xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision b4bc93bd76d4da32600795cd323c971f00a2e788)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/memremap.h>
29 #include <linux/mutex.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/workqueue.h>
33 #include <linux/spinlock.h>
34 #include <linux/kfd_ioctl.h>
35 #include <linux/idr.h>
36 #include <linux/kfifo.h>
37 #include <linux/seq_file.h>
38 #include <linux/kref.h>
39 #include <linux/sysfs.h>
40 #include <linux/device_cgroup.h>
41 #include <drm/drm_file.h>
42 #include <drm/drm_drv.h>
43 #include <drm/drm_device.h>
44 #include <drm/drm_ioctl.h>
45 #include <kgd_kfd_interface.h>
46 #include <linux/swap.h>
47 
48 #include "amd_shared.h"
49 #include "amdgpu.h"
50 
51 #define KFD_MAX_RING_ENTRY_SIZE	8
52 
53 #define KFD_SYSFS_FILE_MODE 0444
54 
55 /* GPU ID hash width in bits */
56 #define KFD_GPU_ID_HASH_WIDTH 16
57 
58 /* Use upper bits of mmap offset to store KFD driver specific information.
59  * BITS[63:62] - Encode MMAP type
60  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
61  * BITS[45:0]  - MMAP offset value
62  *
63  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
64  *  defines are w.r.t to PAGE_SIZE
65  */
66 #define KFD_MMAP_TYPE_SHIFT	62
67 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
68 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
71 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
72 
73 #define KFD_MMAP_GPU_ID_SHIFT 46
74 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
75 				<< KFD_MMAP_GPU_ID_SHIFT)
76 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
77 				& KFD_MMAP_GPU_ID_MASK)
78 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
79 				>> KFD_MMAP_GPU_ID_SHIFT)
80 
81 /*
82  * When working with cp scheduler we should assign the HIQ manually or via
83  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
84  * definitions for Kaveri. In Kaveri only the first ME queues participates
85  * in the cp scheduling taking that in mind we set the HIQ slot in the
86  * second ME.
87  */
88 #define KFD_CIK_HIQ_PIPE 4
89 #define KFD_CIK_HIQ_QUEUE 0
90 
91 /* Macro for allocating structures */
92 #define kfd_alloc_struct(ptr_to_struct)	\
93 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
94 
95 #define KFD_MAX_NUM_OF_PROCESSES 512
96 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
97 
98 /*
99  * Size of the per-process TBA+TMA buffer: 2 pages
100  *
101  * The first page is the TBA used for the CWSR ISA code. The second
102  * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
103  */
104 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
105 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
106 
107 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
108 	(KFD_MAX_NUM_OF_PROCESSES *			\
109 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
110 
111 #define KFD_KERNEL_QUEUE_SIZE 2048
112 
113 #define KFD_UNMAP_LATENCY_MS	(4000)
114 
115 /*
116  * 512 = 0x200
117  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
118  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
119  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
120  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
121  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
122  */
123 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
124 
125 
126 /*
127  * Kernel module parameter to specify maximum number of supported queues per
128  * device
129  */
130 extern int max_num_of_queues_per_device;
131 
132 
133 /* Kernel module parameter to specify the scheduling policy */
134 extern int sched_policy;
135 
136 /*
137  * Kernel module parameter to specify the maximum process
138  * number per HW scheduler
139  */
140 extern int hws_max_conc_proc;
141 
142 extern int cwsr_enable;
143 
144 /*
145  * Kernel module parameter to specify whether to send sigterm to HSA process on
146  * unhandled exception
147  */
148 extern int send_sigterm;
149 
150 /*
151  * This kernel module is used to simulate large bar machine on non-large bar
152  * enabled machines.
