xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision aa0dc6a7)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <linux/sysfs.h>
39 #include <linux/device_cgroup.h>
40 #include <drm/drm_file.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_device.h>
43 #include <drm/drm_ioctl.h>
44 #include <kgd_kfd_interface.h>
45 #include <linux/swap.h>
46 
47 #include "amd_shared.h"
48 #include "amdgpu.h"
49 
50 #define KFD_MAX_RING_ENTRY_SIZE	8
51 
52 #define KFD_SYSFS_FILE_MODE 0444
53 
54 /* GPU ID hash width in bits */
55 #define KFD_GPU_ID_HASH_WIDTH 16
56 
57 /* Use upper bits of mmap offset to store KFD driver specific information.
58  * BITS[63:62] - Encode MMAP type
59  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
60  * BITS[45:0]  - MMAP offset value
61  *
62  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
63  *  defines are w.r.t to PAGE_SIZE
64  */
65 #define KFD_MMAP_TYPE_SHIFT	62
66 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
67 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
68 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
71 
72 #define KFD_MMAP_GPU_ID_SHIFT 46
73 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
74 				<< KFD_MMAP_GPU_ID_SHIFT)
75 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
76 				& KFD_MMAP_GPU_ID_MASK)
77 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
78 				>> KFD_MMAP_GPU_ID_SHIFT)
79 
80 /*
81  * When working with cp scheduler we should assign the HIQ manually or via
82  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
83  * definitions for Kaveri. In Kaveri only the first ME queues participates
84  * in the cp scheduling taking that in mind we set the HIQ slot in the
85  * second ME.
86  */
87 #define KFD_CIK_HIQ_PIPE 4
88 #define KFD_CIK_HIQ_QUEUE 0
89 
90 /* Macro for allocating structures */
91 #define kfd_alloc_struct(ptr_to_struct)	\
92 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
93 
94 #define KFD_MAX_NUM_OF_PROCESSES 512
95 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
96 
97 /*
98  * Size of the per-process TBA+TMA buffer: 2 pages
99  *
100  * The first page is the TBA used for the CWSR ISA code. The second
101  * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
102  */
103 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
104 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
105 
106 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
107 	(KFD_MAX_NUM_OF_PROCESSES *			\
108 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
109 
110 #define KFD_KERNEL_QUEUE_SIZE 2048
111 
112 #define KFD_UNMAP_LATENCY_MS	(4000)
113 
114 /*
115  * 512 = 0x200
116  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
117  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
118  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
119  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
120  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
121  */
122 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
123 
124 
125 /*
126  * Kernel module parameter to specify maximum number of supported queues per
127  * device
128  */
129 extern int max_num_of_queues_per_device;
130 
131 
132 /* Kernel module parameter to specify the scheduling policy */
133 extern int sched_policy;
134 
135 /*
136  * Kernel module parameter to specify the maximum process
137  * number per HW scheduler
138  */
139 extern int hws_max_conc_proc;
140 
141 extern int cwsr_enable;
142 
143 /*
144  * Kernel module parameter to specify whether to send sigterm to HSA process on
145  * unhandled exception
146  */
147 extern int send_sigterm;
148 
149 /*
150  * This kernel module is used to simulate large bar machine on non-large bar
151  * enabled machines.
