1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #ifndef KFD_PRIV_H_INCLUDED 24 #define KFD_PRIV_H_INCLUDED 25 26 #include <linux/hashtable.h> 27 #include <linux/mmu_notifier.h> 28 #include <linux/memremap.h> 29 #include <linux/mutex.h> 30 #include <linux/types.h> 31 #include <linux/atomic.h> 32 #include <linux/workqueue.h> 33 #include <linux/spinlock.h> 34 #include <linux/kfd_ioctl.h> 35 #include <linux/idr.h> 36 #include <linux/kfifo.h> 37 #include <linux/seq_file.h> 38 #include <linux/kref.h> 39 #include <linux/sysfs.h> 40 #include <linux/device_cgroup.h> 41 #include <drm/drm_file.h> 42 #include <drm/drm_drv.h> 43 #include <drm/drm_device.h> 44 #include <drm/drm_ioctl.h> 45 #include <kgd_kfd_interface.h> 46 #include <linux/swap.h> 47 48 #include "amd_shared.h" 49 #include "amdgpu.h" 50 51 #define KFD_MAX_RING_ENTRY_SIZE 8 52 53 #define KFD_SYSFS_FILE_MODE 0444 54 55 /* GPU ID hash width in bits */ 56 #define KFD_GPU_ID_HASH_WIDTH 16 57 58 /* Use upper bits of mmap offset to store KFD driver specific information. 59 * BITS[63:62] - Encode MMAP type 60 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 61 * BITS[45:0] - MMAP offset value 62 * 63 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 64 * defines are w.r.t to PAGE_SIZE 65 */ 66 #define KFD_MMAP_TYPE_SHIFT 62 67 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 68 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 69 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 70 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 71 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 72 73 #define KFD_MMAP_GPU_ID_SHIFT 46 74 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 75 << KFD_MMAP_GPU_ID_SHIFT) 76 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 77 & KFD_MMAP_GPU_ID_MASK) 78 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 79 >> KFD_MMAP_GPU_ID_SHIFT) 80 81 /* 82 * When working with cp scheduler we should assign the HIQ manually or via 83 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 84 * definitions for Kaveri. In Kaveri only the first ME queues participates 85 * in the cp scheduling taking that in mind we set the HIQ slot in the 86 * second ME. 87 */ 88 #define KFD_CIK_HIQ_PIPE 4 89 #define KFD_CIK_HIQ_QUEUE 0 90 91 /* Macro for allocating structures */ 92 #define kfd_alloc_struct(ptr_to_struct) \ 93 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 94 95 #define KFD_MAX_NUM_OF_PROCESSES 512 96 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 97 98 /* 99 * Size of the per-process TBA+TMA buffer: 2 pages 100 * 101 * The first page is the TBA used for the CWSR ISA code. The second 102 * page is used as TMA for user-mode trap handler setup in daisy-chain mode. 103 */ 104 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 105 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 106 107 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 108 (KFD_MAX_NUM_OF_PROCESSES * \ 109 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 110 111 #define KFD_KERNEL_QUEUE_SIZE 2048 112 113 #define KFD_UNMAP_LATENCY_MS (4000) 114 115 /* 116 * 512 = 0x200 117 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 118 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 119 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 120 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 121 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 122 */ 123 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 124 125 126 /* 127 * Kernel module parameter to specify maximum number of supported queues per 128 * device 129 */ 130 extern int max_num_of_queues_per_device; 131 132 133 /* Kernel module parameter to specify the scheduling policy */ 134 extern int sched_policy; 135 136 /* 137 * Kernel module parameter to specify the maximum process 138 * number per HW scheduler 139 */ 140 extern int hws_max_conc_proc; 141 142 extern int cwsr_enable; 143 144 /* 145 * Kernel module parameter to specify whether to send sigterm to HSA process on 146 * unhandled exception 147 */ 148 extern int send_sigterm; 149 150 /* 151 * This kernel module is used to simulate large bar machine on non-large bar 152 * enabled machines. 