1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef KFD_PRIV_H_INCLUDED 25 #define KFD_PRIV_H_INCLUDED 26 27 #include <linux/hashtable.h> 28 #include <linux/mmu_notifier.h> 29 #include <linux/memremap.h> 30 #include <linux/mutex.h> 31 #include <linux/types.h> 32 #include <linux/atomic.h> 33 #include <linux/workqueue.h> 34 #include <linux/spinlock.h> 35 #include <linux/kfd_ioctl.h> 36 #include <linux/idr.h> 37 #include <linux/kfifo.h> 38 #include <linux/seq_file.h> 39 #include <linux/kref.h> 40 #include <linux/sysfs.h> 41 #include <linux/device_cgroup.h> 42 #include <drm/drm_file.h> 43 #include <drm/drm_drv.h> 44 #include <drm/drm_device.h> 45 #include <drm/drm_ioctl.h> 46 #include <kgd_kfd_interface.h> 47 #include <linux/swap.h> 48 49 #include "amd_shared.h" 50 #include "amdgpu.h" 51 52 #define KFD_MAX_RING_ENTRY_SIZE 8 53 54 #define KFD_SYSFS_FILE_MODE 0444 55 56 /* GPU ID hash width in bits */ 57 #define KFD_GPU_ID_HASH_WIDTH 16 58 59 /* Use upper bits of mmap offset to store KFD driver specific information. 60 * BITS[63:62] - Encode MMAP type 61 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 62 * BITS[45:0] - MMAP offset value 63 * 64 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 65 * defines are w.r.t to PAGE_SIZE 66 */ 67 #define KFD_MMAP_TYPE_SHIFT 62 68 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 69 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 70 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 71 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 72 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 73 74 #define KFD_MMAP_GPU_ID_SHIFT 46 75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 76 << KFD_MMAP_GPU_ID_SHIFT) 77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 78 & KFD_MMAP_GPU_ID_MASK) 79 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 80 >> KFD_MMAP_GPU_ID_SHIFT) 81 82 /* 83 * When working with cp scheduler we should assign the HIQ manually or via 84 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 85 * definitions for Kaveri. In Kaveri only the first ME queues participates 86 * in the cp scheduling taking that in mind we set the HIQ slot in the 87 * second ME. 88 */ 89 #define KFD_CIK_HIQ_PIPE 4 90 #define KFD_CIK_HIQ_QUEUE 0 91 92 /* Macro for allocating structures */ 93 #define kfd_alloc_struct(ptr_to_struct) \ 94 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 95 96 #define KFD_MAX_NUM_OF_PROCESSES 512 97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 98 99 /* 100 * Size of the per-process TBA+TMA buffer: 2 pages 101 * 102 * The first page is the TBA used for the CWSR ISA code. The second 103 * page is used as TMA for user-mode trap handler setup in daisy-chain mode. 104 */ 105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 106 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 107 108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 109 (KFD_MAX_NUM_OF_PROCESSES * \ 110 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 111 112 #define KFD_KERNEL_QUEUE_SIZE 2048 113 114 #define KFD_UNMAP_LATENCY_MS (4000) 115 116 /* 117 * 512 = 0x200 118 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 119 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 120 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 121 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 122 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 123 */ 124 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 125 126 /** 127 * enum kfd_ioctl_flags - KFD ioctl flags 128 * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how 129 * userspace can use a given ioctl. 130 */ 131 enum kfd_ioctl_flags { 132 /* 133 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE: 134 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially 135 * perform privileged operations and load arbitrary data into MQDs and 136 * eventually HQD registers when the queue is mapped by HWS. In order to 137 * prevent this we should perform additional security checks. 138 * 139 * This is equivalent to callers with the CHECKPOINT_RESTORE capability. 140 * 141 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE, 142 * we also allow ioctls with SYS_ADMIN capability. 143 */ 144 KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0), 145 }; 146 /* 147 * Kernel module parameter to specify maximum number of supported queues per 148 * device 149 */ 150 extern int max_num_of_queues_per_device; 151 152 153 /* Kernel module parameter to specify the scheduling policy */ 154 extern int sched_policy; 155 156 /* 157 * Kernel module parameter to specify the maximum process 158 * number per HW scheduler 159 */ 160 extern int hws_max_conc_proc; 161 162 extern int cwsr_enable; 163 164 /* 165 * Kernel module parameter to specify whether to send sigterm to HSA process on 166 * unhandled exception 167 */ 168 extern int send_sigterm; 169 170 /* 171 * This kernel module is used to simulate large bar machine on non-large bar 172 * enabled machines. 