits of mmap offset to store KFD driver specific information.
58  * BITS[63:62] - Encode MMAP type
59  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
60  * BITS[45:0]  - MMAP offset value
61  *
62  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
63  *  defines are w.r.t to PAGE_SIZE
64  */
65 #define KFD_MMAP_TYPE_SHIFT	62
66 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
67 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
68 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
71 
72 #define KFD_MMAP_GPU_ID_SHIFT 46
73 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
74 				<< KFD_MMAP_GPU_ID_SHIFT)
75 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
76 				& KFD_MMAP_GPU_ID_MASK)
77 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
78 				>> KFD_MMAP_GPU_ID_SHIFT)
79 
80 /*
81  * When working with cp scheduler we should assign the HIQ manually or via
82  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
83  * definitions for Kaveri. In Kaveri only the first ME queues participates
84  * in the cp scheduling taking that in mind we set the HIQ slot in the
85  * second ME.
86  */
87 #define KFD_CIK_HIQ_PIPE 4
88 #define KFD_CIK_HIQ_QUEUE 0
89 
90 /* Macro for allocating structures */
91 #define kfd_alloc_struct(ptr_to_struct)	\
92 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
93 
94 #define KFD_MAX_NUM_OF_PROCESSES 512
95 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
96 
97 /*
98  * Size of the per-process TBA+TMA buffer: 2 pages
99  *
100  * The first page is the TBA used for the CWSR ISA code. The second
101  * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
102  */
103 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
104 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
105 
106 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
107 	(KFD_MAX_NUM_OF_PROCESSES *			\
108 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
109 
110 #define KFD_KERNEL_QUEUE_SIZE 2048
111 
112 #define KFD_UNMAP_LATENCY_MS	(4000)
113 
114 /*
115  * 512 = 0x200
116  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
117  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
118  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
119  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
120  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
121  */
122 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
123 
124 
125 /*
126  * Kernel module parameter to specify maximum number of supported queues per
127  * device
128  */
129 extern int max_num_of_queues_per_device;
130 
131 
132 /* Kernel module parameter to specify the scheduling policy */
133 extern int sched_policy;
134 
135 /*
136  * Kernel module parameter to specify the maximum process
137  * number per HW scheduler
138  */
139 extern int hws_max_conc_proc;
140 
141 extern int cwsr_enable;
142 
143 /*
144  * Kernel module parameter to specify whether to send sigterm to HSA process on
145  * unhandled exception
146  */
147 extern int send_sigterm;
148 
149 /*
150  * This kernel module is used to simulate large bar machine on non-large bar
151  * enabled machines.
152  */
153 extern int debug_largebar;
154 
155 /*
156  * Ignore CRAT table during KFD initialization, can be used to work around
157  * broken CRAT tables on some AMD systems
158  */
159 extern int ignore_crat;
160 
161 /* Set sh_mem_config.retry_disable on GFX v9 */
162 extern int amdgpu_noretry;
163 
164 /* Halt if HWS hang is detected */
165 extern int halt_if_hws_hang;
166 
167 /* Whether MEC FW support GWS barriers */
168 extern bool hws_gws_support;
169 
170 /* Queue preemption timeout in ms */
171 extern int queue_preemption_timeout_ms;
172 
173 /*
174  * Don't evict process queues on vm fault
175  */
176 extern int amdgpu_no_queue_eviction_on_vm_fault;
177 
178 /* Enable eviction debug messages */
179 extern bool debug_evictions;
180 
181 enum cache_policy {
182 	cache_policy_coherent,
183 	cache_policy_noncoherent
184 };
185 
186 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
187 
188 struct kfd_event_interrupt_class {
189 	bool (*interrupt_isr)(struct kfd_dev *dev,
190 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
191 			bool *patched_flag);
192 	void (*interrupt_wq)(struct kfd_dev *dev,
193 			const uint32_t *ih_ring_entry);
194 };
195 
196 struct kfd_device_info {
197 	enum amd_asic_type asic_family;
198 	const char *asic_name;
199 	uint32_t gfx_target_version;
200 	const struct kfd_event_interrupt_class *event_interrupt_class;
201 	unsigned int max_pasid_bits;
202 	unsigned int max_no_of_hqd;
203 	unsigned int doorbell_size;
204 	size_t ih_ring_entry_size;
205 	uint8_t num_of_watch_points;
206 	uint16_t mqd_size_aligned;
207 	bool supports_cwsr;
208 	bool needs_iommu_device;
209 	bool needs_pci_atomics;
210 	unsigned int num_sdma_engines;
211 	unsigned int num_xgmi_sdma_engines;
212 	unsigned int num_sdma_queues_per_engine;
213 };
214 
215 struct kfd_mem_obj {
216 	uint32_t range_start;
217 	uint32_t range_end;
218 	uint64_t gpu_addr;
219 	uint32_t *cpu_ptr;
220 	void *gtt_mem;
221 };
222 
223 struct kfd_vmid_info {
224 	uint32_t first_vmid_kfd;
225 	uint32_t last_vmid_kfd;
226 	uint32_t vmid_num_kfd;
227 };
228 
229 struct kfd_dev {
230 	struct kgd_dev *kgd;
231 
232 	const struct kfd_device_info *device_info;
233 	struct pci_dev *pdev;
234 	struct drm_device *ddev;
235 
236 	unsigned int id;		/* topology stub index */
237 
238 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
239 					 * KFD. It is aligned for mapping
240 					 * into user mode
241 					 */
242 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
243 					 * doorbell BAR to the first KFD
244 					 * doorbell in dwords. GFX reserves
245 					 * the segment before this offset.