153 */ 154 extern int debug_largebar; 155 156 /* 157 * Ignore CRAT table during KFD initialization, can be used to work around 158 * broken CRAT tables on some AMD systems 159 */ 160 extern int ignore_crat; 161 162 /* Set sh_mem_config.retry_disable on GFX v9 */ 163 extern int amdgpu_noretry; 164 165 /* Halt if HWS hang is detected */ 166 extern int halt_if_hws_hang; 167 168 /* Whether MEC FW support GWS barriers */ 169 extern bool hws_gws_support; 170 171 /* Queue preemption timeout in ms */ 172 extern int queue_preemption_timeout_ms; 173 174 /* 175 * Don't evict process queues on vm fault 176 */ 177 extern int amdgpu_no_queue_eviction_on_vm_fault; 178 179 /* Enable eviction debug messages */ 180 extern bool debug_evictions; 181 182 enum cache_policy { 183 cache_policy_coherent, 184 cache_policy_noncoherent 185 }; 186 187 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0]) 188 #define KFD_IS_SOC15(dev) ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1))) 189 190 struct kfd_event_interrupt_class { 191 bool (*interrupt_isr)(struct kfd_dev *dev, 192 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 193 bool *patched_flag); 194 void (*interrupt_wq)(struct kfd_dev *dev, 195 const uint32_t *ih_ring_entry); 196 }; 197 198 struct kfd_device_info { 199 uint32_t gfx_target_version; 200 const struct kfd_event_interrupt_class *event_interrupt_class; 201 unsigned int max_pasid_bits; 202 unsigned int max_no_of_hqd; 203 unsigned int doorbell_size; 204 size_t ih_ring_entry_size; 205 uint8_t num_of_watch_points; 206 uint16_t mqd_size_aligned; 207 bool supports_cwsr; 208 bool needs_iommu_device; 209 bool needs_pci_atomics; 210 uint32_t no_atomic_fw_version; 211 unsigned int num_sdma_queues_per_engine; 212 }; 213 214 unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev); 215 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev); 216 217 struct kfd_mem_obj { 218 uint32_t range_start; 219 uint32_t range_end; 220 uint64_t gpu_addr; 221 uint32_t *cpu_ptr; 222 void *gtt_mem; 223 }; 224 225 struct kfd_vmid_info { 226 uint32_t first_vmid_kfd; 227 uint32_t last_vmid_kfd; 228 uint32_t vmid_num_kfd; 229 }; 230 231 struct kfd_dev { 232 struct amdgpu_device *adev; 233 234 struct kfd_device_info device_info; 235 struct pci_dev *pdev; 236 struct drm_device *ddev; 237 238 unsigned int id; /* topology stub index */ 239 240 phys_addr_t doorbell_base; /* Start of actual doorbells used by 241 * KFD. It is aligned for mapping 242 * into user mode 243 */ 244 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI 245 * doorbell BAR to the first KFD 246 * doorbell in dwords. GFX reserves 247 * the segment before this offset. 248 */ 249 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 250 * page used by kernel queue 251 */ 252 253 struct kgd2kfd_shared_resources shared_resources; 254 struct kfd_vmid_info vm_info; 255 256 const struct kfd2kgd_calls *kfd2kgd; 257 struct mutex doorbell_mutex; 258 DECLARE_BITMAP(doorbell_available_index, 259 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 260 261 void *gtt_mem; 262 uint64_t gtt_start_gpu_addr; 263 void *gtt_start_cpu_ptr; 264 void *gtt_sa_bitmap; 265 struct mutex gtt_sa_lock; 266 unsigned int gtt_sa_chunk_size; 267 unsigned int gtt_sa_num_of_chunks; 268 269 /* Interrupts */ 270 struct kfifo ih_fifo; 271 struct workqueue_struct *ih_wq; 272 struct work_struct interrupt_work; 273 spinlock_t interrupt_lock; 274 275 /* QCM Device instance */ 276 struct device_queue_manager *dqm; 277 278 bool init_complete; 279 /* 280 * Interrupts of interest to KFD are copied 281 * from the HW ring into a SW ring. 282 */ 283 bool interrupts_active; 284 285 /* Debug manager */ 286 struct kfd_dbgmgr *dbgmgr; 287 288 /* Firmware versions */ 289 uint16_t mec_fw_version; 290 uint16_t mec2_fw_version; 291 uint16_t sdma_fw_version; 292 293 /* Maximum process number mapped to HW scheduler */ 294 unsigned int max_proc_per_quantum; 295 296 /* CWSR */ 297 bool cwsr_enabled; 298 const void *cwsr_isa; 299 unsigned int cwsr_isa_size; 300 301 /* xGMI */ 302 uint64_t hive_id; 303 304 bool pci_atomic_requested; 305 306 /* Use IOMMU v2 flag */ 307 bool use_iommu_v2; 308 309 /* SRAM ECC flag */ 310 atomic_t sram_ecc_flag; 311 312 /* Compute Profile ref. count */ 313 atomic_t compute_profile; 314 315 /* Global GWS resource shared between processes */ 316 void *gws; 317 318 /* Clients watching SMI events */ 319 struct list_head smi_clients; 320 spinlock_t smi_lock; 321 322 uint32_t reset_seq_num; 323 324 struct ida doorbell_ida; 325 unsigned int max_doorbell_slices; 326 327 int noretry; 328 329 /* HMM page migration MEMORY_DEVICE_PRIVATE mapping */ 330 struct dev_pagemap pgmap; 331 }; 332 333 enum kfd_mempool { 334 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 335 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 336 KFD_MEMPOOL_FRAMEBUFFER = 3, 337 }; 338 339 /* Character device interface */ 340 int kfd_chardev_init(void); 341 void kfd_chardev_exit(void); 342 struct device *kfd_chardev(void); 343 344 /** 345 * enum kfd_unmap_queues_filter - Enum for queue filters. 346 * 347 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue. 348 * 349 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 350 * running queues list. 351 * 352 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 353 * specific process. 