1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #ifndef KFD_PRIV_H_INCLUDED 24 #define KFD_PRIV_H_INCLUDED 25 26 #include <linux/hashtable.h> 27 #include <linux/mmu_notifier.h> 28 #include <linux/mutex.h> 29 #include <linux/types.h> 30 #include <linux/atomic.h> 31 #include <linux/workqueue.h> 32 #include <linux/spinlock.h> 33 #include <linux/kfd_ioctl.h> 34 #include <linux/idr.h> 35 #include <linux/kfifo.h> 36 #include <linux/seq_file.h> 37 #include <linux/kref.h> 38 #include <linux/sysfs.h> 39 #include <linux/device_cgroup.h> 40 #include <drm/drm_file.h> 41 #include <drm/drm_drv.h> 42 #include <drm/drm_device.h> 43 #include <drm/drm_ioctl.h> 44 #include <kgd_kfd_interface.h> 45 #include <linux/swap.h> 46 47 #include "amd_shared.h" 48 #include "amdgpu.h" 49 50 #define KFD_MAX_RING_ENTRY_SIZE 8 51 52 #define KFD_SYSFS_FILE_MODE 0444 53 54 /* GPU ID hash width in bits */ 55 #define KFD_GPU_ID_HASH_WIDTH 16 56 57 /* Use upper bits of mmap offset to store KFD driver specific information. 58 * BITS[63:62] - Encode MMAP type 59 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 60 * BITS[45:0] - MMAP offset value 61 * 62 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 63 * defines are w.r.t to PAGE_SIZE 64 */ 65 #define KFD_MMAP_TYPE_SHIFT 62 66 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 67 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 68 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 69 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 70 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 71 72 #define KFD_MMAP_GPU_ID_SHIFT 46 73 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 74 << KFD_MMAP_GPU_ID_SHIFT) 75 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 76 & KFD_MMAP_GPU_ID_MASK) 77 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 78 >> KFD_MMAP_GPU_ID_SHIFT) 79 80 /* 81 * When working with cp scheduler we should assign the HIQ manually or via 82 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 83 * definitions for Kaveri. In Kaveri only the first ME queues participates 84 * in the cp scheduling taking that in mind we set the HIQ slot in the 85 * second ME. 86 */ 87 #define KFD_CIK_HIQ_PIPE 4 88 #define KFD_CIK_HIQ_QUEUE 0 89 90 /* Macro for allocating structures */ 91 #define kfd_alloc_struct(ptr_to_struct) \ 92 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 93 94 #define KFD_MAX_NUM_OF_PROCESSES 512 95 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 96 97 /* 98 * Size of the per-process TBA+TMA buffer: 2 pages 99 * 100 * The first page is the TBA used for the CWSR ISA code. The second 101 * page is used as TMA for user-mode trap handler setup in daisy-chain mode. 102 */ 103 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 104 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 105 106 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 107 (KFD_MAX_NUM_OF_PROCESSES * \ 108 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 109 110 #define KFD_KERNEL_QUEUE_SIZE 2048 111 112 #define KFD_UNMAP_LATENCY_MS (4000) 113 114 /* 115 * 512 = 0x200 116 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 117 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 118 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 119 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 120 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 121 */ 122 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 123 124 125 /* 126 * Kernel module parameter to specify maximum number of supported queues per 127 * device 128 */ 129 extern int max_num_of_queues_per_device; 130 131 132 /* Kernel module parameter to specify the scheduling policy */ 133 extern int sched_policy; 134 135 /* 136 * Kernel module parameter to specify the maximum process 137 * number per HW scheduler 138 */ 139 extern int hws_max_conc_proc; 140 141 extern int cwsr_enable; 142 143 /* 144 * Kernel module parameter to specify whether to send sigterm to HSA process on 145 * unhandled exception 146 */ 147 extern int send_sigterm; 148 149 /* 150 * This kernel module is used to simulate large bar machine on non-large bar 151 * enabled machines. 