152  */
153 extern int debug_largebar;
154 
155 /*
156  * Ignore CRAT table during KFD initialization, can be used to work around
157  * broken CRAT tables on some AMD systems
158  */
159 extern int ignore_crat;
160 
161 /* Set sh_mem_config.retry_disable on GFX v9 */
162 extern int amdgpu_noretry;
163 
164 /* Halt if HWS hang is detected */
165 extern int halt_if_hws_hang;
166 
167 /* Whether MEC FW support GWS barriers */
168 extern bool hws_gws_support;
169 
170 /* Queue preemption timeout in ms */
171 extern int queue_preemption_timeout_ms;
172 
173 /*
174  * Don't evict process queues on vm fault
175  */
176 extern int amdgpu_no_queue_eviction_on_vm_fault;
177 
178 /* Enable eviction debug messages */
179 extern bool debug_evictions;
180 
181 enum cache_policy {
182 	cache_policy_coherent,
183 	cache_policy_noncoherent
184 };
185 
186 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
187 
188 struct kfd_event_interrupt_class {
189 	bool (*interrupt_isr)(struct kfd_dev *dev,
190 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
191 			bool *patched_flag);
192 	void (*interrupt_wq)(struct kfd_dev *dev,
193 			const uint32_t *ih_ring_entry);
194 };
195 
196 struct kfd_device_info {
197 	enum amd_asic_type asic_family;
198 	const char *asic_name;
199 	const struct kfd_event_interrupt_class *event_interrupt_class;
200 	unsigned int max_pasid_bits;
201 	unsigned int max_no_of_hqd;
202 	unsigned int doorbell_size;
203 	size_t ih_ring_entry_size;
204 	uint8_t num_of_watch_points;
205 	uint16_t mqd_size_aligned;
206 	bool supports_cwsr;
207 	bool needs_iommu_device;
208 	bool needs_pci_atomics;
209 	unsigned int num_sdma_engines;
210 	unsigned int num_xgmi_sdma_engines;
211 	unsigned int num_sdma_queues_per_engine;
212 };
213 
214 struct kfd_mem_obj {
215 	uint32_t range_start;
216 	uint32_t range_end;
217 	uint64_t gpu_addr;
218 	uint32_t *cpu_ptr;
219 	void *gtt_mem;
220 };
221 
222 struct kfd_vmid_info {
223 	uint32_t first_vmid_kfd;
224 	uint32_t last_vmid_kfd;
225 	uint32_t vmid_num_kfd;
226 };
227 
228 struct kfd_dev {
229 	struct kgd_dev *kgd;
230 
231 	const struct kfd_device_info *device_info;
232 	struct pci_dev *pdev;
233 	struct drm_device *ddev;
234 
235 	unsigned int id;		/* topology stub index */
236 
237 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
238 					 * KFD. It is aligned for mapping
239 					 * into user mode
240 					 */
241 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
242 					 * doorbell BAR to the first KFD
243 					 * doorbell in dwords. GFX reserves
244 					 * the segment before this offset.
245 					 */
246 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
247 					   * page used by kernel queue
248 					   */
249 
250 	struct kgd2kfd_shared_resources shared_resources;
251 	struct kfd_vmid_info vm_info;
252 
253 	const struct kfd2kgd_calls *kfd2kgd;
254 	struct mutex doorbell_mutex;
255 	DECLARE_BITMAP(doorbell_available_index,
256 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
257 
258 	void *gtt_mem;
259 	uint64_t gtt_start_gpu_addr;
260 	void *gtt_start_cpu_ptr;
261 	void *gtt_sa_bitmap;
262 	struct mutex gtt_sa_lock;
263 	unsigned int gtt_sa_chunk_size;
264 	unsigned int gtt_sa_num_of_chunks;
265 
266 	/* Interrupts */
267 	struct kfifo ih_fifo;
268 	struct workqueue_struct *ih_wq;
269 	struct work_struct interrupt_work;
270 	spinlock_t interrupt_lock;
271 
272 	/* QCM Device instance */
273 	struct device_queue_manager *dqm;
274 
275 	bool init_complete;
276 	/*
277 	 * Interrupts of interest to KFD are copied
278 	 * from the HW ring into a SW ring.
279 	 */
280 	bool interrupts_active;
281 
282 	/* Debug manager */
283 	struct kfd_dbgmgr *dbgmgr;
284 
285 	/* Firmware versions */
286 	uint16_t mec_fw_version;
287 	uint16_t mec2_fw_version;
288 	uint16_t sdma_fw_version;
289 
290 	/* Maximum process number mapped to HW scheduler */
291 	unsigned int max_proc_per_quantum;
292 
293 	/* CWSR */
294 	bool cwsr_enabled;
295 	const void *cwsr_isa;
296 	unsigned int cwsr_isa_size;
297 
298 	/* xGMI */
299 	uint64_t hive_id;
300 
301 	bool pci_atomic_requested;
302 
303 	/* Use IOMMU v2 flag */
304 	bool use_iommu_v2;
305 
306 	/* SRAM ECC flag */
307 	atomic_t sram_ecc_flag;
308 
309 	/* Compute Profile ref. count */
310 	atomic_t compute_profile;
311 
312 	/* Global GWS resource shared between processes */
313 	void *gws;
314 
315 	/* Clients watching SMI events */
316 	struct list_head smi_clients;
317 	spinlock_t smi_lock;
318 
319 	uint32_t reset_seq_num;
320 
321 	struct ida doorbell_ida;
322 	unsigned int max_doorbell_slices;
323 
324 	int noretry;
325 
326 	/* HMM page migration MEMORY_DEVICE_PRIVATE mapping */
327 	struct dev_pagemap pgmap;
328 };
329 
330 enum kfd_mempool {
331 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
332 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
333 	KFD_MEMPOOL_FRAMEBUFFER = 3,
334 };
335 
336 /* Character device interface */
337 int kfd_chardev_init(void);
338 void kfd_chardev_exit(void);
339 struct device *kfd_chardev(void);
340 
341 /**
342  * enum kfd_unmap_queues_filter - Enum for queue filters.
