xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision a0c5fd46)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef KFD_PRIV_H_INCLUDED
25 #define KFD_PRIV_H_INCLUDED
26 
27 #include <linux/hashtable.h>
28 #include <linux/mmu_notifier.h>
29 #include <linux/mutex.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/workqueue.h>
33 #include <linux/spinlock.h>
34 #include <linux/kfd_ioctl.h>
35 #include <linux/idr.h>
36 #include <linux/kfifo.h>
37 #include <linux/seq_file.h>
38 #include <linux/kref.h>
39 #include <linux/sysfs.h>
40 #include <linux/device_cgroup.h>
41 #include <drm/drm_file.h>
42 #include <drm/drm_drv.h>
43 #include <drm/drm_device.h>
44 #include <drm/drm_ioctl.h>
45 #include <kgd_kfd_interface.h>
46 #include <linux/swap.h>
47 
48 #include "amd_shared.h"
49 #include "amdgpu.h"
50 
51 #define KFD_MAX_RING_ENTRY_SIZE	8
52 
53 #define KFD_SYSFS_FILE_MODE 0444
54 
55 /* GPU ID hash width in bits */
56 #define KFD_GPU_ID_HASH_WIDTH 16
57 
58 /* Use upper bits of mmap offset to store KFD driver specific information.
59  * BITS[63:62] - Encode MMAP type
60  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
61  * BITS[45:0]  - MMAP offset value
62  *
63  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
64  *  defines are w.r.t to PAGE_SIZE
65  */
66 #define KFD_MMAP_TYPE_SHIFT	62
67 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
68 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
71 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
72 
73 #define KFD_MMAP_GPU_ID_SHIFT 46
74 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
75 				<< KFD_MMAP_GPU_ID_SHIFT)
76 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
77 				& KFD_MMAP_GPU_ID_MASK)
78 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
79 				>> KFD_MMAP_GPU_ID_SHIFT)
80 
81 /*
82  * When working with cp scheduler we should assign the HIQ manually or via
83  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
84  * definitions for Kaveri. In Kaveri only the first ME queues participates
85  * in the cp scheduling taking that in mind we set the HIQ slot in the
86  * second ME.
87  */
88 #define KFD_CIK_HIQ_PIPE 4
89 #define KFD_CIK_HIQ_QUEUE 0
90 
91 /* Macro for allocating structures */
92 #define kfd_alloc_struct(ptr_to_struct)	\
93 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
94 
95 #define KFD_MAX_NUM_OF_PROCESSES 512
96 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
97 
98 /*
99  * Size of the per-process TBA+TMA buffer: 2 pages
100  *
101  * The first page is the TBA used for the CWSR ISA code. The second
102  * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
103  */
104 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
105 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
106 
107 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
108 	(KFD_MAX_NUM_OF_PROCESSES *			\
109 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
110 
111 #define KFD_KERNEL_QUEUE_SIZE 2048
112 
113 #define KFD_UNMAP_LATENCY_MS	(4000)
114 
115 /*
116  * 512 = 0x200
117  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
118  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
119  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
120  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
121  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
122  */
123 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
124 
125 /**
126  * enum kfd_ioctl_flags - KFD ioctl flags
127  * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
128  * userspace can use a given ioctl.
129  */
130 enum kfd_ioctl_flags {
131 	/*
132 	 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
133 	 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
134 	 * perform privileged operations and load arbitrary data into MQDs and
135 	 * eventually HQD registers when the queue is mapped by HWS. In order to
136 	 * prevent this we should perform additional security checks.
137 	 *
138 	 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
139 	 *
140 	 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
141 	 * we also allow ioctls with SYS_ADMIN capability.
142 	 */
143 	KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
144 };
145 /*
146  * Kernel module parameter to specify maximum number of supported queues per
147  * device
148  */
149 extern int max_num_of_queues_per_device;
150 
151 
152 /* Kernel module parameter to specify the scheduling policy */
153 extern int sched_policy;
154 
155 /*
156  * Kernel module parameter to specify the maximum process
157  * number per HW scheduler
158  */
159 extern int hws_max_conc_proc;
160 
161 extern int cwsr_enable;
162 
163 /*
164  * Kernel module parameter to specify whether to send sigterm to HSA process on
165  * unhandled exception
166  */
167 extern int send_sigterm;
168 
169 /*
170  * This kernel module is used to simulate large bar machine on non-large bar
171  * enabled machines.