152 */ 153 extern int debug_largebar; 154 155 /* 156 * Ignore CRAT table during KFD initialization, can be used to work around 157 * broken CRAT tables on some AMD systems 158 */ 159 extern int ignore_crat; 160 161 /* Set sh_mem_config.retry_disable on GFX v9 */ 162 extern int amdgpu_noretry; 163 164 /* Halt if HWS hang is detected */ 165 extern int halt_if_hws_hang; 166 167 /* Whether MEC FW support GWS barriers */ 168 extern bool hws_gws_support; 169 170 /* Queue preemption timeout in ms */ 171 extern int queue_preemption_timeout_ms; 172 173 /* 174 * Don't evict process queues on vm fault 175 */ 176 extern int amdgpu_no_queue_eviction_on_vm_fault; 177 178 /* Enable eviction debug messages */ 179 extern bool debug_evictions; 180 181 enum cache_policy { 182 cache_policy_coherent, 183 cache_policy_noncoherent 184 }; 185 186 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10) 187 188 struct kfd_event_interrupt_class { 189 bool (*interrupt_isr)(struct kfd_dev *dev, 190 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 191 bool *patched_flag); 192 void (*interrupt_wq)(struct kfd_dev *dev, 193 const uint32_t *ih_ring_entry); 194 }; 195 196 struct kfd_device_info { 197 enum amd_asic_type asic_family; 198 const char *asic_name; 199 const struct kfd_event_interrupt_class *event_interrupt_class; 200 unsigned int max_pasid_bits; 201 unsigned int max_no_of_hqd; 202 unsigned int doorbell_size; 203 size_t ih_ring_entry_size; 204 uint8_t num_of_watch_points; 205 uint16_t mqd_size_aligned; 206 bool supports_cwsr; 207 bool needs_iommu_device; 208 bool needs_pci_atomics; 209 unsigned int num_sdma_engines; 210 unsigned int num_xgmi_sdma_engines; 211 unsigned int num_sdma_queues_per_engine; 212 }; 213 214 struct kfd_mem_obj { 215 uint32_t range_start; 216 uint32_t range_end; 217 uint64_t gpu_addr; 218 uint32_t *cpu_ptr; 219 void *gtt_mem; 220 }; 221 222 struct kfd_vmid_info { 223 uint32_t first_vmid_kfd; 224 uint32_t last_vmid_kfd; 225 uint32_t vmid_num_kfd; 226 }; 227 228 struct kfd_dev { 229 struct kgd_dev *kgd; 230 231 const struct kfd_device_info *device_info; 232 struct pci_dev *pdev; 233 struct drm_device *ddev; 234 235 unsigned int id; /* topology stub index */ 236 237 phys_addr_t doorbell_base; /* Start of actual doorbells used by 238 * KFD. It is aligned for mapping 239 * into user mode 240 */ 241 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI 242 * doorbell BAR to the first KFD 243 * doorbell in dwords. GFX reserves 244 * the segment before this offset. 245 */ 246 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 247 * page used by kernel queue 248 */ 249 250 struct kgd2kfd_shared_resources shared_resources; 251 struct kfd_vmid_info vm_info; 252 253 const struct kfd2kgd_calls *kfd2kgd; 254 struct mutex doorbell_mutex; 255 DECLARE_BITMAP(doorbell_available_index, 256 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 257 258 void *gtt_mem; 259 uint64_t gtt_start_gpu_addr; 260 void *gtt_start_cpu_ptr; 261 void *gtt_sa_bitmap; 262 struct mutex gtt_sa_lock; 263 unsigned int gtt_sa_chunk_size; 264 unsigned int gtt_sa_num_of_chunks; 265 266 /* Interrupts */ 267 struct kfifo ih_fifo; 268 struct workqueue_struct *ih_wq; 269 struct work_struct interrupt_work; 270 spinlock_t interrupt_lock; 271 272 /* QCM Device instance */ 273 struct device_queue_manager *dqm; 274 275 bool init_complete; 276 /* 277 * Interrupts of interest to KFD are copied 278 * from the HW ring into a SW ring. 279 */ 280 bool interrupts_active; 281 282 /* Debug manager */ 283 struct kfd_dbgmgr *dbgmgr; 284 285 /* Firmware versions */ 286 uint16_t mec_fw_version; 287 uint16_t mec2_fw_version; 288 uint16_t sdma_fw_version; 289 290 /* Maximum process number mapped to HW scheduler */ 291 unsigned int max_proc_per_quantum; 292 293 /* CWSR */ 294 bool cwsr_enabled; 295 const void *cwsr_isa; 296 unsigned int cwsr_isa_size; 297 298 /* xGMI */ 299 uint64_t hive_id; 300 301 bool pci_atomic_requested; 302 303 /* Use IOMMU v2 flag */ 304 bool use_iommu_v2; 305 306 /* SRAM ECC flag */ 307 atomic_t sram_ecc_flag; 308 309 /* Compute Profile ref. count */ 310 atomic_t compute_profile; 311 312 /* Global GWS resource shared between processes */ 313 void *gws; 314 315 /* Clients watching SMI events */ 316 struct list_head smi_clients; 317 spinlock_t smi_lock; 318 319 uint32_t reset_seq_num; 320 321 struct ida doorbell_ida; 322 unsigned int max_doorbell_slices; 323 324 int noretry; 325 326 /* HMM page migration MEMORY_DEVICE_PRIVATE mapping */ 327 struct dev_pagemap pgmap; 328 }; 329 330 enum kfd_mempool { 331 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 332 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 333 KFD_MEMPOOL_FRAMEBUFFER = 3, 334 }; 335 336 /* Character device interface */ 337 int kfd_chardev_init(void); 338 void kfd_chardev_exit(void); 339 struct device *kfd_chardev(void); 340 341 /** 342 * enum kfd_unmap_queues_filter - Enum for queue filters. 343 * 344 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue. 345 * 346 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 347 * running queues list. 348 * 349 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 350 * specific process. 351 * 352 */ 353 enum kfd_unmap_queues_filter { 354 KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE, 355 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 356 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 357 KFD_UNMAP_QUEUES_FILTER_BY_PASID 358 }; 359 360 /** 361 * enum kfd_queue_type - Enum for various queue types. 