354 * 355 */ 356 enum kfd_unmap_queues_filter { 357 KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE, 358 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 359 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 360 KFD_UNMAP_QUEUES_FILTER_BY_PASID 361 }; 362 363 /** 364 * enum kfd_queue_type - Enum for various queue types. 365 * 366 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 367 * 368 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type. 369 * 370 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 371 * 372 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 373 * 374 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface. 375 */ 376 enum kfd_queue_type { 377 KFD_QUEUE_TYPE_COMPUTE, 378 KFD_QUEUE_TYPE_SDMA, 379 KFD_QUEUE_TYPE_HIQ, 380 KFD_QUEUE_TYPE_DIQ, 381 KFD_QUEUE_TYPE_SDMA_XGMI 382 }; 383 384 enum kfd_queue_format { 385 KFD_QUEUE_FORMAT_PM4, 386 KFD_QUEUE_FORMAT_AQL 387 }; 388 389 enum KFD_QUEUE_PRIORITY { 390 KFD_QUEUE_PRIORITY_MINIMUM = 0, 391 KFD_QUEUE_PRIORITY_MAXIMUM = 15 392 }; 393 394 /** 395 * struct queue_properties 396 * 397 * @type: The queue type. 398 * 399 * @queue_id: Queue identifier. 400 * 401 * @queue_address: Queue ring buffer address. 402 * 403 * @queue_size: Queue ring buffer size. 404 * 405 * @priority: Defines the queue priority relative to other queues in the 406 * process. 407 * This is just an indication and HW scheduling may override the priority as 408 * necessary while keeping the relative prioritization. 409 * the priority granularity is from 0 to f which f is the highest priority. 410 * currently all queues are initialized with the highest priority. 411 * 412 * @queue_percent: This field is partially implemented and currently a zero in 413 * this field defines that the queue is non active. 414 * 415 * @read_ptr: User space address which points to the number of dwords the 416 * cp read from the ring buffer. This field updates automatically by the H/W. 417 * 418 * @write_ptr: Defines the number of dwords written to the ring buffer. 419 * 420 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring 421 * buffer. This field should be similar to write_ptr and the user should 422 * update this field after updating the write_ptr. 423 * 424 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 425 * 426 * @is_interop: Defines if this is a interop queue. Interop queue means that 427 * the queue can access both graphics and compute resources. 428 * 429 * @is_evicted: Defines if the queue is evicted. Only active queues 430 * are evicted, rendering them inactive. 431 * 432 * @is_active: Defines if the queue is active or not. @is_active and 433 * @is_evicted are protected by the DQM lock. 434 * 435 * @is_gws: Defines if the queue has been updated to be GWS-capable or not. 436 * @is_gws should be protected by the DQM lock, since changing it can yield the 437 * possibility of updating DQM state on number of GWS queues. 438 * 439 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 440 * of the queue. 441 * 442 * This structure represents the queue properties for each queue no matter if 443 * it's user mode or kernel mode queue. 444 * 445 */ 446 struct queue_properties { 447 enum kfd_queue_type type; 448 enum kfd_queue_format format; 449 unsigned int queue_id; 450 uint64_t queue_address; 451 uint64_t queue_size; 452 uint32_t priority; 453 uint32_t queue_percent; 454 uint32_t *read_ptr; 455 uint32_t *write_ptr; 456 void __iomem *doorbell_ptr; 457 uint32_t doorbell_off; 458 bool is_interop; 459 bool is_evicted; 460 bool is_active; 461 bool is_gws; 462 /* Not relevant for user mode queues in cp scheduling */ 463 unsigned int vmid; 464 /* Relevant only for sdma queues*/ 465 uint32_t sdma_engine_id; 466 uint32_t sdma_queue_id; 467 uint32_t sdma_vm_addr; 468 /* Relevant only for VI */ 469 uint64_t eop_ring_buffer_address; 470 uint32_t eop_ring_buffer_size; 471 uint64_t ctx_save_restore_area_address; 472 uint32_t ctx_save_restore_area_size; 473 uint32_t ctl_stack_size; 474 uint64_t tba_addr; 475 uint64_t tma_addr; 476 }; 477 478 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 479 (q).queue_address != 0 && \ 480 (q).queue_percent > 0 && \ 481 !(q).is_evicted) 482 483 enum mqd_update_flag { 484 UPDATE_FLAG_CU_MASK = 0, 485 }; 486 487 struct mqd_update_info { 488 union { 489 struct { 490 uint32_t count; /* Must be a multiple of 32 */ 491 uint32_t *ptr; 492 } cu_mask; 493 }; 494 enum mqd_update_flag update_flag; 495 }; 496 497 /** 498 * struct queue 499 * 500 * @list: Queue linked list. 501 * 502 * @mqd: The queue MQD (memory queue descriptor). 503 * 504 * @mqd_mem_obj: The MQD local gpu memory object. 505 * 506 * @gart_mqd_addr: The MQD gart mc address. 507 * 508 * @properties: The queue properties. 509 * 510 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 511 * that the queue should be executed on. 512 * 513 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 514 * id. 515 * 516 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 517 * 518 * @process: The kfd process that created this queue. 