1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #ifndef KFD_PRIV_H_INCLUDED 24 #define KFD_PRIV_H_INCLUDED 25 26 #include <linux/hashtable.h> 27 #include <linux/mmu_notifier.h> 28 #include <linux/mutex.h> 29 #include <linux/types.h> 30 #include <linux/atomic.h> 31 #include <linux/workqueue.h> 32 #include <linux/spinlock.h> 33 #include <linux/kfd_ioctl.h> 34 #include <linux/idr.h> 35 #include <linux/kfifo.h> 36 #include <linux/seq_file.h> 37 #include <linux/kref.h> 38 #include <linux/sysfs.h> 39 #include <kgd_kfd_interface.h> 40 41 #include "amd_shared.h" 42 43 #define KFD_MAX_RING_ENTRY_SIZE 8 44 45 #define KFD_SYSFS_FILE_MODE 0444 46 47 /* GPU ID hash width in bits */ 48 #define KFD_GPU_ID_HASH_WIDTH 16 49 50 /* Use upper bits of mmap offset to store KFD driver specific information. 51 * BITS[63:62] - Encode MMAP type 52 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 53 * BITS[45:0] - MMAP offset value 54 * 55 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 56 * defines are w.r.t to PAGE_SIZE 57 */ 58 #define KFD_MMAP_TYPE_SHIFT (62 - PAGE_SHIFT) 59 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 60 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 61 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 62 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 63 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 64 65 #define KFD_MMAP_GPU_ID_SHIFT (46 - PAGE_SHIFT) 66 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 67 << KFD_MMAP_GPU_ID_SHIFT) 68 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 69 & KFD_MMAP_GPU_ID_MASK) 70 #define KFD_MMAP_GPU_ID_GET(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 71 >> KFD_MMAP_GPU_ID_SHIFT) 72 73 #define KFD_MMAP_OFFSET_VALUE_MASK (0x3FFFFFFFFFFFULL >> PAGE_SHIFT) 74 #define KFD_MMAP_OFFSET_VALUE_GET(offset) (offset & KFD_MMAP_OFFSET_VALUE_MASK) 75 76 /* 77 * When working with cp scheduler we should assign the HIQ manually or via 78 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 79 * definitions for Kaveri. In Kaveri only the first ME queues participates 80 * in the cp scheduling taking that in mind we set the HIQ slot in the 81 * second ME. 82 */ 83 #define KFD_CIK_HIQ_PIPE 4 84 #define KFD_CIK_HIQ_QUEUE 0 85 86 /* Macro for allocating structures */ 87 #define kfd_alloc_struct(ptr_to_struct) \ 88 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 89 90 #define KFD_MAX_NUM_OF_PROCESSES 512 91 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 92 93 /* 94 * Size of the per-process TBA+TMA buffer: 2 pages 95 * 96 * The first page is the TBA used for the CWSR ISA code. The second 97 * page is used as TMA for daisy changing a user-mode trap handler. 98 */ 99 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 100 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 101 102 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 103 (KFD_MAX_NUM_OF_PROCESSES * \ 104 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 105 106 #define KFD_KERNEL_QUEUE_SIZE 2048 107 108 #define KFD_UNMAP_LATENCY_MS (4000) 109 110 /* 111 * 512 = 0x200 112 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 113 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 114 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 115 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 116 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 117 */ 118 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 119 120 121 /* 122 * Kernel module parameter to specify maximum number of supported queues per 123 * device 124 */ 125 extern int max_num_of_queues_per_device; 126 127 128 /* Kernel module parameter to specify the scheduling policy */ 129 extern int sched_policy; 130 131 /* 132 * Kernel module parameter to specify the maximum process 133 * number per HW scheduler 134 */ 135 extern int hws_max_conc_proc; 136 137 extern int cwsr_enable; 138 139 /* 140 * Kernel module parameter to specify whether to send sigterm to HSA process on 141 * unhandled exception 142 */ 143 extern int send_sigterm; 144 145 /* 146 * This kernel module is used to simulate large bar machine on non-large bar 147 * enabled machines. 