153  */
154 extern int debug_largebar;
155 
156 /*
157  * Ignore CRAT table during KFD initialization, can be used to work around
158  * broken CRAT tables on some AMD systems
159  */
160 extern int ignore_crat;
161 
162 /* Set sh_mem_config.retry_disable on GFX v9 */
163 extern int amdgpu_noretry;
164 
165 /* Halt if HWS hang is detected */
166 extern int halt_if_hws_hang;
167 
168 /* Whether MEC FW support GWS barriers */
169 extern bool hws_gws_support;
170 
171 /* Queue preemption timeout in ms */
172 extern int queue_preemption_timeout_ms;
173 
174 /*
175  * Don't evict process queues on vm fault
176  */
177 extern int amdgpu_no_queue_eviction_on_vm_fault;
178 
179 /* Enable eviction debug messages */
180 extern bool debug_evictions;
181 
182 enum cache_policy {
183 	cache_policy_coherent,
184 	cache_policy_noncoherent
185 };
186 
187 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0])
188 #define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
189 
190 struct kfd_event_interrupt_class {
191 	bool (*interrupt_isr)(struct kfd_dev *dev,
192 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
193 			bool *patched_flag);
194 	void (*interrupt_wq)(struct kfd_dev *dev,
195 			const uint32_t *ih_ring_entry);
196 };
197 
198 struct kfd_device_info {
199 	uint32_t gfx_target_version;
200 	const struct kfd_event_interrupt_class *event_interrupt_class;
201 	unsigned int max_pasid_bits;
202 	unsigned int max_no_of_hqd;
203 	unsigned int doorbell_size;
204 	size_t ih_ring_entry_size;
205 	uint8_t num_of_watch_points;
206 	uint16_t mqd_size_aligned;
207 	bool supports_cwsr;
208 	bool needs_iommu_device;
209 	bool needs_pci_atomics;
210 	uint32_t no_atomic_fw_version;
211 	unsigned int num_sdma_queues_per_engine;
212 };
213 
214 unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev);
215 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev);
216 
217 struct kfd_mem_obj {
218 	uint32_t range_start;
219 	uint32_t range_end;
220 	uint64_t gpu_addr;
221 	uint32_t *cpu_ptr;
222 	void *gtt_mem;
223 };
224 
225 struct kfd_vmid_info {
226 	uint32_t first_vmid_kfd;
227 	uint32_t last_vmid_kfd;
228 	uint32_t vmid_num_kfd;
229 };
230 
231 struct kfd_dev {
232 	struct amdgpu_device *adev;
233 
234 	struct kfd_device_info device_info;
235 	struct pci_dev *pdev;
236 	struct drm_device *ddev;
237 
238 	unsigned int id;		/* topology stub index */
239 
240 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
241 					 * KFD. It is aligned for mapping
242 					 * into user mode
243 					 */
244 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
245 					 * doorbell BAR to the first KFD
246 					 * doorbell in dwords. GFX reserves
247 					 * the segment before this offset.
248 					 */
249 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
250 					   * page used by kernel queue
251 					   */
252 
253 	struct kgd2kfd_shared_resources shared_resources;
254 	struct kfd_vmid_info vm_info;
255 
256 	const struct kfd2kgd_calls *kfd2kgd;
257 	struct mutex doorbell_mutex;
258 	DECLARE_BITMAP(doorbell_available_index,
259 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
260 
261 	void *gtt_mem;
262 	uint64_t gtt_start_gpu_addr;
263 	void *gtt_start_cpu_ptr;
264 	void *gtt_sa_bitmap;
265 	struct mutex gtt_sa_lock;
266 	unsigned int gtt_sa_chunk_size;
267 	unsigned int gtt_sa_num_of_chunks;
268 
269 	/* Interrupts */
270 	struct kfifo ih_fifo;
271 	struct workqueue_struct *ih_wq;
272 	struct work_struct interrupt_work;
273 	spinlock_t interrupt_lock;
274 
275 	/* QCM Device instance */
276 	struct device_queue_manager *dqm;
277 
278 	bool init_complete;
279 	/*
280 	 * Interrupts of interest to KFD are copied
281 	 * from the HW ring into a SW ring.
282 	 */
283 	bool interrupts_active;
284 
285 	/* Debug manager */
286 	struct kfd_dbgmgr *dbgmgr;
287 
288 	/* Firmware versions */
289 	uint16_t mec_fw_version;
290 	uint16_t mec2_fw_version;
291 	uint16_t sdma_fw_version;
292 
293 	/* Maximum process number mapped to HW scheduler */
294 	unsigned int max_proc_per_quantum;
295 
296 	/* CWSR */
297 	bool cwsr_enabled;
298 	const void *cwsr_isa;
299 	unsigned int cwsr_isa_size;
300 
301 	/* xGMI */
302 	uint64_t hive_id;
303 
304 	bool pci_atomic_requested;
305 
306 	/* Use IOMMU v2 flag */
307 	bool use_iommu_v2;
308 
309 	/* SRAM ECC flag */
310 	atomic_t sram_ecc_flag;
311 
312 	/* Compute Profile ref. count */
313 	atomic_t compute_profile;
314 
315 	/* Global GWS resource shared between processes */
316 	void *gws;
317 
318 	/* Clients watching SMI events */
319 	struct list_head smi_clients;
320 	spinlock_t smi_lock;
321 
322 	uint32_t reset_seq_num;
323 
324 	struct ida doorbell_ida;
325 	unsigned int max_doorbell_slices;
326 
327 	int noretry;
328 
329 	/* HMM page migration MEMORY_DEVICE_PRIVATE mapping */
330 	struct dev_pagemap pgmap;
331 };
332 
333 enum kfd_mempool {
334 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
335 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
336 	KFD_MEMPOOL_FRAMEBUFFER = 3,
337 };
338 
339 /* Character device interface */
340 int kfd_chardev_init(void);
341 void kfd_chardev_exit(void);
342 struct device *kfd_chardev(void);
343 
344 /**
345  * enum kfd_unmap_queues_filter - Enum for queue filters.