519 * 520 * @device: The kfd device that created this queue. 521 * 522 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 523 * otherwise. 524 * 525 * This structure represents user mode compute queues. 526 * It contains all the necessary data to handle such queues. 527 * 528 */ 529 530 struct queue { 531 struct list_head list; 532 void *mqd; 533 struct kfd_mem_obj *mqd_mem_obj; 534 uint64_t gart_mqd_addr; 535 struct queue_properties properties; 536 537 uint32_t mec; 538 uint32_t pipe; 539 uint32_t queue; 540 541 unsigned int sdma_id; 542 unsigned int doorbell_id; 543 544 struct kfd_process *process; 545 struct kfd_dev *device; 546 void *gws; 547 548 /* procfs */ 549 struct kobject kobj; 550 }; 551 552 enum KFD_MQD_TYPE { 553 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 554 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 555 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 556 KFD_MQD_TYPE_DIQ, /* for diq */ 557 KFD_MQD_TYPE_MAX 558 }; 559 560 enum KFD_PIPE_PRIORITY { 561 KFD_PIPE_PRIORITY_CS_LOW = 0, 562 KFD_PIPE_PRIORITY_CS_MEDIUM, 563 KFD_PIPE_PRIORITY_CS_HIGH 564 }; 565 566 struct scheduling_resources { 567 unsigned int vmid_mask; 568 enum kfd_queue_type type; 569 uint64_t queue_mask; 570 uint64_t gws_mask; 571 uint32_t oac_mask; 572 uint32_t gds_heap_base; 573 uint32_t gds_heap_size; 574 }; 575 576 struct process_queue_manager { 577 /* data */ 578 struct kfd_process *process; 579 struct list_head queues; 580 unsigned long *queue_slot_bitmap; 581 }; 582 583 struct qcm_process_device { 584 /* The Device Queue Manager that owns this data */ 585 struct device_queue_manager *dqm; 586 struct process_queue_manager *pqm; 587 /* Queues list */ 588 struct list_head queues_list; 589 struct list_head priv_queue_list; 590 591 unsigned int queue_count; 592 unsigned int vmid; 593 bool is_debug; 594 unsigned int evicted; /* eviction counter, 0=active */ 595 596 /* This flag tells if we should reset all wavefronts on 597 * process termination 598 */ 599 bool reset_wavefronts; 600 601 /* This flag tells us if this process has a GWS-capable 602 * queue that will be mapped into the runlist. It's 603 * possible to request a GWS BO, but not have the queue 604 * currently mapped, and this changes how the MAP_PROCESS 605 * PM4 packet is configured. 606 */ 607 bool mapped_gws_queue; 608 609 /* All the memory management data should be here too */ 610 uint64_t gds_context_area; 611 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 612 uint64_t page_table_base; 613 uint32_t sh_mem_config; 614 uint32_t sh_mem_bases; 615 uint32_t sh_mem_ape1_base; 616 uint32_t sh_mem_ape1_limit; 617 uint32_t gds_size; 618 uint32_t num_gws; 619 uint32_t num_oac; 620 uint32_t sh_hidden_private_base; 621 622 /* CWSR memory */ 623 struct kgd_mem *cwsr_mem; 624 void *cwsr_kaddr; 625 uint64_t cwsr_base; 626 uint64_t tba_addr; 627 uint64_t tma_addr; 628 629 /* IB memory */ 630 struct kgd_mem *ib_mem; 631 uint64_t ib_base; 632 void *ib_kaddr; 633 634 /* doorbell resources per process per device */ 635 unsigned long *doorbell_bitmap; 636 }; 637 638 /* KFD Memory Eviction */ 639 640 /* Approx. wait time before attempting to restore evicted BOs */ 641 #define PROCESS_RESTORE_TIME_MS 100 642 /* Approx. back off time if restore fails due to lack of memory */ 643 #define PROCESS_BACK_OFF_TIME_MS 100 644 /* Approx. time before evicting the process again */ 645 #define PROCESS_ACTIVE_TIME_MS 10 646 647 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 648 * idr_handle in the least significant 4 bytes 649 */ 650 #define MAKE_HANDLE(gpu_id, idr_handle) \ 651 (((uint64_t)(gpu_id) << 32) + idr_handle) 652 #define GET_GPU_ID(handle) (handle >> 32) 653 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 654 655 enum kfd_pdd_bound { 656 PDD_UNBOUND = 0, 657 PDD_BOUND, 658 PDD_BOUND_SUSPENDED, 659 }; 660 661 #define MAX_SYSFS_FILENAME_LEN 15 662 663 /* 664 * SDMA counter runs at 100MHz frequency. 665 * We display SDMA activity in microsecond granularity in sysfs. 666 * As a result, the divisor is 100. 667 */ 668 #define SDMA_ACTIVITY_DIVISOR 100 669 670 /* Data that is per-process-per device. */ 671 struct kfd_process_device { 672 /* The device that owns this data. */ 673 struct kfd_dev *dev; 674 675 /* The process that owns this kfd_process_device. */ 676 struct kfd_process *process; 677 678 /* per-process-per device QCM data structure */ 679 struct qcm_process_device qpd; 680 681 /*Apertures*/ 682 uint64_t lds_base; 683 uint64_t lds_limit; 684 uint64_t gpuvm_base; 685 uint64_t gpuvm_limit; 686 uint64_t scratch_base; 687 uint64_t scratch_limit; 688 689 /* VM context for GPUVM allocations */ 690 struct file *drm_file; 691 void *drm_priv; 692 693 /* GPUVM allocations storage */ 694 struct idr alloc_idr; 695 696 /* Flag used to tell the pdd has dequeued from the dqm. 697 * This is used to prevent dev->dqm->ops.process_termination() from 698 * being called twice when it is already called in IOMMU callback 699 * function. 