148 */ 149 extern int debug_largebar; 150 151 /* 152 * Ignore CRAT table during KFD initialization, can be used to work around 153 * broken CRAT tables on some AMD systems 154 */ 155 extern int ignore_crat; 156 157 /* 158 * Set sh_mem_config.retry_disable on Vega10 159 */ 160 extern int amdgpu_noretry; 161 162 /* 163 * Halt if HWS hang is detected 164 */ 165 extern int halt_if_hws_hang; 166 167 /* 168 * Whether MEC FW support GWS barriers 169 */ 170 extern bool hws_gws_support; 171 172 /* 173 * Queue preemption timeout in ms 174 */ 175 extern int queue_preemption_timeout_ms; 176 177 enum cache_policy { 178 cache_policy_coherent, 179 cache_policy_noncoherent 180 }; 181 182 #define KFD_IS_VI(chip) ((chip) >= CHIP_CARRIZO && (chip) <= CHIP_POLARIS11) 183 #define KFD_IS_DGPU(chip) (((chip) >= CHIP_TONGA && \ 184 (chip) <= CHIP_NAVI10) || \ 185 (chip) == CHIP_HAWAII) 186 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10) 187 188 struct kfd_event_interrupt_class { 189 bool (*interrupt_isr)(struct kfd_dev *dev, 190 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 191 bool *patched_flag); 192 void (*interrupt_wq)(struct kfd_dev *dev, 193 const uint32_t *ih_ring_entry); 194 }; 195 196 struct kfd_device_info { 197 enum amd_asic_type asic_family; 198 const char *asic_name; 199 const struct kfd_event_interrupt_class *event_interrupt_class; 200 unsigned int max_pasid_bits; 201 unsigned int max_no_of_hqd; 202 unsigned int doorbell_size; 203 size_t ih_ring_entry_size; 204 uint8_t num_of_watch_points; 205 uint16_t mqd_size_aligned; 206 bool supports_cwsr; 207 bool needs_iommu_device; 208 bool needs_pci_atomics; 209 unsigned int num_sdma_engines; 210 unsigned int num_xgmi_sdma_engines; 211 unsigned int num_sdma_queues_per_engine; 212 }; 213 214 struct kfd_mem_obj { 215 uint32_t range_start; 216 uint32_t range_end; 217 uint64_t gpu_addr; 218 uint32_t *cpu_ptr; 219 void *gtt_mem; 220 }; 221 222 struct kfd_vmid_info { 223 uint32_t first_vmid_kfd; 224 uint32_t last_vmid_kfd; 225 uint32_t vmid_num_kfd; 226 }; 227 228 struct kfd_dev { 229 struct kgd_dev *kgd; 230 231 const struct kfd_device_info *device_info; 232 struct pci_dev *pdev; 233 234 unsigned int id; /* topology stub index */ 235 236 phys_addr_t doorbell_base; /* Start of actual doorbells used by 237 * KFD. It is aligned for mapping 238 * into user mode 239 */ 240 size_t doorbell_id_offset; /* Doorbell offset (from KFD doorbell 241 * to HW doorbell, GFX reserved some 242 * at the start) 243 */ 244 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 245 * page used by kernel queue 246 */ 247 248 struct kgd2kfd_shared_resources shared_resources; 249 struct kfd_vmid_info vm_info; 250 251 const struct kfd2kgd_calls *kfd2kgd; 252 struct mutex doorbell_mutex; 253 DECLARE_BITMAP(doorbell_available_index, 254 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 255 256 void *gtt_mem; 257 uint64_t gtt_start_gpu_addr; 258 void *gtt_start_cpu_ptr; 259 void *gtt_sa_bitmap; 260 struct mutex gtt_sa_lock; 261 unsigned int gtt_sa_chunk_size; 262 unsigned int gtt_sa_num_of_chunks; 263 264 /* Interrupts */ 265 struct kfifo ih_fifo; 266 struct workqueue_struct *ih_wq; 267 struct work_struct interrupt_work; 268 spinlock_t interrupt_lock; 269 270 /* QCM Device instance */ 271 struct device_queue_manager *dqm; 272 273 bool init_complete; 274 /* 275 * Interrupts of interest to KFD are copied 276 * from the HW ring into a SW ring. 277 */ 278 bool interrupts_active; 279 280 /* Debug manager */ 281 struct kfd_dbgmgr *dbgmgr; 282 283 /* Firmware versions */ 284 uint16_t mec_fw_version; 285 uint16_t sdma_fw_version; 286 287 /* Maximum process number mapped to HW scheduler */ 288 unsigned int max_proc_per_quantum; 289 290 /* CWSR */ 291 bool cwsr_enabled; 292 const void *cwsr_isa; 293 unsigned int cwsr_isa_size; 294 295 /* xGMI */ 296 uint64_t hive_id; 297 298 bool pci_atomic_requested; 299 300 /* SRAM ECC flag */ 301 atomic_t sram_ecc_flag; 302 303 /* Compute Profile ref. count */ 304 atomic_t compute_profile; 305 306 /* Global GWS resource shared b/t processes*/ 307 void *gws; 308 }; 309 310 enum kfd_mempool { 311 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 312 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 313 KFD_MEMPOOL_FRAMEBUFFER = 3, 314 }; 315 316 /* Character device interface */ 317 int kfd_chardev_init(void); 318 void kfd_chardev_exit(void); 319 struct device *kfd_chardev(void); 320 321 /** 322 * enum kfd_unmap_queues_filter 323 * 324 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue. 325 * 326 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 327 * running queues list. 328 * 329 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 330 * specific process. 