172  */
173 extern int debug_largebar;
174 
175 /*
176  * Ignore CRAT table during KFD initialization, can be used to work around
177  * broken CRAT tables on some AMD systems
178  */
179 extern int ignore_crat;
180 
181 /* Set sh_mem_config.retry_disable on GFX v9 */
182 extern int amdgpu_noretry;
183 
184 /* Halt if HWS hang is detected */
185 extern int halt_if_hws_hang;
186 
187 /* Whether MEC FW support GWS barriers */
188 extern bool hws_gws_support;
189 
190 /* Queue preemption timeout in ms */
191 extern int queue_preemption_timeout_ms;
192 
193 /*
194  * Don't evict process queues on vm fault
195  */
196 extern int amdgpu_no_queue_eviction_on_vm_fault;
197 
198 /* Enable eviction debug messages */
199 extern bool debug_evictions;
200 
201 enum cache_policy {
202 	cache_policy_coherent,
203 	cache_policy_noncoherent
204 };
205 
206 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0])
207 #define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
208 
209 struct kfd_event_interrupt_class {
210 	bool (*interrupt_isr)(struct kfd_dev *dev,
211 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
212 			bool *patched_flag);
213 	void (*interrupt_wq)(struct kfd_dev *dev,
214 			const uint32_t *ih_ring_entry);
215 };
216 
217 struct kfd_device_info {
218 	uint32_t gfx_target_version;
219 	const struct kfd_event_interrupt_class *event_interrupt_class;
220 	unsigned int max_pasid_bits;
221 	unsigned int max_no_of_hqd;
222 	unsigned int doorbell_size;
223 	size_t ih_ring_entry_size;
224 	uint8_t num_of_watch_points;
225 	uint16_t mqd_size_aligned;
226 	bool supports_cwsr;
227 	bool needs_iommu_device;
228 	bool needs_pci_atomics;
229 	uint32_t no_atomic_fw_version;
230 	unsigned int num_sdma_queues_per_engine;
231 };
232 
233 unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev);
234 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev);
235 
236 struct kfd_mem_obj {
237 	uint32_t range_start;
238 	uint32_t range_end;
239 	uint64_t gpu_addr;
240 	uint32_t *cpu_ptr;
241 	void *gtt_mem;
242 };
243 
244 struct kfd_vmid_info {
245 	uint32_t first_vmid_kfd;
246 	uint32_t last_vmid_kfd;
247 	uint32_t vmid_num_kfd;
248 };
249 
250 struct kfd_dev {
251 	struct amdgpu_device *adev;
252 
253 	struct kfd_device_info device_info;
254 	struct pci_dev *pdev;
255 	struct drm_device *ddev;
256 
257 	unsigned int id;		/* topology stub index */
258 
259 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
260 					 * KFD. It is aligned for mapping
261 					 * into user mode
262 					 */
263 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
264 					 * doorbell BAR to the first KFD
265 					 * doorbell in dwords. GFX reserves
266 					 * the segment before this offset.
267 					 */
268 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
269 					   * page used by kernel queue
270 					   */
271 
272 	struct kgd2kfd_shared_resources shared_resources;
273 	struct kfd_vmid_info vm_info;
274 
275 	const struct kfd2kgd_calls *kfd2kgd;
276 	struct mutex doorbell_mutex;
277 	DECLARE_BITMAP(doorbell_available_index,
278 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
279 
280 	void *gtt_mem;
281 	uint64_t gtt_start_gpu_addr;
282 	void *gtt_start_cpu_ptr;
283 	void *gtt_sa_bitmap;
284 	struct mutex gtt_sa_lock;
285 	unsigned int gtt_sa_chunk_size;
286 	unsigned int gtt_sa_num_of_chunks;
287 
288 	/* Interrupts */
289 	struct kfifo ih_fifo;
290 	struct workqueue_struct *ih_wq;
291 	struct work_struct interrupt_work;
292 	spinlock_t interrupt_lock;
293 
294 	/* QCM Device instance */
295 	struct device_queue_manager *dqm;
296 
297 	bool init_complete;
298 	/*
299 	 * Interrupts of interest to KFD are copied
300 	 * from the HW ring into a SW ring.
301 	 */
302 	bool interrupts_active;
303 
304 	/* Firmware versions */
305 	uint16_t mec_fw_version;
306 	uint16_t mec2_fw_version;
307 	uint16_t sdma_fw_version;
308 
309 	/* Maximum process number mapped to HW scheduler */
310 	unsigned int max_proc_per_quantum;
311 
312 	/* CWSR */
313 	bool cwsr_enabled;
314 	const void *cwsr_isa;
315 	unsigned int cwsr_isa_size;
316 
317 	/* xGMI */
318 	uint64_t hive_id;
319 
320 	bool pci_atomic_requested;
321 
322 	/* Use IOMMU v2 flag */
323 	bool use_iommu_v2;
324 
325 	/* SRAM ECC flag */
326 	atomic_t sram_ecc_flag;
327 
328 	/* Compute Profile ref. count */
329 	atomic_t compute_profile;
330 
331 	/* Global GWS resource shared between processes */
332 	void *gws;
333 
334 	/* Clients watching SMI events */
335 	struct list_head smi_clients;
336 	spinlock_t smi_lock;
337 
338 	uint32_t reset_seq_num;
339 
340 	struct ida doorbell_ida;
341 	unsigned int max_doorbell_slices;
342 
343 	int noretry;
344 
345 	/* HMM page migration MEMORY_DEVICE_PRIVATE mapping */
346 	struct dev_pagemap pgmap;
347 };
348 
349 enum kfd_mempool {
350 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
351 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
352 	KFD_MEMPOOL_FRAMEBUFFER = 3,
353 };
354 
355 /* Character device interface */
356 int kfd_chardev_init(void);
357 void kfd_chardev_exit(void);
358 
359 /**
360  * enum kfd_unmap_queues_filter - Enum for queue filters.
361  *
362  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
363  *						running queues list.
364  *
365  * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
366  *						in the run list.
367  *
368  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
369  *						specific process.
370  *
371  */
372 enum kfd_unmap_queues_filter {
373 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
374 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
375 	KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
376 };
377 
378 /**
379  * enum kfd_queue_type - Enum for various queue types.