362 * 363 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 364 * 365 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type. 366 * 367 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 368 * 369 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 370 * 371 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface. 372 */ 373 enum kfd_queue_type { 374 KFD_QUEUE_TYPE_COMPUTE, 375 KFD_QUEUE_TYPE_SDMA, 376 KFD_QUEUE_TYPE_HIQ, 377 KFD_QUEUE_TYPE_DIQ, 378 KFD_QUEUE_TYPE_SDMA_XGMI 379 }; 380 381 enum kfd_queue_format { 382 KFD_QUEUE_FORMAT_PM4, 383 KFD_QUEUE_FORMAT_AQL 384 }; 385 386 enum KFD_QUEUE_PRIORITY { 387 KFD_QUEUE_PRIORITY_MINIMUM = 0, 388 KFD_QUEUE_PRIORITY_MAXIMUM = 15 389 }; 390 391 /** 392 * struct queue_properties 393 * 394 * @type: The queue type. 395 * 396 * @queue_id: Queue identifier. 397 * 398 * @queue_address: Queue ring buffer address. 399 * 400 * @queue_size: Queue ring buffer size. 401 * 402 * @priority: Defines the queue priority relative to other queues in the 403 * process. 404 * This is just an indication and HW scheduling may override the priority as 405 * necessary while keeping the relative prioritization. 406 * the priority granularity is from 0 to f which f is the highest priority. 407 * currently all queues are initialized with the highest priority. 408 * 409 * @queue_percent: This field is partially implemented and currently a zero in 410 * this field defines that the queue is non active. 411 * 412 * @read_ptr: User space address which points to the number of dwords the 413 * cp read from the ring buffer. This field updates automatically by the H/W. 414 * 415 * @write_ptr: Defines the number of dwords written to the ring buffer. 416 * 417 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring 418 * buffer. This field should be similar to write_ptr and the user should 419 * update this field after updating the write_ptr. 420 * 421 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 422 * 423 * @is_interop: Defines if this is a interop queue. Interop queue means that 424 * the queue can access both graphics and compute resources. 425 * 426 * @is_evicted: Defines if the queue is evicted. Only active queues 427 * are evicted, rendering them inactive. 428 * 429 * @is_active: Defines if the queue is active or not. @is_active and 430 * @is_evicted are protected by the DQM lock. 431 * 432 * @is_gws: Defines if the queue has been updated to be GWS-capable or not. 433 * @is_gws should be protected by the DQM lock, since changing it can yield the 434 * possibility of updating DQM state on number of GWS queues. 435 * 436 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 437 * of the queue. 438 * 439 * This structure represents the queue properties for each queue no matter if 440 * it's user mode or kernel mode queue. 441 * 442 */ 443 struct queue_properties { 444 enum kfd_queue_type type; 445 enum kfd_queue_format format; 446 unsigned int queue_id; 447 uint64_t queue_address; 448 uint64_t queue_size; 449 uint32_t priority; 450 uint32_t queue_percent; 451 uint32_t *read_ptr; 452 uint32_t *write_ptr; 453 void __iomem *doorbell_ptr; 454 uint32_t doorbell_off; 455 bool is_interop; 456 bool is_evicted; 457 bool is_active; 458 bool is_gws; 459 /* Not relevant for user mode queues in cp scheduling */ 460 unsigned int vmid; 461 /* Relevant only for sdma queues*/ 462 uint32_t sdma_engine_id; 463 uint32_t sdma_queue_id; 464 uint32_t sdma_vm_addr; 465 /* Relevant only for VI */ 466 uint64_t eop_ring_buffer_address; 467 uint32_t eop_ring_buffer_size; 468 uint64_t ctx_save_restore_area_address; 469 uint32_t ctx_save_restore_area_size; 470 uint32_t ctl_stack_size; 471 uint64_t tba_addr; 472 uint64_t tma_addr; 473 /* Relevant for CU */ 474 uint32_t cu_mask_count; /* Must be a multiple of 32 */ 475 uint32_t *cu_mask; 476 }; 477 478 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 479 (q).queue_address != 0 && \ 480 (q).queue_percent > 0 && \ 481 !(q).is_evicted) 482 483 /** 484 * struct queue 485 * 486 * @list: Queue linked list. 487 * 488 * @mqd: The queue MQD (memory queue descriptor). 489 * 490 * @mqd_mem_obj: The MQD local gpu memory object. 491 * 492 * @gart_mqd_addr: The MQD gart mc address. 493 * 494 * @properties: The queue properties. 495 * 496 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 497 * that the queue should be executed on. 498 * 499 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 500 * id. 501 * 502 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 503 * 504 * @process: The kfd process that created this queue. 505 * 506 * @device: The kfd device that created this queue. 