1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #ifndef KFD_PRIV_H_INCLUDED 24 #define KFD_PRIV_H_INCLUDED 25 26 #include <linux/hashtable.h> 27 #include <linux/mmu_notifier.h> 28 #include <linux/mutex.h> 29 #include <linux/types.h> 30 #include <linux/atomic.h> 31 #include <linux/workqueue.h> 32 #include <linux/spinlock.h> 33 #include <linux/kfd_ioctl.h> 34 #include <kgd_kfd_interface.h> 35 36 #define KFD_SYSFS_FILE_MODE 0444 37 38 #define KFD_MMAP_DOORBELL_MASK 0x8000000000000 39 #define KFD_MMAP_EVENTS_MASK 0x4000000000000 40 41 /* 42 * When working with cp scheduler we should assign the HIQ manually or via 43 * the radeon driver to a fixed hqd slot, here are the fixed HIQ hqd slot 44 * definitions for Kaveri. In Kaveri only the first ME queues participates 45 * in the cp scheduling taking that in mind we set the HIQ slot in the 46 * second ME. 47 */ 48 #define KFD_CIK_HIQ_PIPE 4 49 #define KFD_CIK_HIQ_QUEUE 0 50 51 /* GPU ID hash width in bits */ 52 #define KFD_GPU_ID_HASH_WIDTH 16 53 54 /* Macro for allocating structures */ 55 #define kfd_alloc_struct(ptr_to_struct) \ 56 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 57 58 #define KFD_MAX_NUM_OF_PROCESSES 512 59 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 60 61 /* 62 * Kernel module parameter to specify maximum number of supported queues per 63 * device 64 */ 65 extern int max_num_of_queues_per_device; 66 67 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE_DEFAULT 4096 68 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 69 (KFD_MAX_NUM_OF_PROCESSES * \ 70 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 71 72 #define KFD_KERNEL_QUEUE_SIZE 2048 73 74 /* Kernel module parameter to specify the scheduling policy */ 75 extern int sched_policy; 76 77 /* 78 * Kernel module parameter to specify whether to send sigterm to HSA process on 79 * unhandled exception 80 */ 81 extern int send_sigterm; 82 83 /** 84 * enum kfd_sched_policy 85 * 86 * @KFD_SCHED_POLICY_HWS: H/W scheduling policy known as command processor (cp) 87 * scheduling. In this scheduling mode we're using the firmware code to 88 * schedule the user mode queues and kernel queues such as HIQ and DIQ. 89 * the HIQ queue is used as a special queue that dispatches the configuration 90 * to the cp and the user mode queues list that are currently running. 91 * the DIQ queue is a debugging queue that dispatches debugging commands to the 92 * firmware. 93 * in this scheduling mode user mode queues over subscription feature is 94 * enabled. 95 * 96 * @KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: The same as above but the over 97 * subscription feature disabled. 98 * 99 * @KFD_SCHED_POLICY_NO_HWS: no H/W scheduling policy is a mode which directly 100 * set the command processor registers and sets the queues "manually". This 101 * mode is used *ONLY* for debugging proposes. 102 * 103 */ 104 enum kfd_sched_policy { 105 KFD_SCHED_POLICY_HWS = 0, 106 KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION, 107 KFD_SCHED_POLICY_NO_HWS 108 }; 109 110 enum cache_policy { 111 cache_policy_coherent, 112 cache_policy_noncoherent 113 }; 114 115 enum asic_family_type { 116 CHIP_KAVERI = 0, 117 CHIP_CARRIZO 118 }; 119 120 struct kfd_event_interrupt_class { 121 bool (*interrupt_isr)(struct kfd_dev *dev, 122 const uint32_t *ih_ring_entry); 123 void (*interrupt_wq)(struct kfd_dev *dev, 124 const uint32_t *ih_ring_entry); 125 }; 126 127 struct kfd_device_info { 128 unsigned int asic_family; 129 const struct kfd_event_interrupt_class *event_interrupt_class; 130 unsigned int max_pasid_bits; 131 unsigned int max_no_of_hqd; 132 size_t ih_ring_entry_size; 133 uint8_t num_of_watch_points; 134 uint16_t mqd_size_aligned; 135 }; 136 137 