380  *
381  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
382  *
383  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
384  *
385  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
386  *
387  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
388  *
389  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
390  */
391 enum kfd_queue_type  {
392 	KFD_QUEUE_TYPE_COMPUTE,
393 	KFD_QUEUE_TYPE_SDMA,
394 	KFD_QUEUE_TYPE_HIQ,
395 	KFD_QUEUE_TYPE_DIQ,
396 	KFD_QUEUE_TYPE_SDMA_XGMI
397 };
398 
399 enum kfd_queue_format {
400 	KFD_QUEUE_FORMAT_PM4,
401 	KFD_QUEUE_FORMAT_AQL
402 };
403 
404 enum KFD_QUEUE_PRIORITY {
405 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
406 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
407 };
408 
409 /**
410  * struct queue_properties
411  *
412  * @type: The queue type.
413  *
414  * @queue_id: Queue identifier.
415  *
416  * @queue_address: Queue ring buffer address.
417  *
418  * @queue_size: Queue ring buffer size.
419  *
420  * @priority: Defines the queue priority relative to other queues in the
421  * process.
422  * This is just an indication and HW scheduling may override the priority as
423  * necessary while keeping the relative prioritization.
424  * the priority granularity is from 0 to f which f is the highest priority.
425  * currently all queues are initialized with the highest priority.
426  *
427  * @queue_percent: This field is partially implemented and currently a zero in
428  * this field defines that the queue is non active.
429  *
430  * @read_ptr: User space address which points to the number of dwords the
431  * cp read from the ring buffer. This field updates automatically by the H/W.
432  *
433  * @write_ptr: Defines the number of dwords written to the ring buffer.
434  *
435  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
436  * buffer. This field should be similar to write_ptr and the user should
437  * update this field after updating the write_ptr.
438  *
439  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
440  *
441  * @is_interop: Defines if this is a interop queue. Interop queue means that
442  * the queue can access both graphics and compute resources.
443  *
444  * @is_evicted: Defines if the queue is evicted. Only active queues
445  * are evicted, rendering them inactive.
446  *
447  * @is_active: Defines if the queue is active or not. @is_active and
448  * @is_evicted are protected by the DQM lock.
449  *
450  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
451  * @is_gws should be protected by the DQM lock, since changing it can yield the
452  * possibility of updating DQM state on number of GWS queues.
453  *
454  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
455  * of the queue.
456  *
457  * This structure represents the queue properties for each queue no matter if
458  * it's user mode or kernel mode queue.
459  *
460  */
461 
462 struct queue_properties {
463 	enum kfd_queue_type type;
464 	enum kfd_queue_format format;
465 	unsigned int queue_id;
466 	uint64_t queue_address;
467 	uint64_t  queue_size;
468 	uint32_t priority;
469 	uint32_t queue_percent;
470 	uint32_t *read_ptr;
471 	uint32_t *write_ptr;
472 	void __iomem *doorbell_ptr;
473 	uint32_t doorbell_off;
474 	bool is_interop;
475 	bool is_evicted;
476 	bool is_active;
477 	bool is_gws;
478 	/* Not relevant for user mode queues in cp scheduling */
479 	unsigned int vmid;
480 	/* Relevant only for sdma queues*/
481 	uint32_t sdma_engine_id;
482 	uint32_t sdma_queue_id;
483 	uint32_t sdma_vm_addr;
484 	/* Relevant only for VI */
485 	uint64_t eop_ring_buffer_address;
486 	uint32_t eop_ring_buffer_size;
487 	uint64_t ctx_save_restore_area_address;
488 	uint32_t ctx_save_restore_area_size;
489 	uint32_t ctl_stack_size;
490 	uint64_t tba_addr;
491 	uint64_t tma_addr;
492 };
493 
494 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
495 			    (q).queue_address != 0 &&	\
496 			    (q).queue_percent > 0 &&	\
497 			    !(q).is_evicted)
498 
499 enum mqd_update_flag {
500 	UPDATE_FLAG_CU_MASK = 0,
501 };
502 
503 struct mqd_update_info {
504 	union {
505 		struct {
506 			uint32_t count; /* Must be a multiple of 32 */
507 			uint32_t *ptr;
508 		} cu_mask;
509 	};
510 	enum mqd_update_flag update_flag;
511 };
512 
513 /**
514  * struct queue
515  *
516  * @list: Queue linked list.
517  *
518  * @mqd: The queue MQD (memory queue descriptor).
519  *
520  * @mqd_mem_obj: The MQD local gpu memory object.
521  *
522  * @gart_mqd_addr: The MQD gart mc address.
523  *
524  * @properties: The queue properties.
525  *
526  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
527  *	 that the queue should be executed on.
528  *
529  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
530  *	  id.
531  *
532  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
533  *
534  * @process: The kfd process that created this queue.
535  *
536  * @device: The kfd device that created this queue.
537  *
538  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
539  * otherwise.
540  *
541  * This structure represents user mode compute queues.
542  * It contains all the necessary data to handle such queues.