343  *
344  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
345  *
346  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
347  *						running queues list.
348  *
349  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
350  *						specific process.
351  *
352  */
353 enum kfd_unmap_queues_filter {
354 	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
355 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
356 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
357 	KFD_UNMAP_QUEUES_FILTER_BY_PASID
358 };
359 
360 /**
361  * enum kfd_queue_type - Enum for various queue types.
362  *
363  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
364  *
365  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
366  *
367  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
368  *
369  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
370  *
371  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
372  */
373 enum kfd_queue_type  {
374 	KFD_QUEUE_TYPE_COMPUTE,
375 	KFD_QUEUE_TYPE_SDMA,
376 	KFD_QUEUE_TYPE_HIQ,
377 	KFD_QUEUE_TYPE_DIQ,
378 	KFD_QUEUE_TYPE_SDMA_XGMI
379 };
380 
381 enum kfd_queue_format {
382 	KFD_QUEUE_FORMAT_PM4,
383 	KFD_QUEUE_FORMAT_AQL
384 };
385 
386 enum KFD_QUEUE_PRIORITY {
387 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
388 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
389 };
390 
391 /**
392  * struct queue_properties
393  *
394  * @type: The queue type.
395  *
396  * @queue_id: Queue identifier.
397  *
398  * @queue_address: Queue ring buffer address.
399  *
400  * @queue_size: Queue ring buffer size.
401  *
402  * @priority: Defines the queue priority relative to other queues in the
403  * process.
404  * This is just an indication and HW scheduling may override the priority as
405  * necessary while keeping the relative prioritization.
406  * the priority granularity is from 0 to f which f is the highest priority.
407  * currently all queues are initialized with the highest priority.
408  *
409  * @queue_percent: This field is partially implemented and currently a zero in
410  * this field defines that the queue is non active.
411  *
412  * @read_ptr: User space address which points to the number of dwords the
413  * cp read from the ring buffer. This field updates automatically by the H/W.
414  *
415  * @write_ptr: Defines the number of dwords written to the ring buffer.
416  *
417  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
418  * buffer. This field should be similar to write_ptr and the user should
419  * update this field after updating the write_ptr.
420  *
421  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
422  *
423  * @is_interop: Defines if this is a interop queue. Interop queue means that
424  * the queue can access both graphics and compute resources.
425  *
426  * @is_evicted: Defines if the queue is evicted. Only active queues
427  * are evicted, rendering them inactive.
428  *
429  * @is_active: Defines if the queue is active or not. @is_active and
430  * @is_evicted are protected by the DQM lock.
431  *
432  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
433  * @is_gws should be protected by the DQM lock, since changing it can yield the
434  * possibility of updating DQM state on number of GWS queues.
435  *
436  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
437  * of the queue.
438  *
439  * This structure represents the queue properties for each queue no matter if
440  * it's user mode or kernel mode queue.
441  *
442  */
443 struct queue_properties {
444 	enum kfd_queue_type type;
445 	enum kfd_queue_format format;
446 	unsigned int queue_id;
447 	uint64_t queue_address;
448 	uint64_t  queue_size;
449 	uint32_t priority;
450 	uint32_t queue_percent;
451 	uint32_t *read_ptr;
452 	uint32_t *write_ptr;
453 	void __iomem *doorbell_ptr;
454 	uint32_t doorbell_off;
455 	bool is_interop;
456 	bool is_evicted;
457 	bool is_active;
458 	bool is_gws;
459 	/* Not relevant for user mode queues in cp scheduling */
460 	unsigned int vmid;
461 	/* Relevant only for sdma queues*/
462 	uint32_t sdma_engine_id;
463 	uint32_t sdma_queue_id;
464 	uint32_t sdma_vm_addr;
465 	/* Relevant only for VI */
466 	uint64_t eop_ring_buffer_address;
467 	uint32_t eop_ring_buffer_size;
468 	uint64_t ctx_save_restore_area_address;
469 	uint32_t ctx_save_restore_area_size;
470 	uint32_t ctl_stack_size;
471 	uint64_t tba_addr;
472 	uint64_t tma_addr;
473 	/* Relevant for CU */
474 	uint32_t cu_mask_count; /* Must be a multiple of 32 */
475 	uint32_t *cu_mask;
476 };
477 
478 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
479 			    (q).queue_address != 0 &&	\
480 			    (q).queue_percent > 0 &&	\
481 			    !(q).is_evicted)
482 
483 /**
484  * struct queue
485  *
486  * @list: Queue linked list.