struct kfd_mem_obj { 138 uint32_t range_start; 139 uint32_t range_end; 140 uint64_t gpu_addr; 141 uint32_t *cpu_ptr; 142 }; 143 144 struct kfd_dev { 145 struct kgd_dev *kgd; 146 147 const struct kfd_device_info *device_info; 148 struct pci_dev *pdev; 149 150 unsigned int id; /* topology stub index */ 151 152 phys_addr_t doorbell_base; /* Start of actual doorbells used by 153 * KFD. It is aligned for mapping 154 * into user mode 155 */ 156 size_t doorbell_id_offset; /* Doorbell offset (from KFD doorbell 157 * to HW doorbell, GFX reserved some 158 * at the start) 159 */ 160 size_t doorbell_process_limit; /* Number of processes we have doorbell 161 * space for. 162 */ 163 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 164 * page used by kernel queue 165 */ 166 167 struct kgd2kfd_shared_resources shared_resources; 168 169 const struct kfd2kgd_calls *kfd2kgd; 170 struct mutex doorbell_mutex; 171 DECLARE_BITMAP(doorbell_available_index, 172 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 173 174 void *gtt_mem; 175 uint64_t gtt_start_gpu_addr; 176 void *gtt_start_cpu_ptr; 177 void *gtt_sa_bitmap; 178 struct mutex gtt_sa_lock; 179 unsigned int gtt_sa_chunk_size; 180 unsigned int gtt_sa_num_of_chunks; 181 182 /* Interrupts */ 183 void *interrupt_ring; 184 size_t interrupt_ring_size; 185 atomic_t interrupt_ring_rptr; 186 atomic_t interrupt_ring_wptr; 187 struct work_struct interrupt_work; 188 spinlock_t interrupt_lock; 189 190 /* QCM Device instance */ 191 struct device_queue_manager *dqm; 192 193 bool init_complete; 194 /* 195 * Interrupts of interest to KFD are copied 196 * from the HW ring into a SW ring. 197 */ 198 bool interrupts_active; 199 200 /* Debug manager */ 201 struct kfd_dbgmgr *dbgmgr; 202 }; 203 204 /* KGD2KFD callbacks */ 205 void kgd2kfd_exit(void); 206 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, 207 struct pci_dev *pdev, const struct kfd2kgd_calls *f2g); 208 bool kgd2kfd_device_init(struct kfd_dev *kfd, 209 const struct kgd2kfd_shared_resources *gpu_resources); 210 void kgd2kfd_device_exit(struct kfd_dev *kfd); 211 212 enum kfd_mempool { 213 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 214 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 215 KFD_MEMPOOL_FRAMEBUFFER = 3, 216 }; 217 218 /* Character device interface */ 219 int kfd_chardev_init(void); 220 void kfd_chardev_exit(void); 221 struct device *kfd_chardev(void); 222 223 /** 224 * enum kfd_preempt_type_filter 225 * 226 * @KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE: Preempts single queue. 227 * 228 * @KFD_PRERMPT_TYPE_FILTER_ALL_QUEUES: Preempts all queues in the 229 * running queues list. 230 * 231 * @KFD_PRERMPT_TYPE_FILTER_BY_PASID: Preempts queues that belongs to 232 * specific process. 233 * 234 */ 235 enum kfd_preempt_type_filter { 236 KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE, 237 KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 238 KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES, 239 KFD_PREEMPT_TYPE_FILTER_BY_PASID 240 }; 241 242 /** 243 * enum kfd_queue_type 244 * 245 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 246 * 247 * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type. 248 * 249 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 250 * 251 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 252 */ 253 enum kfd_queue_type { 254 KFD_QUEUE_TYPE_COMPUTE, 255 KFD_QUEUE_TYPE_SDMA, 256 KFD_QUEUE_TYPE_HIQ, 257 KFD_QUEUE_TYPE_DIQ 258 }; 259 260 enum kfd_queue_format { 261 KFD_QUEUE_FORMAT_PM4, 262 KFD_QUEUE_FORMAT_AQL 263 }; 264 265 /** 266 * struct queue_properties 267 * 268 * @type: The queue type. 269 * 270 * @queue_id: Queue identifier. 271 * 272 * @queue_address: Queue ring buffer address. 