543  *
544  */
545 
546 struct queue {
547 	struct list_head list;
548 	void *mqd;
549 	struct kfd_mem_obj *mqd_mem_obj;
550 	uint64_t gart_mqd_addr;
551 	struct queue_properties properties;
552 
553 	uint32_t mec;
554 	uint32_t pipe;
555 	uint32_t queue;
556 
557 	unsigned int sdma_id;
558 	unsigned int doorbell_id;
559 
560 	struct kfd_process	*process;
561 	struct kfd_dev		*device;
562 	void *gws;
563 
564 	/* procfs */
565 	struct kobject kobj;
566 };
567 
568 enum KFD_MQD_TYPE {
569 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
570 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
571 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
572 	KFD_MQD_TYPE_DIQ,		/* for diq */
573 	KFD_MQD_TYPE_MAX
574 };
575 
576 enum KFD_PIPE_PRIORITY {
577 	KFD_PIPE_PRIORITY_CS_LOW = 0,
578 	KFD_PIPE_PRIORITY_CS_MEDIUM,
579 	KFD_PIPE_PRIORITY_CS_HIGH
580 };
581 
582 struct scheduling_resources {
583 	unsigned int vmid_mask;
584 	enum kfd_queue_type type;
585 	uint64_t queue_mask;
586 	uint64_t gws_mask;
587 	uint32_t oac_mask;
588 	uint32_t gds_heap_base;
589 	uint32_t gds_heap_size;
590 };
591 
592 struct process_queue_manager {
593 	/* data */
594 	struct kfd_process	*process;
595 	struct list_head	queues;
596 	unsigned long		*queue_slot_bitmap;
597 };
598 
599 struct qcm_process_device {
600 	/* The Device Queue Manager that owns this data */
601 	struct device_queue_manager *dqm;
602 	struct process_queue_manager *pqm;
603 	/* Queues list */
604 	struct list_head queues_list;
605 	struct list_head priv_queue_list;
606 
607 	unsigned int queue_count;
608 	unsigned int vmid;
609 	bool is_debug;
610 	unsigned int evicted; /* eviction counter, 0=active */
611 
612 	/* This flag tells if we should reset all wavefronts on
613 	 * process termination
614 	 */
615 	bool reset_wavefronts;
616 
617 	/* This flag tells us if this process has a GWS-capable
618 	 * queue that will be mapped into the runlist. It's
619 	 * possible to request a GWS BO, but not have the queue
620 	 * currently mapped, and this changes how the MAP_PROCESS
621 	 * PM4 packet is configured.
622 	 */
623 	bool mapped_gws_queue;
624 
625 	/* All the memory management data should be here too */
626 	uint64_t gds_context_area;
627 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
628 	uint64_t page_table_base;
629 	uint32_t sh_mem_config;
630 	uint32_t sh_mem_bases;
631 	uint32_t sh_mem_ape1_base;
632 	uint32_t sh_mem_ape1_limit;
633 	uint32_t gds_size;
634 	uint32_t num_gws;
635 	uint32_t num_oac;
636 	uint32_t sh_hidden_private_base;
637 
638 	/* CWSR memory */
639 	struct kgd_mem *cwsr_mem;
640 	void *cwsr_kaddr;
641 	uint64_t cwsr_base;
642 	uint64_t tba_addr;
643 	uint64_t tma_addr;
644 
645 	/* IB memory */
646 	struct kgd_mem *ib_mem;
647 	uint64_t ib_base;
648 	void *ib_kaddr;
649 
650 	/* doorbell resources per process per device */
651 	unsigned long *doorbell_bitmap;
652 };
653 
654 /* KFD Memory Eviction */
655 
656 /* Approx. wait time before attempting to restore evicted BOs */
657 #define PROCESS_RESTORE_TIME_MS 100
658 /* Approx. back off time if restore fails due to lack of memory */
659 #define PROCESS_BACK_OFF_TIME_MS 100
660 /* Approx. time before evicting the process again */
661 #define PROCESS_ACTIVE_TIME_MS 10
662 
663 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
664  * idr_handle in the least significant 4 bytes
665  */
666 #define MAKE_HANDLE(gpu_id, idr_handle) \
667 	(((uint64_t)(gpu_id) << 32) + idr_handle)
668 #define GET_GPU_ID(handle) (handle >> 32)
669 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
670 
671 enum kfd_pdd_bound {
672 	PDD_UNBOUND = 0,
673 	PDD_BOUND,
674 	PDD_BOUND_SUSPENDED,
675 };
676 
677 #define MAX_SYSFS_FILENAME_LEN 15
678 
679 /*
680  * SDMA counter runs at 100MHz frequency.
681  * We display SDMA activity in microsecond granularity in sysfs.
682  * As a result, the divisor is 100.
683  */
684 #define SDMA_ACTIVITY_DIVISOR  100
685 
686 /* Data that is per-process-per device. */
687 struct kfd_process_device {
688 	/* The device that owns this data. */
689 	struct kfd_dev *dev;
690 
691 	/* The process that owns this kfd_process_device. */
692 	struct kfd_process *process;
693 
694 	/* per-process-per device QCM data structure */
695 	struct qcm_process_device qpd;
696 
697 	/*Apertures*/
698 	uint64_t lds_base;
699 	uint64_t lds_limit;
700 	uint64_t gpuvm_base;
701 	uint64_t gpuvm_limit;
702 	uint64_t scratch_base;
703 	uint64_t scratch_limit;
704 
705 	/* VM context for GPUVM allocations */
706 	struct file *drm_file;
707 	void *drm_priv;
708 
709 	/* GPUVM allocations storage */
710 	struct idr alloc_idr;
711 
712 	/* Flag used to tell the pdd has dequeued from the dqm.