331 * 332 */ 333 enum kfd_unmap_queues_filter { 334 KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE, 335 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 336 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 337 KFD_UNMAP_QUEUES_FILTER_BY_PASID 338 }; 339 340 /** 341 * enum kfd_queue_type 342 * 343 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 344 * 345 * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type. 346 * 347 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 348 * 349 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 350 */ 351 enum kfd_queue_type { 352 KFD_QUEUE_TYPE_COMPUTE, 353 KFD_QUEUE_TYPE_SDMA, 354 KFD_QUEUE_TYPE_HIQ, 355 KFD_QUEUE_TYPE_DIQ, 356 KFD_QUEUE_TYPE_SDMA_XGMI 357 }; 358 359 enum kfd_queue_format { 360 KFD_QUEUE_FORMAT_PM4, 361 KFD_QUEUE_FORMAT_AQL 362 }; 363 364 enum KFD_QUEUE_PRIORITY { 365 KFD_QUEUE_PRIORITY_MINIMUM = 0, 366 KFD_QUEUE_PRIORITY_MAXIMUM = 15 367 }; 368 369 /** 370 * struct queue_properties 371 * 372 * @type: The queue type. 373 * 374 * @queue_id: Queue identifier. 375 * 376 * @queue_address: Queue ring buffer address. 377 * 378 * @queue_size: Queue ring buffer size. 379 * 380 * @priority: Defines the queue priority relative to other queues in the 381 * process. 382 * This is just an indication and HW scheduling may override the priority as 383 * necessary while keeping the relative prioritization. 384 * the priority granularity is from 0 to f which f is the highest priority. 385 * currently all queues are initialized with the highest priority. 386 * 387 * @queue_percent: This field is partially implemented and currently a zero in 388 * this field defines that the queue is non active. 389 * 390 * @read_ptr: User space address which points to the number of dwords the 391 * cp read from the ring buffer. This field updates automatically by the H/W. 392 * 393 * @write_ptr: Defines the number of dwords written to the ring buffer. 394 * 395 * @doorbell_ptr: This field aim is to notify the H/W of new packet written to 396 * the queue ring buffer. This field should be similar to write_ptr and the 397 * user should update this field after he updated the write_ptr. 398 * 399 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 400 * 401 * @is_interop: Defines if this is a interop queue. Interop queue means that 402 * the queue can access both graphics and compute resources. 403 * 404 * @is_evicted: Defines if the queue is evicted. Only active queues 405 * are evicted, rendering them inactive. 406 * 407 * @is_active: Defines if the queue is active or not. @is_active and 408 * @is_evicted are protected by the DQM lock. 409 * 410 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 411 * of the queue. 412 * 413 * This structure represents the queue properties for each queue no matter if 414 * it's user mode or kernel mode queue. 415 * 416 */ 417 struct queue_properties { 418 enum kfd_queue_type type; 419 enum kfd_queue_format format; 420 unsigned int queue_id; 421 uint64_t queue_address; 422 uint64_t queue_size; 423 uint32_t priority; 424 uint32_t queue_percent; 425 uint32_t *read_ptr; 426 uint32_t *write_ptr; 427 void __iomem *doorbell_ptr; 428 uint32_t doorbell_off; 429 bool is_interop; 430 bool is_evicted; 431 bool is_active; 432 /* Not relevant for user mode queues in cp scheduling */ 433 unsigned int vmid; 434 /* Relevant only for sdma queues*/ 435 uint32_t sdma_engine_id; 436 uint32_t sdma_queue_id; 437 uint32_t sdma_vm_addr; 438 /* Relevant only for VI */ 439 uint64_t eop_ring_buffer_address; 440 uint32_t eop_ring_buffer_size; 441 uint64_t ctx_save_restore_area_address; 442 uint32_t ctx_save_restore_area_size; 443 uint32_t ctl_stack_size; 444 uint64_t tba_addr; 445 uint64_t tma_addr; 446 /* Relevant for CU */ 447 uint32_t cu_mask_count; /* Must be a multiple of 32 */ 448 uint32_t *cu_mask; 449 }; 450 451 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 452 (q).queue_address != 0 && \ 453 (q).queue_percent > 0 && \ 454 !