273 * 274 * @queue_size: Queue ring buffer size. 275 * 276 * @priority: Defines the queue priority relative to other queues in the 277 * process. 278 * This is just an indication and HW scheduling may override the priority as 279 * necessary while keeping the relative prioritization. 280 * the priority granularity is from 0 to f which f is the highest priority. 281 * currently all queues are initialized with the highest priority. 282 * 283 * @queue_percent: This field is partially implemented and currently a zero in 284 * this field defines that the queue is non active. 285 * 286 * @read_ptr: User space address which points to the number of dwords the 287 * cp read from the ring buffer. This field updates automatically by the H/W. 288 * 289 * @write_ptr: Defines the number of dwords written to the ring buffer. 290 * 291 * @doorbell_ptr: This field aim is to notify the H/W of new packet written to 292 * the queue ring buffer. This field should be similar to write_ptr and the 293 * user should update this field after he updated the write_ptr. 294 * 295 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 296 * 297 * @is_interop: Defines if this is a interop queue. Interop queue means that 298 * the queue can access both graphics and compute resources. 299 * 300 * @is_active: Defines if the queue is active or not. 301 * 302 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 303 * of the queue. 304 * 305 * This structure represents the queue properties for each queue no matter if 306 * it's user mode or kernel mode queue. 307 * 308 */ 309 struct queue_properties { 310 enum kfd_queue_type type; 311 enum kfd_queue_format format; 312 unsigned int queue_id; 313 uint64_t queue_address; 314 uint64_t queue_size; 315 uint32_t priority; 316 uint32_t queue_percent; 317 uint32_t *read_ptr; 318 uint32_t *write_ptr; 319 uint32_t __iomem *doorbell_ptr; 320 uint32_t doorbell_off; 321 bool is_interop; 322 bool is_active; 323 /* Not relevant for user mode queues in cp scheduling */ 324 unsigned int vmid; 325 /* Relevant only for sdma queues*/ 326 uint32_t sdma_engine_id; 327 uint32_t sdma_queue_id; 328 uint32_t sdma_vm_addr; 329 /* Relevant only for VI */ 330 uint64_t eop_ring_buffer_address; 331 uint32_t eop_ring_buffer_size; 332 uint64_t ctx_save_restore_area_address; 333 uint32_t ctx_save_restore_area_size; 334 }; 335 336 /** 337 * struct queue 338 * 339 * @list: Queue linked list. 340 * 341 * @mqd: The queue MQD. 342 * 343 * @mqd_mem_obj: The MQD local gpu memory object. 344 * 345 * @gart_mqd_addr: The MQD gart mc address. 346 * 347 * @properties: The queue properties. 348 * 349 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 350 * that the queue should be execute on. 351 * 352 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 353 * id. 354 * 355 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 356 * 357 * @process: The kfd process that created this queue. 358 * 359 * @device: The kfd device that created this queue. 360 * 361 * This structure represents user mode compute queues. 362 * It contains all the necessary data to handle such queues. 363 * 364 */ 365 366 struct queue { 367 struct list_head list; 368 void *mqd; 369 struct kfd_mem_obj *mqd_mem_obj; 370 uint64_t gart_mqd_addr; 371 struct queue_properties properties; 372 373 uint32_t mec; 374 uint32_t pipe; 375 uint32_t queue; 376 377 unsigned int sdma_id; 378 379 struct kfd_process *process; 380 struct kfd_dev *device; 381 }; 382 383 /* 384 * Please read the kfd_mqd_manager.h description. 