346  *
347  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
348  *
349  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
350  *						running queues list.
351  *
352  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
353  *						specific process.
354  *
355  */
356 enum kfd_unmap_queues_filter {
357 	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
358 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
359 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
360 	KFD_UNMAP_QUEUES_FILTER_BY_PASID
361 };
362 
363 /**
364  * enum kfd_queue_type - Enum for various queue types.
365  *
366  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
367  *
368  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
369  *
370  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
371  *
372  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
373  *
374  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
375  */
376 enum kfd_queue_type  {
377 	KFD_QUEUE_TYPE_COMPUTE,
378 	KFD_QUEUE_TYPE_SDMA,
379 	KFD_QUEUE_TYPE_HIQ,
380 	KFD_QUEUE_TYPE_DIQ,
381 	KFD_QUEUE_TYPE_SDMA_XGMI
382 };
383 
384 enum kfd_queue_format {
385 	KFD_QUEUE_FORMAT_PM4,
386 	KFD_QUEUE_FORMAT_AQL
387 };
388 
389 enum KFD_QUEUE_PRIORITY {
390 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
391 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
392 };
393 
394 /**
395  * struct queue_properties
396  *
397  * @type: The queue type.
398  *
399  * @queue_id: Queue identifier.
400  *
401  * @queue_address: Queue ring buffer address.
402  *
403  * @queue_size: Queue ring buffer size.
404  *
405  * @priority: Defines the queue priority relative to other queues in the
406  * process.
407  * This is just an indication and HW scheduling may override the priority as
408  * necessary while keeping the relative prioritization.
409  * the priority granularity is from 0 to f which f is the highest priority.
410  * currently all queues are initialized with the highest priority.
411  *
412  * @queue_percent: This field is partially implemented and currently a zero in
413  * this field defines that the queue is non active.
414  *
415  * @read_ptr: User space address which points to the number of dwords the
416  * cp read from the ring buffer. This field updates automatically by the H/W.
417  *
418  * @write_ptr: Defines the number of dwords written to the ring buffer.
419  *
420  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
421  * buffer. This field should be similar to write_ptr and the user should
422  * update this field after updating the write_ptr.
423  *
424  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
425  *
426  * @is_interop: Defines if this is a interop queue. Interop queue means that
427  * the queue can access both graphics and compute resources.
428  *
429  * @is_evicted: Defines if the queue is evicted. Only active queues
430  * are evicted, rendering them inactive.
431  *
432  * @is_active: Defines if the queue is active or not. @is_active and
433  * @is_evicted are protected by the DQM lock.
434  *
435  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
436  * @is_gws should be protected by the DQM lock, since changing it can yield the
437  * possibility of updating DQM state on number of GWS queues.
438  *
439  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
440  * of the queue.
441  *
442  * This structure represents the queue properties for each queue no matter if
443  * it's user mode or kernel mode queue.
444  *
445  */
446 struct queue_properties {
447 	enum kfd_queue_type type;
448 	enum kfd_queue_format format;
449 	unsigned int queue_id;
450 	uint64_t queue_address;
451 	uint64_t  queue_size;
452 	uint32_t priority;
453 	uint32_t queue_percent;
454 	uint32_t *read_ptr;
455 	uint32_t *write_ptr;
456 	void __iomem *doorbell_ptr;
457 	uint32_t doorbell_off;
458 	bool is_interop;
459 	bool is_evicted;
460 	bool is_active;
461 	bool is_gws;
462 	/* Not relevant for user mode queues in cp scheduling */
463 	unsigned int vmid;
464 	/* Relevant only for sdma queues*/
465 	uint32_t sdma_engine_id;
466 	uint32_t sdma_queue_id;
467 	uint32_t sdma_vm_addr;
468 	/* Relevant only for VI */
469 	uint64_t eop_ring_buffer_address;
470 	uint32_t eop_ring_buffer_size;
471 	uint64_t ctx_save_restore_area_address;
472 	uint32_t ctx_save_restore_area_size;
473 	uint32_t ctl_stack_size;
474 	uint64_t tba_addr;
475 	uint64_t tma_addr;
476 };
477 
478 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
479 			    (q).queue_address != 0 &&	\
480 			    (q).queue_percent > 0 &&	\
481 			    !(q).is_evicted)
482 
483 enum mqd_update_flag {
484 	UPDATE_FLAG_CU_MASK = 0,
485 };
486 
487 struct mqd_update_info {
488 	union {
489 		struct {
490 			uint32_t count; /* Must be a multiple of 32 */
491 			uint32_t *ptr;
492 		} cu_mask;
493 	};
494 	enum mqd_update_flag update_flag;
495 };
496 
497 /**
498  * struct queue
499  *
500  * @list: Queue linked list.