(q).is_evicted) 455 456 /** 457 * struct queue 458 * 459 * @list: Queue linked list. 460 * 461 * @mqd: The queue MQD. 462 * 463 * @mqd_mem_obj: The MQD local gpu memory object. 464 * 465 * @gart_mqd_addr: The MQD gart mc address. 466 * 467 * @properties: The queue properties. 468 * 469 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 470 * that the queue should be execute on. 471 * 472 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 473 * id. 474 * 475 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 476 * 477 * @process: The kfd process that created this queue. 478 * 479 * @device: The kfd device that created this queue. 480 * 481 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 482 * otherwise. 483 * 484 * This structure represents user mode compute queues. 485 * It contains all the necessary data to handle such queues. 486 * 487 */ 488 489 struct queue { 490 struct list_head list; 491 void *mqd; 492 struct kfd_mem_obj *mqd_mem_obj; 493 uint64_t gart_mqd_addr; 494 struct queue_properties properties; 495 496 uint32_t mec; 497 uint32_t pipe; 498 uint32_t queue; 499 500 unsigned int sdma_id; 501 unsigned int doorbell_id; 502 503 struct kfd_process *process; 504 struct kfd_dev *device; 505 void *gws; 506 }; 507 508 /* 509 * Please read the kfd_mqd_manager.h description. 510 */ 511 enum KFD_MQD_TYPE { 512 KFD_MQD_TYPE_COMPUTE = 0, /* for no cp scheduling */ 513 KFD_MQD_TYPE_HIQ, /* for hiq */ 514 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 515 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 516 KFD_MQD_TYPE_DIQ, /* for diq */ 517 KFD_MQD_TYPE_MAX 518 }; 519 520 enum KFD_PIPE_PRIORITY { 521 KFD_PIPE_PRIORITY_CS_LOW = 0, 522 KFD_PIPE_PRIORITY_CS_MEDIUM, 523 KFD_PIPE_PRIORITY_CS_HIGH 524 }; 525 526 struct scheduling_resources { 527 unsigned int vmid_mask; 528 enum kfd_queue_type type; 529 uint64_t queue_mask; 530 uint64_t gws_mask; 531 uint32_t oac_mask; 532 uint32_t gds_heap_base; 533 uint32_t gds_heap_size; 534 }; 535 536 struct process_queue_manager { 537 /* data */ 538 struct kfd_process *process; 539 struct list_head queues; 540 unsigned long *queue_slot_bitmap; 541 }; 542 543 struct qcm_process_device { 544 /* The Device Queue Manager that owns this data */ 545 struct device_queue_manager *dqm; 546 struct process_queue_manager *pqm; 547 /* Queues list */ 548 struct list_head queues_list; 549 struct list_head priv_queue_list; 550 551 unsigned int queue_count; 552 unsigned int vmid; 553 bool is_debug; 554 unsigned int evicted; /* eviction counter, 0=active */ 555 556 /* This flag tells if we should reset all wavefronts on 557 * process termination 558 */ 559 bool reset_wavefronts; 560 561 /* 562 * All the memory management data should be here too 563 */ 564 uint64_t gds_context_area; 565 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 566 uint64_t page_table_base; 567 uint32_t sh_mem_config; 568 uint32_t sh_mem_bases; 569 uint32_t sh_mem_ape1_base; 570 uint32_t sh_mem_ape1_limit; 571 uint32_t gds_size; 572 uint32_t num_gws; 573 uint32_t num_oac; 574 uint32_t sh_hidden_private_base; 575 576 /* CWSR memory */ 577 void *cwsr_kaddr; 578 uint64_t cwsr_base; 579 uint64_t tba_addr; 580 uint64_t tma_addr; 581 582 /* IB memory */ 583 uint64_t ib_base; 584 void *ib_kaddr; 585 586 /* doorbell resources per process per device */ 587 unsigned long *doorbell_bitmap; 588 }; 589 590 /* KFD Memory Eviction */ 591 592 /* Approx. wait time before attempting to restore evicted BOs */ 593 #define PROCESS_RESTORE_TIME_MS 100 594 /* Approx. back off time if restore fails due to lack of memory */ 595 #define PROCESS_BACK_OFF_TIME_MS 100 596 /* Approx. time before evicting the process again */ 597 #define PROCESS_ACTIVE_TIME_MS 10 598 599 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 600 * idr_handle in the least significant 4 bytes 601 */ 602 #define MAKE_HANDLE(gpu_id, idr_handle) \ 603 (((uint64_t)(gpu_id) << 32) + idr_handle) 604 #define GET_GPU_ID(handle) (handle >> 32) 605 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 606 607 enum kfd_pdd_bound { 608 PDD_UNBOUND = 0, 609 PDD_BOUND, 610 PDD_BOUND_SUSPENDED, 611 }; 612 613 /* Data that is per-process-per device. */ 614 struct kfd_process_device { 615 /* 616 * List of all per-device data for a process. 