385 */ 386 enum KFD_MQD_TYPE { 387 KFD_MQD_TYPE_COMPUTE = 0, /* for no cp scheduling */ 388 KFD_MQD_TYPE_HIQ, /* for hiq */ 389 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 390 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 391 KFD_MQD_TYPE_MAX 392 }; 393 394 struct scheduling_resources { 395 unsigned int vmid_mask; 396 enum kfd_queue_type type; 397 uint64_t queue_mask; 398 uint64_t gws_mask; 399 uint32_t oac_mask; 400 uint32_t gds_heap_base; 401 uint32_t gds_heap_size; 402 }; 403 404 struct process_queue_manager { 405 /* data */ 406 struct kfd_process *process; 407 unsigned int num_concurrent_processes; 408 struct list_head queues; 409 unsigned long *queue_slot_bitmap; 410 }; 411 412 struct qcm_process_device { 413 /* The Device Queue Manager that owns this data */ 414 struct device_queue_manager *dqm; 415 struct process_queue_manager *pqm; 416 /* Queues list */ 417 struct list_head queues_list; 418 struct list_head priv_queue_list; 419 420 unsigned int queue_count; 421 unsigned int vmid; 422 bool is_debug; 423 /* 424 * All the memory management data should be here too 425 */ 426 uint64_t gds_context_area; 427 uint32_t sh_mem_config; 428 uint32_t sh_mem_bases; 429 uint32_t sh_mem_ape1_base; 430 uint32_t sh_mem_ape1_limit; 431 uint32_t page_table_base; 432 uint32_t gds_size; 433 uint32_t num_gws; 434 uint32_t num_oac; 435 uint32_t sh_hidden_private_base; 436 }; 437 438 /* Data that is per-process-per device. */ 439 struct kfd_process_device { 440 /* 441 * List of all per-device data for a process. 442 * Starts from kfd_process.per_device_data. 443 */ 444 struct list_head per_device_list; 445 446 /* The device that owns this data. */ 447 struct kfd_dev *dev; 448 449 450 /* per-process-per device QCM data structure */ 451 struct qcm_process_device qpd; 452 453 /*Apertures*/ 454 uint64_t lds_base; 455 uint64_t lds_limit; 456 uint64_t gpuvm_base; 457 uint64_t gpuvm_limit; 458 uint64_t scratch_base; 459 uint64_t scratch_limit; 460 461 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 462 bool bound; 463 464 /* This flag tells if we should reset all 465 * wavefronts on process termination 466 */ 467 bool reset_wavefronts; 468 }; 469 470 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 471 472 /* Process data */ 473 struct kfd_process { 474 /* 475 * kfd_process are stored in an mm_struct*->kfd_process* 476 * hash table (kfd_processes in kfd_process.c) 477 */ 478 struct hlist_node kfd_processes; 479 480 struct mm_struct *mm; 481 482 struct mutex mutex; 483 484 /* 485 * In any process, the thread that started main() is the lead 486 * thread and outlives the rest. 487 * It is here because amd_iommu_bind_pasid wants a task_struct. 488 */ 489 struct task_struct *lead_thread; 490 491 /* We want to receive a notification when the mm_struct is destroyed */ 492 struct mmu_notifier mmu_notifier; 493 494 /* Use for delayed freeing of kfd_process structure */ 495 struct rcu_head rcu; 496 497 unsigned int pasid; 498 499 /* 500 * List of kfd_process_device structures, 501 * one for each device the process is using. 502 */ 503 struct list_head per_device_data; 504 505 struct process_queue_manager pqm; 506 507 /* The process's queues. */ 508 size_t queue_array_size; 509 510 /* Size is queue_array_size, up to MAX_PROCESS_QUEUES. */ 511 struct kfd_queue **queues; 512 513 /*Is the user space process 32 bit?*/ 514 bool is_32bit_user_mode; 515 516 /* Event-related data */ 517 struct mutex event_mutex; 518 /* All events in process hashed by ID, linked on kfd_event.events. */ 519 DECLARE_HASHTABLE(events, 4); 520 /* struct slot_page_header.event_pages */ 521 struct list_head signal_event_pages; 522 u32 next_nonsignal_event_id; 523 size_t signal_event_count; 524 bool signal_event_limit_reached; 525 }; 526 527 /** 528 * Ioctl function type. 529 * 530 * \param filep pointer to file structure. 531 * \param p amdkfd process pointer. 