700 */ 701 bool already_dequeued; 702 bool runtime_inuse; 703 704 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 705 enum kfd_pdd_bound bound; 706 707 /* VRAM usage */ 708 uint64_t vram_usage; 709 struct attribute attr_vram; 710 char vram_filename[MAX_SYSFS_FILENAME_LEN]; 711 712 /* SDMA activity tracking */ 713 uint64_t sdma_past_activity_counter; 714 struct attribute attr_sdma; 715 char sdma_filename[MAX_SYSFS_FILENAME_LEN]; 716 717 /* Eviction activity tracking */ 718 uint64_t last_evict_timestamp; 719 atomic64_t evict_duration_counter; 720 struct attribute attr_evict; 721 722 struct kobject *kobj_stats; 723 unsigned int doorbell_index; 724 725 /* 726 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process 727 * that is associated with device encoded by "this" struct instance. The 728 * value reflects CU usage by all of the waves launched by this process 729 * on this device. A very important property of occupancy parameter is 730 * that its value is a snapshot of current use. 731 * 732 * Following is to be noted regarding how this parameter is reported: 733 * 734 * The number of waves that a CU can launch is limited by couple of 735 * parameters. These are encoded by struct amdgpu_cu_info instance 736 * that is part of every device definition. For GFX9 devices this 737 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves 738 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu) 739 * when they do use scratch memory. This could change for future 740 * devices and therefore this example should be considered as a guide. 741 * 742 * All CU's of a device are available for the process. This may not be true 743 * under certain conditions - e.g. CU masking. 744 * 745 * Finally number of CU's that are occupied by a process is affected by both 746 * number of CU's a device has along with number of other competing processes 747 */ 748 struct attribute attr_cu_occupancy; 749 750 /* sysfs counters for GPU retry fault and page migration tracking */ 751 struct kobject *kobj_counters; 752 struct attribute attr_faults; 753 struct attribute attr_page_in; 754 struct attribute attr_page_out; 755 uint64_t faults; 756 uint64_t page_in; 757 uint64_t page_out; 758 }; 759 760 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 761 762 struct svm_range_list { 763 struct mutex lock; 764 struct rb_root_cached objects; 765 struct list_head list; 766 struct work_struct deferred_list_work; 767 struct list_head deferred_range_list; 768 spinlock_t deferred_list_lock; 769 atomic_t evicted_ranges; 770 atomic_t drain_pagefaults; 771 struct delayed_work restore_work; 772 DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE); 773 struct task_struct *faulting_task; 774 }; 775 776 /* Process data */ 777 struct kfd_process { 778 /* 779 * kfd_process are stored in an mm_struct*->kfd_process* 780 * hash table (kfd_processes in kfd_process.c) 781 */ 782 struct hlist_node kfd_processes; 783 784 /* 785 * Opaque pointer to mm_struct. We don't hold a reference to 786 * it so it should never be dereferenced from here. This is 787 * only used for looking up processes by their mm. 788 */ 789 void *mm; 790 791 struct kref ref; 792 struct work_struct release_work; 793 794 struct mutex mutex; 795 796 /* 797 * In any process, the thread that started main() is the lead 798 * thread and outlives the rest. 799 * It is here because amd_iommu_bind_pasid wants a task_struct. 800 * It can also be used for safely getting a reference to the 801 * mm_struct of the process. 802 */ 803 struct task_struct *lead_thread; 804 805 /* We want to receive a notification when the mm_struct is destroyed */ 806 struct mmu_notifier mmu_notifier; 807 808 u32 pasid; 809 810 /* 811 * Array of kfd_process_device pointers, 812 * one for each device the process is using. 813 */ 814 struct kfd_process_device *pdds[MAX_GPU_INSTANCE]; 815 uint32_t n_pdds; 816 817 struct process_queue_manager pqm; 818 819 /*Is the user space process 32 bit?