713 	 * This is used to prevent dev->dqm->ops.process_termination() from
714 	 * being called twice when it is already called in IOMMU callback
715 	 * function.
716 	 */
717 	bool already_dequeued;
718 	bool runtime_inuse;
719 
720 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
721 	enum kfd_pdd_bound bound;
722 
723 	/* VRAM usage */
724 	uint64_t vram_usage;
725 	struct attribute attr_vram;
726 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
727 
728 	/* SDMA activity tracking */
729 	uint64_t sdma_past_activity_counter;
730 	struct attribute attr_sdma;
731 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
732 
733 	/* Eviction activity tracking */
734 	uint64_t last_evict_timestamp;
735 	atomic64_t evict_duration_counter;
736 	struct attribute attr_evict;
737 
738 	struct kobject *kobj_stats;
739 	unsigned int doorbell_index;
740 
741 	/*
742 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
743 	 * that is associated with device encoded by "this" struct instance. The
744 	 * value reflects CU usage by all of the waves launched by this process
745 	 * on this device. A very important property of occupancy parameter is
746 	 * that its value is a snapshot of current use.
747 	 *
748 	 * Following is to be noted regarding how this parameter is reported:
749 	 *
750 	 *  The number of waves that a CU can launch is limited by couple of
751 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
752 	 *  that is part of every device definition. For GFX9 devices this
753 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
754 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
755 	 *  when they do use scratch memory. This could change for future
756 	 *  devices and therefore this example should be considered as a guide.
757 	 *
758 	 *  All CU's of a device are available for the process. This may not be true
759 	 *  under certain conditions - e.g. CU masking.
760 	 *
761 	 *  Finally number of CU's that are occupied by a process is affected by both
762 	 *  number of CU's a device has along with number of other competing processes
763 	 */
764 	struct attribute attr_cu_occupancy;
765 
766 	/* sysfs counters for GPU retry fault and page migration tracking */
767 	struct kobject *kobj_counters;
768 	struct attribute attr_faults;
769 	struct attribute attr_page_in;
770 	struct attribute attr_page_out;
771 	uint64_t faults;
772 	uint64_t page_in;
773 	uint64_t page_out;
774 	/*
775 	 * If this process has been checkpointed before, then the user
776 	 * application will use the original gpu_id on the
777 	 * checkpointed node to refer to this device.
778 	 */
779 	uint32_t user_gpu_id;
780 };
781 
782 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
783 
784 struct svm_range_list {
785 	struct mutex			lock;
786 	struct rb_root_cached		objects;
787 	struct list_head		list;
788 	struct work_struct		deferred_list_work;
789 	struct list_head		deferred_range_list;
790 	struct list_head                criu_svm_metadata_list;
791 	spinlock_t			deferred_list_lock;
792 	atomic_t			evicted_ranges;
793 	atomic_t			drain_pagefaults;
794 	struct delayed_work		restore_work;
795 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
796 	struct task_struct		*faulting_task;
797 };
798 
799 /* Process data */
800 struct kfd_process {
801 	/*
802 	 * kfd_process are stored in an mm_struct*->kfd_process*
803 	 * hash table (kfd_processes in kfd_process.c)
804 	 */
805 	struct hlist_node kfd_processes;
806 
807 	/*
808 	 * Opaque pointer to mm_struct. We don't hold a reference to
809 	 * it so it should never be dereferenced from here. This is
810 	 * only used for looking up processes by their mm.
811 	 */
812 	void *mm;
813 
814 	struct kref ref;
815 	struct work_struct release_work;
816 
817 	struct mutex mutex;
818 
819 	/*
820 	 * In any process, the thread that started main() is the lead
821 	 * thread and outlives the rest.
822 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
823 	 * It can also be used for safely getting a reference to the
824 	 * mm_struct of the process.
825 	 */
826 	struct task_struct *lead_thread;
827 
828 	/* We want to receive a notification when the mm_struct is destroyed */
829 	struct mmu_notifier mmu_notifier;
830 
831 	u32 pasid;
832 
833 	/*
834 	 * Array of kfd_process_device pointers,
835 	 * one for each device the process is using.
836 	 */
837 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
838 	uint32_t n_pdds;
839 
840 	struct process_queue_manager pqm;
841 
842 	/*Is the user space process 32 bit?*/
843 	bool is_32bit_user_mode;
844 
845 	/* Event-related data */
846 	struct mutex event_mutex;
847 	/* Event ID allocator and lookup */
848 	struct idr event_idr;
849 	/* Event page */
850 	u64 signal_handle;
851 	struct kfd_signal_page *signal_page;
852 	size_t signal_mapped_size;
853 	size_t signal_event_count;
854 	bool signal_event_limit_reached;
855 
856 	/* Information used for memory eviction */
857 	void *kgd_process_info;
858 	/* Eviction fence that is attached to all the BOs of this process. The
859 	 * fence will be triggered during eviction and new one will be created
860 	 * during restore
861 	 */
862 	struct dma_fence *ef;
863 
864 	/* Work items for evicting and restoring BOs */
865 	struct delayed_work eviction_work;
866 	struct delayed_work restore_work;
867 	/* seqno of the last scheduled eviction */
868 	unsigned int last_eviction_seqno;
869 	/* Approx. the last timestamp (in jiffies) when the process was
870 	 * restored after an eviction
871 	 */
872 	unsigned long last_restore_timestamp;
873 
874 	/* Kobj for our procfs */
875 	struct kobject *kobj;
876 	struct kobject *kobj_queues;
877 	struct attribute attr_pasid;
878 
879 	/* shared virtual memory registered by this process */
880 	struct svm_range_list svms;
881 
882 	bool xnack_enabled;
883 
884 	atomic_t poison;
885 	/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
886 	bool queues_paused;
887 };
888 
889 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
890 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
891 extern struct srcu_struct kfd_processes_srcu;
892 
893 /**
894  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
895  *
896  * @filep: pointer to file structure.