487  *
488  * @mqd: The queue MQD (memory queue descriptor).
489  *
490  * @mqd_mem_obj: The MQD local gpu memory object.
491  *
492  * @gart_mqd_addr: The MQD gart mc address.
493  *
494  * @properties: The queue properties.
495  *
496  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
497  *	 that the queue should be executed on.
498  *
499  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
500  *	  id.
501  *
502  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
503  *
504  * @process: The kfd process that created this queue.
505  *
506  * @device: The kfd device that created this queue.
507  *
508  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
509  * otherwise.
510  *
511  * This structure represents user mode compute queues.
512  * It contains all the necessary data to handle such queues.
513  *
514  */
515 
516 struct queue {
517 	struct list_head list;
518 	void *mqd;
519 	struct kfd_mem_obj *mqd_mem_obj;
520 	uint64_t gart_mqd_addr;
521 	struct queue_properties properties;
522 
523 	uint32_t mec;
524 	uint32_t pipe;
525 	uint32_t queue;
526 
527 	unsigned int sdma_id;
528 	unsigned int doorbell_id;
529 
530 	struct kfd_process	*process;
531 	struct kfd_dev		*device;
532 	void *gws;
533 
534 	/* procfs */
535 	struct kobject kobj;
536 };
537 
538 enum KFD_MQD_TYPE {
539 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
540 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
541 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
542 	KFD_MQD_TYPE_DIQ,		/* for diq */
543 	KFD_MQD_TYPE_MAX
544 };
545 
546 enum KFD_PIPE_PRIORITY {
547 	KFD_PIPE_PRIORITY_CS_LOW = 0,
548 	KFD_PIPE_PRIORITY_CS_MEDIUM,
549 	KFD_PIPE_PRIORITY_CS_HIGH
550 };
551 
552 struct scheduling_resources {
553 	unsigned int vmid_mask;
554 	enum kfd_queue_type type;
555 	uint64_t queue_mask;
556 	uint64_t gws_mask;
557 	uint32_t oac_mask;
558 	uint32_t gds_heap_base;
559 	uint32_t gds_heap_size;
560 };
561 
562 struct process_queue_manager {
563 	/* data */
564 	struct kfd_process	*process;
565 	struct list_head	queues;
566 	unsigned long		*queue_slot_bitmap;
567 };
568 
569 struct qcm_process_device {
570 	/* The Device Queue Manager that owns this data */
571 	struct device_queue_manager *dqm;
572 	struct process_queue_manager *pqm;
573 	/* Queues list */
574 	struct list_head queues_list;
575 	struct list_head priv_queue_list;
576 
577 	unsigned int queue_count;
578 	unsigned int vmid;
579 	bool is_debug;
580 	unsigned int evicted; /* eviction counter, 0=active */
581 
582 	/* This flag tells if we should reset all wavefronts on
583 	 * process termination
584 	 */
585 	bool reset_wavefronts;
586 
587 	/* This flag tells us if this process has a GWS-capable
588 	 * queue that will be mapped into the runlist. It's
589 	 * possible to request a GWS BO, but not have the queue
590 	 * currently mapped, and this changes how the MAP_PROCESS
591 	 * PM4 packet is configured.
592 	 */
593 	bool mapped_gws_queue;
594 
595 	/* All the memory management data should be here too */
596 	uint64_t gds_context_area;
597 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
598 	uint64_t page_table_base;
599 	uint32_t sh_mem_config;
600 	uint32_t sh_mem_bases;
601 	uint32_t sh_mem_ape1_base;
602 	uint32_t sh_mem_ape1_limit;
603 	uint32_t gds_size;
604 	uint32_t num_gws;
605 	uint32_t num_oac;
606 	uint32_t sh_hidden_private_base;
607 
608 	/* CWSR memory */
609 	void *cwsr_kaddr;
610 	uint64_t cwsr_base;
611 	uint64_t tba_addr;
612 	uint64_t tma_addr;
613 
614 	/* IB memory */
615 	uint64_t ib_base;
616 	void *ib_kaddr;
617 
618 	/* doorbell resources per process per device */
619 	unsigned long *doorbell_bitmap;
620 };
621 
622 /* KFD Memory Eviction */
623 
624 /* Approx. wait time before attempting to restore evicted BOs */
625 #define PROCESS_RESTORE_TIME_MS 100
626 /* Approx. back off time if restore fails due to lack of memory */
627 #define PROCESS_BACK_OFF_TIME_MS 100
628 /* Approx. time before evicting the process again */
629 #define PROCESS_ACTIVE_TIME_MS 10
630 
631 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
632  * idr_handle in the least significant 4 bytes
633  */
634 #define MAKE_HANDLE(gpu_id, idr_handle) \
635 	(((uint64_t)(gpu_id) << 32) + idr_handle)
636 #define GET_GPU_ID(handle) (handle >> 32)
637 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
638 
639 enum kfd_pdd_bound {
640 	PDD_UNBOUND = 0,
641 	PDD_BOUND,
642 	PDD_BOUND_SUSPENDED,
643 };
644 
645 #define MAX_SYSFS_FILENAME_LEN 15
646 
647 /*
648  * SDMA counter runs at 100MHz frequency.