501  *
502  * @mqd: The queue MQD (memory queue descriptor).
503  *
504  * @mqd_mem_obj: The MQD local gpu memory object.
505  *
506  * @gart_mqd_addr: The MQD gart mc address.
507  *
508  * @properties: The queue properties.
509  *
510  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
511  *	 that the queue should be executed on.
512  *
513  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
514  *	  id.
515  *
516  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
517  *
518  * @process: The kfd process that created this queue.
519  *
520  * @device: The kfd device that created this queue.
521  *
522  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
523  * otherwise.
524  *
525  * This structure represents user mode compute queues.
526  * It contains all the necessary data to handle such queues.
527  *
528  */
529 
530 struct queue {
531 	struct list_head list;
532 	void *mqd;
533 	struct kfd_mem_obj *mqd_mem_obj;
534 	uint64_t gart_mqd_addr;
535 	struct queue_properties properties;
536 
537 	uint32_t mec;
538 	uint32_t pipe;
539 	uint32_t queue;
540 
541 	unsigned int sdma_id;
542 	unsigned int doorbell_id;
543 
544 	struct kfd_process	*process;
545 	struct kfd_dev		*device;
546 	void *gws;
547 
548 	/* procfs */
549 	struct kobject kobj;
550 };
551 
552 enum KFD_MQD_TYPE {
553 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
554 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
555 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
556 	KFD_MQD_TYPE_DIQ,		/* for diq */
557 	KFD_MQD_TYPE_MAX
558 };
559 
560 enum KFD_PIPE_PRIORITY {
561 	KFD_PIPE_PRIORITY_CS_LOW = 0,
562 	KFD_PIPE_PRIORITY_CS_MEDIUM,
563 	KFD_PIPE_PRIORITY_CS_HIGH
564 };
565 
566 struct scheduling_resources {
567 	unsigned int vmid_mask;
568 	enum kfd_queue_type type;
569 	uint64_t queue_mask;
570 	uint64_t gws_mask;
571 	uint32_t oac_mask;
572 	uint32_t gds_heap_base;
573 	uint32_t gds_heap_size;
574 };
575 
576 struct process_queue_manager {
577 	/* data */
578 	struct kfd_process	*process;
579 	struct list_head	queues;
580 	unsigned long		*queue_slot_bitmap;
581 };
582 
583 struct qcm_process_device {
584 	/* The Device Queue Manager that owns this data */
585 	struct device_queue_manager *dqm;
586 	struct process_queue_manager *pqm;
587 	/* Queues list */
588 	struct list_head queues_list;
589 	struct list_head priv_queue_list;
590 
591 	unsigned int queue_count;
592 	unsigned int vmid;
593 	bool is_debug;
594 	unsigned int evicted; /* eviction counter, 0=active */
595 
596 	/* This flag tells if we should reset all wavefronts on
597 	 * process termination
598 	 */
599 	bool reset_wavefronts;
600 
601 	/* This flag tells us if this process has a GWS-capable
602 	 * queue that will be mapped into the runlist. It's
603 	 * possible to request a GWS BO, but not have the queue
604 	 * currently mapped, and this changes how the MAP_PROCESS
605 	 * PM4 packet is configured.
