xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision c2d2588c)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef KFD_PRIV_H_INCLUDED
25 #define KFD_PRIV_H_INCLUDED
26 
27 #include <linux/hashtable.h>
28 #include <linux/mmu_notifier.h>
29 #include <linux/memremap.h>
30 #include <linux/mutex.h>
31 #include <linux/types.h>
32 #include <linux/atomic.h>
33 #include <linux/workqueue.h>
34 #include <linux/spinlock.h>
35 #include <linux/kfd_ioctl.h>
36 #include <linux/idr.h>
37 #include <linux/kfifo.h>
38 #include <linux/seq_file.h>
39 #include <linux/kref.h>
40 #include <linux/sysfs.h>
41 #include <linux/device_cgroup.h>
42 #include <drm/drm_file.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_device.h>
45 #include <drm/drm_ioctl.h>
46 #include <kgd_kfd_interface.h>
47 #include <linux/swap.h>
48 
49 #include "amd_shared.h"
50 #include "amdgpu.h"
51 
52 #define KFD_MAX_RING_ENTRY_SIZE	8
53 
54 #define KFD_SYSFS_FILE_MODE 0444
55 
56 /* GPU ID hash width in bits */
57 #define KFD_GPU_ID_HASH_WIDTH 16
58 
59 /* Use upper bits of mmap offset to store KFD driver specific information.
60  * BITS[63:62] - Encode MMAP type
61  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
62  * BITS[45:0]  - MMAP offset value
63  *
64  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
65  *  defines are w.r.t to PAGE_SIZE
66  */
67 #define KFD_MMAP_TYPE_SHIFT	62
68 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
71 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
72 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
73 
74 #define KFD_MMAP_GPU_ID_SHIFT 46
75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
76 				<< KFD_MMAP_GPU_ID_SHIFT)
77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
78 				& KFD_MMAP_GPU_ID_MASK)
79 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
80 				>> KFD_MMAP_GPU_ID_SHIFT)
81 
82 /*
83  * When working with cp scheduler we should assign the HIQ manually or via
84  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
85  * definitions for Kaveri. In Kaveri only the first ME queues participates
86  * in the cp scheduling taking that in mind we set the HIQ slot in the
87  * second ME.
88  */
89 #define KFD_CIK_HIQ_PIPE 4
90 #define KFD_CIK_HIQ_QUEUE 0
91 
92 /* Macro for allocating structures */
93 #define kfd_alloc_struct(ptr_to_struct)	\
94 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
95 
96 #define KFD_MAX_NUM_OF_PROCESSES 512
97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
98 
99 /*
100  * Size of the per-process TBA+TMA buffer: 2 pages
101  *
102  * The first page is the TBA used for the CWSR ISA code. The second
103  * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
104  */
105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
106 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
107 
108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
109 	(KFD_MAX_NUM_OF_PROCESSES *			\
110 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
111 
112 #define KFD_KERNEL_QUEUE_SIZE 2048
113 
114 #define KFD_UNMAP_LATENCY_MS	(4000)
115 
116 #define KFD_MAX_SDMA_QUEUES	128
117 
118 /*
119  * 512 = 0x200
120  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
121  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
122  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
123  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
124  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
125  */
126 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
127 
128 /**
129  * enum kfd_ioctl_flags - KFD ioctl flags
130  * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
131  * userspace can use a given ioctl.
132  */
133 enum kfd_ioctl_flags {
134 	/*
135 	 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
136 	 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
137 	 * perform privileged operations and load arbitrary data into MQDs and
138 	 * eventually HQD registers when the queue is mapped by HWS. In order to
139 	 * prevent this we should perform additional security checks.
140 	 *
141 	 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
142 	 *
143 	 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
144 	 * we also allow ioctls with SYS_ADMIN capability.
145 	 */
146 	KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
147 };
148 /*
149  * Kernel module parameter to specify maximum number of supported queues per
150  * device
151  */
152 extern int max_num_of_queues_per_device;
153 
154 
155 /* Kernel module parameter to specify the scheduling policy */
156 extern int sched_policy;
157 
158 /*
159  * Kernel module parameter to specify the maximum process
160  * number per HW scheduler
161  */
162 extern int hws_max_conc_proc;
163 
164 extern int cwsr_enable;
165 
166 /*
167  * Kernel module parameter to specify whether to send sigterm to HSA process on
168  * unhandled exception
169  */
170 extern int send_sigterm;
171 
172 /*
173  * This kernel module is used to simulate large bar machine on non-large bar
174  * enabled machines.