617 * Starts from kfd_process.per_device_data. 618 */ 619 struct list_head per_device_list; 620 621 /* The device that owns this data. */ 622 struct kfd_dev *dev; 623 624 /* The process that owns this kfd_process_device. */ 625 struct kfd_process *process; 626 627 /* per-process-per device QCM data structure */ 628 struct qcm_process_device qpd; 629 630 /*Apertures*/ 631 uint64_t lds_base; 632 uint64_t lds_limit; 633 uint64_t gpuvm_base; 634 uint64_t gpuvm_limit; 635 uint64_t scratch_base; 636 uint64_t scratch_limit; 637 638 /* VM context for GPUVM allocations */ 639 struct file *drm_file; 640 void *vm; 641 642 /* GPUVM allocations storage */ 643 struct idr alloc_idr; 644 645 /* Flag used to tell the pdd has dequeued from the dqm. 646 * This is used to prevent dev->dqm->ops.process_termination() from 647 * being called twice when it is already called in IOMMU callback 648 * function. 649 */ 650 bool already_dequeued; 651 652 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 653 enum kfd_pdd_bound bound; 654 }; 655 656 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 657 658 /* Process data */ 659 struct kfd_process { 660 /* 661 * kfd_process are stored in an mm_struct*->kfd_process* 662 * hash table (kfd_processes in kfd_process.c) 663 */ 664 struct hlist_node kfd_processes; 665 666 /* 667 * Opaque pointer to mm_struct. We don't hold a reference to 668 * it so it should never be dereferenced from here. This is 669 * only used for looking up processes by their mm. 670 */ 671 void *mm; 672 673 struct kref ref; 674 struct work_struct release_work; 675 676 struct mutex mutex; 677 678 /* 679 * In any process, the thread that started main() is the lead 680 * thread and outlives the rest. 681 * It is here because amd_iommu_bind_pasid wants a task_struct. 682 * It can also be used for safely getting a reference to the 683 * mm_struct of the process. 684 */ 685 struct task_struct *lead_thread; 686 687 /* We want to receive a notification when the mm_struct is destroyed */ 688 struct mmu_notifier mmu_notifier; 689 690 /* Use for delayed freeing of kfd_process structure */ 691 struct rcu_head rcu; 692 693 unsigned int pasid; 694 unsigned int doorbell_index; 695 696 /* 697 * List of kfd_process_device structures, 698 * one for each device the process is using. 699 */ 700 struct list_head per_device_data; 701 702 struct process_queue_manager pqm; 703 704 /*Is the user space process 32 bit?*/ 705 bool is_32bit_user_mode; 706 707 /* Event-related data */ 708 struct mutex event_mutex; 709 /* Event ID allocator and lookup */ 710 struct idr event_idr; 711 /* Event page */ 712 struct kfd_signal_page *signal_page; 713 size_t signal_mapped_size; 714 size_t signal_event_count; 715 bool signal_event_limit_reached; 716 717 /* Information used for memory eviction */ 718 void *kgd_process_info; 719 /* Eviction fence that is attached to all the BOs of this process. The 720 * fence will be triggered during eviction and new one will be created 721 * during restore 722 */ 723 struct dma_fence *ef; 724 725 /* Work items for evicting and restoring BOs */ 726 struct delayed_work eviction_work; 727 struct delayed_work restore_work; 728 /* seqno of the last scheduled eviction */ 729 unsigned int last_eviction_seqno; 730 /* Approx. the last timestamp (in jiffies) when the process was 731 * restored after an eviction 732 */ 733 unsigned long last_restore_timestamp; 734 735 /* Kobj for our procfs */ 736 struct kobject *kobj; 737 struct attribute attr_pasid; 738 }; 739 740 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 741 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 742 extern struct srcu_struct kfd_processes_srcu; 743 744 /** 745 * Ioctl function type. 746 * 747 * \param filep pointer to file structure. 