649  * We display SDMA activity in microsecond granularity in sysfs.
650  * As a result, the divisor is 100.
651  */
652 #define SDMA_ACTIVITY_DIVISOR  100
653 
654 /* Data that is per-process-per device. */
655 struct kfd_process_device {
656 	/* The device that owns this data. */
657 	struct kfd_dev *dev;
658 
659 	/* The process that owns this kfd_process_device. */
660 	struct kfd_process *process;
661 
662 	/* per-process-per device QCM data structure */
663 	struct qcm_process_device qpd;
664 
665 	/*Apertures*/
666 	uint64_t lds_base;
667 	uint64_t lds_limit;
668 	uint64_t gpuvm_base;
669 	uint64_t gpuvm_limit;
670 	uint64_t scratch_base;
671 	uint64_t scratch_limit;
672 
673 	/* VM context for GPUVM allocations */
674 	struct file *drm_file;
675 	void *drm_priv;
676 
677 	/* GPUVM allocations storage */
678 	struct idr alloc_idr;
679 
680 	/* Flag used to tell the pdd has dequeued from the dqm.
681 	 * This is used to prevent dev->dqm->ops.process_termination() from
682 	 * being called twice when it is already called in IOMMU callback
683 	 * function.
684 	 */
685 	bool already_dequeued;
686 	bool runtime_inuse;
687 
688 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
689 	enum kfd_pdd_bound bound;
690 
691 	/* VRAM usage */
692 	uint64_t vram_usage;
693 	struct attribute attr_vram;
694 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
695 
696 	/* SDMA activity tracking */
697 	uint64_t sdma_past_activity_counter;
698 	struct attribute attr_sdma;
699 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
700 
701 	/* Eviction activity tracking */
702 	uint64_t last_evict_timestamp;
703 	atomic64_t evict_duration_counter;
704 	struct attribute attr_evict;
705 
706 	struct kobject *kobj_stats;
707 	unsigned int doorbell_index;
708 
709 	/*
710 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
711 	 * that is associated with device encoded by "this" struct instance. The
712 	 * value reflects CU usage by all of the waves launched by this process
713 	 * on this device. A very important property of occupancy parameter is
714 	 * that its value is a snapshot of current use.
715 	 *
716 	 * Following is to be noted regarding how this parameter is reported:
717 	 *
718 	 *  The number of waves that a CU can launch is limited by couple of
719 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
720 	 *  that is part of every device definition. For GFX9 devices this
721 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
722 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
723 	 *  when they do use scratch memory. This could change for future
724 	 *  devices and therefore this example should be considered as a guide.
725 	 *
726 	 *  All CU's of a device are available for the process. This may not be true
727 	 *  under certain conditions - e.g. CU masking.
728 	 *
729 	 *  Finally number of CU's that are occupied by a process is affected by both
730 	 *  number of CU's a device has along with number of other competing processes
731 	 */
732 	struct attribute attr_cu_occupancy;
733 
734 	/* sysfs counters for GPU retry fault and page migration tracking */
735 	struct kobject *kobj_counters;
736 	struct attribute attr_faults;
737 	struct attribute attr_page_in;
738 	struct attribute attr_page_out;
739 	uint64_t faults;
740 	uint64_t page_in;
741 	uint64_t page_out;
742 };
743 
744 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
745 
746 struct svm_range_list {
747 	struct mutex			lock;
748 	struct rb_root_cached		objects;
749 	struct list_head		list;
750 	struct work_struct		deferred_list_work;
751 	struct list_head		deferred_range_list;
752 	spinlock_t			deferred_list_lock;
753 	atomic_t			evicted_ranges;
754 	struct delayed_work		restore_work;
755 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
756 };
757 
758 /* Process data */
759 struct kfd_process {
760 	/*
761 	 * kfd_process are stored in an mm_struct*->kfd_process*
762 	 * hash table (kfd_processes in kfd_process.c)
763 	 */
764 	struct hlist_node kfd_processes;
765 
766 	/*
767 	 * Opaque pointer to mm_struct. We don't hold a reference to
768 	 * it so it should never be dereferenced from here. This is
769 	 * only used for looking up processes by their mm.