175  */
176 extern int debug_largebar;
177 
178 /*
179  * Ignore CRAT table during KFD initialization, can be used to work around
180  * broken CRAT tables on some AMD systems
181  */
182 extern int ignore_crat;
183 
184 /* Set sh_mem_config.retry_disable on GFX v9 */
185 extern int amdgpu_noretry;
186 
187 /* Halt if HWS hang is detected */
188 extern int halt_if_hws_hang;
189 
190 /* Whether MEC FW support GWS barriers */
191 extern bool hws_gws_support;
192 
193 /* Queue preemption timeout in ms */
194 extern int queue_preemption_timeout_ms;
195 
196 /*
197  * Don't evict process queues on vm fault
198  */
199 extern int amdgpu_no_queue_eviction_on_vm_fault;
200 
201 /* Enable eviction debug messages */
202 extern bool debug_evictions;
203 
204 extern struct mutex kfd_processes_mutex;
205 
206 enum cache_policy {
207 	cache_policy_coherent,
208 	cache_policy_noncoherent
209 };
210 
211 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0])
212 #define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
213 #define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\
214 	((KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) ||	\
215 	 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3)))
216 
217 struct kfd_node;
218 
219 struct kfd_event_interrupt_class {
220 	bool (*interrupt_isr)(struct kfd_node *dev,
221 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
222 			bool *patched_flag);
223 	void (*interrupt_wq)(struct kfd_node *dev,
224 			const uint32_t *ih_ring_entry);
225 };
226 
227 struct kfd_device_info {
228 	uint32_t gfx_target_version;
229 	const struct kfd_event_interrupt_class *event_interrupt_class;
230 	unsigned int max_pasid_bits;
231 	unsigned int max_no_of_hqd;
232 	unsigned int doorbell_size;
233 	size_t ih_ring_entry_size;
234 	uint8_t num_of_watch_points;
235 	uint16_t mqd_size_aligned;
236 	bool supports_cwsr;
237 	bool needs_iommu_device;
238 	bool needs_pci_atomics;
239 	uint32_t no_atomic_fw_version;
240 	unsigned int num_sdma_queues_per_engine;
241 	unsigned int num_reserved_sdma_queues_per_engine;
242 	uint64_t reserved_sdma_queues_bitmap;
243 };
244 
245 unsigned int kfd_get_num_sdma_engines(struct kfd_node *kdev);
246 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *kdev);
247 
248 struct kfd_mem_obj {
249 	uint32_t range_start;
250 	uint32_t range_end;
251 	uint64_t gpu_addr;
252 	uint32_t *cpu_ptr;
253 	void *gtt_mem;
254 };
255 
256 struct kfd_vmid_info {
257 	uint32_t first_vmid_kfd;
258 	uint32_t last_vmid_kfd;
259 	uint32_t vmid_num_kfd;
260 };
261 
262 #define MAX_KFD_NODES	8
263 
264 struct kfd_dev;
265 
266 struct kfd_node {
267 	unsigned int node_id;
268 	struct amdgpu_device *adev;     /* Duplicated here along with keeping
269 					 * a copy in kfd_dev to save a hop
270 					 */
271 	const struct kfd2kgd_calls *kfd2kgd; /* Duplicated here along with
272 					      * keeping a copy in kfd_dev to
273 					      * save a hop
274 					      */
275 	struct kfd_vmid_info vm_info;
276 	unsigned int id;                /* topology stub index */
277 	uint32_t xcc_mask; /* Instance mask of XCCs present */
278 	struct amdgpu_xcp *xcp;
279 
280 	/* Interrupts */
281 	struct kfifo ih_fifo;
282 	struct workqueue_struct *ih_wq;
283 	struct work_struct interrupt_work;
284 	spinlock_t interrupt_lock;
285 
286 	/*
287 	 * Interrupts of interest to KFD are copied
288 	 * from the HW ring into a SW ring.
289 	 */
290 	bool interrupts_active;
291 	uint32_t interrupt_bitmap; /* Only used for GFX 9.4.3 */
292 
293 	/* QCM Device instance */
294 	struct device_queue_manager *dqm;
295 
296 	/* Global GWS resource shared between processes */
297 	void *gws;
298 	bool gws_debug_workaround;
299 
300 	/* Clients watching SMI events */
301 	struct list_head smi_clients;
302 	spinlock_t smi_lock;
303 	uint32_t reset_seq_num;
304 
305 	/* SRAM ECC flag */
306 	atomic_t sram_ecc_flag;
307 
308 	/*spm process id */
309 	unsigned int spm_pasid;
310 
311 	/* Maximum process number mapped to HW scheduler */
312 	unsigned int max_proc_per_quantum;
313 
314 	unsigned int compute_vmid_bitmap;
315 
316 	struct kfd_local_mem_info local_mem_info;
317 
318 	struct kfd_dev *kfd;
319 };
320 
321 struct kfd_dev {
322 	struct amdgpu_device *adev;
323 
324 	struct kfd_device_info device_info;
325 
326 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
327 					 * KFD. It is aligned for mapping
328 					 * into user mode
329 					 */
330 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
331 					 * doorbell BAR to the first KFD
332 					 * doorbell in dwords. GFX reserves
333 					 * the segment before this offset.
334 					 */
335 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
336 					   * page used by kernel queue
337 					   */
338 
339 	struct kgd2kfd_shared_resources shared_resources;
340 
341 	const struct kfd2kgd_calls *kfd2kgd;
342 	struct mutex doorbell_mutex;
343 	DECLARE_BITMAP(doorbell_available_index,
344 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
345 
346 	void *gtt_mem;
347 	uint64_t gtt_start_gpu_addr;
348 	void *gtt_start_cpu_ptr;
349 	void *gtt_sa_bitmap;
350 	struct mutex gtt_sa_lock;
351 	unsigned int gtt_sa_chunk_size;
352 	unsigned int gtt_sa_num_of_chunks;
353 
354 	bool init_complete;
355 
356 	/* Firmware versions */
357 	uint16_t mec_fw_version;
358 	uint16_t mec2_fw_version;
359 	uint16_t sdma_fw_version;
360 
361 	/* CWSR */
362 	bool cwsr_enabled;
363 	const void *cwsr_isa;
364 	unsigned int cwsr_isa_size;
365 
366 	/* xGMI */
367 	uint64_t hive_id;
368 
369 	bool pci_atomic_requested;
370 
371 	/* Use IOMMU v2 flag */
372 	bool use_iommu_v2;
373 
374 	/* Compute Profile ref. count */
375 	atomic_t compute_profile;
376 
377 	struct ida doorbell_ida;
378 	unsigned int max_doorbell_slices;
379 
380 	int noretry;
381 
382 	struct kfd_node *nodes[MAX_KFD_NODES];
383 	unsigned int num_nodes;
384 };
385 
386 enum kfd_mempool {
387 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
388 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
389 	KFD_MEMPOOL_FRAMEBUFFER = 3,
390 };
391 
392 /* Character device interface */
393 int kfd_chardev_init(void);
394 void kfd_chardev_exit(void);
395 
396 /**
397  * enum kfd_unmap_queues_filter - Enum for queue filters.
398  *
399  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
400  *						running queues list.
401  *
402  * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
403  *						in the run list.
404  *
405  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
406  *						specific process.
407  *
408  */
409 enum kfd_unmap_queues_filter {
410 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
411 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
412 	KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
413 };
414 
415 /**
416  * enum kfd_queue_type - Enum for various queue types.