*/ 820 bool is_32bit_user_mode; 821 822 /* Event-related data */ 823 struct mutex event_mutex; 824 /* Event ID allocator and lookup */ 825 struct idr event_idr; 826 /* Event page */ 827 u64 signal_handle; 828 struct kfd_signal_page *signal_page; 829 size_t signal_mapped_size; 830 size_t signal_event_count; 831 bool signal_event_limit_reached; 832 833 /* Information used for memory eviction */ 834 void *kgd_process_info; 835 /* Eviction fence that is attached to all the BOs of this process. The 836 * fence will be triggered during eviction and new one will be created 837 * during restore 838 */ 839 struct dma_fence *ef; 840 841 /* Work items for evicting and restoring BOs */ 842 struct delayed_work eviction_work; 843 struct delayed_work restore_work; 844 /* seqno of the last scheduled eviction */ 845 unsigned int last_eviction_seqno; 846 /* Approx. the last timestamp (in jiffies) when the process was 847 * restored after an eviction 848 */ 849 unsigned long last_restore_timestamp; 850 851 /* Kobj for our procfs */ 852 struct kobject *kobj; 853 struct kobject *kobj_queues; 854 struct attribute attr_pasid; 855 856 /* shared virtual memory registered by this process */ 857 struct svm_range_list svms; 858 859 bool xnack_enabled; 860 861 atomic_t poison; 862 }; 863 864 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 865 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 866 extern struct srcu_struct kfd_processes_srcu; 867 868 /** 869 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer. 870 * 871 * @filep: pointer to file structure. 872 * @p: amdkfd process pointer. 873 * @data: pointer to arg that was copied from user. 874 * 875 * Return: returns ioctl completion code. 876 */ 877 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 878 void *data); 879 880 struct amdkfd_ioctl_desc { 881 unsigned int cmd; 882 int flags; 883 amdkfd_ioctl_t *func; 884 unsigned int cmd_drv; 885 const char *name; 886 }; 887 bool kfd_dev_is_large_bar(struct kfd_dev *dev); 888 889 int kfd_process_create_wq(void); 890 void kfd_process_destroy_wq(void); 891 struct kfd_process *kfd_create_process(struct file *filep); 892 struct kfd_process *kfd_get_process(const struct task_struct *); 893 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid); 894 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 895 896 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id); 897 int kfd_process_gpuid_from_adev(struct kfd_process *p, 898 struct amdgpu_device *adev, uint32_t *gpuid, 899 uint32_t *gpuidx); 900 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p, 901 uint32_t gpuidx, uint32_t *gpuid) { 902 return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL; 903 } 904 static inline struct kfd_process_device *kfd_process_device_from_gpuidx( 905 struct kfd_process *p, uint32_t gpuidx) { 906 return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL; 907 } 908 909 void kfd_unref_process(struct kfd_process *p); 910 int kfd_process_evict_queues(struct kfd_process *p); 911 int kfd_process_restore_queues(struct kfd_process *p); 912 void kfd_suspend_all_processes(void); 913 int kfd_resume_all_processes(void); 914 915 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 916 struct file *drm_file); 917 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 918 struct kfd_process *p); 919 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 920 struct kfd_process *p); 921 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 922 struct kfd_process *p); 923 924 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported); 925 926 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 927 struct vm_area_struct *vma); 928 929 /* KFD process API for creating and translating handles */ 930 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 931 void *mem); 932 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 933 int handle); 934 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 935 int handle); 936 937 /* PASIDs */ 938 int kfd_pasid_init(void); 939 void kfd_pasid_exit(void); 940 bool kfd_set_pasid_limit(unsigned int new_limit); 941 unsigned int kfd_get_pasid_limit(void); 942 u32 kfd_pasid_alloc(void); 943 void kfd_pasid_free(u32 pasid); 944 945 /* Doorbells */ 946 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 947 int kfd_doorbell_init(struct kfd_dev *kfd); 948 void kfd_doorbell_fini(struct kfd_dev *kfd); 949 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, 950 struct vm_area_struct *vma); 951 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 952 unsigned int *doorbell_off); 953 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 954 u32 read_kernel_doorbell(u32 __iomem *db); 955 void write_kernel_doorbell(void __iomem *db, u32 value); 956 void write_kernel_doorbell64(void __iomem *db, u64 value); 957 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 958 struct kfd_process_device *pdd, 959 unsigned int doorbell_id); 960 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd); 961 int kfd_alloc_process_doorbells(struct kfd_dev *kfd, 962 unsigned int *doorbell_index); 963 void kfd_free_process_doorbells(struct kfd_dev *kfd, 964 unsigned int doorbell_index); 965 /* GTT Sub-Allocator */ 966 967 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 968 struct kfd_mem_obj **mem_obj); 969 970 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 971 972 extern struct device *kfd_device; 973 974 /* KFD's procfs */ 975 