1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #ifndef KFD_PRIV_H_INCLUDED 24 #define KFD_PRIV_H_INCLUDED 25 26 #include <linux/hashtable.h> 27 #include <linux/mmu_notifier.h> 28 #include <linux/mutex.h> 29 #include <linux/types.h> 30 #include <linux/atomic.h> 31 #include <linux/workqueue.h> 32 #include <linux/spinlock.h> 33 #include <linux/kfd_ioctl.h> 34 #include <kgd_kfd_interface.h> 35 36 #define KFD_SYSFS_FILE_MODE 0444 37 38 #define KFD_MMAP_DOORBELL_MASK 0x8000000000000 39 #define KFD_MMAP_EVENTS_MASK 0x4000000000000 40 41 /* 42 * When working with cp scheduler we should assign the HIQ manually or via 43 * the radeon driver to a fixed hqd slot, here are the fixed HIQ hqd slot 44 * definitions for Kaveri. In Kaveri only the first ME queues participates 45 * in the cp scheduling taking that in mind we set the HIQ slot in the 46 * second ME. 47 */ 48 #define KFD_CIK_HIQ_PIPE 4 49 #define KFD_CIK_HIQ_QUEUE 0 50 51 /* GPU ID hash width in bits */ 52 #define KFD_GPU_ID_HASH_WIDTH 16 53 54 /* Macro for allocating structures */ 55 #define kfd_alloc_struct(ptr_to_struct) \ 56 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 57 58 #define KFD_MAX_NUM_OF_PROCESSES 512 59 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 60 61 /* 62 * Kernel module parameter to specify maximum number of supported queues per 63 * device 64 */ 65 extern int max_num_of_queues_per_device; 66 67 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE_DEFAULT 4096 68 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 69 (KFD_MAX_NUM_OF_PROCESSES * \ 70 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 71 72 #define KFD_KERNEL_QUEUE_SIZE 2048 73 74 /* Kernel module parameter to specify the scheduling policy */ 75 extern int sched_policy; 76 77 /* 78 * Kernel module parameter to specify whether to send sigterm to HSA process on 79 * unhandled exception 80 */ 81 extern int send_sigterm; 82 83 /** 84 * enum kfd_sched_policy 85 * 86 * @KFD_SCHED_POLICY_HWS: H/W scheduling policy known as command processor (cp) 87 * scheduling. In this scheduling mode we're using the firmware code to 88 * schedule the user mode queues and kernel queues such as HIQ and DIQ. 89 * the HIQ queue is used as a special queue that dispatches the configuration 90 * to the cp and the user mode queues list that are currently running. 91 * the DIQ queue is a debugging queue that dispatches debugging commands to the 92 * firmware. 93 * in this scheduling mode user mode queues over subscription feature is 94 * enabled. 95 * 96 * @KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: The same as above but the over 97 * subscription feature disabled. 98 * 99 * @KFD_SCHED_POLICY_NO_HWS: no H/W scheduling policy is a mode which directly 100 * set the command processor registers and sets the queues "manually". This 101 * mode is used *ONLY* for debugging proposes. 102 * 103 */ 104 enum kfd_sched_policy { 105 KFD_SCHED_POLICY_HWS = 0, 106 KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION, 107 KFD_SCHED_POLICY_NO_HWS 108 }; 109 110 enum cache_policy { 111 cache_policy_coherent, 112 cache_policy_noncoherent 113 }; 114 115 enum asic_family_type { 116 CHIP_KAVERI = 0, 117 CHIP_CARRIZO 118 }; 119 120 struct kfd_event_interrupt_class { 121 bool (*interrupt_isr)(struct kfd_dev *dev, 122 const uint32_t *ih_ring_entry); 123 void (*interrupt_wq)(struct kfd_dev *dev, 124 const uint32_t *ih_ring_entry); 125 }; 126 127 struct kfd_device_info { 128 unsigned int asic_family; 129 const struct kfd_event_interrupt_class *event_interrupt_class; 130 unsigned int max_pasid_bits; 131 unsigned int max_no_of_hqd; 132 size_t ih_ring_entry_size; 133 uint8_t num_of_watch_points; 134 uint16_t mqd_size_aligned; 135 }; 136 137 struct kfd_mem_obj { 138 uint32_t