507 * 508 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 509 * otherwise. 510 * 511 * This structure represents user mode compute queues. 512 * It contains all the necessary data to handle such queues. 513 * 514 */ 515 516 struct queue { 517 struct list_head list; 518 void *mqd; 519 struct kfd_mem_obj *mqd_mem_obj; 520 uint64_t gart_mqd_addr; 521 struct queue_properties properties; 522 523 uint32_t mec; 524 uint32_t pipe; 525 uint32_t queue; 526 527 unsigned int sdma_id; 528 unsigned int doorbell_id; 529 530 struct kfd_process *process; 531 struct kfd_dev *device; 532 void *gws; 533 534 /* procfs */ 535 struct kobject kobj; 536 }; 537 538 enum KFD_MQD_TYPE { 539 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 540 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 541 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 542 KFD_MQD_TYPE_DIQ, /* for diq */ 543 KFD_MQD_TYPE_MAX 544 }; 545 546 enum KFD_PIPE_PRIORITY { 547 KFD_PIPE_PRIORITY_CS_LOW = 0, 548 KFD_PIPE_PRIORITY_CS_MEDIUM, 549 KFD_PIPE_PRIORITY_CS_HIGH 550 }; 551 552 struct scheduling_resources { 553 unsigned int vmid_mask; 554 enum kfd_queue_type type; 555 uint64_t queue_mask; 556 uint64_t gws_mask; 557 uint32_t oac_mask; 558 uint32_t gds_heap_base; 559 uint32_t gds_heap_size; 560 }; 561 562 struct process_queue_manager { 563 /* data */ 564 struct kfd_process *process; 565 struct list_head queues; 566 unsigned long *queue_slot_bitmap; 567 }; 568 569 struct qcm_process_device { 570 /* The Device Queue Manager that owns this data */ 571 struct device_queue_manager *dqm; 572 struct process_queue_manager *pqm; 573 /* Queues list */ 574 struct list_head queues_list; 575 struct list_head priv_queue_list; 576 577 unsigned int queue_count; 578 unsigned int vmid; 579 bool is_debug; 580 unsigned int evicted; /* eviction counter, 0=active */ 581 582 /* This flag tells if we should reset all wavefronts on 583 * process termination 584 */ 585 bool reset_wavefronts; 586 587 /* This flag tells us if this process has a GWS-capable 588 * queue that will be mapped into the runlist. It's 589 * possible to request a GWS BO, but not have the queue 590 * currently mapped, and this changes how the MAP_PROCESS 591 * PM4 packet is configured. 592 */ 593 bool mapped_gws_queue; 594 595 /* All the memory management data should be here too */ 596 uint64_t gds_context_area; 597 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 598 uint64_t page_table_base; 599 uint32_t sh_mem_config; 600 uint32_t sh_mem_bases; 601 uint32_t sh_mem_ape1_base; 602 uint32_t sh_mem_ape1_limit; 603 uint32_t gds_size; 604 uint32_t num_gws; 605 uint32_t num_oac; 606 uint32_t sh_hidden_private_base; 607 608 /* CWSR memory */ 609 void *cwsr_kaddr; 610 uint64_t cwsr_base; 611 uint64_t tba_addr; 612 uint64_t tma_addr; 613 614 /* IB memory */ 615 uint64_t ib_base; 616 void *ib_kaddr; 617 618 /* doorbell resources per process per device */ 619 unsigned long *doorbell_bitmap; 620 }; 621 622 /* KFD Memory Eviction */ 623 624 /* Approx. wait time before attempting to restore evicted BOs */ 625 #define PROCESS_RESTORE_TIME_MS 100 626 /* Approx. back off time if restore fails due to lack of memory */ 627 #define PROCESS_BACK_OFF_TIME_MS 100 628 /* Approx. time before evicting the process again */ 629 #define PROCESS_ACTIVE_TIME_MS 10 630 631 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 632 * idr_handle in the least significant 4 bytes 633 */ 634 #define MAKE_HANDLE(gpu_id, idr_handle) \ 635 (((uint64_t)(gpu_id) << 32) + idr_handle) 636 #define GET_GPU_ID(handle) (handle >> 32) 637 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 638 639 enum kfd_pdd_bound { 640 PDD_UNBOUND = 0, 641 PDD_BOUND, 642 PDD_BOUND_SUSPENDED, 643 }; 644 645 #define MAX_SYSFS_FILENAME_LEN 15 646 647 /* 648 * SDMA counter runs at 100MHz frequency. 649 * We display SDMA activity in microsecond granularity in sysfs. 650 * As a result, the divisor is 100. 651 */ 652 #define SDMA_ACTIVITY_DIVISOR 100 653 654 /* Data that is per-process-per device. */ 655 struct kfd_process_device { 656 /* The device that owns this data. */ 657 struct kfd_dev *dev; 658 659 /* The process that owns this kfd_process_device. */ 660 struct kfd_process *process; 661 662 /* per-process-per device QCM data structure */ 663 struct qcm_process_device qpd; 664 665 /*Apertures*/ 666 uint64_t lds_base; 667 uint64_t lds_limit; 668 uint64_t gpuvm_base; 669 uint64_t gpuvm_limit; 670 uint64_t scratch_base; 671 uint64_t scratch_limit; 672 673 /* VM context for GPUVM allocations */ 674 struct file *drm_file; 675 void *drm_priv; 676 677 /* GPUVM allocations storage */ 678 struct idr alloc_idr; 679 680 /* Flag used to tell the pdd has dequeued from the dqm. 681 * This is used to prevent dev->dqm->ops.process_termination() from 682 * being called twice when it is already called in IOMMU callback 683 * function. 