770 	 */
771 	void *mm;
772 
773 	struct kref ref;
774 	struct work_struct release_work;
775 
776 	struct mutex mutex;
777 
778 	/*
779 	 * In any process, the thread that started main() is the lead
780 	 * thread and outlives the rest.
781 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
782 	 * It can also be used for safely getting a reference to the
783 	 * mm_struct of the process.
784 	 */
785 	struct task_struct *lead_thread;
786 
787 	/* We want to receive a notification when the mm_struct is destroyed */
788 	struct mmu_notifier mmu_notifier;
789 
790 	u32 pasid;
791 
792 	/*
793 	 * Array of kfd_process_device pointers,
794 	 * one for each device the process is using.
795 	 */
796 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
797 	uint32_t n_pdds;
798 
799 	struct process_queue_manager pqm;
800 
801 	/*Is the user space process 32 bit?*/
802 	bool is_32bit_user_mode;
803 
804 	/* Event-related data */
805 	struct mutex event_mutex;
806 	/* Event ID allocator and lookup */
807 	struct idr event_idr;
808 	/* Event page */
809 	struct kfd_signal_page *signal_page;
810 	size_t signal_mapped_size;
811 	size_t signal_event_count;
812 	bool signal_event_limit_reached;
813 
814 	/* Information used for memory eviction */
815 	void *kgd_process_info;
816 	/* Eviction fence that is attached to all the BOs of this process. The
817 	 * fence will be triggered during eviction and new one will be created
818 	 * during restore
819 	 */
820 	struct dma_fence *ef;
821 
822 	/* Work items for evicting and restoring BOs */
823 	struct delayed_work eviction_work;
824 	struct delayed_work restore_work;
825 	/* seqno of the last scheduled eviction */
826 	unsigned int last_eviction_seqno;
827 	/* Approx. the last timestamp (in jiffies) when the process was
828 	 * restored after an eviction
829 	 */
830 	unsigned long last_restore_timestamp;
831 
832 	/* Kobj for our procfs */
833 	struct kobject *kobj;
834 	struct kobject *kobj_queues;
835 	struct attribute attr_pasid;
836 
837 	/* shared virtual memory registered by this process */
838 	struct svm_range_list svms;
839 
840 	bool xnack_enabled;
841 };
842 
843 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
844 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
845 extern struct srcu_struct kfd_processes_srcu;
846 
847 /**
848  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
849  *
850  * @filep: pointer to file structure.
851  * @p: amdkfd process pointer.
852  * @data: pointer to arg that was copied from user.
853  *
854  * Return: returns ioctl completion code.
855  */
856 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
857 				void *data);
858 
859 struct amdkfd_ioctl_desc {
860 	unsigned int cmd;
861 	int flags;
862 	amdkfd_ioctl_t *func;
863 	unsigned int cmd_drv;
864 	const char *name;
865 };
866 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
867 
868 int kfd_process_create_wq(void);
869 void kfd_process_destroy_wq(void);
870 struct kfd_process *kfd_create_process(struct file *filep);
871 struct kfd_process *kfd_get_process(const struct task_struct *);
872 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
873 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
874 
875 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
876 int kfd_process_gpuid_from_kgd(struct kfd_process *p,
877 			       struct amdgpu_device *adev, uint32_t *gpuid,
878 			       uint32_t *gpuidx);
879 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
880 				uint32_t gpuidx, uint32_t *gpuid) {
881 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
882 }
883 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
884 				struct kfd_process *p, uint32_t gpuidx) {
885 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
886 }
887 
888 void kfd_unref_process(struct kfd_process *p);
889 int kfd_process_evict_queues(struct kfd_process *p);
890 int kfd_process_restore_queues(struct kfd_process *p);
891 void kfd_suspend_all_processes(void);
892 int kfd_resume_all_processes(void);
893 
894 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
895 			       struct file *drm_file);
896 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
897 						struct kfd_process *p);
898 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
899 							struct kfd_process *p);
900 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
901 							struct kfd_process *p);
902 
903 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
904 
905 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
906 			  struct vm_area_struct *vma);
907 
908 /* KFD process API for creating and translating handles */
909 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
910 					void *mem);
911 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
912 					int handle);
913 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
914 					int handle);
915 
916 /* PASIDs */
917 int kfd_pasid_init(void);
918 void kfd_pasid_exit(void);
919 bool kfd_set_pasid_limit(unsigned int new_limit);
920 unsigned int kfd_get_pasid_limit(void);
921 u32 kfd_pasid_alloc(void);
922 void kfd_pasid_free(u32 pasid);
923 
924 /* Doorbells */
925 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
926 int kfd_doorbell_init(struct kfd_dev *kfd);
927 void kfd_doorbell_fini(struct kfd_dev *kfd);
928 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
929 		      struct vm_area_struct *vma);