606 	 */
607 	bool mapped_gws_queue;
608 
609 	/* All the memory management data should be here too */
610 	uint64_t gds_context_area;
611 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
612 	uint64_t page_table_base;
613 	uint32_t sh_mem_config;
614 	uint32_t sh_mem_bases;
615 	uint32_t sh_mem_ape1_base;
616 	uint32_t sh_mem_ape1_limit;
617 	uint32_t gds_size;
618 	uint32_t num_gws;
619 	uint32_t num_oac;
620 	uint32_t sh_hidden_private_base;
621 
622 	/* CWSR memory */
623 	struct kgd_mem *cwsr_mem;
624 	void *cwsr_kaddr;
625 	uint64_t cwsr_base;
626 	uint64_t tba_addr;
627 	uint64_t tma_addr;
628 
629 	/* IB memory */
630 	struct kgd_mem *ib_mem;
631 	uint64_t ib_base;
632 	void *ib_kaddr;
633 
634 	/* doorbell resources per process per device */
635 	unsigned long *doorbell_bitmap;
636 };
637 
638 /* KFD Memory Eviction */
639 
640 /* Approx. wait time before attempting to restore evicted BOs */
641 #define PROCESS_RESTORE_TIME_MS 100
642 /* Approx. back off time if restore fails due to lack of memory */
643 #define PROCESS_BACK_OFF_TIME_MS 100
644 /* Approx. time before evicting the process again */
645 #define PROCESS_ACTIVE_TIME_MS 10
646 
647 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
648  * idr_handle in the least significant 4 bytes
649  */
650 #define MAKE_HANDLE(gpu_id, idr_handle) \
651 	(((uint64_t)(gpu_id) << 32) + idr_handle)
652 #define GET_GPU_ID(handle) (handle >> 32)
653 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
654 
655 enum kfd_pdd_bound {
656 	PDD_UNBOUND = 0,
657 	PDD_BOUND,
658 	PDD_BOUND_SUSPENDED,
659 };
660 
661 #define MAX_SYSFS_FILENAME_LEN 15
662 
663 /*
664  * SDMA counter runs at 100MHz frequency.
665  * We display SDMA activity in microsecond granularity in sysfs.
666  * As a result, the divisor is 100.
667  */
668 #define SDMA_ACTIVITY_DIVISOR  100
669 
670 /* Data that is per-process-per device. */
671 struct kfd_process_device {
672 	/* The device that owns this data. */
673 	struct kfd_dev *dev;
674 
675 	/* The process that owns this kfd_process_device. */
676 	struct kfd_process *process;
677 
678 	/* per-process-per device QCM data structure */
679 	struct qcm_process_device qpd;
680 
681 	/*Apertures*/
682 	uint64_t lds_base;
683 	uint64_t lds_limit;
684 	uint64_t gpuvm_base;
685 	uint64_t gpuvm_limit;
686 	uint64_t scratch_base;
687 	uint64_t scratch_limit;
688 
689 	/* VM context for GPUVM allocations */
690 	struct file *drm_file;
691 	void *drm_priv;
692 
693 	/* GPUVM allocations storage */
694 	struct idr alloc_idr;
695 
696 	/* Flag used to tell the pdd has dequeued from the dqm.
697 	 * This is used to prevent dev->dqm->ops.process_termination() from
698 	 * being called twice when it is already called in IOMMU callback
699 	 * function.
700 	 */
701 	bool already_dequeued;
702 	bool runtime_inuse;
703 
704 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
705 	enum kfd_pdd_bound bound;
706 
707 	/* VRAM usage */
708 	uint64_t vram_usage;
709 	struct attribute attr_vram;
710 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
711 
712 	/* SDMA activity tracking */
713 	uint64_t sdma_past_activity_counter;
714 	struct attribute attr_sdma;
715 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
716 
717 	/* Eviction activity tracking */
718 	uint64_t last_evict_timestamp;
719 	atomic64_t evict_duration_counter;
720 	struct attribute attr_evict;
721 
722 	struct kobject *kobj_stats;
723 	unsigned int doorbell_index;
724 
725 	/*
726 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
727 	 * that is associated with device encoded by "this" struct instance. The
728 	 * value reflects CU usage by all of the waves launched by this process
729 	 * on this device. A very important property of occupancy parameter is
730 	 * that its value is a snapshot of current use.
731 	 *
732 	 * Following is to be noted regarding how this parameter is reported:
733 	 *
734 	 *  The number of waves that a CU can launch is limited by couple of
735 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
736 	 *  that is part of every device definition. For GFX9 devices this
737 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
738 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
739 	 *  when they do use scratch memory. This could change for future
740 	 *  devices and therefore this example should be considered as a guide.
741 	 *
742 	 *  All CU's of a device are available for the process. This may not be true
743 	 *  under certain conditions - e.g. CU masking.
744 	 *
745 	 *  Finally number of CU's that are occupied by a process is affected by both
746 	 *  number of CU's a device has along with number of other competing processes
747 	 */
748 	struct attribute attr_cu_occupancy;
749 
750 	/* sysfs counters for GPU retry fault and page migration tracking */
751 	struct kobject *kobj_counters;
752 	struct attribute attr_faults;
753 	struct attribute attr_page_in;
754 	struct attribute attr_page_out;
755 	uint64_t faults;
756 	uint64_t page_in;
757 	uint64_t page_out;
758 };
759 
760 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
761 
762 struct svm_range_list {
763 	struct mutex			lock;
764 	struct rb_root_cached		objects;
765 	struct list_head		list;
766 	struct work_struct		deferred_list_work;
767 	struct list_head		deferred_range_list;
768 	spinlock_t			deferred_list_lock;
769 	atomic_t			evicted_ranges;
770 	atomic_t			drain_pagefaults;
771 	struct delayed_work		restore_work;
772 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
773 	struct task_struct 		*faulting_task;
774 };
775 
776 /* Process data */
777 struct kfd_process {
778 	/*
779 	 * kfd_process are stored in an mm_struct*->kfd_process*
780 	 * hash table (kfd_processes in kfd_process.c)
781 	 */
782 	struct hlist_node kfd_processes;
783 
784 	/*
785 	 * Opaque pointer to mm_struct. We don't hold a reference to
786 	 * it so it should never be dereferenced from here. This is
787 	 * only used for looking up processes by their mm.