684 */ 685 bool already_dequeued; 686 bool runtime_inuse; 687 688 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 689 enum kfd_pdd_bound bound; 690 691 /* VRAM usage */ 692 uint64_t vram_usage; 693 struct attribute attr_vram; 694 char vram_filename[MAX_SYSFS_FILENAME_LEN]; 695 696 /* SDMA activity tracking */ 697 uint64_t sdma_past_activity_counter; 698 struct attribute attr_sdma; 699 char sdma_filename[MAX_SYSFS_FILENAME_LEN]; 700 701 /* Eviction activity tracking */ 702 uint64_t last_evict_timestamp; 703 atomic64_t evict_duration_counter; 704 struct attribute attr_evict; 705 706 struct kobject *kobj_stats; 707 unsigned int doorbell_index; 708 709 /* 710 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process 711 * that is associated with device encoded by "this" struct instance. The 712 * value reflects CU usage by all of the waves launched by this process 713 * on this device. A very important property of occupancy parameter is 714 * that its value is a snapshot of current use. 715 * 716 * Following is to be noted regarding how this parameter is reported: 717 * 718 * The number of waves that a CU can launch is limited by couple of 719 * parameters. These are encoded by struct amdgpu_cu_info instance 720 * that is part of every device definition. For GFX9 devices this 721 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves 722 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu) 723 * when they do use scratch memory. This could change for future 724 * devices and therefore this example should be considered as a guide. 725 * 726 * All CU's of a device are available for the process. This may not be true 727 * under certain conditions - e.g. CU masking. 728 * 729 * Finally number of CU's that are occupied by a process is affected by both 730 * number of CU's a device has along with number of other competing processes 731 */ 732 struct attribute attr_cu_occupancy; 733 734 /* sysfs counters for GPU retry fault and page migration tracking */ 735 struct kobject *kobj_counters; 736 struct attribute attr_faults; 737 struct attribute attr_page_in; 738 struct attribute attr_page_out; 739 uint64_t faults; 740 uint64_t page_in; 741 uint64_t page_out; 742 }; 743 744 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 745 746 struct svm_range_list { 747 struct mutex lock; 748 struct rb_root_cached objects; 749 struct list_head list; 750 struct work_struct deferred_list_work; 751 struct list_head deferred_range_list; 752 spinlock_t deferred_list_lock; 753 atomic_t evicted_ranges; 754 struct delayed_work restore_work; 755 DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE); 756 }; 757 758 /* Process data */ 759 struct kfd_process { 760 /* 761 * kfd_process are stored in an mm_struct*->kfd_process* 762 * hash table (kfd_processes in kfd_process.c) 763 */ 764 struct hlist_node kfd_processes; 765 766 /* 767 * Opaque pointer to mm_struct. We don't hold a reference to 768 * it so it should never be dereferenced from here. This is 769 * only used for looking up processes by their mm. 770 */ 771 void *mm; 772 773 struct kref ref; 774 struct work_struct release_work; 775 776 struct mutex mutex; 777 778 /* 779 * In any process, the thread that started main() is the lead 780 * thread and outlives the rest. 781 * It is here because amd_iommu_bind_pasid wants a task_struct. 782 * It can also be used for safely getting a reference to the 783 * mm_struct of the process. 784 */ 785 struct task_struct *lead_thread; 786 787 /* We want to receive a notification when the mm_struct is destroyed */ 788 struct mmu_notifier mmu_notifier; 789 790 u32 pasid; 791 792 /* 793 * Array of kfd_process_device pointers, 794 * one for each device the process is using. 795 */ 796 struct kfd_process_device *pdds[MAX_GPU_INSTANCE]; 797 uint32_t n_pdds; 798 799 struct process_queue_manager pqm; 800 801 /*Is the user space process 32 bit?*/ 802 bool is_32bit_user_mode; 803 804 /* Event-related data */ 805 struct mutex event_mutex; 806 /* Event ID allocator and lookup */ 807 struct idr event_idr; 808 /* Event page */ 809 struct kfd_signal_page *signal_page; 810 size_t signal_mapped_size; 811 size_t signal_event_count; 812 bool signal_event_limit_reached; 813 814 /* Information used for memory eviction */ 815 void *kgd_process_info; 816 /* Eviction fence that is attached to all the BOs of this process. The 817 * fence will be triggered during eviction and new one will be created 818 * during restore 819 */ 820 struct dma_fence *ef; 821 822 /* Work items for evicting and restoring BOs */ 823 struct delayed_work eviction_work; 824 struct delayed_work