748 * \param p amdkfd process pointer. 749 * \param data pointer to arg that was copied from user. 750 */ 751 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 752 void *data); 753 754 struct amdkfd_ioctl_desc { 755 unsigned int cmd; 756 int flags; 757 amdkfd_ioctl_t *func; 758 unsigned int cmd_drv; 759 const char *name; 760 }; 761 bool kfd_dev_is_large_bar(struct kfd_dev *dev); 762 763 int kfd_process_create_wq(void); 764 void kfd_process_destroy_wq(void); 765 struct kfd_process *kfd_create_process(struct file *filep); 766 struct kfd_process *kfd_get_process(const struct task_struct *); 767 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid); 768 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 769 void kfd_unref_process(struct kfd_process *p); 770 int kfd_process_evict_queues(struct kfd_process *p); 771 int kfd_process_restore_queues(struct kfd_process *p); 772 void kfd_suspend_all_processes(void); 773 int kfd_resume_all_processes(void); 774 775 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 776 struct file *drm_file); 777 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 778 struct kfd_process *p); 779 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 780 struct kfd_process *p); 781 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 782 struct kfd_process *p); 783 784 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 785 struct vm_area_struct *vma); 786 787 /* KFD process API for creating and translating handles */ 788 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 789 void *mem); 790 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 791 int handle); 792 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 793 int handle); 794 795 /* Process device data iterator */ 796 struct kfd_process_device *kfd_get_first_process_device_data( 797 struct kfd_process *p); 798 struct kfd_process_device *kfd_get_next_process_device_data( 799 struct kfd_process *p, 800 struct kfd_process_device *pdd); 801 bool kfd_has_process_device_data(struct kfd_process *p); 802 803 /* PASIDs */ 804 int kfd_pasid_init(void); 805 void kfd_pasid_exit(void); 806 bool kfd_set_pasid_limit(unsigned int new_limit); 807 unsigned int kfd_get_pasid_limit(void); 808 unsigned int kfd_pasid_alloc(void); 809 void kfd_pasid_free(unsigned int pasid); 810 811 /* Doorbells */ 812 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 813 int kfd_doorbell_init(struct kfd_dev *kfd); 814 void kfd_doorbell_fini(struct kfd_dev *kfd); 815 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, 816 struct vm_area_struct *vma); 817 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 818 unsigned int *doorbell_off); 819 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 820 u32 read_kernel_doorbell(u32 __iomem *db); 821 void write_kernel_doorbell(void __iomem *db, u32 value); 822 void write_kernel_doorbell64(void __iomem *db, u64 value); 823 unsigned int kfd_doorbell_id_to_offset(struct kfd_dev *kfd, 824 struct kfd_process *process, 825 unsigned int doorbell_id); 826 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev, 827 struct kfd_process *process); 828 int kfd_alloc_process_doorbells(struct kfd_process *process); 829 void kfd_free_process_doorbells(struct kfd_process *process); 830 831 /* GTT Sub-Allocator */ 832 833 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 834 struct kfd_mem_obj **mem_obj); 835 836 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 837 838 extern struct device *kfd_device; 839 840 /* KFD's procfs */ 841 void kfd_procfs_init(void); 842 void kfd_procfs_shutdown(void); 843 844 /* Topology */ 845 int kfd_topology_init(void); 846 void kfd_topology_shutdown(void); 847 int kfd_topology_add_device(struct kfd_dev *gpu); 848 int kfd_topology_remove_device(struct kfd_dev *gpu); 849 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 850 uint32_t proximity_domain); 851 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 852 