173 */ 174 extern int debug_largebar; 175 176 /* 177 * Ignore CRAT table during KFD initialization, can be used to work around 178 * broken CRAT tables on some AMD systems 179 */ 180 extern int ignore_crat; 181 182 /* Set sh_mem_config.retry_disable on GFX v9 */ 183 extern int amdgpu_noretry; 184 185 /* Halt if HWS hang is detected */ 186 extern int halt_if_hws_hang; 187 188 /* Whether MEC FW support GWS barriers */ 189 extern bool hws_gws_support; 190 191 /* Queue preemption timeout in ms */ 192 extern int queue_preemption_timeout_ms; 193 194 /* 195 * Don't evict process queues on vm fault 196 */ 197 extern int amdgpu_no_queue_eviction_on_vm_fault; 198 199 /* Enable eviction debug messages */ 200 extern bool debug_evictions; 201 202 enum cache_policy { 203 cache_policy_coherent, 204 cache_policy_noncoherent 205 }; 206 207 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0]) 208 #define KFD_IS_SOC15(dev) ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1))) 209 #define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\ 210 ((KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) || \ 211 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3))) 212 213 struct kfd_event_interrupt_class { 214 bool (*interrupt_isr)(struct kfd_dev *dev, 215 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 216 bool *patched_flag); 217 void (*interrupt_wq)(struct kfd_dev *dev, 218 const uint32_t *ih_ring_entry); 219 }; 220 221 struct kfd_device_info { 222 uint32_t gfx_target_version; 223 const struct kfd_event_interrupt_class *event_interrupt_class; 224 unsigned int max_pasid_bits; 225 unsigned int max_no_of_hqd; 226 unsigned int doorbell_size; 227 size_t ih_ring_entry_size; 228 uint8_t num_of_watch_points; 229 uint16_t mqd_size_aligned; 230 bool supports_cwsr; 231 bool needs_iommu_device; 232 bool needs_pci_atomics; 233 uint32_t no_atomic_fw_version; 234 unsigned int num_sdma_queues_per_engine; 235 unsigned int num_reserved_sdma_queues_per_engine; 236 uint64_t reserved_sdma_queues_bitmap; 237 }; 238 239 unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev); 240 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev); 241 242 struct kfd_mem_obj { 243 uint32_t range_start; 244 uint32_t range_end; 245 uint64_t gpu_addr; 246 uint32_t *cpu_ptr; 247 void *gtt_mem; 248 }; 249 250 struct kfd_vmid_info { 251 uint32_t first_vmid_kfd; 252 uint32_t last_vmid_kfd; 253 uint32_t vmid_num_kfd; 254 }; 255 256 struct kfd_dev { 257 struct amdgpu_device *adev; 258 259 struct kfd_device_info device_info; 260 261 unsigned int id; /* topology stub index */ 262 263 phys_addr_t doorbell_base; /* Start of actual doorbells used by 264 * KFD. It is aligned for mapping 265 * into user mode 266 */ 267 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI 268 * doorbell BAR to the first KFD 269 * doorbell in dwords. GFX reserves 270 * the segment before this offset. 271 */ 272 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 273 * page used by kernel queue 274 */ 275 276 struct kgd2kfd_shared_resources shared_resources; 277 struct kfd_vmid_info vm_info; 278 struct kfd_local_mem_info local_mem_info; 279 280 const struct kfd2kgd_calls *kfd2kgd; 281 struct mutex doorbell_mutex; 282 DECLARE_BITMAP(doorbell_available_index, 283 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 284 285 void *gtt_mem; 286 uint64_t gtt_start_gpu_addr; 287 void *gtt_start_cpu_ptr; 288 void *gtt_sa_bitmap; 289 struct mutex gtt_sa_lock; 290 unsigned int gtt_sa_chunk_size; 291 unsigned int gtt_sa_num_of_chunks; 292 293 /* Interrupts */ 294 struct kfifo ih_fifo; 295 struct workqueue_struct *ih_wq; 296 struct work_struct interrupt_work; 297 spinlock_t interrupt_lock; 298 299 /* QCM Device instance */ 300 struct device_queue_manager *dqm; 301 302 bool init_complete; 303 /* 304 * Interrupts of interest to KFD are copied 305 * from the HW ring into a SW ring. 306 */ 307 bool interrupts_active; 308 309 /* Firmware versions */ 310 uint16_t mec_fw_version; 311 uint16_t mec2_fw_version; 312 uint16_t sdma_fw_version; 313 314 /* Maximum process number mapped to HW scheduler */ 315 unsigned int max_proc_per_quantum; 316 317 /* CWSR */ 318 bool cwsr_enabled; 319 const void *cwsr_isa; 320 unsigned int cwsr_isa_size; 321 322 /* xGMI */ 323 uint64_t hive_id; 324 325 bool pci_atomic_requested; 326 327 /* Use IOMMU v2 flag */ 328 bool use_iommu_v2; 329 330 /* SRAM ECC flag */ 331 atomic_t sram_ecc_flag; 332 333 /* Compute Profile ref. count */ 334 atomic_t compute_profile; 335 336 /* Global GWS resource shared between processes */ 337 void *gws; 338 339 /* Clients watching SMI events */ 340 struct list_head smi_clients; 341 spinlock_t smi_lock; 342 343 uint32_t reset_seq_num; 344 345 struct ida doorbell_ida; 346 unsigned int max_doorbell_slices; 347 348 int noretry; 349 350 /* HMM page migration MEMORY_DEVICE_PRIVATE mapping */ 351 struct dev_pagemap pgmap; 352 }; 353 354 enum kfd_mempool { 355 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 356 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 357 KFD_MEMPOOL_FRAMEBUFFER = 3, 358 }; 359 360 /* Character device interface */ 361 int kfd_chardev_init(void); 362 void kfd_chardev_exit(void); 363 364 /** 365 * enum kfd_unmap_queues_filter - Enum for queue filters. 366 * 367 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 368 * running queues list. 369 * 370 * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues 371 * in the run list. 372 * 373 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 374 * specific process. 375 * 376 */ 377 enum kfd_unmap_queues_filter { 378 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1, 379 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2, 380 KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3 381 }; 382 383 /** 384 * enum kfd_queue_type - Enum for various queue types. 