restore_work; 825 /* seqno of the last scheduled eviction */ 826 unsigned int last_eviction_seqno; 827 /* Approx. the last timestamp (in jiffies) when the process was 828 * restored after an eviction 829 */ 830 unsigned long last_restore_timestamp; 831 832 /* Kobj for our procfs */ 833 struct kobject *kobj; 834 struct kobject *kobj_queues; 835 struct attribute attr_pasid; 836 837 /* shared virtual memory registered by this process */ 838 struct svm_range_list svms; 839 840 bool xnack_enabled; 841 }; 842 843 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 844 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 845 extern struct srcu_struct kfd_processes_srcu; 846 847 /** 848 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer. 849 * 850 * @filep: pointer to file structure. 851 * @p: amdkfd process pointer. 852 * @data: pointer to arg that was copied from user. 853 * 854 * Return: returns ioctl completion code. 855 */ 856 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 857 void *data); 858 859 struct amdkfd_ioctl_desc { 860 unsigned int cmd; 861 int flags; 862 amdkfd_ioctl_t *func; 863 unsigned int cmd_drv; 864 const char *name; 865 }; 866 bool kfd_dev_is_large_bar(struct kfd_dev *dev); 867 868 int kfd_process_create_wq(void); 869 void kfd_process_destroy_wq(void); 870 struct kfd_process *kfd_create_process(struct file *filep); 871 struct kfd_process *kfd_get_process(const struct task_struct *); 872 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid); 873 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 874 875 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id); 876 int kfd_process_gpuid_from_kgd(struct kfd_process *p, 877 struct amdgpu_device *adev, uint32_t *gpuid, 878 uint32_t *gpuidx); 879 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p, 880 uint32_t gpuidx, uint32_t *gpuid) { 881 return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL; 882 } 883 static inline struct kfd_process_device *kfd_process_device_from_gpuidx( 884 struct kfd_process *p, uint32_t gpuidx) { 885 return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL; 886 } 887 888 void kfd_unref_process(struct kfd_process *p); 889 int kfd_process_evict_queues(struct kfd_process *p); 890 int kfd_process_restore_queues(struct kfd_process *p); 891 void kfd_suspend_all_processes(void); 892 int kfd_resume_all_processes(void); 893 894 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 895 struct file *drm_file); 896 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 897 struct kfd_process *p); 898 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 899 struct kfd_process *p); 900 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 901 struct kfd_process *p); 902 903 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported); 904 905 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 906 struct vm_area_struct *vma); 907 908 /* KFD process API for creating and translating handles */ 909 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 910 void *mem); 911 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 912 int handle); 913 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 914 int handle); 915 916 /* PASIDs */ 917 int kfd_pasid_init(void); 918 void kfd_pasid_exit(void); 919 bool kfd_set_pasid_limit(unsigned int new_limit); 920 unsigned int kfd_get_pasid_limit(void); 921 u32 kfd_pasid_alloc(void); 922 void kfd_pasid_free(u32 pasid); 923 924 /* Doorbells */ 925 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 926 int kfd_doorbell_init(struct kfd_dev *kfd); 927 void kfd_doorbell_fini(struct kfd_dev *kfd); 928 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, 929 struct vm_area_struct *vma); 930 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 931 unsigned int *doorbell_off); 932 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 933 u32 read_kernel_doorbell(u32 __iomem *db); 934 void write_kernel_doorbell(void __iomem *db, u32 value); 935 void write_kernel_doorbell64(void __iomem *db, u64 value); 936 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 937 struct kfd_process_device *pdd, 938 unsigned int doorbell_id); 939 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd); 940 int kfd_alloc_process_doorbells(struct kfd_dev *kfd, 941 unsigned int *doorbell_index); 942 void kfd_free_process_doorbells(struct kfd_dev *kfd, 943 unsigned int doorbell_index); 944 /* GTT Sub-Allocator */ 945 946 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 947 struct kfd_mem_obj **mem_obj); 948 949 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 950 951 extern struct device *kfd_device; 952 953 /* KFD's procfs */ 954 void kfd_procfs_init(void); 955 void kfd_procfs_shutdown(void); 956 int kfd_procfs_add_queue(struct queue *q); 