246 					 */
247 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
248 					   * page used by kernel queue
249 					   */
250 
251 	struct kgd2kfd_shared_resources shared_resources;
252 	struct kfd_vmid_info vm_info;
253 
254 	const struct kfd2kgd_calls *kfd2kgd;
255 	struct mutex doorbell_mutex;
256 	DECLARE_BITMAP(doorbell_available_index,
257 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
258 
259 	void *gtt_mem;
260 	uint64_t gtt_start_gpu_addr;
261 	void *gtt_start_cpu_ptr;
262 	void *gtt_sa_bitmap;
263 	struct mutex gtt_sa_lock;
264 	unsigned int gtt_sa_chunk_size;
265 	unsigned int gtt_sa_num_of_chunks;
266 
267 	/* Interrupts */
268 	struct kfifo ih_fifo;
269 	struct workqueue_struct *ih_wq;
270 	struct work_struct interrupt_work;
271 	spinlock_t interrupt_lock;
272 
273 	/* QCM Device instance */
274 	struct device_queue_manager *dqm;
275 
276 	bool init_complete;
277 	/*
278 	 * Interrupts of interest to KFD are copied
279 	 * from the HW ring into a SW ring.
280 	 */
281 	bool interrupts_active;
282 
283 	/* Debug manager */
284 	struct kfd_dbgmgr *dbgmgr;
285 
286 	/* Firmware versions */
287 	uint16_t mec_fw_version;
288 	uint16_t mec2_fw_version;
289 	uint16_t sdma_fw_version;
290 
291 	/* Maximum process number mapped to HW scheduler */
292 	unsigned int max_proc_per_quantum;
293 
294 	/* CWSR */
295 	bool cwsr_enabled;
296 	const void *cwsr_isa;
297 	unsigned int cwsr_isa_size;
298 
299 	/* xGMI */
300 	uint64_t hive_id;
301 
302 	bool pci_atomic_requested;
303 
304 	/* Use IOMMU v2 flag */
305 	bool use_iommu_v2;
306 
307 	/* SRAM ECC flag */
308 	atomic_t sram_ecc_flag;
309 
310 	/* Compute Profile ref. count */
311 	atomic_t compute_profile;
312 
313 	/* Global GWS resource shared between processes */
314 	void *gws;
315 
316 	/* Clients watching SMI events */
317 	struct list_head smi_clients;
318 	spinlock_t smi_lock;
319 
320 	uint32_t reset_seq_num;
321 
322 	struct ida doorbell_ida;
323 	unsigned int max_doorbell_slices;
324 
325 	int noretry;
326 
327 	/* HMM page migration MEMORY_DEVICE_PRIVATE mapping */
328 	struct dev_pagemap pgmap;
329 };
330 
331 enum kfd_mempool {
332 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
333 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
334 	KFD_MEMPOOL_FRAMEBUFFER = 3,
335 };
336 
337 /* Character device interface */
338 int kfd_chardev_init(void);
339 void kfd_chardev_exit(void);
340 struct device *kfd_chardev(void);
341 
342 /**
343  * enum kfd_unmap_queues_filter - Enum for queue filters.
344  *
345  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
346  *
347  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
348  *						running queues list.
349  *
350  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
351  *						specific process.