417  *
418  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
419  *
420  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
421  *
422  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
423  *
424  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
425  *
426  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
427  */
428 enum kfd_queue_type  {
429 	KFD_QUEUE_TYPE_COMPUTE,
430 	KFD_QUEUE_TYPE_SDMA,
431 	KFD_QUEUE_TYPE_HIQ,
432 	KFD_QUEUE_TYPE_DIQ,
433 	KFD_QUEUE_TYPE_SDMA_XGMI
434 };
435 
436 enum kfd_queue_format {
437 	KFD_QUEUE_FORMAT_PM4,
438 	KFD_QUEUE_FORMAT_AQL
439 };
440 
441 enum KFD_QUEUE_PRIORITY {
442 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
443 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
444 };
445 
446 /**
447  * struct queue_properties
448  *
449  * @type: The queue type.
450  *
451  * @queue_id: Queue identifier.
452  *
453  * @queue_address: Queue ring buffer address.
454  *
455  * @queue_size: Queue ring buffer size.
456  *
457  * @priority: Defines the queue priority relative to other queues in the
458  * process.
459  * This is just an indication and HW scheduling may override the priority as
460  * necessary while keeping the relative prioritization.
461  * the priority granularity is from 0 to f which f is the highest priority.
462  * currently all queues are initialized with the highest priority.
463  *
464  * @queue_percent: This field is partially implemented and currently a zero in
465  * this field defines that the queue is non active.
466  *
467  * @read_ptr: User space address which points to the number of dwords the
468  * cp read from the ring buffer. This field updates automatically by the H/W.
469  *
470  * @write_ptr: Defines the number of dwords written to the ring buffer.
471  *
472  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
473  * buffer. This field should be similar to write_ptr and the user should
474  * update this field after updating the write_ptr.
475  *
476  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
477  *
478  * @is_interop: Defines if this is a interop queue. Interop queue means that
479  * the queue can access both graphics and compute resources.
480  *
481  * @is_evicted: Defines if the queue is evicted. Only active queues
482  * are evicted, rendering them inactive.
483  *
484  * @is_active: Defines if the queue is active or not. @is_active and
485  * @is_evicted are protected by the DQM lock.
486  *
487  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
488  * @is_gws should be protected by the DQM lock, since changing it can yield the
489  * possibility of updating DQM state on number of GWS queues.
490  *
491  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
492  * of the queue.
493  *
494  * This structure represents the queue properties for each queue no matter if
495  * it's user mode or kernel mode queue.
496  *
497  */
498 
499 struct queue_properties {
500 	enum kfd_queue_type type;
501 	enum kfd_queue_format format;
502 	unsigned int queue_id;
503 	uint64_t queue_address;
504 	uint64_t  queue_size;
505 	uint32_t priority;
506 	uint32_t queue_percent;
507 	uint32_t *read_ptr;
508 	uint32_t *write_ptr;
509 	void __iomem *doorbell_ptr;
510 	uint32_t doorbell_off;
511 	bool is_interop;
512 	bool is_evicted;
513 	bool is_active;
514 	bool is_gws;
515 	uint32_t pm4_target_xcc;
516 	bool is_dbg_wa;
517 	bool is_user_cu_masked;
518 	/* Not relevant for user mode queues in cp scheduling */
519 	unsigned int vmid;
520 	/* Relevant only for sdma queues*/
521 	uint32_t sdma_engine_id;
522 	uint32_t sdma_queue_id;
523 	uint32_t sdma_vm_addr;
524 	/* Relevant only for VI */
525 	uint64_t eop_ring_buffer_address;
526 	uint32_t eop_ring_buffer_size;
527 	uint64_t ctx_save_restore_area_address;
528 	uint32_t ctx_save_restore_area_size;
529 	uint32_t ctl_stack_size;
530 	uint64_t tba_addr;
531 	uint64_t tma_addr;
532 	uint64_t exception_status;
533 };
534 
535 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
536 			    (q).queue_address != 0 &&	\
537 			    (q).queue_percent > 0 &&	\
538 			    !(q).is_evicted)
539 
540 enum mqd_update_flag {
541 	UPDATE_FLAG_DBG_WA_ENABLE = 1,
542 	UPDATE_FLAG_DBG_WA_DISABLE = 2,
543 };
544 
545 struct mqd_update_info {
546 	union {
547 		struct {
548 			uint32_t count; /* Must be a multiple of 32 */
549 			uint32_t *ptr;
550 		} cu_mask;
551 	};
552 	enum mqd_update_flag update_flag;
553 };
554 
555 /**
556  * struct queue
557  *
558  * @list: Queue linked list.
559  *
560  * @mqd: The queue MQD (memory queue descriptor).
561  *
562  * @mqd_mem_obj: The MQD local gpu memory object.
563  *
564  * @gart_mqd_addr: The MQD gart mc address.
565  *
566  * @properties: The queue properties.
567  *
568  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
569  *	 that the queue should be executed on.
570  *
571  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
572  *	  id.
573  *
574  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
575  *
576  * @process: The kfd process that created this queue.
577  *
578  * @device: The kfd device that created this queue.
579  *
580  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
581  * otherwise.
582  *
583  * This structure represents user mode compute queues.
584  * It contains all the necessary data to handle such queues.