788 	 */
789 	void *mm;
790 
791 	struct kref ref;
792 	struct work_struct release_work;
793 
794 	struct mutex mutex;
795 
796 	/*
797 	 * In any process, the thread that started main() is the lead
798 	 * thread and outlives the rest.
799 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
800 	 * It can also be used for safely getting a reference to the
801 	 * mm_struct of the process.
802 	 */
803 	struct task_struct *lead_thread;
804 
805 	/* We want to receive a notification when the mm_struct is destroyed */
806 	struct mmu_notifier mmu_notifier;
807 
808 	u32 pasid;
809 
810 	/*
811 	 * Array of kfd_process_device pointers,
812 	 * one for each device the process is using.
813 	 */
814 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
815 	uint32_t n_pdds;
816 
817 	struct process_queue_manager pqm;
818 
819 	/*Is the user space process 32 bit?*/
820 	bool is_32bit_user_mode;
821 
822 	/* Event-related data */
823 	struct mutex event_mutex;
824 	/* Event ID allocator and lookup */
825 	struct idr event_idr;
826 	/* Event page */
827 	u64 signal_handle;
828 	struct kfd_signal_page *signal_page;
829 	size_t signal_mapped_size;
830 	size_t signal_event_count;
831 	bool signal_event_limit_reached;
832 
833 	/* Information used for memory eviction */
834 	void *kgd_process_info;
835 	/* Eviction fence that is attached to all the BOs of this process. The
836 	 * fence will be triggered during eviction and new one will be created
837 	 * during restore
838 	 */
839 	struct dma_fence *ef;
840 
841 	/* Work items for evicting and restoring BOs */
842 	struct delayed_work eviction_work;
843 	struct delayed_work restore_work;
844 	/* seqno of the last scheduled eviction */
845 	unsigned int last_eviction_seqno;
846 	/* Approx. the last timestamp (in jiffies) when the process was
847 	 * restored after an eviction
848 	 */
849 	unsigned long last_restore_timestamp;
850 
851 	/* Kobj for our procfs */
852 	struct kobject *kobj;
853 	struct kobject *kobj_queues;
854 	struct attribute attr_pasid;
855 
856 	/* shared virtual memory registered by this process */
857 	struct svm_range_list svms;
858 
859 	bool xnack_enabled;
860 
861 	atomic_t poison;
862 };
863 
864 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
865 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
866 extern struct srcu_struct kfd_processes_srcu;
867 
868 /**
869  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
870  *
871  * @filep: pointer to file structure.
872  * @p: amdkfd process pointer.
873  * @data: pointer to arg that was copied from user.
874  *
875  * Return: returns ioctl completion code.