385 * 386 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 387 * 388 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type. 389 * 390 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 391 * 392 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 393 * 394 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface. 395 */ 396 enum kfd_queue_type { 397 KFD_QUEUE_TYPE_COMPUTE, 398 KFD_QUEUE_TYPE_SDMA, 399 KFD_QUEUE_TYPE_HIQ, 400 KFD_QUEUE_TYPE_DIQ, 401 KFD_QUEUE_TYPE_SDMA_XGMI 402 }; 403 404 enum kfd_queue_format { 405 KFD_QUEUE_FORMAT_PM4, 406 KFD_QUEUE_FORMAT_AQL 407 }; 408 409 enum KFD_QUEUE_PRIORITY { 410 KFD_QUEUE_PRIORITY_MINIMUM = 0, 411 KFD_QUEUE_PRIORITY_MAXIMUM = 15 412 }; 413 414 /** 415 * struct queue_properties 416 * 417 * @type: The queue type. 418 * 419 * @queue_id: Queue identifier. 420 * 421 * @queue_address: Queue ring buffer address. 422 * 423 * @queue_size: Queue ring buffer size. 424 * 425 * @priority: Defines the queue priority relative to other queues in the 426 * process. 427 * This is just an indication and HW scheduling may override the priority as 428 * necessary while keeping the relative prioritization. 429 * the priority granularity is from 0 to f which f is the highest priority. 430 * currently all queues are initialized with the highest priority. 431 * 432 * @queue_percent: This field is partially implemented and currently a zero in 433 * this field defines that the queue is non active. 434 * 435 * @read_ptr: User space address which points to the number of dwords the 436 * cp read from the ring buffer. This field updates automatically by the H/W. 437 * 438 * @write_ptr: Defines the number of dwords written to the ring buffer. 439 * 440 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring 441 * buffer. This field should be similar to write_ptr and the user should 442 * update this field after updating the write_ptr. 443 * 444 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 445 * 446 * @is_interop: Defines if this is a interop queue. Interop queue means that 447 * the queue can access both graphics and compute resources. 448 * 449 * @is_evicted: Defines if the queue is evicted. Only active queues 450 * are evicted, rendering them inactive. 451 * 452 * @is_active: Defines if the queue is active or not. @is_active and 453 * @is_evicted are protected by the DQM lock. 454 * 455 * @is_gws: Defines if the queue has been updated to be GWS-capable or not. 456 * @is_gws should be protected by the DQM lock, since changing it can yield the 457 * possibility of updating DQM state on number of GWS queues. 458 * 459 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 460 * of the queue. 461 * 462 * This structure represents the queue properties for each queue no matter if 463 * it's user mode or kernel mode queue. 464 * 465 */ 466 467 struct queue_properties { 468 enum kfd_queue_type type; 469 enum kfd_queue_format format; 470 unsigned int queue_id; 471 uint64_t queue_address; 472 uint64_t queue_size; 473 uint32_t priority; 474 uint32_t queue_percent; 475 uint32_t *read_ptr; 476 uint32_t *write_ptr; 477 void __iomem *doorbell_ptr; 478 uint32_t doorbell_off; 479 bool is_interop; 480 bool is_evicted; 481 bool is_active; 482 bool is_gws; 483 /* Not relevant for user mode queues in cp scheduling */ 484 unsigned int vmid; 485 /* Relevant only for sdma queues*/ 486 uint32_t sdma_engine_id; 487 uint32_t sdma_queue_id; 488 uint32_t sdma_vm_addr; 489 /* Relevant only for VI */ 490 uint64_t eop_ring_buffer_address; 491 uint32_t eop_ring_buffer_size; 492 uint64_t ctx_save_restore_area_address; 493 uint32_t ctx_save_restore_area_size; 494 uint32_t ctl_stack_size; 495 uint64_t tba_addr; 496 uint64_t tma_addr; 497 }; 498 499 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 500 (q).queue_address != 0 && \ 501 (q).queue_percent > 0 && \ 502 !(q).is_evicted) 503 504 enum mqd_update_flag { 505 UPDATE_FLAG_CU_MASK = 0, 506 }; 507 508 struct mqd_update_info { 509 union { 510 struct { 511 uint32_t count; /* Must be a multiple of 32 */ 512 uint32_t *ptr; 513 } cu_mask; 514 }; 515 enum mqd_update_flag update_flag; 516 }; 517 518 /** 519 * struct queue 520 * 521 * @list: Queue linked list. 522 * 523 * @mqd: The queue MQD (memory queue descriptor). 524 * 525 * @mqd_mem_obj: The MQD local gpu memory object. 526 * 527 * @gart_mqd_addr: The MQD gart mc address. 528 * 529 * @properties: The queue properties. 530 * 531 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 532 * that the queue should be executed on. 533 * 534 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 535 * id. 536 * 537 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 538 * 539 * @process: The kfd process that created this queue. 540 * 541 * @device: The kfd device that created this queue. 542 * 543 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 544 * otherwise. 545 * 546 * This structure represents user mode compute queues. 547 * It contains all the necessary data to handle such queues. 