void kfd_procfs_init(void); 976 void kfd_procfs_shutdown(void); 977 int kfd_procfs_add_queue(struct queue *q); 978 void kfd_procfs_del_queue(struct queue *q); 979 980 /* Topology */ 981 int kfd_topology_init(void); 982 void kfd_topology_shutdown(void); 983 int kfd_topology_add_device(struct kfd_dev *gpu); 984 int kfd_topology_remove_device(struct kfd_dev *gpu); 985 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 986 uint32_t proximity_domain); 987 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 988 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 989 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 990 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev); 991 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); 992 int kfd_numa_node_to_apic_id(int numa_node_id); 993 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu); 994 995 /* Interrupts */ 996 int kfd_interrupt_init(struct kfd_dev *dev); 997 void kfd_interrupt_exit(struct kfd_dev *dev); 998 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 999 bool interrupt_is_wanted(struct kfd_dev *dev, 1000 const uint32_t *ih_ring_entry, 1001 uint32_t *patched_ihre, bool *flag); 1002 1003 /* amdkfd Apertures */ 1004 int kfd_init_apertures(struct kfd_process *process); 1005 1006 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1007 uint64_t tba_addr, 1008 uint64_t tma_addr); 1009 1010 /* Queue Context Management */ 1011 int init_queue(struct queue **q, const struct queue_properties *properties); 1012 void uninit_queue(struct queue *q); 1013 void print_queue_properties(struct queue_properties *q); 1014 void print_queue(struct queue *q); 1015 1016 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 1017 struct kfd_dev *dev); 1018 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 1019 struct kfd_dev *dev); 1020 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 1021 struct kfd_dev *dev); 1022 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 1023 struct kfd_dev *dev); 1024 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 1025 struct kfd_dev *dev); 1026 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 1027 struct kfd_dev *dev); 1028 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 1029 void device_queue_manager_uninit(struct device_queue_manager *dqm); 1030 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 1031 enum kfd_queue_type type); 1032 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging); 1033 int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid); 1034 1035 /* Process Queue Manager */ 1036 struct process_queue_node { 1037 struct queue *q; 1038 struct kernel_queue *kq; 1039 struct list_head process_queue_list; 1040 }; 1041 1042 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 1043 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 1044 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 1045 void pqm_uninit(struct process_queue_manager *pqm); 1046 int pqm_create_queue(struct process_queue_manager *pqm, 1047 struct kfd_dev *dev, 1048 struct file *f, 1049 struct queue_properties *properties, 1050 unsigned int *qid, 1051 uint32_t *p_doorbell_offset_in_process); 1052 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 1053 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid, 1054 struct queue_properties *p); 1055 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid, 1056 struct mqd_update_info *minfo); 1057 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 1058 void *gws); 1059 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 1060 unsigned int qid); 1061 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm, 1062 unsigned int qid); 1063 int pqm_get_wave_state(struct process_queue_manager *pqm, 1064 unsigned int qid, 1065 void __user *ctl_stack, 1066 u32 *ctl_stack_used_size, 1067 u32 *save_area_used_size); 1068 1069 int amdkfd_fence_wait_timeout(uint64_t *fence_addr, 1070 uint64_t fence_value, 1071 unsigned int timeout_ms); 1072 1073 /* Packet Manager */ 1074 1075 #define KFD_FENCE_COMPLETED (100) 1076 #define KFD_FENCE_INIT (10) 1077 1078 struct packet_manager { 1079 struct device_queue_manager *dqm; 1080 struct kernel_queue *priv_queue; 1081 struct mutex lock; 1082 bool allocated; 1083 struct kfd_mem_obj *ib_buffer_obj; 1084 unsigned int ib_size_bytes; 1085 bool is_over_subscription; 1086 1087 const struct packet_manager_funcs *pmf; 1088 }; 1089 1090 struct packet_manager_funcs { 1091 /* Support ASIC-specific packet formats for PM4 packets */ 1092 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 1093 struct qcm_process_device *qpd); 1094 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 1095 uint64_t ib, size_t ib_size_in_dwords, bool chain); 1096 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 1097 struct scheduling_resources *res); 1098 