897  * @p: amdkfd process pointer.
898  * @data: pointer to arg that was copied from user.
899  *
900  * Return: returns ioctl completion code.
901  */
902 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
903 				void *data);
904 
905 struct amdkfd_ioctl_desc {
906 	unsigned int cmd;
907 	int flags;
908 	amdkfd_ioctl_t *func;
909 	unsigned int cmd_drv;
910 	const char *name;
911 };
912 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
913 
914 int kfd_process_create_wq(void);
915 void kfd_process_destroy_wq(void);
916 struct kfd_process *kfd_create_process(struct file *filep);
917 struct kfd_process *kfd_get_process(const struct task_struct *task);
918 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
919 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
920 
921 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
922 int kfd_process_gpuid_from_adev(struct kfd_process *p,
923 			       struct amdgpu_device *adev, uint32_t *gpuid,
924 			       uint32_t *gpuidx);
925 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
926 				uint32_t gpuidx, uint32_t *gpuid) {
927 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
928 }
929 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
930 				struct kfd_process *p, uint32_t gpuidx) {
931 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
932 }
933 
934 void kfd_unref_process(struct kfd_process *p);
935 int kfd_process_evict_queues(struct kfd_process *p);
936 int kfd_process_restore_queues(struct kfd_process *p);
937 void kfd_suspend_all_processes(void);
938 int kfd_resume_all_processes(void);
939 
940 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
941 							 uint32_t gpu_id);
942 
943 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
944 
945 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
946 			       struct file *drm_file);
947 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
948 						struct kfd_process *p);
949 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
950 							struct kfd_process *p);
951 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
952 							struct kfd_process *p);
953 
954 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
955 
956 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
957 			  struct vm_area_struct *vma);
958 
959 /* KFD process API for creating and translating handles */
960 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
961 					void *mem);
962 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
963 					int handle);
964 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
965 					int handle);
966 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
967 
968 /* PASIDs */
969 int kfd_pasid_init(void);
970 void kfd_pasid_exit(void);
971 bool kfd_set_pasid_limit(unsigned int new_limit);
972 unsigned int kfd_get_pasid_limit(void);
973 u32 kfd_pasid_alloc(void);
974 void kfd_pasid_free(u32 pasid);
975 
976 /* Doorbells */
977 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
978 int kfd_doorbell_init(struct kfd_dev *kfd);
979 void kfd_doorbell_fini(struct kfd_dev *kfd);
980 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
981 		      struct vm_area_struct *vma);
982 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
983 					unsigned int *doorbell_off);
984 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
985 u32 read_kernel_doorbell(u32 __iomem *db);
986 void write_kernel_doorbell(void __iomem *db, u32 value);
987 void write_kernel_doorbell64(void __iomem *db, u64 value);
988 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
989 					struct kfd_process_device *pdd,
990 					unsigned int doorbell_id);
991 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
992 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
993 				unsigned int *doorbell_index);
994 void kfd_free_process_doorbells(struct kfd_dev *kfd,
995 				unsigned int doorbell_index);
996 /* GTT Sub-Allocator */
997 
998 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
999 			struct kfd_mem_obj **mem_obj);
1000 
1001 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
1002 
1003 extern struct device *kfd_device;
1004 
1005 /* KFD's procfs */
1006 void kfd_procfs_init(void);
1007 void kfd_procfs_shutdown(void);
1008 int kfd_procfs_add_queue(struct queue *q);
1009 void kfd_procfs_del_queue(struct queue *q);
1010 
1011 /* Topology */
1012 int kfd_topology_init(void);
1013 void kfd_topology_shutdown(void);
1014 int kfd_topology_add_device(struct kfd_dev *gpu);
1015 int kfd_topology_remove_device(struct kfd_dev *gpu);
1016 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1017 						uint32_t proximity_domain);
1018 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1019 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
1020 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
1021 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev);
1022 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
1023 int kfd_numa_node_to_apic_id(int numa_node_id);
1024 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
1025 
1026 /* Interrupts */
1027 int kfd_interrupt_init(struct kfd_dev *dev);
1028 void kfd_interrupt_exit(struct kfd_dev *dev);
1029 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
1030 bool interrupt_is_wanted(struct kfd_dev *dev,
1031 				const uint32_t *ih_ring_entry,
1032 				uint32_t *patched_ihre, bool *flag);
1033 
1034 /* amdkfd Apertures */
1035 int kfd_init_apertures(struct kfd_process *process);
1036 
1037 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1038 				  uint64_t tba_addr,
1039 				  uint64_t tma_addr);
1040 
1041 /* CRIU */
1042 /*
1043  * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1044  * structures:
1045  * kfd_criu_process_priv_data
1046  * kfd_criu_device_priv_data