548 * 549 */ 550 551 struct queue { 552 struct list_head list; 553 void *mqd; 554 struct kfd_mem_obj *mqd_mem_obj; 555 uint64_t gart_mqd_addr; 556 struct queue_properties properties; 557 558 uint32_t mec; 559 uint32_t pipe; 560 uint32_t queue; 561 562 unsigned int sdma_id; 563 unsigned int doorbell_id; 564 565 struct kfd_process *process; 566 struct kfd_dev *device; 567 void *gws; 568 569 /* procfs */ 570 struct kobject kobj; 571 572 void *gang_ctx_bo; 573 uint64_t gang_ctx_gpu_addr; 574 void *gang_ctx_cpu_ptr; 575 576 struct amdgpu_bo *wptr_bo; 577 }; 578 579 enum KFD_MQD_TYPE { 580 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 581 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 582 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 583 KFD_MQD_TYPE_DIQ, /* for diq */ 584 KFD_MQD_TYPE_MAX 585 }; 586 587 enum KFD_PIPE_PRIORITY { 588 KFD_PIPE_PRIORITY_CS_LOW = 0, 589 KFD_PIPE_PRIORITY_CS_MEDIUM, 590 KFD_PIPE_PRIORITY_CS_HIGH 591 }; 592 593 struct scheduling_resources { 594 unsigned int vmid_mask; 595 enum kfd_queue_type type; 596 uint64_t queue_mask; 597 uint64_t gws_mask; 598 uint32_t oac_mask; 599 uint32_t gds_heap_base; 600 uint32_t gds_heap_size; 601 }; 602 603 struct process_queue_manager { 604 /* data */ 605 struct kfd_process *process; 606 struct list_head queues; 607 unsigned long *queue_slot_bitmap; 608 }; 609 610 struct qcm_process_device { 611 /* The Device Queue Manager that owns this data */ 612 struct device_queue_manager *dqm; 613 struct process_queue_manager *pqm; 614 /* Queues list */ 615 struct list_head queues_list; 616 struct list_head priv_queue_list; 617 618 unsigned int queue_count; 619 unsigned int vmid; 620 bool is_debug; 621 unsigned int evicted; /* eviction counter, 0=active */ 622 623 /* This flag tells if we should reset all wavefronts on 624 * process termination 625 */ 626 bool reset_wavefronts; 627 628 /* This flag tells us if this process has a GWS-capable 629 * queue that will be mapped into the runlist. It's 630 * possible to request a GWS BO, but not have the queue 631 * currently mapped, and this changes how the MAP_PROCESS 632 * PM4 packet is configured. 633 */ 634 bool mapped_gws_queue; 635 636 /* All the memory management data should be here too */ 637 uint64_t gds_context_area; 638 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 639 uint64_t page_table_base; 640 uint32_t sh_mem_config; 641 uint32_t sh_mem_bases; 642 uint32_t sh_mem_ape1_base; 643 uint32_t sh_mem_ape1_limit; 644 uint32_t gds_size; 645 uint32_t num_gws; 646 uint32_t num_oac; 647 uint32_t sh_hidden_private_base; 648 649 /* CWSR memory */ 650 struct kgd_mem *cwsr_mem; 651 void *cwsr_kaddr; 652 uint64_t cwsr_base; 653 uint64_t tba_addr; 654 uint64_t tma_addr; 655 656 /* IB memory */ 657 struct kgd_mem *ib_mem; 658 uint64_t ib_base; 659 void *ib_kaddr; 660 661 /* doorbell resources per process per device */ 662 unsigned long *doorbell_bitmap; 663 }; 664 665 /* KFD Memory Eviction */ 666 667 /* Approx. wait time before attempting to restore evicted BOs */ 668 #define PROCESS_RESTORE_TIME_MS 100 669 /* Approx. back off time if restore fails due to lack of memory */ 670 #define PROCESS_BACK_OFF_TIME_MS 100 671 /* Approx. time before evicting the process again */ 672 #define PROCESS_ACTIVE_TIME_MS 10 673 674 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 675 * idr_handle in the least significant 4 bytes 676 */ 677 #define MAKE_HANDLE(gpu_id, idr_handle) \ 678 (((uint64_t)(gpu_id) << 32) + idr_handle) 679 #define GET_GPU_ID(handle) (handle >> 32) 680 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 681 682 enum kfd_pdd_bound { 683 PDD_UNBOUND = 0, 684 PDD_BOUND, 685 PDD_BOUND_SUSPENDED, 686 }; 687 688 #define MAX_SYSFS_FILENAME_LEN 15 689 690 /* 691 * SDMA counter runs at 100MHz frequency. 692 * We display SDMA activity in microsecond granularity in sysfs. 693 * As a result, the divisor is 100. 694 */ 695 #define SDMA_ACTIVITY_DIVISOR 100 696 697 /* Data that is per-process-per device. */ 698 struct kfd_process_device { 699 /* The device that owns this data. */ 700 struct kfd_dev *dev; 701 702 /* The process that owns this kfd_process_device. */ 703 struct kfd_process *process; 704 705 /* per-process-per device QCM data structure */ 706 struct qcm_process_device qpd; 707 708 /*Apertures*/ 709 uint64_t lds_base; 710 uint64_t lds_limit; 711 uint64_t gpuvm_base; 712 uint64_t gpuvm_limit; 713 uint64_t scratch_base; 714 uint64_t scratch_limit; 715 716 /* VM context for GPUVM allocations */ 717 struct file *drm_file; 718 void *drm_priv; 719 atomic64_t tlb_seq; 720 721 /* GPUVM allocations storage */ 722 struct idr alloc_idr; 723 724 /* Flag used to tell the pdd has dequeued from the dqm. 725 * This is used to prevent dev->dqm->ops.process_termination() from 726 * being called twice when it is already called in IOMMU callback 727 * function. 728 */ 729 bool already_dequeued; 730 bool runtime_inuse; 731 732 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 733 enum kfd_pdd_bound bound; 734 735 /* VRAM usage */ 736 uint64_t vram_usage; 737 struct attribute attr_vram; 738 char vram_filename[MAX_SYSFS_FILENAME_LEN]; 739 740 /* SDMA activity tracking */ 741 uint64_t sdma_past_activity_counter; 742 struct attribute attr_sdma; 743 char sdma_filename[MAX_SYSFS_FILENAME_LEN]; 744 745 /* Eviction activity tracking */ 746 uint64_t last_evict_timestamp; 747 atomic64_t evict_duration_counter; 748 struct attribute attr_evict; 749 750 struct kobject *kobj_stats; 751 unsigned int doorbell_index; 752 753 /* 754 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process 755 * that is associated with device encoded by "this" struct instance. The 756 * value reflects CU usage by all of the waves launched by this process 757 * on this device. A very important property of occupancy parameter is 758 * that its value is a snapshot of current use. 759 * 760 * Following is to be noted regarding how this parameter is reported: 761 * 762 * The number of waves that a CU can launch is limited by couple of 763 * parameters. These are encoded by struct amdgpu_cu_info instance 764 * that is part of every device definition. For GFX9 devices this 765 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves 766 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu) 767 * when they do use scratch memory. This could change for future 768 * devices and therefore this example should be considered as a guide. 