585  *
586  */
587 
588 struct queue {
589 	struct list_head list;
590 	void *mqd;
591 	struct kfd_mem_obj *mqd_mem_obj;
592 	uint64_t gart_mqd_addr;
593 	struct queue_properties properties;
594 
595 	uint32_t mec;
596 	uint32_t pipe;
597 	uint32_t queue;
598 
599 	unsigned int sdma_id;
600 	unsigned int doorbell_id;
601 
602 	struct kfd_process	*process;
603 	struct kfd_node		*device;
604 	void *gws;
605 
606 	/* procfs */
607 	struct kobject kobj;
608 
609 	void *gang_ctx_bo;
610 	uint64_t gang_ctx_gpu_addr;
611 	void *gang_ctx_cpu_ptr;
612 
613 	struct amdgpu_bo *wptr_bo;
614 };
615 
616 enum KFD_MQD_TYPE {
617 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
618 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
619 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
620 	KFD_MQD_TYPE_DIQ,		/* for diq */
621 	KFD_MQD_TYPE_MAX
622 };
623 
624 enum KFD_PIPE_PRIORITY {
625 	KFD_PIPE_PRIORITY_CS_LOW = 0,
626 	KFD_PIPE_PRIORITY_CS_MEDIUM,
627 	KFD_PIPE_PRIORITY_CS_HIGH
628 };
629 
630 struct scheduling_resources {
631 	unsigned int vmid_mask;
632 	enum kfd_queue_type type;
633 	uint64_t queue_mask;
634 	uint64_t gws_mask;
635 	uint32_t oac_mask;
636 	uint32_t gds_heap_base;
637 	uint32_t gds_heap_size;
638 };
639 
640 struct process_queue_manager {
641 	/* data */
642 	struct kfd_process	*process;
643 	struct list_head	queues;
644 	unsigned long		*queue_slot_bitmap;
645 };
646 
647 struct qcm_process_device {
648 	/* The Device Queue Manager that owns this data */
649 	struct device_queue_manager *dqm;
650 	struct process_queue_manager *pqm;
651 	/* Queues list */
652 	struct list_head queues_list;
653 	struct list_head priv_queue_list;
654 
655 	unsigned int queue_count;
656 	unsigned int vmid;
657 	bool is_debug;
658 	unsigned int evicted; /* eviction counter, 0=active */
659 
660 	/* This flag tells if we should reset all wavefronts on
661 	 * process termination
662 	 */
663 	bool reset_wavefronts;
664 
665 	/* This flag tells us if this process has a GWS-capable
666 	 * queue that will be mapped into the runlist. It's
667 	 * possible to request a GWS BO, but not have the queue
668 	 * currently mapped, and this changes how the MAP_PROCESS
669 	 * PM4 packet is configured.
670 	 */
671 	bool mapped_gws_queue;
672 
673 	/* All the memory management data should be here too */
674 	uint64_t gds_context_area;
675 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
676 	uint64_t page_table_base;
677 	uint32_t sh_mem_config;
678 	uint32_t sh_mem_bases;
679 	uint32_t sh_mem_ape1_base;
680 	uint32_t sh_mem_ape1_limit;
681 	uint32_t gds_size;
682 	uint32_t num_gws;
683 	uint32_t num_oac;
684 	uint32_t sh_hidden_private_base;
685 
686 	/* CWSR memory */
687 	struct kgd_mem *cwsr_mem;
688 	void *cwsr_kaddr;
689 	uint64_t cwsr_base;
690 	uint64_t tba_addr;
691 	uint64_t tma_addr;
692 
693 	/* IB memory */
694 	struct kgd_mem *ib_mem;
695 	uint64_t ib_base;
696 	void *ib_kaddr;
697 
698 	/* doorbell resources per process per device */
699 	unsigned long *doorbell_bitmap;
700 };
701 
702 /* KFD Memory Eviction */
703 
704 /* Approx. wait time before attempting to restore evicted BOs */
705 #define PROCESS_RESTORE_TIME_MS 100
706 /* Approx. back off time if restore fails due to lack of memory */
707 #define PROCESS_BACK_OFF_TIME_MS 100
708 /* Approx. time before evicting the process again */
709 #define PROCESS_ACTIVE_TIME_MS 10
710 
711 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
712  * idr_handle in the least significant 4 bytes
713  */
714 #define MAKE_HANDLE(gpu_id, idr_handle) \
715 	(((uint64_t)(gpu_id) << 32) + idr_handle)
716 #define GET_GPU_ID(handle) (handle >> 32)
717 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
718 
719 enum kfd_pdd_bound {
720 	PDD_UNBOUND = 0,
721 	PDD_BOUND,
722 	PDD_BOUND_SUSPENDED,
723 };
724 
725 #define MAX_SYSFS_FILENAME_LEN 15
726 
727 /*
728  * SDMA counter runs at 100MHz frequency.
729  * We display SDMA activity in microsecond granularity in sysfs.
730  * As a result, the divisor is 100.
731  */
732 #define SDMA_ACTIVITY_DIVISOR  100
733 
734 /* Data that is per-process-per device. */
735 struct kfd_process_device {
736 	/* The device that owns this data. */
737 	struct kfd_node *dev;
738 
739 	/* The process that owns this kfd_process_device. */
740 	struct kfd_process *process;
741 
742 	/* per-process-per device QCM data structure */
743 	struct qcm_process_device qpd;
744 
745 	/*Apertures*/
746 	uint64_t lds_base;
747 	uint64_t lds_limit;
748 	uint64_t gpuvm_base;
749 	uint64_t gpuvm_limit;
750 	uint64_t scratch_base;
751 	uint64_t scratch_limit;
752 
753 	/* VM context for GPUVM allocations */
754 	struct file *drm_file;
755 	void *drm_priv;
756 	atomic64_t tlb_seq;
757 
758 	/* GPUVM allocations storage */
759 	struct idr alloc_idr;
760 
761 	/* Flag used to tell the pdd has dequeued from the dqm.
762 	 * This is used to prevent dev->dqm->ops.process_termination() from
763 	 * being called twice when it is already called in IOMMU callback
764 	 * function.
765 	 */
766 	bool already_dequeued;
767 	bool runtime_inuse;
768 
769 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
770 	enum kfd_pdd_bound bound;
771 
772 	/* VRAM usage */
773 	uint64_t vram_usage;
774 	struct attribute attr_vram;
775 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
776 
777 	/* SDMA activity tracking */
778 	uint64_t sdma_past_activity_counter;
779 	struct attribute attr_sdma;
780 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
781 
782 	/* Eviction activity tracking */
783 	uint64_t last_evict_timestamp;
784 	atomic64_t evict_duration_counter;
785 	struct attribute attr_evict;
786 
787 	struct kobject *kobj_stats;
788 	unsigned int doorbell_index;
789 
790 	/*
791 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
792 	 * that is associated with device encoded by "this" struct instance. The
793 	 * value reflects CU usage by all of the waves launched by this process
794 	 * on this device. A very important property of occupancy parameter is
795 	 * that its value is a snapshot of current use.