1047  * kfd_criu_bo_priv_data
1048  * kfd_criu_queue_priv_data
1049  * kfd_criu_event_priv_data
1050  * kfd_criu_svm_range_priv_data
1051  */
1052 
1053 #define KFD_CRIU_PRIV_VERSION 1
1054 
1055 struct kfd_criu_process_priv_data {
1056 	uint32_t version;
1057 	uint32_t xnack_mode;
1058 };
1059 
1060 struct kfd_criu_device_priv_data {
1061 	/* For future use */
1062 	uint64_t reserved;
1063 };
1064 
1065 struct kfd_criu_bo_priv_data {
1066 	uint64_t user_addr;
1067 	uint32_t idr_handle;
1068 	uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1069 };
1070 
1071 /*
1072  * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1073  * kfd_criu_svm_range_priv_data is the object type
1074  */
1075 enum kfd_criu_object_type {
1076 	KFD_CRIU_OBJECT_TYPE_QUEUE,
1077 	KFD_CRIU_OBJECT_TYPE_EVENT,
1078 	KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1079 };
1080 
1081 struct kfd_criu_svm_range_priv_data {
1082 	uint32_t object_type;
1083 	uint64_t start_addr;
1084 	uint64_t size;
1085 	/* Variable length array of attributes */
1086 	struct kfd_ioctl_svm_attribute attrs[];
1087 };
1088 
1089 struct kfd_criu_queue_priv_data {
1090 	uint32_t object_type;
1091 	uint64_t q_address;
1092 	uint64_t q_size;
1093 	uint64_t read_ptr_addr;
1094 	uint64_t write_ptr_addr;
1095 	uint64_t doorbell_off;
1096 	uint64_t eop_ring_buffer_address;
1097 	uint64_t ctx_save_restore_area_address;
1098 	uint32_t gpu_id;
1099 	uint32_t type;
1100 	uint32_t format;
1101 	uint32_t q_id;
1102 	uint32_t priority;
1103 	uint32_t q_percent;
1104 	uint32_t doorbell_id;
1105 	uint32_t is_gws;
1106 	uint32_t sdma_id;
1107 	uint32_t eop_ring_buffer_size;
1108 	uint32_t ctx_save_restore_area_size;
1109 	uint32_t ctl_stack_size;
1110 	uint32_t mqd_size;
1111 };
1112 
1113 struct kfd_criu_event_priv_data {
1114 	uint32_t object_type;
1115 	uint64_t user_handle;
1116 	uint32_t event_id;
1117 	uint32_t auto_reset;
1118 	uint32_t type;
1119 	uint32_t signaled;
1120 
1121 	union {
1122 		struct kfd_hsa_memory_exception_data memory_exception_data;
1123 		struct kfd_hsa_hw_exception_data hw_exception_data;
1124 	};
1125 };
1126 
1127 int kfd_process_get_queue_info(struct kfd_process *p,
1128 			       uint32_t *num_queues,
1129 			       uint64_t *priv_data_sizes);
1130 
1131 int kfd_criu_checkpoint_queues(struct kfd_process *p,
1132 			 uint8_t __user *user_priv_data,
1133 			 uint64_t *priv_data_offset);
1134 
1135 int kfd_criu_restore_queue(struct kfd_process *p,
1136 			   uint8_t __user *user_priv_data,
1137 			   uint64_t *priv_data_offset,
1138 			   uint64_t max_priv_data_size);
1139 
1140 int kfd_criu_checkpoint_events(struct kfd_process *p,
1141 			 uint8_t __user *user_priv_data,
1142 			 uint64_t *priv_data_offset);
1143 
1144 int kfd_criu_restore_event(struct file *devkfd,
1145 			   struct kfd_process *p,
1146 			   uint8_t __user *user_priv_data,
1147 			   uint64_t *priv_data_offset,
1148 			   uint64_t max_priv_data_size);
1149 /* CRIU - End */
1150 
1151 /* Queue Context Management */
1152 int init_queue(struct queue **q, const struct queue_properties *properties);
1153 void uninit_queue(struct queue *q);
1154 void print_queue_properties(struct queue_properties *q);
1155 void print_queue(struct queue *q);
1156 
1157 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1158 		struct kfd_dev *dev);
1159 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
1160 		struct kfd_dev *dev);
1161 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1162 		struct kfd_dev *dev);
1163 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1164 		struct kfd_dev *dev);
1165 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1166 		struct kfd_dev *dev);
1167 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1168 		struct kfd_dev *dev);
1169 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
1170 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1171 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
1172 					enum kfd_queue_type type);
1173 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1174 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid);
1175 
1176 /* Process Queue Manager */
1177 struct process_queue_node {
1178 	struct queue *q;
1179 	struct kernel_queue *kq;
1180 	struct list_head process_queue_list;
1181 };
1182 
1183 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1184 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1185 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1186 void pqm_uninit(struct process_queue_manager *pqm);
1187 int pqm_create_queue(struct process_queue_manager *pqm,
1188 			    struct kfd_dev *dev,
1189 			    struct file *f,
1190 			    struct queue_properties *properties,
1191 			    unsigned int *qid,
1192 			    const struct kfd_criu_queue_priv_data *q_data,
1193 			    const void *restore_mqd,
1194 			    const void *restore_ctl_stack,
1195 			    uint32_t *p_doorbell_offset_in_process);
1196 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1197 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1198 			struct queue_properties *p);
1199 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1200 			struct mqd_update_info *minfo);
1201 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1202 			void *gws);
1203 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1204 						unsigned int qid);
1205 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1206 						unsigned int qid);
1207 int pqm_get_wave_state(struct process_queue_manager *pqm,
1208 		       unsigned int qid,
1209 		       void __user *ctl_stack,
1210 		       u32 *ctl_stack_used_size,
1211 		       u32 *save_area_used_size);
1212 
1213 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1214 			      uint64_t fence_value,
1215 			      unsigned int timeout_ms);
1216 