957 void kfd_procfs_del_queue(struct queue *q); 958 959 /* Topology */ 960 int kfd_topology_init(void); 961 void kfd_topology_shutdown(void); 962 int kfd_topology_add_device(struct kfd_dev *gpu); 963 int kfd_topology_remove_device(struct kfd_dev *gpu); 964 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 965 uint32_t proximity_domain); 966 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 967 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 968 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 969 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd); 970 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); 971 int kfd_numa_node_to_apic_id(int numa_node_id); 972 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu); 973 974 /* Interrupts */ 975 int kfd_interrupt_init(struct kfd_dev *dev); 976 void kfd_interrupt_exit(struct kfd_dev *dev); 977 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 978 bool interrupt_is_wanted(struct kfd_dev *dev, 979 const uint32_t *ih_ring_entry, 980 uint32_t *patched_ihre, bool *flag); 981 982 /* amdkfd Apertures */ 983 int kfd_init_apertures(struct kfd_process *process); 984 985 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 986 uint64_t tba_addr, 987 uint64_t tma_addr); 988 989 /* Queue Context Management */ 990 int init_queue(struct queue **q, const struct queue_properties *properties); 991 void uninit_queue(struct queue *q); 992 void print_queue_properties(struct queue_properties *q); 993 void print_queue(struct queue *q); 994 995 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 996 struct kfd_dev *dev); 997 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 998 struct kfd_dev *dev); 999 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 1000 struct kfd_dev *dev); 1001 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 1002 struct kfd_dev *dev); 1003 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 1004 struct kfd_dev *dev); 1005 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 1006 struct kfd_dev *dev); 1007 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 1008 void device_queue_manager_uninit(struct device_queue_manager *dqm); 1009 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 1010 enum kfd_queue_type type); 1011 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging); 1012 int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid); 1013 1014 /* Process Queue Manager */ 1015 struct process_queue_node { 1016 struct queue *q; 1017 struct kernel_queue *kq; 1018 struct list_head process_queue_list; 1019 }; 1020 1021 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 1022 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 1023 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 1024 void pqm_uninit(struct process_queue_manager *pqm); 1025 int pqm_create_queue(struct process_queue_manager *pqm, 1026 struct kfd_dev *dev, 1027 struct file *f, 1028 struct queue_properties *properties, 1029 unsigned int *qid, 1030 uint32_t *p_doorbell_offset_in_process); 1031 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 1032 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid, 1033 struct queue_properties *p); 1034 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid, 1035 struct queue_properties *p); 1036 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 1037 void *gws); 1038 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 1039 unsigned int qid); 1040 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm, 1041 unsigned int qid); 1042 int pqm_get_wave_state(struct process_queue_manager *pqm, 1043 unsigned int qid, 1044 void __user *ctl_stack, 1045 u32 *ctl_stack_used_size, 1046 u32 *save_area_used_size); 1047 1048 int amdkfd_fence_wait_timeout(uint64_t *fence_addr, 1049 uint64_t fence_value, 1050 unsigned int timeout_ms); 1051 1052 /* Packet Manager */ 1053 1054 #define KFD_FENCE_COMPLETED (100) 1055 #define KFD_FENCE_INIT (10) 1056 1057 struct packet_manager { 1058 struct device_queue_manager *dqm; 1059 struct kernel_queue *priv_queue; 1060 struct mutex lock; 1061 bool allocated; 1062 struct kfd_mem_obj *ib_buffer_obj; 1063 unsigned int ib_size_bytes; 1064 bool is_over_subscription; 1065 1066 const struct packet_manager_funcs *pmf; 1067 }; 1068 1069 struct packet_manager_funcs { 1070 /* Support ASIC-specific packet formats for PM4 packets */ 1071 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 1072 struct qcm_process_device *qpd); 1073 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 1074 uint64_t ib, size_t ib_size_in_dwords, bool chain); 1075 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 1076 struct scheduling_resources *res); 1077 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 1078 struct queue *q, bool is_static); 