930 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
931 					unsigned int *doorbell_off);
932 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
933 u32 read_kernel_doorbell(u32 __iomem *db);
934 void write_kernel_doorbell(void __iomem *db, u32 value);
935 void write_kernel_doorbell64(void __iomem *db, u64 value);
936 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
937 					struct kfd_process_device *pdd,
938 					unsigned int doorbell_id);
939 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
940 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
941 				unsigned int *doorbell_index);
942 void kfd_free_process_doorbells(struct kfd_dev *kfd,
943 				unsigned int doorbell_index);
944 /* GTT Sub-Allocator */
945 
946 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
947 			struct kfd_mem_obj **mem_obj);
948 
949 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
950 
951 extern struct device *kfd_device;
952 
953 /* KFD's procfs */
954 void kfd_procfs_init(void);
955 void kfd_procfs_shutdown(void);
956 int kfd_procfs_add_queue(struct queue *q);
957 void kfd_procfs_del_queue(struct queue *q);
958 
959 /* Topology */
960 int kfd_topology_init(void);
961 void kfd_topology_shutdown(void);
962 int kfd_topology_add_device(struct kfd_dev *gpu);
963 int kfd_topology_remove_device(struct kfd_dev *gpu);
964 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
965 						uint32_t proximity_domain);
966 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
967 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
968 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
969 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
970 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
971 int kfd_numa_node_to_apic_id(int numa_node_id);
972 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
973 
974 /* Interrupts */
975 int kfd_interrupt_init(struct kfd_dev *dev);
976 void kfd_interrupt_exit(struct kfd_dev *dev);
977 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
978 bool interrupt_is_wanted(struct kfd_dev *dev,
979 				const uint32_t *ih_ring_entry,
980 				uint32_t *patched_ihre, bool *flag);
981 
982 /* amdkfd Apertures */
983 int kfd_init_apertures(struct kfd_process *process);
984 
985 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
986 				  uint64_t tba_addr,
987 				  uint64_t tma_addr);
988 
989 /* Queue Context Management */
990 int init_queue(struct queue **q, const struct queue_properties *properties);
991 void uninit_queue(struct queue *q);
992 void print_queue_properties(struct queue_properties *q);
993 void print_queue(struct queue *q);
994 
995 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
996 		struct kfd_dev *dev);
997 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
998 		struct kfd_dev *dev);
999 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1000 		struct kfd_dev *dev);
1001 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1002 		struct kfd_dev *dev);
1003 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1004 		struct kfd_dev *dev);
1005 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1006 		struct kfd_dev *dev);
1007 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
1008 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1009 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
1010 					enum kfd_queue_type type);
1011 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1012 int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid);
1013 
1014 /* Process Queue Manager */
1015 struct process_queue_node {
1016 	struct queue *q;
1017 	struct kernel_queue *kq;
1018 	struct list_head process_queue_list;
1019 };
1020 
1021 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1022 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1023 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1024 void pqm_uninit(struct process_queue_manager *pqm);
1025 int pqm_create_queue(struct process_queue_manager *pqm,
1026 			    struct kfd_dev *dev,
1027 			    struct file *f,
1028 			    struct queue_properties *properties,
1029 			    unsigned int *qid,
1030 			    uint32_t *p_doorbell_offset_in_process);
1031 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1032 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
1033 			struct queue_properties *p);
1034 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
1035 			struct queue_properties *p);
1036 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1037 			void *gws);
1038 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1039 						unsigned int qid);
1040 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1041 						unsigned int qid);
1042 int pqm_get_wave_state(struct process_queue_manager *pqm,
1043 		       unsigned int qid,
1044 		       void __user *ctl_stack,
1045 		       u32 *ctl_stack_used_size,
1046 		       u32 *save_area_used_size);
1047 
1048 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1049 			      uint64_t fence_value,
1050 			      unsigned int timeout_ms);
1051 
1052 /* Packet Manager */
1053 
1054 #define KFD_FENCE_COMPLETED (100)
1055 #define KFD_FENCE_INIT   (10)
1056 
1057 struct packet_manager {
1058 	struct device_queue_manager *dqm;
1059 	struct kernel_queue *priv_queue;
1060 	struct mutex lock;
1061 	bool allocated;
1062 	struct kfd_mem_obj *ib_buffer_obj;
1063 	unsigned int ib_size_bytes;
1064 	bool is_over_subscription;
1065 