1217 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1218 				  unsigned int qid,
1219 				  u32 *mqd_size,
1220 				  u32 *ctl_stack_size);
1221 /* Packet Manager */
1222 
1223 #define KFD_FENCE_COMPLETED (100)
1224 #define KFD_FENCE_INIT   (10)
1225 
1226 struct packet_manager {
1227 	struct device_queue_manager *dqm;
1228 	struct kernel_queue *priv_queue;
1229 	struct mutex lock;
1230 	bool allocated;
1231 	struct kfd_mem_obj *ib_buffer_obj;
1232 	unsigned int ib_size_bytes;
1233 	bool is_over_subscription;
1234 
1235 	const struct packet_manager_funcs *pmf;
1236 };
1237 
1238 struct packet_manager_funcs {
1239 	/* Support ASIC-specific packet formats for PM4 packets */
1240 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1241 			struct qcm_process_device *qpd);
1242 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1243 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1244 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1245 			struct scheduling_resources *res);
1246 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1247 			struct queue *q, bool is_static);
1248 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1249 			enum kfd_unmap_queues_filter mode,
1250 			uint32_t filter_param, bool reset);
1251 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1252 			uint64_t fence_address,	uint64_t fence_value);
1253 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1254 
1255 	/* Packet sizes */
1256 	int map_process_size;
1257 	int runlist_size;
1258 	int set_resources_size;
1259 	int map_queues_size;
1260 	int unmap_queues_size;
1261 	int query_status_size;
1262 	int release_mem_size;
1263 };
1264 
1265 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1266 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1267 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1268 
1269 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1270 void pm_uninit(struct packet_manager *pm, bool hanging);
1271 int pm_send_set_resources(struct packet_manager *pm,
1272 				struct scheduling_resources *res);
1273 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1274 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1275 				uint64_t fence_value);
1276 
1277 int pm_send_unmap_queue(struct packet_manager *pm,
1278 			enum kfd_unmap_queues_filter mode,
1279 			uint32_t filter_param, bool reset);
1280 
1281 void pm_release_ib(struct packet_manager *pm);
1282 
1283 /* Following PM funcs can be shared among VI and AI */
1284 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1285 
1286 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1287 
1288 /* Events */
1289 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1290 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1291 
1292 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1293 
1294 void kfd_event_init_process(struct kfd_process *p);
1295 void kfd_event_free_process(struct kfd_process *p);
1296 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1297 int kfd_wait_on_events(struct kfd_process *p,
1298 		       uint32_t num_events, void __user *data,
1299 		       bool all, uint32_t user_timeout_ms,
1300 		       uint32_t *wait_result);
1301 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1302 				uint32_t valid_id_bits);
1303 void kfd_signal_iommu_event(struct kfd_dev *dev,
1304 			    u32 pasid, unsigned long address,
1305 			    bool is_write_requested, bool is_execute_requested);
1306 void kfd_signal_hw_exception_event(u32 pasid);
1307 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1308 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1309 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1310 
1311 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1312 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1313 		     uint32_t *event_id, uint32_t *event_trigger_data,
1314 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1315 
1316 int kfd_get_num_events(struct kfd_process *p);
1317 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1318 
1319 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1320 				struct kfd_vm_fault_info *info);
1321 
1322 void kfd_signal_reset_event(struct kfd_dev *dev);
1323 
1324 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid);
1325 
1326 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1327 
1328 bool kfd_is_locked(void);
1329 
1330 /* Compute profile */
1331 void kfd_inc_compute_active(struct kfd_dev *dev);
1332 void kfd_dec_compute_active(struct kfd_dev *dev);
1333 
1334 /* Cgroup Support */
1335 /* Check with device cgroup if @kfd device is accessible */
1336 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1337 {
1338 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1339 	struct drm_device *ddev = kfd->ddev;
1340 
1341 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1342 					  ddev->render->index,
1343 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1344 #else
1345 	return 0;
1346 #endif
1347 }
1348 
1349 /* Debugfs */
1350 #if defined(CONFIG_DEBUG_FS)
1351 
1352 void kfd_debugfs_init(void);
1353 void kfd_debugfs_fini(void);
1354 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1355 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1356 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1357 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1358 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1359 int pm_debugfs_runlist(struct seq_file *m, void *data);
1360 
1361 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1362 int pm_debugfs_hang_hws(struct packet_manager *pm);
1363 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1364 
1365 #else
1366 
1367 static inline void kfd_debugfs_init(void) {}
1368 static inline void kfd_debugfs_fini(void) {}
1369 
1370 #endif
1371 
1372 #endif
1373