769 * 770 * All CU's of a device are available for the process. This may not be true 771 * under certain conditions - e.g. CU masking. 772 * 773 * Finally number of CU's that are occupied by a process is affected by both 774 * number of CU's a device has along with number of other competing processes 775 */ 776 struct attribute attr_cu_occupancy; 777 778 /* sysfs counters for GPU retry fault and page migration tracking */ 779 struct kobject *kobj_counters; 780 struct attribute attr_faults; 781 struct attribute attr_page_in; 782 struct attribute attr_page_out; 783 uint64_t faults; 784 uint64_t page_in; 785 uint64_t page_out; 786 /* 787 * If this process has been checkpointed before, then the user 788 * application will use the original gpu_id on the 789 * checkpointed node to refer to this device. 790 */ 791 uint32_t user_gpu_id; 792 793 void *proc_ctx_bo; 794 uint64_t proc_ctx_gpu_addr; 795 void *proc_ctx_cpu_ptr; 796 }; 797 798 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 799 800 struct svm_range_list { 801 struct mutex lock; 802 struct rb_root_cached objects; 803 struct list_head list; 804 struct work_struct deferred_list_work; 805 struct list_head deferred_range_list; 806 struct list_head criu_svm_metadata_list; 807 spinlock_t deferred_list_lock; 808 atomic_t evicted_ranges; 809 atomic_t drain_pagefaults; 810 struct delayed_work restore_work; 811 DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE); 812 struct task_struct *faulting_task; 813 }; 814 815 /* Process data */ 816 struct kfd_process { 817 /* 818 * kfd_process are stored in an mm_struct*->kfd_process* 819 * hash table (kfd_processes in kfd_process.c) 820 */ 821 struct hlist_node kfd_processes; 822 823 /* 824 * Opaque pointer to mm_struct. We don't hold a reference to 825 * it so it should never be dereferenced from here. This is 826 * only used for looking up processes by their mm. 827 */ 828 void *mm; 829 830 struct kref ref; 831 struct work_struct release_work; 832 833 struct mutex mutex; 834 835 /* 836 * In any process, the thread that started main() is the lead 837 * thread and outlives the rest. 838 * It is here because amd_iommu_bind_pasid wants a task_struct. 839 * It can also be used for safely getting a reference to the 840 * mm_struct of the process. 841 */ 842 struct task_struct *lead_thread; 843 844 /* We want to receive a notification when the mm_struct is destroyed */ 845 struct mmu_notifier mmu_notifier; 846 847 u32 pasid; 848 849 /* 850 * Array of kfd_process_device pointers, 851 * one for each device the process is using. 852 */ 853 struct kfd_process_device *pdds[MAX_GPU_INSTANCE]; 854 uint32_t n_pdds; 855 856 struct process_queue_manager pqm; 857 858 /*Is the user space process 32 bit?*/ 859 bool is_32bit_user_mode; 860 861 /* Event-related data */ 862 struct mutex event_mutex; 863 /* Event ID allocator and lookup */ 864 struct idr event_idr; 865 /* Event page */ 866 u64 signal_handle; 867 struct kfd_signal_page *signal_page; 868 size_t signal_mapped_size; 869 size_t signal_event_count; 870 bool signal_event_limit_reached; 871 872 /* Information used for memory eviction */ 873 void *kgd_process_info; 874 /* Eviction fence that is attached to all the BOs of this process. The 875 * fence will be triggered during eviction and new one will be created 876 * during restore 877 */ 878 struct dma_fence *ef; 879 880 /* Work items for evicting and restoring BOs */ 881 struct delayed_work eviction_work; 882 struct delayed_work restore_work; 883 /* seqno of the last scheduled eviction */ 884 unsigned int last_eviction_seqno; 885 /* Approx. the last timestamp (in jiffies) when the process was 886 * restored after an eviction 887 */ 888 unsigned long last_restore_timestamp; 889 890 /* Kobj for our procfs */ 891 struct kobject *kobj; 892 struct kobject *kobj_queues; 893 struct attribute attr_pasid; 894 895 /* shared virtual memory registered by this process */ 896 struct svm_range_list svms; 897 898 bool xnack_enabled; 899 900 atomic_t poison; 901 /* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */ 902 bool queues_paused; 903 }; 904 905 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 906 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 907 extern struct srcu_struct kfd_processes_srcu; 908 909 /** 910 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer. 911 * 912 * @filep: pointer to file structure. 913 * @p: amdkfd process pointer. 914 * @data: pointer to arg that was copied from user. 915 * 916 * Return: returns ioctl completion code. 917 */ 918 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 919 void *data); 920 921 struct amdkfd_ioctl_desc { 922 unsigned int cmd; 923 int flags; 924 amdkfd_ioctl_t *func; 925 unsigned int cmd_drv; 926 const char *name; 927 }; 928 bool kfd_dev_is_large_bar(struct kfd_dev *dev); 929 930 int kfd_process_create_wq(void); 931 void kfd_process_destroy_wq(void); 932 void kfd_cleanup_processes(void); 933 struct kfd_process *kfd_create_process(struct file *filep); 934 struct kfd_process *kfd_get_process(const struct task_struct *task); 935 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid); 936 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 937 938 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id); 939 int kfd_process_gpuid_from_adev(struct kfd_process *p, 940 struct amdgpu_device *adev, uint32_t *gpuid, 