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 853 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 854 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd); 855 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); 856 int kfd_numa_node_to_apic_id(int numa_node_id); 857 858 /* Interrupts */ 859 int kfd_interrupt_init(struct kfd_dev *dev); 860 void kfd_interrupt_exit(struct kfd_dev *dev); 861 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 862 bool interrupt_is_wanted(struct kfd_dev *dev, 863 const uint32_t *ih_ring_entry, 864 uint32_t *patched_ihre, bool *flag); 865 866 /* amdkfd Apertures */ 867 int kfd_init_apertures(struct kfd_process *process); 868 869 /* Queue Context Management */ 870 int init_queue(struct queue **q, const struct queue_properties *properties); 871 void uninit_queue(struct queue *q); 872 void print_queue_properties(struct queue_properties *q); 873 void print_queue(struct queue *q); 874 875 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 876 struct kfd_dev *dev); 877 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 878 struct kfd_dev *dev); 879 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 880 struct kfd_dev *dev); 881 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 882 struct kfd_dev *dev); 883 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 884 struct kfd_dev *dev); 885 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 886 struct kfd_dev *dev); 887 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 888 void device_queue_manager_uninit(struct device_queue_manager *dqm); 889 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 890 enum kfd_queue_type type); 891 void kernel_queue_uninit(struct kernel_queue *kq); 892 int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid); 893 894 /* Process Queue Manager */ 895 struct process_queue_node { 896 struct queue *q; 897 struct kernel_queue *kq; 898 struct list_head process_queue_list; 899 }; 900 901 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 902 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 903 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 904 void pqm_uninit(struct process_queue_manager *pqm); 905 int pqm_create_queue(struct process_queue_manager *pqm, 906 struct kfd_dev *dev, 907 struct file *f, 908 struct queue_properties *properties, 909 unsigned int *qid); 910 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 911 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid, 912 struct queue_properties *p); 913 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid, 914 struct queue_properties *p); 915 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 916 void *gws); 917 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 918 unsigned int qid); 919 int pqm_get_wave_state(struct process_queue_manager *pqm, 920 unsigned int qid, 921 void __user *ctl_stack, 922 u32 *ctl_stack_used_size, 923 u32 *save_area_used_size); 924 925 int amdkfd_fence_wait_timeout(unsigned int *fence_addr, 926 unsigned int fence_value, 927 unsigned int timeout_ms); 928 929 /* Packet Manager */ 930 931 #define KFD_FENCE_COMPLETED (100) 932 #define KFD_FENCE_INIT (10) 933 934 struct packet_manager { 935 struct device_queue_manager *dqm; 936 struct kernel_queue *priv_queue; 937 struct mutex lock; 938 bool allocated; 939 struct kfd_mem_obj *ib_buffer_obj; 940 unsigned int ib_size_bytes; 941 bool is_over_subscription; 942 943 const struct packet_manager_funcs *pmf; 944 }; 945 946 struct packet_manager_funcs { 947 /* Support ASIC-specific packet formats for PM4 packets */ 948 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 949 struct qcm_process_device *qpd); 950 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 951 uint64_t ib, size_t ib_size_in_dwords, bool chain); 952 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 953 struct scheduling_resources *res); 954 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 955 struct queue *q, bool is_static); 956 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 957 enum kfd_queue_type type, 958 enum kfd_unmap_queues_filter mode, 959 uint32_t filter_param, bool