796 	 *
797 	 * Following is to be noted regarding how this parameter is reported:
798 	 *
799 	 *  The number of waves that a CU can launch is limited by couple of
800 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
801 	 *  that is part of every device definition. For GFX9 devices this
802 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
803 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
804 	 *  when they do use scratch memory. This could change for future
805 	 *  devices and therefore this example should be considered as a guide.
806 	 *
807 	 *  All CU's of a device are available for the process. This may not be true
808 	 *  under certain conditions - e.g. CU masking.
809 	 *
810 	 *  Finally number of CU's that are occupied by a process is affected by both
811 	 *  number of CU's a device has along with number of other competing processes
812 	 */
813 	struct attribute attr_cu_occupancy;
814 
815 	/* sysfs counters for GPU retry fault and page migration tracking */
816 	struct kobject *kobj_counters;
817 	struct attribute attr_faults;
818 	struct attribute attr_page_in;
819 	struct attribute attr_page_out;
820 	uint64_t faults;
821 	uint64_t page_in;
822 	uint64_t page_out;
823 
824 	/* Exception code status*/
825 	uint64_t exception_status;
826 	void *vm_fault_exc_data;
827 	size_t vm_fault_exc_data_size;
828 
829 	/* Tracks debug per-vmid request settings */
830 	uint32_t spi_dbg_override;
831 	uint32_t spi_dbg_launch_mode;
832 	uint32_t watch_points[4];
833 
834 	/*
835 	 * If this process has been checkpointed before, then the user
836 	 * application will use the original gpu_id on the
837 	 * checkpointed node to refer to this device.
838 	 */
839 	uint32_t user_gpu_id;
840 
841 	void *proc_ctx_bo;
842 	uint64_t proc_ctx_gpu_addr;
843 	void *proc_ctx_cpu_ptr;
844 };
845 
846 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
847 
848 struct svm_range_list {
849 	struct mutex			lock;
850 	struct rb_root_cached		objects;
851 	struct list_head		list;
852 	struct work_struct		deferred_list_work;
853 	struct list_head		deferred_range_list;
854 	struct list_head                criu_svm_metadata_list;
855 	spinlock_t			deferred_list_lock;
856 	atomic_t			evicted_ranges;
857 	atomic_t			drain_pagefaults;
858 	struct delayed_work		restore_work;
859 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
860 	struct task_struct		*faulting_task;
861 };
862 
863 /* Process data */
864 struct kfd_process {
865 	/*
866 	 * kfd_process are stored in an mm_struct*->kfd_process*
867 	 * hash table (kfd_processes in kfd_process.c)
868 	 */
869 	struct hlist_node kfd_processes;
870 
871 	/*
872 	 * Opaque pointer to mm_struct. We don't hold a reference to
873 	 * it so it should never be dereferenced from here. This is
874 	 * only used for looking up processes by their mm.
875 	 */
876 	void *mm;
877 
878 	struct kref ref;
879 	struct work_struct release_work;
880 
881 	struct mutex mutex;
882 
883 	/*
884 	 * In any process, the thread that started main() is the lead
885 	 * thread and outlives the rest.
886 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
887 	 * It can also be used for safely getting a reference to the
888 	 * mm_struct of the process.
889 	 */
890 	struct task_struct *lead_thread;
891 
892 	/* We want to receive a notification when the mm_struct is destroyed */
893 	struct mmu_notifier mmu_notifier;
894 
895 	u32 pasid;
896 
897 	/*
898 	 * Array of kfd_process_device pointers,
899 	 * one for each device the process is using.
900 	 */
901 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
902 	uint32_t n_pdds;
903 
904 	struct process_queue_manager pqm;
905 
906 	/*Is the user space process 32 bit?*/
907 	bool is_32bit_user_mode;
908 
909 	/* Event-related data */
910 	struct mutex event_mutex;
911 	/* Event ID allocator and lookup */
912 	struct idr event_idr;
913 	/* Event page */
914 	u64 signal_handle;
915 	struct kfd_signal_page *signal_page;
916 	size_t signal_mapped_size;
917 	size_t signal_event_count;
918 	bool signal_event_limit_reached;
919 
920 	/* Information used for memory eviction */
921 	void *kgd_process_info;
922 	/* Eviction fence that is attached to all the BOs of this process. The
923 	 * fence will be triggered during eviction and new one will be created
924 	 * during restore
925 	 */
926 	struct dma_fence *ef;
927 
928 	/* Work items for evicting and restoring BOs */
929 	struct delayed_work eviction_work;
930 	struct delayed_work restore_work;
931 	/* seqno of the last scheduled eviction */
932 	unsigned int last_eviction_seqno;
933 	/* Approx. the last timestamp (in jiffies) when the process was
934 	 * restored after an eviction
935 	 */
936 	unsigned long last_restore_timestamp;
937 
938 	/* Indicates device process is debug attached with reserved vmid. */
939 	bool debug_trap_enabled;
940 
941 	/* per-process-per device debug event fd file */
942 	struct file *dbg_ev_file;
943 
944 	/* If the process is a kfd debugger, we need to know so we can clean
945 	 * up at exit time.  If a process enables debugging on itself, it does
946 	 * its own clean-up, so we don't set the flag here.  We track this by
947 	 * counting the number of processes this process is debugging.
948 	 */
949 	atomic_t debugged_process_count;
950 
951 	/* If the process is a debugged, this is the debugger process */
952 	struct kfd_process *debugger_process;
953 
954 	/* Kobj for our procfs */
955 	struct kobject *kobj;
956 	struct kobject *kobj_queues;
957 	struct attribute attr_pasid;
958 
959 	/* Keep track cwsr init */
960 	bool has_cwsr;
961 
962 	/* Exception code enable mask and status */
963 	uint64_t exception_enable_mask;
964 	uint64_t exception_status;
965 
966 	/* shared virtual memory registered by this process */
967 	struct svm_range_list svms;
968 
969 	bool xnack_enabled;
970 
971 	/* Work area for debugger event writer worker. */
972 	struct work_struct debug_event_workarea;
973 
974 	/* Tracks debug per-vmid request for debug flags */
975 	bool dbg_flags;
976 
977 	atomic_t poison;
978 	/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
979 	bool queues_paused;
980 
981 	/* Tracks runtime enable status */
982 	struct semaphore runtime_enable_sema;
983 	struct kfd_runtime_info runtime_info;
984 
985 };
986 
987 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
988 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
989 extern struct srcu_struct kfd_processes_srcu;
990 
991 /**
992  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
993  *
994  * @filep: pointer to file structure.