532 * \param data pointer to arg that was copied from user. 533 */ 534 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 535 void *data); 536 537 struct amdkfd_ioctl_desc { 538 unsigned int cmd; 539 int flags; 540 amdkfd_ioctl_t *func; 541 unsigned int cmd_drv; 542 const char *name; 543 }; 544 545 void kfd_process_create_wq(void); 546 void kfd_process_destroy_wq(void); 547 struct kfd_process *kfd_create_process(const struct task_struct *); 548 struct kfd_process *kfd_get_process(const struct task_struct *); 549 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid); 550 551 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 552 struct kfd_process *p); 553 void kfd_unbind_process_from_device(struct kfd_dev *dev, unsigned int pasid); 554 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 555 struct kfd_process *p); 556 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 557 struct kfd_process *p); 558 559 /* Process device data iterator */ 560 struct kfd_process_device *kfd_get_first_process_device_data( 561 struct kfd_process *p); 562 struct kfd_process_device *kfd_get_next_process_device_data( 563 struct kfd_process *p, 564 struct kfd_process_device *pdd); 565 bool kfd_has_process_device_data(struct kfd_process *p); 566 567 /* PASIDs */ 568 int kfd_pasid_init(void); 569 void kfd_pasid_exit(void); 570 bool kfd_set_pasid_limit(unsigned int new_limit); 571 unsigned int kfd_get_pasid_limit(void); 572 unsigned int kfd_pasid_alloc(void); 573 void kfd_pasid_free(unsigned int pasid); 574 575 /* Doorbells */ 576 int kfd_doorbell_init(struct kfd_dev *kfd); 577 void kfd_doorbell_fini(struct kfd_dev *kfd); 578 int kfd_doorbell_mmap(struct kfd_process *process, struct vm_area_struct *vma); 579 u32 __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 580 unsigned int *doorbell_off); 581 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 582 u32 read_kernel_doorbell(u32 __iomem *db); 583 void write_kernel_doorbell(u32 __iomem *db, u32 value); 584 unsigned int kfd_queue_id_to_doorbell(struct kfd_dev *kfd, 585 struct kfd_process *process, 586 unsigned int queue_id); 587 588 /* GTT Sub-Allocator */ 589 590 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 591 struct kfd_mem_obj **mem_obj); 592 593 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 594 595 extern struct device *kfd_device; 596 597 /* Topology */ 598 int kfd_topology_init(void); 599 void kfd_topology_shutdown(void); 600 int kfd_topology_add_device(struct kfd_dev *gpu); 601 int kfd_topology_remove_device(struct kfd_dev *gpu); 602 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 603 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 604 struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx); 605 606 /* Interrupts */ 607 int kfd_interrupt_init(struct kfd_dev *dev); 608 void kfd_interrupt_exit(struct kfd_dev *dev); 609 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry); 610 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 611 bool interrupt_is_wanted(struct kfd_dev *dev, const uint32_t *ih_ring_entry); 612 613 /* Power Management */ 614 void kgd2kfd_suspend(struct kfd_dev *kfd); 615 int kgd2kfd_resume(struct kfd_dev *kfd); 616 617 /* amdkfd Apertures */ 618 int kfd_init_apertures(struct kfd_process *process); 619 620 /* Queue Context Management */ 621 struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd); 622 623 int init_queue(struct queue **q, const struct queue_properties *properties); 624 void uninit_queue(struct queue *q); 625 void print_queue_properties(struct queue_properties *q); 626 void print_queue(struct queue *q); 627 628 struct mqd_manager *mqd_manager_init(enum KFD_MQD_TYPE type, 629 struct kfd_dev *dev); 630 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 631 struct kfd_dev *dev); 632 