352  *
353  */
354 enum kfd_unmap_queues_filter {
355 	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
356 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
357 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
358 	KFD_UNMAP_QUEUES_FILTER_BY_PASID
359 };
360 
361 /**
362  * enum kfd_queue_type - Enum for various queue types.
363  *
364  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
365  *
366  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
367  *
368  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
369  *
370  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
371  *
372  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
373  */
374 enum kfd_queue_type  {
375 	KFD_QUEUE_TYPE_COMPUTE,
376 	KFD_QUEUE_TYPE_SDMA,
377 	KFD_QUEUE_TYPE_HIQ,
378 	KFD_QUEUE_TYPE_DIQ,
379 	KFD_QUEUE_TYPE_SDMA_XGMI
380 };
381 
382 enum kfd_queue_format {
383 	KFD_QUEUE_FORMAT_PM4,
384 	KFD_QUEUE_FORMAT_AQL
385 };
386 
387 enum KFD_QUEUE_PRIORITY {
388 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
389 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
390 };
391 
392 /**
393  * struct queue_properties
394  *
395  * @type: The queue type.
396  *
397  * @queue_id: Queue identifier.
398  *
399  * @queue_address: Queue ring buffer address.
400  *
401  * @queue_size: Queue ring buffer size.
402  *
403  * @priority: Defines the queue priority relative to other queues in the
404  * process.
405  * This is just an indication and HW scheduling may override the priority as
406  * necessary while keeping the relative prioritization.
407  * the priority granularity is from 0 to f which f is the highest priority.
408  * currently all queues are initialized with the highest priority.
409  *
410  * @queue_percent: This field is partially implemented and currently a zero in
411  * this field defines that the queue is non active.
412  *
413  * @read_ptr: User space address which points to the number of dwords the
414  * cp read from the ring buffer. This field updates automatically by the H/W.
415  *
416  * @write_ptr: Defines the number of dwords written to the ring buffer.
417  *
418  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
419  * buffer. This field should be similar to write_ptr and the user should
420  * update this field after updating the write_ptr.
421  *
422  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
423  *
424  * @is_interop: Defines if this is a interop queue. Interop queue means that
425  * the queue can access both graphics and compute resources.
426  *
427  * @is_evicted: Defines if the queue is evicted. Only active queues
428  * are evicted, rendering them inactive.
429  *
430  * @is_active: Defines if the queue is active or not. @is_active and
431  * @is_evicted are protected by the DQM lock.
432  *
433  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
434  * @is_gws should be protected by the DQM lock, since changing it can yield the
435  * possibility of updating DQM state on number of GWS queues.
436  *
437  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
438  * of the queue.
439  *
440  * This structure represents the queue properties for each queue no matter if
441  * it's user mode or kernel mode queue.
442  *
443  */
444 struct queue_properties {
445 	enum kfd_queue_type type;
446 	enum kfd_queue_format format;
447 	unsigned int queue_id;
448 	uint64_t queue_address;
449 	uint64_t  queue_size;
450 	uint32_t priority;
451 	uint32_t queue_percent;
452 	uint32_t *read_ptr;
453 	uint32_t *write_ptr;
454 	void __iomem *doorbell_ptr;
455 	uint32_t doorbell_off;
456 	bool is_interop;
457 	bool is_evicted;
458 	bool is_active;
459 	bool is_gws;
460 	/* Not relevant for user mode queues in cp scheduling */
461 	unsigned int vmid;
462 	/* Relevant only for sdma queues*/
463 	uint32_t sdma_engine_id;
464 	uint32_t sdma_queue_id;
465 	uint32_t sdma_vm_addr;
466 	/* Relevant only for VI */
467 	uint64_t eop_ring_buffer_address;
468 	uint32_t eop_ring_buffer_size;
469 	uint64_t ctx_save_restore_area_address;
470 	uint32_t ctx_save_restore_area_size;
471 	uint32_t ctl_stack_size;
472 	uint64_t tba_addr;
473 	uint64_t tma_addr;
474 	/* Relevant for CU */
475 	uint32_t cu_mask_count; /* Must be a multiple of 32 */
476 	uint32_t *cu_mask;
477 };
478 
479 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
480 			    (q).queue_address != 0 &&	\
481 			    (q).queue_percent > 0 &&	\
482 			    !(q).is_evicted)
483 
484 /**
485  * struct queue
486  *
487  * @list: Queue linked list.
488  *
489  * @mqd: The queue MQD (memory queue descriptor).
490  *
491  * @mqd_mem_obj: The MQD local gpu memory object.