reset, 960 unsigned int sdma_engine); 961 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 962 uint64_t fence_address, uint32_t fence_value); 963 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 964 965 /* Packet sizes */ 966 int map_process_size; 967 int runlist_size; 968 int set_resources_size; 969 int map_queues_size; 970 int unmap_queues_size; 971 int query_status_size; 972 int release_mem_size; 973 }; 974 975 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 976 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 977 extern const struct packet_manager_funcs kfd_v10_pm_funcs; 978 979 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 980 void pm_uninit(struct packet_manager *pm); 981 int pm_send_set_resources(struct packet_manager *pm, 982 struct scheduling_resources *res); 983 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 984 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 985 uint32_t fence_value); 986 987 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type, 988 enum kfd_unmap_queues_filter mode, 989 uint32_t filter_param, bool reset, 990 unsigned int sdma_engine); 991 992 void pm_release_ib(struct packet_manager *pm); 993 994 /* Following PM funcs can be shared among VI and AI */ 995 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 996 int pm_set_resources_vi(struct packet_manager *pm, uint32_t *buffer, 997 struct scheduling_resources *res); 998 999 1000 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1001 1002 /* Events */ 1003 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1004 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1005 1006 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1007 1008 void kfd_event_init_process(struct kfd_process *p); 1009 void kfd_event_free_process(struct kfd_process *p); 1010 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1011 int kfd_wait_on_events(struct kfd_process *p, 1012 uint32_t num_events, void __user *data, 1013 bool all, uint32_t user_timeout_ms, 1014 uint32_t *wait_result); 1015 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, 1016 uint32_t valid_id_bits); 1017 void kfd_signal_iommu_event(struct kfd_dev *dev, 1018 unsigned int pasid, unsigned long address, 1019 bool is_write_requested, bool is_execute_requested); 1020 void kfd_signal_hw_exception_event(unsigned int pasid); 1021 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1022 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1023 int kfd_event_page_set(struct kfd_process *p, void *kernel_address, 1024 uint64_t size); 1025 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1026 uint32_t event_type, bool auto_reset, uint32_t node_id, 1027 uint32_t *event_id, uint32_t *event_trigger_data, 1028 uint64_t *event_page_offset, uint32_t *event_slot_index); 1029 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1030 1031 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid, 1032 struct kfd_vm_fault_info *info); 1033 1034 void kfd_signal_reset_event(struct kfd_dev *dev); 1035 1036 void kfd_flush_tlb(struct kfd_process_device *pdd); 1037 1038 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p); 1039 1040 bool kfd_is_locked(void); 1041 1042 /* Compute profile */ 1043 void kfd_inc_compute_active(struct kfd_dev *dev); 1044 void kfd_dec_compute_active(struct kfd_dev *dev); 1045 1046 /* Debugfs */ 1047 #if defined(CONFIG_DEBUG_FS) 1048 1049 void kfd_debugfs_init(void); 1050 void kfd_debugfs_fini(void); 1051 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1052 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1053 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1054 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1055 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1056 int pm_debugfs_runlist(struct seq_file *m, void *data); 1057 1058 int kfd_debugfs_hang_hws(struct kfd_dev *dev); 1059 int pm_debugfs_hang_hws(struct packet_manager *pm); 1060 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm); 1061 1062 #else 1063 1064 static inline void kfd_debugfs_init(void) {} 1065 static inline void kfd_debugfs_fini(void) {} 1066 1067 #endif 1068 1069 #endif 1070