995  * @p: amdkfd process pointer.
996  * @data: pointer to arg that was copied from user.
997  *
998  * Return: returns ioctl completion code.
999  */
1000 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
1001 				void *data);
1002 
1003 struct amdkfd_ioctl_desc {
1004 	unsigned int cmd;
1005 	int flags;
1006 	amdkfd_ioctl_t *func;
1007 	unsigned int cmd_drv;
1008 	const char *name;
1009 };
1010 bool kfd_dev_is_large_bar(struct kfd_node *dev);
1011 
1012 int kfd_process_create_wq(void);
1013 void kfd_process_destroy_wq(void);
1014 void kfd_cleanup_processes(void);
1015 struct kfd_process *kfd_create_process(struct task_struct *thread);
1016 struct kfd_process *kfd_get_process(const struct task_struct *task);
1017 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
1018 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
1019 
1020 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
1021 int kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1022 				uint32_t *gpuid, uint32_t *gpuidx);
1023 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
1024 				uint32_t gpuidx, uint32_t *gpuid) {
1025 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
1026 }
1027 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
1028 				struct kfd_process *p, uint32_t gpuidx) {
1029 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
1030 }
1031 
1032 void kfd_unref_process(struct kfd_process *p);
1033 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger);
1034 int kfd_process_restore_queues(struct kfd_process *p);
1035 void kfd_suspend_all_processes(void);
1036 int kfd_resume_all_processes(void);
1037 
1038 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
1039 							 uint32_t gpu_id);
1040 
1041 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
1042 
1043 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1044 			       struct file *drm_file);
1045 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1046 						struct kfd_process *p);
1047 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1048 							struct kfd_process *p);
1049 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1050 							struct kfd_process *p);
1051 
1052 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
1053 
1054 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
1055 			  struct vm_area_struct *vma);
1056 
1057 /* KFD process API for creating and translating handles */
1058 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1059 					void *mem);
1060 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
1061 					int handle);
1062 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1063 					int handle);
1064 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
1065 
1066 /* PASIDs */
1067 int kfd_pasid_init(void);
1068 void kfd_pasid_exit(void);
1069 bool kfd_set_pasid_limit(unsigned int new_limit);
1070 unsigned int kfd_get_pasid_limit(void);
1071 u32 kfd_pasid_alloc(void);
1072 void kfd_pasid_free(u32 pasid);
1073 
1074 /* Doorbells */
1075 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
1076 int kfd_doorbell_init(struct kfd_dev *kfd);
1077 void kfd_doorbell_fini(struct kfd_dev *kfd);
1078 int kfd_doorbell_mmap(struct kfd_node *dev, struct kfd_process *process,
1079 		      struct vm_area_struct *vma);
1080 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
1081 					unsigned int *doorbell_off);
1082 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
1083 u32 read_kernel_doorbell(u32 __iomem *db);
1084 void write_kernel_doorbell(void __iomem *db, u32 value);
1085 void write_kernel_doorbell64(void __iomem *db, u64 value);
1086 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
1087 					struct kfd_process_device *pdd,
1088 					unsigned int doorbell_id);
1089 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
1090 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
1091 				unsigned int *doorbell_index);
1092 void kfd_free_process_doorbells(struct kfd_dev *kfd,
1093 				unsigned int doorbell_index);
1094 /* GTT Sub-Allocator */
1095 
1096 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1097 			struct kfd_mem_obj **mem_obj);
1098 
1099 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj);
1100 
1101 extern struct device *kfd_device;
1102 
1103 /* KFD's procfs */
1104 void kfd_procfs_init(void);
1105 void kfd_procfs_shutdown(void);
1106 int kfd_procfs_add_queue(struct queue *q);
1107 void kfd_procfs_del_queue(struct queue *q);
1108 
1109 /* Topology */
1110 int kfd_topology_init(void);
1111 void kfd_topology_shutdown(void);
1112 int kfd_topology_add_device(struct kfd_node *gpu);
1113 int kfd_topology_remove_device(struct kfd_node *gpu);
1114 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1115 						uint32_t proximity_domain);
1116 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
1117 						uint32_t proximity_domain);
1118 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1119 struct kfd_node *kfd_device_by_id(uint32_t gpu_id);
1120 struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev);
1121 static inline bool kfd_irq_is_from_node(struct kfd_node *node, uint32_t node_id,
1122 					uint32_t vmid)
1123 {
1124 	return (node->interrupt_bitmap & (1 << node_id)) != 0 &&
1125 	       (node->compute_vmid_bitmap & (1 << vmid)) != 0;
1126 }
1127 static inline struct kfd_node *kfd_node_by_irq_ids(struct amdgpu_device *adev,
1128 					uint32_t node_id, uint32_t vmid) {
1129 	struct kfd_dev *dev = adev->kfd.dev;
1130 	uint32_t i;
1131 
1132 	if (adev->ip_versions[GC_HWIP][0] != IP_VERSION(9, 4, 3))
1133 		return dev->nodes[0];
1134 
1135 	for (i = 0; i < dev->num_nodes; i++)
1136 		if (kfd_irq_is_from_node(dev->nodes[i], node_id, vmid))
1137 			return dev->nodes[i];
1138 
1139 	return NULL;
1140 }
1141 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev);
1142 int kfd_numa_node_to_apic_id(int numa_node_id);
1143 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
1144 
1145 /* Interrupts */
1146 int kfd_interrupt_init(struct kfd_node *dev);
1147 void kfd_interrupt_exit(struct kfd_node *dev);
1148 bool enqueue_ih_ring_entry(struct kfd_node *kfd, const void *ih_ring_entry);
1149 bool interrupt_is_wanted(struct kfd_node *dev,
1150 				const uint32_t *ih_ring_entry,
1151 				uint32_t *patched_ihre, bool *flag);
1152 
1153 /* amdkfd Apertures */
1154 int kfd_init_apertures(struct kfd_process *process);
1155 
1156 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1157 				  uint64_t tba_addr,
1158 				  uint64_t tma_addr);
1159 
1160 /* CWSR initialization */