492  *
493  * @gart_mqd_addr: The MQD gart mc address.
494  *
495  * @properties: The queue properties.
496  *
497  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
498  *	 that the queue should be executed on.
499  *
500  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
501  *	  id.
502  *
503  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
504  *
505  * @process: The kfd process that created this queue.
506  *
507  * @device: The kfd device that created this queue.
508  *
509  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
510  * otherwise.
511  *
512  * This structure represents user mode compute queues.
513  * It contains all the necessary data to handle such queues.
514  *
515  */
516 
517 struct queue {
518 	struct list_head list;
519 	void *mqd;
520 	struct kfd_mem_obj *mqd_mem_obj;
521 	uint64_t gart_mqd_addr;
522 	struct queue_properties properties;
523 
524 	uint32_t mec;
525 	uint32_t pipe;
526 	uint32_t queue;
527 
528 	unsigned int sdma_id;
529 	unsigned int doorbell_id;
530 
531 	struct kfd_process	*process;
532 	struct kfd_dev		*device;
533 	void *gws;
534 
535 	/* procfs */
536 	struct kobject kobj;
537 };
538 
539 enum KFD_MQD_TYPE {
540 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
541 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
542 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
543 	KFD_MQD_TYPE_DIQ,		/* for diq */
544 	KFD_MQD_TYPE_MAX
545 };
546 
547 enum KFD_PIPE_PRIORITY {
548 	KFD_PIPE_PRIORITY_CS_LOW = 0,
549 	KFD_PIPE_PRIORITY_CS_MEDIUM,
550 	KFD_PIPE_PRIORITY_CS_HIGH
551 };
552 
553 struct scheduling_resources {
554 	unsigned int vmid_mask;
555 	enum kfd_queue_type type;
556 	uint64_t queue_mask;
557 	uint64_t gws_mask;
558 	uint32_t oac_mask;
559 	uint32_t gds_heap_base;
560 	uint32_t gds_heap_size;
561 };
562 
563 struct process_queue_manager {
564 	/* data */
565 	struct kfd_process	*process;
566 	struct list_head	queues;
567 	unsigned long		*queue_slot_bitmap;
568 };
569 
570 struct qcm_process_device {
571 	/* The Device Queue Manager that owns this data */
572 	struct device_queue_manager *dqm;
573 	struct process_queue_manager *pqm;
574 	/* Queues list */
575 	struct list_head queues_list;
576 	struct list_head priv_queue_list;
577 
578 	unsigned int queue_count;
579 	unsigned int vmid;
580 	bool is_debug;
581 	unsigned int evicted; /* eviction counter, 0=active */
582 
583 	/* This flag tells if we should reset all wavefronts on
584 	 * process termination
585 	 */
586 	bool reset_wavefronts;
587 
588 	/* This flag tells us if this process has a GWS-capable
589 	 * queue that will be mapped into the runlist. It's
590 	 * possible to request a GWS BO, but not have the queue
591 	 * currently mapped, and this changes how the MAP_PROCESS
592 	 * PM4 packet is configured.
593 	 */
594 	bool mapped_gws_queue;
595 
596 	/* All the memory management data should be here too */
597 	uint64_t gds_context_area;
598 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
599 	uint64_t page_table_base;
600 	uint32_t sh_mem_config;
601 	uint32_t sh_mem_bases;
602 	uint32_t sh_mem_ape1_base;
603 	uint32_t sh_mem_ape1_limit;
604 	uint32_t gds_size;
605 	uint32_t num_gws;
606 	uint32_t num_oac;
607 	uint32_t sh_hidden_private_base;
608 
609 	/* CWSR memory */
610 	void *cwsr_kaddr;
611 	uint64_t cwsr_base;
612 	uint64_t tba_addr;
613 	uint64_t tma_addr;
614 
615 	/* IB memory */
616 	uint64_t ib_base;
617 	void *ib_kaddr;
618 
619 	/* doorbell resources per process per device */
620 	unsigned long *doorbell_bitmap;
621 };
622 
623 /* KFD Memory Eviction */
624 
625 /* Approx. wait time before attempting to restore evicted BOs */
626 #define PROCESS_RESTORE_TIME_MS 100
627 /* Approx. back off time if restore fails due to lack of memory */
628 #define PROCESS_BACK_OFF_TIME_MS 100
629 /* Approx. time before evicting the process again */
630 #define PROCESS_ACTIVE_TIME_MS 10
631 
632 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
633  * idr_handle in the least significant 4 bytes
634  */
635 #define MAKE_HANDLE(gpu_id, idr_handle) \
636 	(((uint64_t)(gpu_id) << 32) + idr_handle)
637 #define GET_GPU_ID(handle) (handle >> 32)
638 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
639 
640 enum kfd_pdd_bound {
641 	PDD_UNBOUND = 0,
642 	PDD_BOUND,
643 	PDD_BOUND_SUSPENDED,
644 };
645 
646 #define MAX_SYSFS_FILENAME_LEN 15
647 
648 /*
649  * SDMA counter runs at 100MHz frequency.