876  */
877 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
878 				void *data);
879 
880 struct amdkfd_ioctl_desc {
881 	unsigned int cmd;
882 	int flags;
883 	amdkfd_ioctl_t *func;
884 	unsigned int cmd_drv;
885 	const char *name;
886 };
887 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
888 
889 int kfd_process_create_wq(void);
890 void kfd_process_destroy_wq(void);
891 struct kfd_process *kfd_create_process(struct file *filep);
892 struct kfd_process *kfd_get_process(const struct task_struct *);
893 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
894 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
895 
896 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
897 int kfd_process_gpuid_from_adev(struct kfd_process *p,
898 			       struct amdgpu_device *adev, uint32_t *gpuid,
899 			       uint32_t *gpuidx);
900 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
901 				uint32_t gpuidx, uint32_t *gpuid) {
902 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
903 }
904 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
905 				struct kfd_process *p, uint32_t gpuidx) {
906 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
907 }
908 
909 void kfd_unref_process(struct kfd_process *p);
910 int kfd_process_evict_queues(struct kfd_process *p);
911 int kfd_process_restore_queues(struct kfd_process *p);
912 void kfd_suspend_all_processes(void);
913 int kfd_resume_all_processes(void);
914 
915 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
916 			       struct file *drm_file);
917 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
918 						struct kfd_process *p);
919 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
920 							struct kfd_process *p);
921 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
922 							struct kfd_process *p);
923 
924 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
925 
926 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
927 			  struct vm_area_struct *vma);
928 
929 /* KFD process API for creating and translating handles */
930 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
931 					void *mem);
932 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
933 					int handle);
934 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
935 					int handle);
936 
937 /* PASIDs */
938 int kfd_pasid_init(void);
939 void kfd_pasid_exit(void);
940 bool kfd_set_pasid_limit(unsigned int new_limit);
941 unsigned int kfd_get_pasid_limit(void);
942 u32 kfd_pasid_alloc(void);
943 void kfd_pasid_free(u32 pasid);
944 
945 /* Doorbells */
946 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
947 int kfd_doorbell_init(struct kfd_dev *kfd);
948 void kfd_doorbell_fini(struct kfd_dev *kfd);
949 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
950 		      struct vm_area_struct *vma);
951 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
952 					unsigned int *doorbell_off);
953 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
954 u32 read_kernel_doorbell(u32 __iomem *db);
955 void write_kernel_doorbell(void __iomem *db, u32 value);
956 void write_kernel_doorbell64(void __iomem *db, u64 value);
957 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
958 					struct kfd_process_device *pdd,
959 					unsigned int doorbell_id);
960 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
961 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
962 				unsigned int *doorbell_index);
963 void kfd_free_process_doorbells(struct kfd_dev *kfd,
964 				unsigned int doorbell_index);
965 /* GTT Sub-Allocator */
966 
967 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
968 			struct kfd_mem_obj **mem_obj);
969 
970 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
971 
972 extern struct device *kfd_device;
973 
974 /* KFD's procfs */
975 void kfd_procfs_init(void);
976 void kfd_procfs_shutdown(void);
977 int kfd_procfs_add_queue(struct queue *q);
978 void kfd_procfs_del_queue(struct queue *q);
979 
980 /* Topology */
981 int kfd_topology_init(void);
982 void kfd_topology_shutdown(void);
983 int kfd_topology_add_device(struct kfd_dev *gpu);
984 int kfd_topology_remove_device(struct kfd_dev *gpu);
985 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
986 						uint32_t proximity_domain);
987 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
988 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
989 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
990 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev);
991 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
992 int kfd_numa_node_to_apic_id(int numa_node_id);
993 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
994 
995 /* Interrupts */
996 int kfd_interrupt_init(struct kfd_dev *dev);
997 void kfd_interrupt_exit(struct kfd_dev *dev);
998 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
999 bool interrupt_is_wanted(struct kfd_dev *dev,
1000 				const uint32_t *ih_ring_entry,
1001 				uint32_t *patched_ihre, bool *flag);
1002 
1003 /* amdkfd Apertures */
1004 int kfd_init_apertures(struct kfd_process *process);
1005 
1006 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1007 				  uint64_t tba_addr,
1008 				  uint64_t tma_addr);
1009 
1010 /* Queue Context Management */
1011 int init_queue(struct queue **q, const struct queue_properties *properties);
1012 void uninit_queue(struct queue *q);
1013 void print_queue_properties(struct queue_properties *q);
1014 void print_queue(struct queue *q);
1015 
1016 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1017 		struct kfd_dev *dev);
1018 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
1019 		struct kfd_dev *dev);
1020 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1021 		struct kfd_dev *dev);
1022 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1023 		struct kfd_dev *dev);
1024 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1025 		struct kfd_dev *dev);
1026 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1027 		struct kfd_dev *dev);
1028 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
1029 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1030 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
1031 					enum kfd_queue_type type);
1032 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1033 int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid);
1034 
1035 /* Process Queue Manager */
1036 struct process_queue_node {
1037 	struct queue *q;
1038 	struct kernel_queue *kq;
1039 	struct list_head process_queue_list;
1040 };
1041 
1042 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1043 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1044 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1045 void pqm_uninit(struct process_queue_manager *pqm);
1046 int pqm_create_queue(struct process_queue_manager *pqm,
1047 			    struct kfd_dev *dev,