941 uint32_t *gpuidx); 942 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p, 943 uint32_t gpuidx, uint32_t *gpuid) { 944 return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL; 945 } 946 static inline struct kfd_process_device *kfd_process_device_from_gpuidx( 947 struct kfd_process *p, uint32_t gpuidx) { 948 return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL; 949 } 950 951 void kfd_unref_process(struct kfd_process *p); 952 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger); 953 int kfd_process_restore_queues(struct kfd_process *p); 954 void kfd_suspend_all_processes(void); 955 int kfd_resume_all_processes(void); 956 957 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process, 958 uint32_t gpu_id); 959 960 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id); 961 962 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 963 struct file *drm_file); 964 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 965 struct kfd_process *p); 966 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 967 struct kfd_process *p); 968 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 969 struct kfd_process *p); 970 971 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported); 972 973 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 974 struct vm_area_struct *vma); 975 976 /* KFD process API for creating and translating handles */ 977 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 978 void *mem); 979 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 980 int handle); 981 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 982 int handle); 983 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid); 984 985 /* PASIDs */ 986 int kfd_pasid_init(void); 987 void kfd_pasid_exit(void); 988 bool kfd_set_pasid_limit(unsigned int new_limit); 989 unsigned int kfd_get_pasid_limit(void); 990 u32 kfd_pasid_alloc(void); 991 void kfd_pasid_free(u32 pasid); 992 993 /* Doorbells */ 994 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 995 int kfd_doorbell_init(struct kfd_dev *kfd); 996 void kfd_doorbell_fini(struct kfd_dev *kfd); 997 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, 998 struct vm_area_struct *vma); 999 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 1000 unsigned int *doorbell_off); 1001 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 1002 u32 read_kernel_doorbell(u32 __iomem *db); 1003 void write_kernel_doorbell(void __iomem *db, u32 value); 1004 void write_kernel_doorbell64(void __iomem *db, u64 value); 1005 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 1006 struct kfd_process_device *pdd, 1007 unsigned int doorbell_id); 1008 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd); 1009 int kfd_alloc_process_doorbells(struct kfd_dev *kfd, 1010 unsigned int *doorbell_index); 1011 void kfd_free_process_doorbells(struct kfd_dev *kfd, 1012 unsigned int doorbell_index); 1013 /* GTT Sub-Allocator */ 1014 1015 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 1016 struct kfd_mem_obj **mem_obj); 1017 1018 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 1019 1020 extern struct device *kfd_device; 1021 1022 /* KFD's procfs */ 1023 void kfd_procfs_init(void); 1024 void kfd_procfs_shutdown(void); 1025 int kfd_procfs_add_queue(struct queue *q); 1026 void kfd_procfs_del_queue(struct queue *q); 1027 1028 /* Topology */ 1029 int kfd_topology_init(void); 1030 void kfd_topology_shutdown(void); 1031 int kfd_topology_add_device(struct kfd_dev *gpu); 1032 int kfd_topology_remove_device(struct kfd_dev *gpu); 1033 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 1034 uint32_t proximity_domain); 1035 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock( 1036 uint32_t proximity_domain); 1037 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 1038 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 1039 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 1040 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev); 1041 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); 1042 int kfd_numa_node_to_apic_id(int numa_node_id); 1043 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu); 1044 1045 /* Interrupts */ 1046 int kfd_interrupt_init(struct kfd_dev *dev); 1047 void kfd_interrupt_exit(struct kfd_dev *dev); 1048 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 1049 bool interrupt_is_wanted(struct kfd_dev *dev, 1050 const uint32_t *ih_ring_entry, 1051 uint32_t *patched_ihre, bool *flag); 1052 1053 /* amdkfd Apertures */ 1054 int kfd_init_apertures(struct kfd_process *process); 1055 1056 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1057 uint64_t tba_addr, 1058 uint64_t tma_addr); 1059 1060 /* CRIU */ 1061 /* 1062 * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private 1063 * structures: 1064 * kfd_criu_process_priv_data 1065 * kfd_criu_device_priv_data 1066 * kfd_criu_bo_priv_data 1067 * kfd_criu_queue_priv_data 1068 * kfd_criu_event_priv_data 1069 * kfd_criu_svm_range_priv_data 1070 */ 1071 1072 #define KFD_CRIU_PRIV_VERSION 1 1073 1074 struct kfd_criu_process_priv_data { 1075 uint32_t version; 1076 uint32_t xnack_mode; 1077 }; 1078 1079 struct kfd_criu_device_priv_data { 1080 /* For future use */ 1081 uint64_t reserved; 1082 }; 1083 1084 struct kfd_criu_bo_priv_data { 1085 uint64_t user_addr; 1086 uint32_t idr_handle; 1087 uint32_t mapped_gpuids[MAX_GPU_INSTANCE]; 1088 }; 1089 1090 /* 1091 * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data, 1092 * kfd_criu_svm_range_priv_data is the object type 1093 */ 1094 enum kfd_criu_object_type { 1095 KFD_CRIU_OBJECT_TYPE_QUEUE, 1096 KFD_CRIU_OBJECT_TYPE_EVENT, 1097 KFD_CRIU_OBJECT_TYPE_SVM_RANGE, 1098 }; 1099 1100 struct kfd_criu_svm_range_priv_data { 1101 uint32_t object_type; 1102 uint64_t start_addr; 1103 uint64_t size; 1104 /* Variable length array of attributes */ 1105 struct kfd_ioctl_svm_attribute attrs[]; 1106 }; 1107 1108 struct kfd_criu_queue_priv_data { 1109 uint32_t object_type; 1110 uint64_t q_address; 1111 uint64_t q_size; 1112 uint64_t read_ptr_addr; 1113 uint64_t write_ptr_addr; 1114 uint64_t doorbell_off; 1115 uint64_t eop_ring_buffer_address; 1116 uint64_t ctx_save_restore_area_address; 1117 uint32_t gpu_id; 1118 uint32_t type; 1119 uint32_t format; 1120 uint32_t q_id; 1121 uint32_t priority; 1122 uint32_t q_percent; 1123 uint32_t doorbell_id; 1124 uint32_t gws; 1125 uint32_t sdma_id; 1126 uint32_t eop_ring_buffer_size; 1127 uint32_t ctx_save_restore_area_size; 1128 uint32_t ctl_stack_size; 1129 uint32_t mqd_size; 1130 }; 1131 1132 struct kfd_criu_event_priv_data { 1133 uint32_t object_type; 1134 uint64_t user_handle; 1135 uint32_t event_id; 1136 uint32_t auto_reset; 1137 uint32_t type; 1138 uint32_t signaled; 1139 1140 union { 1141 struct kfd_hsa_memory_exception_data memory_exception_data; 1142 struct kfd_hsa_hw_exception_data hw_exception_data; 1143 }; 1144 }; 1145 1146 int kfd_process_get_queue_info(struct kfd_process *p, 1147 uint32_t *num_queues, 1148 uint64_t *priv_data_sizes); 1149 1150 int kfd_criu_checkpoint_queues(struct kfd_process *p, 1151 uint8_t __user *user_priv_data, 1152 uint64_t *priv_data_offset); 1153 1154 int kfd_criu_restore_queue(struct kfd_process *p, 1155 uint8_t __user *user_priv_data, 1156 uint64_t *priv_data_offset, 1157 uint64_t max_priv_data_size); 1158 1159 int kfd_criu_checkpoint_events(struct kfd_process *p, 1160 uint8_t __user *user_priv_data, 1161 uint64_t *priv_data_offset); 1162 1163 int kfd_criu_restore_event(struct file *devkfd, 1164 struct kfd_process *p, 1165 uint8_t __user *user_priv_data, 1166 uint64_t *priv_data_offset, 1167 uint64_t max_priv_data_size); 1168 /* CRIU - End */ 1169 1170 /* Queue Context Management */ 1171 int init_queue(struct queue **q, const struct queue_properties *properties); 1172 void uninit_queue(struct queue *q); 1173 void print_queue_properties(struct queue_properties *q); 1174 void print_queue(struct queue *q); 1175 1176 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 1177 struct kfd_dev *dev); 1178 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 1179 struct kfd_dev *dev); 1180 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 1181 struct kfd_dev *dev); 1182 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 1183 struct kfd_dev *dev); 1184 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 1185 struct kfd_dev *dev); 1186 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 1187 struct kfd_dev *dev); 1188 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type, 1189 struct kfd_dev *dev); 1190 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 1191 void device_queue_manager_uninit(struct device_queue_manager *dqm); 1192 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 1193 enum kfd_queue_type type); 1194 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging); 1195 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid); 1196 1197 /* Process Queue Manager */ 1198 struct process_queue_node { 1199 struct queue *q; 1200 struct kernel_queue *kq; 1201 struct list_head process_queue_list; 1202 }; 1203 1204 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 1205 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 1206 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 1207 void pqm_uninit(struct process_queue_manager *pqm); 1208 int pqm_create_queue(struct process_queue_manager *pqm, 1209 struct kfd_dev *dev, 1210 struct file *f, 1211 struct queue_properties *properties, 1212 unsigned int *qid, 1213 struct amdgpu_bo *wptr_bo, 1214 const struct kfd_criu_queue_priv_data *q_data, 1215 const void *restore_mqd, 1216 const void *restore_ctl_stack, 1217 uint32_t *p_doorbell_offset_in_process); 1218 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 1219 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid, 1220 struct queue_properties *p); 1221 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid, 1222 struct mqd_update_info *minfo); 1223 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 1224 void *gws); 1225 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 1226 unsigned int qid); 1227 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm, 1228 unsigned int qid); 1229 int pqm_get_wave_state(struct process_queue_manager *pqm, 1230 unsigned int qid, 1231 void __user *ctl_stack, 1232 u32 *ctl_stack_used_size, 1233 u32 *save_area_used_size); 1234 1235 int amdkfd_fence_wait_timeout(uint64_t *fence_addr, 1236 uint64_t fence_value, 1237 unsigned int timeout_ms); 1238 1239 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm, 1240 unsigned int qid, 1241 u32 *mqd_size, 1242 u32 *ctl_stack_size); 1243 /* Packet Manager */ 1244 1245 #define KFD_FENCE_COMPLETED (100) 1246 #define KFD_FENCE_INIT (10) 1247 1248 struct packet_manager { 1249 struct device_queue_manager *dqm; 1250 struct kernel_queue *priv_queue; 1251 struct mutex lock; 1252 bool allocated; 1253 struct kfd_mem_obj *ib_buffer_obj; 1254 unsigned int ib_size_bytes; 1255 bool is_over_subscription; 1256 1257 const struct packet_manager_funcs *pmf; 1258 }; 1259 1260 struct