650  * We display SDMA activity in microsecond granularity in sysfs.
651  * As a result, the divisor is 100.
652  */
653 #define SDMA_ACTIVITY_DIVISOR  100
654 
655 /* Data that is per-process-per device. */
656 struct kfd_process_device {
657 	/* The device that owns this data. */
658 	struct kfd_dev *dev;
659 
660 	/* The process that owns this kfd_process_device. */
661 	struct kfd_process *process;
662 
663 	/* per-process-per device QCM data structure */
664 	struct qcm_process_device qpd;
665 
666 	/*Apertures*/
667 	uint64_t lds_base;
668 	uint64_t lds_limit;
669 	uint64_t gpuvm_base;
670 	uint64_t gpuvm_limit;
671 	uint64_t scratch_base;
672 	uint64_t scratch_limit;
673 
674 	/* VM context for GPUVM allocations */
675 	struct file *drm_file;
676 	void *drm_priv;
677 
678 	/* GPUVM allocations storage */
679 	struct idr alloc_idr;
680 
681 	/* Flag used to tell the pdd has dequeued from the dqm.
682 	 * This is used to prevent dev->dqm->ops.process_termination() from
683 	 * being called twice when it is already called in IOMMU callback
684 	 * function.
685 	 */
686 	bool already_dequeued;
687 	bool runtime_inuse;
688 
689 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
690 	enum kfd_pdd_bound bound;
691 
692 	/* VRAM usage */
693 	uint64_t vram_usage;
694 	struct attribute attr_vram;
695 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
696 
697 	/* SDMA activity tracking */
698 	uint64_t sdma_past_activity_counter;
699 	struct attribute attr_sdma;
700 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
701 
702 	/* Eviction activity tracking */
703 	uint64_t last_evict_timestamp;
704 	atomic64_t evict_duration_counter;
705 	struct attribute attr_evict;
706 
707 	struct kobject *kobj_stats;
708 	unsigned int doorbell_index;
709 
710 	/*
711 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
712 	 * that is associated with device encoded by "this" struct instance. The
713 	 * value reflects CU usage by all of the waves launched by this process
714 	 * on this device. A very important property of occupancy parameter is
715 	 * that its value is a snapshot of current use.
716 	 *
717 	 * Following is to be noted regarding how this parameter is reported:
718 	 *
719 	 *  The number of waves that a CU can launch is limited by couple of
720 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
721 	 *  that is part of every device definition. For GFX9 devices this
722 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
723 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
724 	 *  when they do use scratch memory. This could change for future
725 	 *  devices and therefore this example should be considered as a guide.
726 	 *
727 	 *  All CU's of a device are available for the process. This may not be true
728 	 *  under certain conditions - e.g. CU masking.
729 	 *
730 	 *  Finally number of CU's that are occupied by a process is affected by both
731 	 *  number of CU's a device has along with number of other competing processes
732 	 */
733 	struct attribute attr_cu_occupancy;
734 
735 	/* sysfs counters for GPU retry fault and page migration tracking */
736 	struct kobject *kobj_counters;
737 	struct attribute attr_faults;
738 	struct attribute attr_page_in;
739 	struct attribute attr_page_out;
740 	uint64_t faults;
741 	uint64_t page_in;
742 	uint64_t page_out;
743 };
744 
745 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
746 
747 struct svm_range_list {
748 	struct mutex			lock;
749 	struct rb_root_cached		objects;
750 	struct list_head		list;
751 	struct work_struct		deferred_list_work;
752 	struct list_head		deferred_range_list;
753 	spinlock_t			deferred_list_lock;
754 	atomic_t			evicted_ranges;
755 	struct delayed_work		restore_work;
756 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
757 };
758 
759 /* Process data */
760 struct kfd_process {
761 	/*
762 	 * kfd_process are stored in an mm_struct*->kfd_process*
763 	 * hash table (kfd_processes in kfd_process.c)
764 	 */
765 	struct hlist_node kfd_processes;
766 
767 	/*
768 	 * Opaque pointer to mm_struct. We don't hold a reference to
769 	 * it so it should never be dereferenced from here. This is
770 	 * only used for looking up processes by their mm.