1048 			    struct file *f,
1049 			    struct queue_properties *properties,
1050 			    unsigned int *qid,
1051 			    uint32_t *p_doorbell_offset_in_process);
1052 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1053 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1054 			struct queue_properties *p);
1055 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1056 			struct mqd_update_info *minfo);
1057 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1058 			void *gws);
1059 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1060 						unsigned int qid);
1061 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1062 						unsigned int qid);
1063 int pqm_get_wave_state(struct process_queue_manager *pqm,
1064 		       unsigned int qid,
1065 		       void __user *ctl_stack,
1066 		       u32 *ctl_stack_used_size,
1067 		       u32 *save_area_used_size);
1068 
1069 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1070 			      uint64_t fence_value,
1071 			      unsigned int timeout_ms);
1072 
1073 /* Packet Manager */
1074 
1075 #define KFD_FENCE_COMPLETED (100)
1076 #define KFD_FENCE_INIT   (10)
1077 
1078 struct packet_manager {
1079 	struct device_queue_manager *dqm;
1080 	struct kernel_queue *priv_queue;
1081 	struct mutex lock;
1082 	bool allocated;
1083 	struct kfd_mem_obj *ib_buffer_obj;
1084 	unsigned int ib_size_bytes;
1085 	bool is_over_subscription;
1086 
1087 	const struct packet_manager_funcs *pmf;
1088 };
1089 
1090 struct packet_manager_funcs {
1091 	/* Support ASIC-specific packet formats for PM4 packets */
1092 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1093 			struct qcm_process_device *qpd);
1094 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1095 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1096 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1097 			struct scheduling_resources *res);
1098 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1099 			struct queue *q, bool is_static);
1100 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1101 			enum kfd_queue_type type,
1102 			enum kfd_unmap_queues_filter mode,
1103 			uint32_t filter_param, bool reset,
1104 			unsigned int sdma_engine);
1105 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1106 			uint64_t fence_address,	uint64_t fence_value);
1107 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1108 
1109 	/* Packet sizes */
1110 	int map_process_size;
1111 	int runlist_size;
1112 	int set_resources_size;
1113 	int map_queues_size;
1114 	int unmap_queues_size;
1115 	int query_status_size;
1116 	int release_mem_size;
1117 };
1118 
1119 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1120 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1121 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1122 
1123 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1124 void pm_uninit(struct packet_manager *pm, bool hanging);
1125 int pm_send_set_resources(struct packet_manager *pm,
1126 				struct scheduling_resources *res);
1127 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1128 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1129 				uint64_t fence_value);
1130 
1131 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1132 			enum kfd_unmap_queues_filter mode,
1133 			uint32_t filter_param, bool reset,
1134 			unsigned int sdma_engine);
1135 
1136 void pm_release_ib(struct packet_manager *pm);
1137 
1138 /* Following PM funcs can be shared among VI and AI */
1139 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1140 
1141 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1142 
1143 /* Events */
1144 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1145 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1146 
1147 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1148 
1149 void kfd_event_init_process(struct kfd_process *p);
1150 void kfd_event_free_process(struct kfd_process *p);
1151 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1152 int kfd_wait_on_events(struct kfd_process *p,
1153 		       uint32_t num_events, void __user *data,
1154 		       bool all, uint32_t user_timeout_ms,
1155 		       uint32_t *wait_result);
1156 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1157 				uint32_t valid_id_bits);
1158 void kfd_signal_iommu_event(struct kfd_dev *dev,
1159 			    u32 pasid, unsigned long address,
1160 			    bool is_write_requested, bool is_execute_requested);
1161 void kfd_signal_hw_exception_event(u32 pasid);
1162 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1163 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1164 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1165 		       uint64_t size);
1166 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1167 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1168 		     uint32_t *event_id, uint32_t *event_trigger_data,
1169 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1170 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1171 
1172 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1173 				struct kfd_vm_fault_info *info);
1174 
1175 void kfd_signal_reset_event(struct kfd_dev *dev);
1176 
1177 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid);
1178 
1179 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1180 
1181 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1182 
1183 bool kfd_is_locked(void);
1184 
1185 /* Compute profile */
1186 void kfd_inc_compute_active(struct kfd_dev *dev);
1187 void kfd_dec_compute_active(struct kfd_dev *dev);
1188 
1189 /* Cgroup Support */
1190 /* Check with device cgroup if @kfd device is accessible */
1191 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1192 {
1193 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1194 	struct drm_device *ddev = kfd->ddev;
1195 
1196 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1197 					  ddev->render->index,
1198 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1199 #else
1200 	return 0;
1201 #endif
1202 }
1203 
1204 /* Debugfs */
1205 #if defined(CONFIG_DEBUG_FS)
1206 
1207 void kfd_debugfs_init(void);
1208 void kfd_debugfs_fini(void);
1209 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1210 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1211 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1212 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1213 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1214 int pm_debugfs_runlist(struct seq_file *m, void *data);
1215 
1216 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1217 int pm_debugfs_hang_hws(struct packet_manager *pm);
1218 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1219 
1220 #else
1221 
1222 static inline void kfd_debugfs_init(void) {}
1223 static inline void kfd_debugfs_fini(void) {}
1224 
1225 #endif
1226 
1227 #endif
1228