range_start; 139 uint32_t range_end; 140 uint64_t gpu_addr; 141 uint32_t *cpu_ptr; 142 }; 143 144 struct kfd_dev { 145 struct kgd_dev *kgd; 146 147 const struct kfd_device_info *device_info; 148 struct pci_dev *pdev; 149 150 unsigned int id; /* topology stub index */ 151 152 phys_addr_t doorbell_base; /* Start of actual doorbells used by 153 * KFD. It is aligned for mapping 154 * into user mode 155 */ 156 size_t doorbell_id_offset; /* Doorbell offset (from KFD doorbell 157 * to HW doorbell, GFX reserved some 158 * at the start) 159 */ 160 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 161 * page used by kernel queue 162 */ 163 164 struct kgd2kfd_shared_resources shared_resources; 165 166 const struct kfd2kgd_calls *kfd2kgd; 167 struct mutex doorbell_mutex; 168 DECLARE_BITMAP(doorbell_available_index, 169 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 170 171 void *gtt_mem; 172 uint64_t gtt_start_gpu_addr; 173 void *gtt_start_cpu_ptr; 174 void *gtt_sa_bitmap; 175 struct mutex gtt_sa_lock; 176 unsigned int gtt_sa_chunk_size; 177 unsigned int gtt_sa_num_of_chunks; 178 179 /* Interrupts */ 180 void *interrupt_ring; 181 size_t interrupt_ring_size; 182 atomic_t interrupt_ring_rptr; 183 atomic_t interrupt_ring_wptr; 184 struct work_struct interrupt_work; 185 spinlock_t interrupt_lock; 186 187 /* QCM Device instance */ 188 struct device_queue_manager *dqm; 189 190 bool init_complete; 191 /* 192 * Interrupts of interest to KFD are copied 193 * from the HW ring into a SW ring. 194 */ 195 bool interrupts_active; 196 197 /* Debug manager */ 198 struct kfd_dbgmgr *dbgmgr; 199 }; 200 201 /* KGD2KFD callbacks */ 202 void kgd2kfd_exit(void); 203 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, 204 struct pci_dev *pdev, const struct kfd2kgd_calls *f2g); 205 bool kgd2kfd_device_init(struct kfd_dev *kfd, 206 const struct kgd2kfd_shared_resources *gpu_resources); 207 void kgd2kfd_device_exit(struct kfd_dev *kfd); 208 209 enum kfd_mempool { 210 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 211 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 212 KFD_MEMPOOL_FRAMEBUFFER = 3, 213 }; 214 215 /* Character device interface */ 216 int kfd_chardev_init(void); 217 void kfd_chardev_exit(void); 218 struct device *kfd_chardev(void); 219 220 /** 221 * enum kfd_preempt_type_filter 222 * 223 * @KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE: Preempts single queue. 224 * 225 * @KFD_PRERMPT_TYPE_FILTER_ALL_QUEUES: Preempts all queues in the 226 * running queues list. 227 * 228 * @KFD_PRERMPT_TYPE_FILTER_BY_PASID: Preempts queues that belongs to 229 * specific process. 230 * 231 */ 232 enum kfd_preempt_type_filter { 233 KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE, 234 KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 235 KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES, 236 KFD_PREEMPT_TYPE_FILTER_BY_PASID 237 }; 238 239 /** 240 * enum kfd_queue_type 241 * 242 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 243 * 244 * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type. 245 * 246 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 247 * 248 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 249 */ 250 enum kfd_queue_type { 251 KFD_QUEUE_TYPE_COMPUTE, 252 KFD_QUEUE_TYPE_SDMA, 253 KFD_QUEUE_TYPE_HIQ, 254 KFD_QUEUE_TYPE_DIQ 255 }; 256 257 enum kfd_queue_format { 258 KFD_QUEUE_FORMAT_PM4, 259 KFD_QUEUE_FORMAT_AQL 260 }; 261 262 /** 263 * struct queue_properties 264 * 265 * @type: The queue type. 266 * 267 * @queue_id: Queue identifier. 268 * 269 * @queue_address: Queue ring buffer address. 270 * 271 * @queue_size: Queue ring buffer size. 272 * 273 * @priority: Defines the queue priority relative to other queues in the 274 * process. 