1079 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 1080 enum kfd_queue_type type, 1081 enum kfd_unmap_queues_filter mode, 1082 uint32_t filter_param, bool reset, 1083 unsigned int sdma_engine); 1084 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 1085 uint64_t fence_address, uint64_t fence_value); 1086 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 1087 1088 /* Packet sizes */ 1089 int map_process_size; 1090 int runlist_size; 1091 int set_resources_size; 1092 int map_queues_size; 1093 int unmap_queues_size; 1094 int query_status_size; 1095 int release_mem_size; 1096 }; 1097 1098 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 1099 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 1100 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs; 1101 1102 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 1103 void pm_uninit(struct packet_manager *pm, bool hanging); 1104 int pm_send_set_resources(struct packet_manager *pm, 1105 struct scheduling_resources *res); 1106 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 1107 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 1108 uint64_t fence_value); 1109 1110 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type, 1111 enum kfd_unmap_queues_filter mode, 1112 uint32_t filter_param, bool reset, 1113 unsigned int sdma_engine); 1114 1115 void pm_release_ib(struct packet_manager *pm); 1116 1117 /* Following PM funcs can be shared among VI and AI */ 1118 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 1119 1120 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1121 1122 /* Events */ 1123 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1124 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1125 1126 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1127 1128 void kfd_event_init_process(struct kfd_process *p); 1129 void kfd_event_free_process(struct kfd_process *p); 1130 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1131 int kfd_wait_on_events(struct kfd_process *p, 1132 uint32_t num_events, void __user *data, 1133 bool all, uint32_t user_timeout_ms, 1134 uint32_t *wait_result); 1135 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 1136 uint32_t valid_id_bits); 1137 void kfd_signal_iommu_event(struct kfd_dev *dev, 1138 u32 pasid, unsigned long address, 1139 bool is_write_requested, bool is_execute_requested); 1140 void kfd_signal_hw_exception_event(u32 pasid); 1141 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1142 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1143 int kfd_event_page_set(struct kfd_process *p, void *kernel_address, 1144 uint64_t size); 1145 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1146 uint32_t event_type, bool auto_reset, uint32_t node_id, 1147 uint32_t *event_id, uint32_t *event_trigger_data, 1148 uint64_t *event_page_offset, uint32_t *event_slot_index); 1149 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1150 1151 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid, 1152 struct kfd_vm_fault_info *info); 1153 1154 void kfd_signal_reset_event(struct kfd_dev *dev); 1155 1156 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid); 1157 1158 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type); 1159 1160 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p); 1161 1162 bool kfd_is_locked(void); 1163 1164 /* Compute profile */ 1165 void kfd_inc_compute_active(struct kfd_dev *dev); 1166 void kfd_dec_compute_active(struct kfd_dev *dev); 1167 1168 /* Cgroup Support */ 1169 /* Check with device cgroup if @kfd device is accessible */ 1170 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd) 1171 { 1172 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) 1173 struct drm_device *ddev = kfd->ddev; 1174 1175 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, 1176 ddev->render->index, 1177 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1178 #else 1179 return 0; 1180 #endif 1181 } 1182 1183 /* Debugfs */ 1184 #if defined(CONFIG_DEBUG_FS) 1185 1186 void kfd_debugfs_init(void); 1187 void kfd_debugfs_fini(void); 1188 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1189 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1190 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1191 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1192 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1193 int pm_debugfs_runlist(struct seq_file *m, void *data); 1194 1195 int kfd_debugfs_hang_hws(struct kfd_dev *dev); 1196 int pm_debugfs_hang_hws(struct packet_manager *pm); 1197 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm); 1198 1199 #else 1200 1201 static inline void kfd_debugfs_init(void) {} 1202 static inline void kfd_debugfs_fini(void) {} 1203 1204 #endif 1205 1206 #endif 1207