771 	 */
772 	void *mm;
773 
774 	struct kref ref;
775 	struct work_struct release_work;
776 
777 	struct mutex mutex;
778 
779 	/*
780 	 * In any process, the thread that started main() is the lead
781 	 * thread and outlives the rest.
782 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
783 	 * It can also be used for safely getting a reference to the
784 	 * mm_struct of the process.
785 	 */
786 	struct task_struct *lead_thread;
787 
788 	/* We want to receive a notification when the mm_struct is destroyed */
789 	struct mmu_notifier mmu_notifier;
790 
791 	u32 pasid;
792 
793 	/*
794 	 * Array of kfd_process_device pointers,
795 	 * one for each device the process is using.
796 	 */
797 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
798 	uint32_t n_pdds;
799 
800 	struct process_queue_manager pqm;
801 
802 	/*Is the user space process 32 bit?*/
803 	bool is_32bit_user_mode;
804 
805 	/* Event-related data */
806 	struct mutex event_mutex;
807 	/* Event ID allocator and lookup */
808 	struct idr event_idr;
809 	/* Event page */
810 	struct kfd_signal_page *signal_page;
811 	size_t signal_mapped_size;
812 	size_t signal_event_count;
813 	bool signal_event_limit_reached;
814 
815 	/* Information used for memory eviction */
816 	void *kgd_process_info;
817 	/* Eviction fence that is attached to all the BOs of this process. The
818 	 * fence will be triggered during eviction and new one will be created
819 	 * during restore
820 	 */
821 	struct dma_fence *ef;
822 
823 	/* Work items for evicting and restoring BOs */
824 	struct delayed_work eviction_work;
825 	struct delayed_work restore_work;
826 	/* seqno of the last scheduled eviction */
827 	unsigned int last_eviction_seqno;
828 	/* Approx. the last timestamp (in jiffies) when the process was
829 	 * restored after an eviction
830 	 */
831 	unsigned long last_restore_timestamp;
832 
833 	/* Kobj for our procfs */
834 	struct kobject *kobj;
835 	struct kobject *kobj_queues;
836 	struct attribute attr_pasid;
837 
838 	/* shared virtual memory registered by this process */
839 	struct svm_range_list svms;
840 
841 	bool xnack_enabled;
842 };
843 
844 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
845 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
846 extern struct srcu_struct kfd_processes_srcu;
847 
848 /**
849  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
850  *
851  * @filep: pointer to file structure.
852  * @p: amdkfd process pointer.
853  * @data: pointer to arg that was copied from user.
854  *
855  * Return: returns ioctl completion code.
856  */
857 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
858 				void *data);
859 
860 struct amdkfd_ioctl_desc {
861 	unsigned int cmd;
862 	int flags;
863 	amdkfd_ioctl_t *func;
864 	unsigned int cmd_drv;
865 	const char *name;
866 };
867 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
868 
869 int kfd_process_create_wq(void);
870 void kfd_process_destroy_wq(void);
871 struct kfd_process *kfd_create_process(struct file *filep);
872 struct kfd_process *kfd_get_process(const struct task_struct *);
873 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
874 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
875 
876 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
877 int kfd_process_gpuid_from_kgd(struct kfd_process *p,
878 			       struct amdgpu_device *adev, uint32_t *gpuid,
879 			       uint32_t *gpuidx);
880 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
881 				uint32_t gpuidx, uint32_t *gpuid) {
882 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
883 }
884 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
885 				struct kfd_process *p, uint32_t gpuidx) {
886 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
887 }
888 
889 void kfd_unref_process(struct kfd_process *p);
890 int kfd_process_evict_queues(struct kfd_process *p);
891 int kfd_process_restore_queues(struct kfd_process *p);
892 void kfd_suspend_all_processes(void);
893 int kfd_resume_all_processes(void);
894 
895 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
896 			       struct file *drm_file);
897 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
898 						struct kfd_process *p);
899 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
900 							struct kfd_process *p);
901 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
902 							struct kfd_process *p);
903 
904 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
905 
906 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
907 			  struct vm_area_struct *vma);
908 
909 /* KFD process API for creating and translating handles */
910 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
911 					void *mem);
912 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
913 					int handle);
914 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
915 					int handle);
916 
917 /* PASIDs */
918 int kfd_pasid_init(void);
919 void kfd_pasid_exit(void);
920 bool kfd_set_pasid_limit(unsigned int new_limit);
921 unsigned int kfd_get_pasid_limit(void);
922 u32 kfd_pasid_alloc(void);
923 void kfd_pasid_free(u32 pasid);
924 
925 /* Doorbells */
926 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
927 int kfd_doorbell_init(struct kfd_dev *kfd);
928 void kfd_doorbell_fini(struct kfd_dev *kfd);
929 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
930 		      struct vm_area_struct *vma);