1161 int kfd_process_init_cwsr_apu(struct kfd_process *process, struct file *filep);
1162 
1163 /* CRIU */
1164 /*
1165  * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1166  * structures:
1167  * kfd_criu_process_priv_data
1168  * kfd_criu_device_priv_data
1169  * kfd_criu_bo_priv_data
1170  * kfd_criu_queue_priv_data
1171  * kfd_criu_event_priv_data
1172  * kfd_criu_svm_range_priv_data
1173  */
1174 
1175 #define KFD_CRIU_PRIV_VERSION 1
1176 
1177 struct kfd_criu_process_priv_data {
1178 	uint32_t version;
1179 	uint32_t xnack_mode;
1180 };
1181 
1182 struct kfd_criu_device_priv_data {
1183 	/* For future use */
1184 	uint64_t reserved;
1185 };
1186 
1187 struct kfd_criu_bo_priv_data {
1188 	uint64_t user_addr;
1189 	uint32_t idr_handle;
1190 	uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1191 };
1192 
1193 /*
1194  * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1195  * kfd_criu_svm_range_priv_data is the object type
1196  */
1197 enum kfd_criu_object_type {
1198 	KFD_CRIU_OBJECT_TYPE_QUEUE,
1199 	KFD_CRIU_OBJECT_TYPE_EVENT,
1200 	KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1201 };
1202 
1203 struct kfd_criu_svm_range_priv_data {
1204 	uint32_t object_type;
1205 	uint64_t start_addr;
1206 	uint64_t size;
1207 	/* Variable length array of attributes */
1208 	struct kfd_ioctl_svm_attribute attrs[];
1209 };
1210 
1211 struct kfd_criu_queue_priv_data {
1212 	uint32_t object_type;
1213 	uint64_t q_address;
1214 	uint64_t q_size;
1215 	uint64_t read_ptr_addr;
1216 	uint64_t write_ptr_addr;
1217 	uint64_t doorbell_off;
1218 	uint64_t eop_ring_buffer_address;
1219 	uint64_t ctx_save_restore_area_address;
1220 	uint32_t gpu_id;
1221 	uint32_t type;
1222 	uint32_t format;
1223 	uint32_t q_id;
1224 	uint32_t priority;
1225 	uint32_t q_percent;
1226 	uint32_t doorbell_id;
1227 	uint32_t gws;
1228 	uint32_t sdma_id;
1229 	uint32_t eop_ring_buffer_size;
1230 	uint32_t ctx_save_restore_area_size;
1231 	uint32_t ctl_stack_size;
1232 	uint32_t mqd_size;
1233 };
1234 
1235 struct kfd_criu_event_priv_data {
1236 	uint32_t object_type;
1237 	uint64_t user_handle;
1238 	uint32_t event_id;
1239 	uint32_t auto_reset;
1240 	uint32_t type;
1241 	uint32_t signaled;
1242 
1243 	union {
1244 		struct kfd_hsa_memory_exception_data memory_exception_data;
1245 		struct kfd_hsa_hw_exception_data hw_exception_data;
1246 	};
1247 };
1248 
1249 int kfd_process_get_queue_info(struct kfd_process *p,
1250 			       uint32_t *num_queues,
1251 			       uint64_t *priv_data_sizes);
1252 
1253 int kfd_criu_checkpoint_queues(struct kfd_process *p,
1254 			 uint8_t __user *user_priv_data,
1255 			 uint64_t *priv_data_offset);
1256 
1257 int kfd_criu_restore_queue(struct kfd_process *p,
1258 			   uint8_t __user *user_priv_data,
1259 			   uint64_t *priv_data_offset,
1260 			   uint64_t max_priv_data_size);
1261 
1262 int kfd_criu_checkpoint_events(struct kfd_process *p,
1263 			 uint8_t __user *user_priv_data,
1264 			 uint64_t *priv_data_offset);
1265 
1266 int kfd_criu_restore_event(struct file *devkfd,
1267 			   struct kfd_process *p,
1268 			   uint8_t __user *user_priv_data,
1269 			   uint64_t *priv_data_offset,
1270 			   uint64_t max_priv_data_size);
1271 /* CRIU - End */
1272 
1273 /* Queue Context Management */
1274 int init_queue(struct queue **q, const struct queue_properties *properties);
1275 void uninit_queue(struct queue *q);
1276 void print_queue_properties(struct queue_properties *q);
1277 void print_queue(struct queue *q);
1278 
1279 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1280 		struct kfd_node *dev);
1281 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
1282 		struct kfd_node *dev);
1283 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1284 		struct kfd_node *dev);
1285 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1286 		struct kfd_node *dev);
1287 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1288 		struct kfd_node *dev);
1289 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1290 		struct kfd_node *dev);
1291 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type,
1292 		struct kfd_node *dev);
1293 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev);
1294 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1295 struct kernel_queue *kernel_queue_init(struct kfd_node *dev,
1296 					enum kfd_queue_type type);
1297 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1298 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid);
1299 
1300 /* Process Queue Manager */
1301 struct process_queue_node {
1302 	struct queue *q;
1303 	struct kernel_queue *kq;
1304 	struct list_head process_queue_list;
1305 };
1306 
1307 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1308 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1309 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1310 void pqm_uninit(struct process_queue_manager *pqm);
1311 int pqm_create_queue(struct process_queue_manager *pqm,
1312 			    struct kfd_node *dev,
1313 			    struct file *f,
1314 			    struct queue_properties *properties,
1315 			    unsigned int *qid,
1316 			    struct amdgpu_bo *wptr_bo,
1317 			    const struct kfd_criu_queue_priv_data *q_data,
1318 			    const void *restore_mqd,
1319 			    const void *restore_ctl_stack,
1320 			    uint32_t *p_doorbell_offset_in_process);
1321 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1322 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1323 			struct queue_properties *p);
1324 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1325 			struct mqd_update_info *minfo);
1326 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1327 			void *gws);
1328 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1329 						unsigned int qid);
1330 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1331 						unsigned int qid);
1332 int pqm_get_wave_state(struct process_queue_manager *pqm,
1333 		       unsigned int qid,
1334 		       void __user *ctl_stack,
1335 		       u32 *ctl_stack_used_size,
1336 		       u32 *save_area_used_size);
1337 
1338 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1339 			      uint64_t fence_value,
1340 			      unsigned int timeout_ms);
1341 
1342 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1343 				  unsigned int qid,
1344 				  u32 *mqd_size,
1345 				  u32 *ctl_stack_size);
1346 /* Packet Manager */
1347 
1348 #define KFD_FENCE_COMPLETED (100)
1349 #define KFD_FENCE_INIT   (10)
1350 
1351 struct packet_manager {
1352 	struct device_queue_manager *dqm;