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 1099 struct queue *q, bool is_static); 1100 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 1101 enum kfd_queue_type type, 1102 enum kfd_unmap_queues_filter mode, 1103 uint32_t filter_param, bool reset, 1104 unsigned int sdma_engine); 1105 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 1106 uint64_t fence_address, uint64_t fence_value); 1107 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 1108 1109 /* Packet sizes */ 1110 int map_process_size; 1111 int runlist_size; 1112 int set_resources_size; 1113 int map_queues_size; 1114 int unmap_queues_size; 1115 int query_status_size; 1116 int release_mem_size; 1117 }; 1118 1119 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 1120 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 1121 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs; 1122 1123 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 1124 void pm_uninit(struct packet_manager *pm, bool hanging); 1125 int pm_send_set_resources(struct packet_manager *pm, 1126 struct scheduling_resources *res); 1127 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 1128 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 1129 uint64_t fence_value); 1130 1131 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type, 1132 enum kfd_unmap_queues_filter mode, 1133 uint32_t filter_param, bool reset, 1134 unsigned int sdma_engine); 1135 1136 void pm_release_ib(struct packet_manager *pm); 1137 1138 /* Following PM funcs can be shared among VI and AI */ 1139 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 1140 1141 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1142 1143 /* Events */ 1144 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1145 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1146 1147 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1148 1149 void kfd_event_init_process(struct kfd_process *p); 1150 void kfd_event_free_process(struct kfd_process *p); 1151 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1152 int kfd_wait_on_events(struct kfd_process *p, 1153 uint32_t num_events, void __user *data, 1154 bool all, uint32_t user_timeout_ms, 1155 uint32_t *wait_result); 1156 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 1157 uint32_t valid_id_bits); 1158 void kfd_signal_iommu_event(struct kfd_dev *dev, 1159 u32 pasid, unsigned long address, 1160 bool is_write_requested, bool is_execute_requested); 1161 void kfd_signal_hw_exception_event(u32 pasid); 1162 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1163 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1164 int kfd_event_page_set(struct kfd_process *p, void *kernel_address, 1165 uint64_t size); 1166 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1167 uint32_t event_type, bool auto_reset, uint32_t node_id, 1168 uint32_t *event_id, uint32_t *event_trigger_data, 1169 uint64_t *event_page_offset, uint32_t *event_slot_index); 1170 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1171 1172 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid, 1173 struct kfd_vm_fault_info *info); 1174 1175 void kfd_signal_reset_event(struct kfd_dev *dev); 1176 1177 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid); 1178 1179 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type); 1180 1181 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p); 1182 1183 bool kfd_is_locked(void); 1184 1185 /* Compute profile */ 1186 void kfd_inc_compute_active(struct kfd_dev *dev); 1187 void kfd_dec_compute_active(struct kfd_dev *dev); 1188 1189 /* Cgroup Support */ 1190 /* Check with device cgroup if @kfd device is accessible */ 1191 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd) 1192 { 1193 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) 1194 struct drm_device *ddev = kfd->ddev; 1195 1196 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, 1197 ddev->render->index, 1198 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1199 #else 1200 return 0; 1201 #endif 1202 } 1203 1204 /* Debugfs */ 1205 #if defined(CONFIG_DEBUG_FS) 1206 1207 void kfd_debugfs_init(void); 1208 void kfd_debugfs_fini(void); 1209 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1210 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1211 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1212 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1213 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1214 int pm_debugfs_runlist(struct seq_file *m, void *data); 1215 1216 int kfd_debugfs_hang_hws(struct kfd_dev *dev); 1217 int pm_debugfs_hang_hws(struct packet_manager *pm); 1218 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm); 1219 1220 #else 1221 1222 static inline void kfd_debugfs_init(void) {} 1223 static inline void kfd_debugfs_fini(void) {} 1224 1225 #endif 1226 1227 #endif 1228