931 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
932 					unsigned int *doorbell_off);
933 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
934 u32 read_kernel_doorbell(u32 __iomem *db);
935 void write_kernel_doorbell(void __iomem *db, u32 value);
936 void write_kernel_doorbell64(void __iomem *db, u64 value);
937 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
938 					struct kfd_process_device *pdd,
939 					unsigned int doorbell_id);
940 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
941 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
942 				unsigned int *doorbell_index);
943 void kfd_free_process_doorbells(struct kfd_dev *kfd,
944 				unsigned int doorbell_index);
945 /* GTT Sub-Allocator */
946 
947 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
948 			struct kfd_mem_obj **mem_obj);
949 
950 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
951 
952 extern struct device *kfd_device;
953 
954 /* KFD's procfs */
955 void kfd_procfs_init(void);
956 void kfd_procfs_shutdown(void);
957 int kfd_procfs_add_queue(struct queue *q);
958 void kfd_procfs_del_queue(struct queue *q);
959 
960 /* Topology */
961 int kfd_topology_init(void);
962 void kfd_topology_shutdown(void);
963 int kfd_topology_add_device(struct kfd_dev *gpu);
964 int kfd_topology_remove_device(struct kfd_dev *gpu);
965 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
966 						uint32_t proximity_domain);
967 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
968 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
969 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
970 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
971 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
972 int kfd_numa_node_to_apic_id(int numa_node_id);
973 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
974 
975 /* Interrupts */
976 int kfd_interrupt_init(struct kfd_dev *dev);
977 void kfd_interrupt_exit(struct kfd_dev *dev);
978 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
979 bool interrupt_is_wanted(struct kfd_dev *dev,
980 				const uint32_t *ih_ring_entry,
981 				uint32_t *patched_ihre, bool *flag);
982 
983 /* amdkfd Apertures */
984 int kfd_init_apertures(struct kfd_process *process);
985 
986 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
987 				  uint64_t tba_addr,
988 				  uint64_t tma_addr);
989 
990 /* Queue Context Management */
991 int init_queue(struct queue **q, const struct queue_properties *properties);
992 void uninit_queue(struct queue *q);
993 void print_queue_properties(struct queue_properties *q);
994 void print_queue(struct queue *q);
995 
996 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
997 		struct kfd_dev *dev);
998 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
999 		struct kfd_dev *dev);
1000 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1001 		struct kfd_dev *dev);
1002 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1003 		struct kfd_dev *dev);
1004 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1005 		struct kfd_dev *dev);
1006 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1007 		struct kfd_dev *dev);
1008 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
1009 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1010 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
1011 					enum kfd_queue_type type);
1012 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1013 int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid);
1014 
1015 /* Process Queue Manager */
1016 struct process_queue_node {
1017 	struct queue *q;
1018 	struct kernel_queue *kq;
1019 	struct list_head process_queue_list;
1020 };
1021 
1022 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1023 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1024 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1025 void pqm_uninit(struct process_queue_manager *pqm);
1026 int pqm_create_queue(struct process_queue_manager *pqm,
1027 			    struct kfd_dev *dev,
1028 			    struct file *f,
1029 			    struct queue_properties *properties,
1030 			    unsigned int *qid,
1031 			    uint32_t *p_doorbell_offset_in_process);
1032 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1033 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
1034 			struct queue_properties *p);
1035 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
1036 			struct queue_properties *p);
1037 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1038 			void *gws);
1039 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1040 						unsigned int qid);
1041 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1042 						unsigned int qid);
1043 int pqm_get_wave_state(struct process_queue_manager *pqm,
1044 		       unsigned int qid,
1045 		       void __user *ctl_stack,
1046 		       u32 *ctl_stack_used_size,
1047 		       u32 *save_area_used_size);
1048 
1049 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1050 			      uint64_t fence_value,
1051 			      unsigned int timeout_ms);
1052 
1053 /* Packet Manager */
1054 
1055 #define KFD_FENCE_COMPLETED (100)
1056 #define KFD_FENCE_INIT   (10)
1057 
1058 struct packet_manager {
1059 	struct device_queue_manager *dqm;
1060 	struct kernel_queue *priv_queue;
1061 	struct mutex lock;
1062 	bool allocated;
1063 	struct kfd_mem_obj *ib_buffer_obj;
1064 	unsigned int ib_size_bytes;
1065 	bool is_over_subscription;
1066 