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 633 struct kfd_dev *dev); 634 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 635 void device_queue_manager_uninit(struct device_queue_manager *dqm); 636 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 637 enum kfd_queue_type type); 638 void kernel_queue_uninit(struct kernel_queue *kq); 639 640 /* Process Queue Manager */ 641 struct process_queue_node { 642 struct queue *q; 643 struct kernel_queue *kq; 644 struct list_head process_queue_list; 645 }; 646 647 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 648 void pqm_uninit(struct process_queue_manager *pqm); 649 int pqm_create_queue(struct process_queue_manager *pqm, 650 struct kfd_dev *dev, 651 struct file *f, 652 struct queue_properties *properties, 653 unsigned int flags, 654 enum kfd_queue_type type, 655 unsigned int *qid); 656 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 657 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid, 658 struct queue_properties *p); 659 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 660 unsigned int qid); 661 662 int amdkfd_fence_wait_timeout(unsigned int *fence_addr, 663 unsigned int fence_value, 664 unsigned long timeout); 665 666 /* Packet Manager */ 667 668 #define KFD_HIQ_TIMEOUT (500) 669 670 #define KFD_FENCE_COMPLETED (100) 671 #define KFD_FENCE_INIT (10) 672 #define KFD_UNMAP_LATENCY (150) 673 674 struct packet_manager { 675 struct device_queue_manager *dqm; 676 struct kernel_queue *priv_queue; 677 struct mutex lock; 678 bool allocated; 679 struct kfd_mem_obj *ib_buffer_obj; 680 }; 681 682 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 683 void pm_uninit(struct packet_manager *pm); 684 int pm_send_set_resources(struct packet_manager *pm, 685 struct scheduling_resources *res); 686 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 687 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 688 uint32_t fence_value); 689 690 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type, 691 enum kfd_preempt_type_filter mode, 692 uint32_t filter_param, bool reset, 693 unsigned int sdma_engine); 694 695 void pm_release_ib(struct packet_manager *pm); 696 697 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 698 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev, 699 struct kfd_process *process); 700 701 /* Events */ 702 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 703 extern const struct kfd_device_global_init_class device_global_init_class_cik; 704 705 enum kfd_event_wait_result { 706 KFD_WAIT_COMPLETE, 707 KFD_WAIT_TIMEOUT, 708 KFD_WAIT_ERROR 709 }; 710 711 void kfd_event_init_process(struct kfd_process *p); 712 void kfd_event_free_process(struct kfd_process *p); 713 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 714 int kfd_wait_on_events(struct kfd_process *p, 715 uint32_t num_events, void __user *data, 716 bool all, uint32_t user_timeout_ms, 717 enum kfd_event_wait_result *wait_result); 718 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, 719 uint32_t valid_id_bits); 720 void kfd_signal_iommu_event(struct kfd_dev *dev, 721 unsigned int pasid, unsigned long address, 722 bool is_write_requested, bool is_execute_requested); 723 void kfd_signal_hw_exception_event(unsigned int pasid); 724 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 725 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 726 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 727 uint32_t event_type, bool auto_reset, uint32_t node_id, 728 uint32_t *event_id, uint32_t *event_trigger_data, 729 uint64_t *event_page_offset, uint32_t *event_slot_index); 730 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 731 732 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p); 733 734 #endif 735