1066 	const struct packet_manager_funcs *pmf;
1067 };
1068 
1069 struct packet_manager_funcs {
1070 	/* Support ASIC-specific packet formats for PM4 packets */
1071 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1072 			struct qcm_process_device *qpd);
1073 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1074 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1075 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1076 			struct scheduling_resources *res);
1077 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1078 			struct queue *q, bool is_static);
1079 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1080 			enum kfd_queue_type type,
1081 			enum kfd_unmap_queues_filter mode,
1082 			uint32_t filter_param, bool reset,
1083 			unsigned int sdma_engine);
1084 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1085 			uint64_t fence_address,	uint64_t fence_value);
1086 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1087 
1088 	/* Packet sizes */
1089 	int map_process_size;
1090 	int runlist_size;
1091 	int set_resources_size;
1092 	int map_queues_size;
1093 	int unmap_queues_size;
1094 	int query_status_size;
1095 	int release_mem_size;
1096 };
1097 
1098 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1099 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1100 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1101 
1102 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1103 void pm_uninit(struct packet_manager *pm, bool hanging);
1104 int pm_send_set_resources(struct packet_manager *pm,
1105 				struct scheduling_resources *res);
1106 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1107 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1108 				uint64_t fence_value);
1109 
1110 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1111 			enum kfd_unmap_queues_filter mode,
1112 			uint32_t filter_param, bool reset,
1113 			unsigned int sdma_engine);
1114 
1115 void pm_release_ib(struct packet_manager *pm);
1116 
1117 /* Following PM funcs can be shared among VI and AI */
1118 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1119 
1120 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1121 
1122 /* Events */
1123 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1124 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1125 
1126 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1127 
1128 void kfd_event_init_process(struct kfd_process *p);
1129 void kfd_event_free_process(struct kfd_process *p);
1130 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1131 int kfd_wait_on_events(struct kfd_process *p,
1132 		       uint32_t num_events, void __user *data,
1133 		       bool all, uint32_t user_timeout_ms,
1134 		       uint32_t *wait_result);
1135 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1136 				uint32_t valid_id_bits);
1137 void kfd_signal_iommu_event(struct kfd_dev *dev,
1138 			    u32 pasid, unsigned long address,
1139 			    bool is_write_requested, bool is_execute_requested);
1140 void kfd_signal_hw_exception_event(u32 pasid);
1141 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1142 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1143 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1144 		       uint64_t size);
1145 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1146 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1147 		     uint32_t *event_id, uint32_t *event_trigger_data,
1148 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1149 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1150 
1151 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1152 				struct kfd_vm_fault_info *info);
1153 
1154 void kfd_signal_reset_event(struct kfd_dev *dev);
1155 
1156 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid);
1157 
1158 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1159 
1160 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1161 
1162 bool kfd_is_locked(void);
1163 
1164 /* Compute profile */
1165 void kfd_inc_compute_active(struct kfd_dev *dev);
1166 void kfd_dec_compute_active(struct kfd_dev *dev);
1167 
1168 /* Cgroup Support */
1169 /* Check with device cgroup if @kfd device is accessible */
1170 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1171 {
1172 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1173 	struct drm_device *ddev = kfd->ddev;
1174 
1175 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1176 					  ddev->render->index,
1177 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1178 #else
1179 	return 0;
1180 #endif
1181 }
1182 
1183 /* Debugfs */
1184 #if defined(CONFIG_DEBUG_FS)
1185 
1186 void kfd_debugfs_init(void);
1187 void kfd_debugfs_fini(void);
1188 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1189 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1190 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1191 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1192 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1193 int pm_debugfs_runlist(struct seq_file *m, void *data);
1194 
1195 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1196 int pm_debugfs_hang_hws(struct packet_manager *pm);
1197 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1198 
1199 #else
1200 
1201 static inline void kfd_debugfs_init(void) {}
1202 static inline void kfd_debugfs_fini(void) {}
1203 
1204 #endif
1205 
1206 #endif
1207