1067 	const struct packet_manager_funcs *pmf;
1068 };
1069 
1070 struct packet_manager_funcs {
1071 	/* Support ASIC-specific packet formats for PM4 packets */
1072 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1073 			struct qcm_process_device *qpd);
1074 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1075 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1076 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1077 			struct scheduling_resources *res);
1078 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1079 			struct queue *q, bool is_static);
1080 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1081 			enum kfd_queue_type type,
1082 			enum kfd_unmap_queues_filter mode,
1083 			uint32_t filter_param, bool reset,
1084 			unsigned int sdma_engine);
1085 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1086 			uint64_t fence_address,	uint64_t fence_value);
1087 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1088 
1089 	/* Packet sizes */
1090 	int map_process_size;
1091 	int runlist_size;
1092 	int set_resources_size;
1093 	int map_queues_size;
1094 	int unmap_queues_size;
1095 	int query_status_size;
1096 	int release_mem_size;
1097 };
1098 
1099 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1100 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1101 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1102 
1103 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1104 void pm_uninit(struct packet_manager *pm, bool hanging);
1105 int pm_send_set_resources(struct packet_manager *pm,
1106 				struct scheduling_resources *res);
1107 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1108 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1109 				uint64_t fence_value);
1110 
1111 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1112 			enum kfd_unmap_queues_filter mode,
1113 			uint32_t filter_param, bool reset,
1114 			unsigned int sdma_engine);
1115 
1116 void pm_release_ib(struct packet_manager *pm);
1117 
1118 /* Following PM funcs can be shared among VI and AI */
1119 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1120 
1121 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1122 
1123 /* Events */
1124 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1125 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1126 
1127 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1128 
1129 void kfd_event_init_process(struct kfd_process *p);
1130 void kfd_event_free_process(struct kfd_process *p);
1131 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1132 int kfd_wait_on_events(struct kfd_process *p,
1133 		       uint32_t num_events, void __user *data,
1134 		       bool all, uint32_t user_timeout_ms,
1135 		       uint32_t *wait_result);
1136 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1137 				uint32_t valid_id_bits);
1138 void kfd_signal_iommu_event(struct kfd_dev *dev,
1139 			    u32 pasid, unsigned long address,
1140 			    bool is_write_requested, bool is_execute_requested);
1141 void kfd_signal_hw_exception_event(u32 pasid);
1142 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1143 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1144 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1145 		       uint64_t size);
1146 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1147 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1148 		     uint32_t *event_id, uint32_t *event_trigger_data,
1149 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1150 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1151 
1152 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1153 				struct kfd_vm_fault_info *info);
1154 
1155 void kfd_signal_reset_event(struct kfd_dev *dev);
1156 
1157 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid);
1158 
1159 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1160 
1161 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1162 
1163 bool kfd_is_locked(void);
1164 
1165 /* Compute profile */
1166 void kfd_inc_compute_active(struct kfd_dev *dev);
1167 void kfd_dec_compute_active(struct kfd_dev *dev);
1168 
1169 /* Cgroup Support */
1170 /* Check with device cgroup if @kfd device is accessible */
1171 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1172 {
1173 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1174 	struct drm_device *ddev = kfd->ddev;
1175 
1176 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1177 					  ddev->render->index,
1178 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1179 #else
1180 	return 0;
1181 #endif
1182 }
1183 
1184 /* Debugfs */
1185 #if defined(CONFIG_DEBUG_FS)
1186 
1187 void kfd_debugfs_init(void);
1188 void kfd_debugfs_fini(void);
1189 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1190 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1191 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1192 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1193 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1194 int pm_debugfs_runlist(struct seq_file *m, void *data);
1195 
1196 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1197 int pm_debugfs_hang_hws(struct packet_manager *pm);
1198 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1199 
1200 #else
1201 
1202 static inline void kfd_debugfs_init(void) {}
1203 static inline void kfd_debugfs_fini(void) {}
1204 
1205 #endif
1206 
1207 #endif
1208