1353 	struct kernel_queue *priv_queue;
1354 	struct mutex lock;
1355 	bool allocated;
1356 	struct kfd_mem_obj *ib_buffer_obj;
1357 	unsigned int ib_size_bytes;
1358 	bool is_over_subscription;
1359 
1360 	const struct packet_manager_funcs *pmf;
1361 };
1362 
1363 struct packet_manager_funcs {
1364 	/* Support ASIC-specific packet formats for PM4 packets */
1365 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1366 			struct qcm_process_device *qpd);
1367 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1368 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1369 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1370 			struct scheduling_resources *res);
1371 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1372 			struct queue *q, bool is_static);
1373 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1374 			enum kfd_unmap_queues_filter mode,
1375 			uint32_t filter_param, bool reset);
1376 	int (*set_grace_period)(struct packet_manager *pm, uint32_t *buffer,
1377 			uint32_t grace_period);
1378 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1379 			uint64_t fence_address,	uint64_t fence_value);
1380 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1381 
1382 	/* Packet sizes */
1383 	int map_process_size;
1384 	int runlist_size;
1385 	int set_resources_size;
1386 	int map_queues_size;
1387 	int unmap_queues_size;
1388 	int set_grace_period_size;
1389 	int query_status_size;
1390 	int release_mem_size;
1391 };
1392 
1393 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1394 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1395 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1396 
1397 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1398 void pm_uninit(struct packet_manager *pm, bool hanging);
1399 int pm_send_set_resources(struct packet_manager *pm,
1400 				struct scheduling_resources *res);
1401 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1402 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1403 				uint64_t fence_value);
1404 
1405 int pm_send_unmap_queue(struct packet_manager *pm,
1406 			enum kfd_unmap_queues_filter mode,
1407 			uint32_t filter_param, bool reset);
1408 
1409 void pm_release_ib(struct packet_manager *pm);
1410 
1411 int pm_update_grace_period(struct packet_manager *pm, uint32_t grace_period);
1412 
1413 /* Following PM funcs can be shared among VI and AI */
1414 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1415 
1416 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1417 
1418 /* Events */
1419 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1420 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1421 extern const struct kfd_event_interrupt_class event_interrupt_class_v11;
1422 
1423 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1424 
1425 int kfd_event_init_process(struct kfd_process *p);
1426 void kfd_event_free_process(struct kfd_process *p);
1427 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1428 int kfd_wait_on_events(struct kfd_process *p,
1429 		       uint32_t num_events, void __user *data,
1430 		       bool all, uint32_t *user_timeout_ms,
1431 		       uint32_t *wait_result);
1432 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1433 				uint32_t valid_id_bits);
1434 void kfd_signal_iommu_event(struct kfd_node *dev,
1435 			    u32 pasid, unsigned long address,
1436 			    bool is_write_requested, bool is_execute_requested);
1437 void kfd_signal_hw_exception_event(u32 pasid);
1438 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1439 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1440 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1441 
1442 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1443 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1444 		     uint32_t *event_id, uint32_t *event_trigger_data,
1445 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1446 
1447 int kfd_get_num_events(struct kfd_process *p);
1448 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1449 
1450 void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid,
1451 				struct kfd_vm_fault_info *info,
1452 				struct kfd_hsa_memory_exception_data *data);
1453 
1454 void kfd_signal_reset_event(struct kfd_node *dev);
1455 
1456 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid);
1457 
1458 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1459 
1460 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev)
1461 {
1462 	return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3) ||
1463 	       KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) ||
1464 	       (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && dev->sdma_fw_version >= 18) ||
1465 	       KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0);
1466 }
1467 
1468 int kfd_send_exception_to_runtime(struct kfd_process *p,
1469 				unsigned int queue_id,
1470 				uint64_t error_reason);
1471 bool kfd_is_locked(void);
1472 
1473 /* Compute profile */
1474 void kfd_inc_compute_active(struct kfd_node *dev);
1475 void kfd_dec_compute_active(struct kfd_node *dev);
1476 
1477 /* Cgroup Support */
1478 /* Check with device cgroup if @kfd device is accessible */
1479 static inline int kfd_devcgroup_check_permission(struct kfd_node *kfd)
1480 {
1481 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1482 	struct drm_device *ddev = adev_to_drm(kfd->adev);
1483 
1484 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1485 					  ddev->render->index,
1486 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1487 #else
1488 	return 0;
1489 #endif
1490 }
1491 
1492 static inline bool kfd_is_first_node(struct kfd_node *node)
1493 {
1494 	return (node == node->kfd->nodes[0]);
1495 }
1496 
1497 /* Debugfs */
1498 #if defined(CONFIG_DEBUG_FS)
1499 
1500 void kfd_debugfs_init(void);
1501 void kfd_debugfs_fini(void);
1502 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1503 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1504 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1505 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1506 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1507 int pm_debugfs_runlist(struct seq_file *m, void *data);
1508 
1509 int kfd_debugfs_hang_hws(struct kfd_node *dev);
1510 int pm_debugfs_hang_hws(struct packet_manager *pm);
1511 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1512 
1513 #else
1514 
1515 static inline void kfd_debugfs_init(void) {}
1516 static inline void kfd_debugfs_fini(void) {}
1517 
1518 #endif
1519 
1520 #endif
1521