packet_manager_funcs { 1261 /* Support ASIC-specific packet formats for PM4 packets */ 1262 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 1263 struct qcm_process_device *qpd); 1264 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 1265 uint64_t ib, size_t ib_size_in_dwords, bool chain); 1266 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 1267 struct scheduling_resources *res); 1268 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 1269 struct queue *q, bool is_static); 1270 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 1271 enum kfd_unmap_queues_filter mode, 1272 uint32_t filter_param, bool reset); 1273 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 1274 uint64_t fence_address, uint64_t fence_value); 1275 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 1276 1277 /* Packet sizes */ 1278 int map_process_size; 1279 int runlist_size; 1280 int set_resources_size; 1281 int map_queues_size; 1282 int unmap_queues_size; 1283 int query_status_size; 1284 int release_mem_size; 1285 }; 1286 1287 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 1288 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 1289 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs; 1290 1291 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 1292 void pm_uninit(struct packet_manager *pm, bool hanging); 1293 int pm_send_set_resources(struct packet_manager *pm, 1294 struct scheduling_resources *res); 1295 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 1296 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 1297 uint64_t fence_value); 1298 1299 int pm_send_unmap_queue(struct packet_manager *pm, 1300 enum kfd_unmap_queues_filter mode, 1301 uint32_t filter_param, bool reset); 1302 1303 void pm_release_ib(struct packet_manager *pm); 1304 1305 /* Following PM funcs can be shared among VI and AI */ 1306 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 1307 1308 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1309 1310 /* Events */ 1311 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1312 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1313 extern const struct kfd_event_interrupt_class event_interrupt_class_v11; 1314 1315 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1316 1317 int kfd_event_init_process(struct kfd_process *p); 1318 void kfd_event_free_process(struct kfd_process *p); 1319 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1320 int kfd_wait_on_events(struct kfd_process *p, 1321 uint32_t num_events, void __user *data, 1322 bool all, uint32_t *user_timeout_ms, 1323 uint32_t *wait_result); 1324 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 1325 uint32_t valid_id_bits); 1326 void kfd_signal_iommu_event(struct kfd_dev *dev, 1327 u32 pasid, unsigned long address, 1328 bool is_write_requested, bool is_execute_requested); 1329 void kfd_signal_hw_exception_event(u32 pasid); 1330 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1331 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1332 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset); 1333 1334 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1335 uint32_t event_type, bool auto_reset, uint32_t node_id, 1336 uint32_t *event_id, uint32_t *event_trigger_data, 1337 uint64_t *event_page_offset, uint32_t *event_slot_index); 1338 1339 int kfd_get_num_events(struct kfd_process *p); 1340 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1341 1342 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid, 1343 struct kfd_vm_fault_info *info); 1344 1345 void kfd_signal_reset_event(struct kfd_dev *dev); 1346 1347 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid); 1348 1349 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type); 1350 1351 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev) 1352 { 1353 return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) || 1354 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && 1355 dev->adev->sdma.instance[0].fw_version >= 18) || 1356 KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0); 1357 } 1358 1359 bool kfd_is_locked(void); 1360 1361 /* Compute profile */ 1362 void kfd_inc_compute_active(struct kfd_dev *dev); 1363 void kfd_dec_compute_active(struct kfd_dev *dev); 1364 1365 /* Cgroup Support */ 1366 /* Check with device cgroup if @kfd device is accessible */ 1367 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd) 1368 { 1369 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) 1370 struct drm_device *ddev = adev_to_drm(kfd->adev); 1371 1372 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, 1373 ddev->render->index, 1374 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1375 #else 1376 return 0; 1377 #endif 1378 } 1379 1380 /* Debugfs */ 1381 #if defined(CONFIG_DEBUG_FS) 1382 1383 void kfd_debugfs_init(void); 1384 void kfd_debugfs_fini(void); 1385 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1386 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1387 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1388 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1389 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1390 int pm_debugfs_runlist(struct seq_file *m, void *data); 1391 1392 int kfd_debugfs_hang_hws(struct kfd_dev *dev); 1393 int pm_debugfs_hang_hws(struct packet_manager *pm); 1394 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm); 1395 1396 #else 1397 1398 static inline void kfd_debugfs_init(void) {} 1399 static inline void kfd_debugfs_fini(void) {} 1400 1401 #endif 1402 1403 #endif 1404