275 * This is just an indication and HW scheduling may override the priority as 276 * necessary while keeping the relative prioritization. 277 * the priority granularity is from 0 to f which f is the highest priority. 278 * currently all queues are initialized with the highest priority. 279 * 280 * @queue_percent: This field is partially implemented and currently a zero in 281 * this field defines that the queue is non active. 282 * 283 * @read_ptr: User space address which points to the number of dwords the 284 * cp read from the ring buffer. This field updates automatically by the H/W. 285 * 286 * @write_ptr: Defines the number of dwords written to the ring buffer. 287 * 288 * @doorbell_ptr: This field aim is to notify the H/W of new packet written to 289 * the queue ring buffer. This field should be similar to write_ptr and the 290 * user should update this field after he updated the write_ptr. 291 * 292 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 293 * 294 * @is_interop: Defines if this is a interop queue. Interop queue means that 295 * the queue can access both graphics and compute resources. 296 * 297 * @is_active: Defines if the queue is active or not. 298 * 299 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 300 * of the queue. 301 * 302 * This structure represents the queue properties for each queue no matter if 303 * it's user mode or kernel mode queue. 304 * 305 */ 306 struct queue_properties { 307 enum kfd_queue_type type; 308 enum kfd_queue_format format; 309 unsigned int queue_id; 310 uint64_t queue_address; 311 uint64_t queue_size; 312 uint32_t priority; 313 uint32_t queue_percent; 314 uint32_t *read_ptr; 315 uint32_t *write_ptr; 316 uint32_t __iomem *doorbell_ptr; 317 uint32_t doorbell_off; 318 bool is_interop; 319 bool is_active; 320 /* Not relevant for user mode queues in cp scheduling */ 321 unsigned int vmid; 322 /* Relevant only for sdma queues*/ 323 uint32_t sdma_engine_id; 324 uint32_t sdma_queue_id; 325 uint32_t sdma_vm_addr; 326 /* Relevant only for VI */ 327 uint64_t eop_ring_buffer_address; 328 uint32_t eop_ring_buffer_size; 329 uint64_t ctx_save_restore_area_address; 330 uint32_t ctx_save_restore_area_size; 331 }; 332 333 /** 334 * struct queue 335 * 336 * @list: Queue linked list. 337 * 338 * @mqd: The queue MQD. 339 * 340 * @mqd_mem_obj: The MQD local gpu memory object. 341 * 342 * @gart_mqd_addr: The MQD gart mc address. 343 * 344 * @properties: The queue properties. 345 * 346 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 347 * that the queue should be execute on. 348 * 349 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 350 * id. 351 * 352 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 353 * 354 * @process: The kfd process that created this queue. 355 * 356 * @device: The kfd device that created this queue. 357 * 358 * This structure represents user mode compute queues. 359 * It contains all the necessary data to handle such queues. 360 * 361 */ 362 363 struct queue { 364 struct list_head list; 365 void *mqd; 366 struct kfd_mem_obj *mqd_mem_obj; 367 uint64_t gart_mqd_addr; 368 struct queue_properties properties; 369 370 uint32_t mec; 371 uint32_t pipe; 372 uint32_t queue; 373 374 unsigned int sdma_id; 375 376 struct kfd_process *process; 377 struct kfd_dev *device; 378 }; 379 380 /* 381 * Please read the kfd_mqd_manager.h description. 382 */ 383 enum KFD_MQD_TYPE { 384 KFD_MQD_TYPE_COMPUTE = 0, /* for no cp scheduling */ 385 KFD_MQD_TYPE_HIQ, /* for hiq */ 386 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 387 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 388 KFD_MQD_TYPE_MAX 389 }; 390 391 struct scheduling_resources { 392 unsigned int vmid_mask; 393 enum kfd_queue_type type; 394 uint64_t queue_mask; 395 uint64_t gws_mask; 396 uint32_t oac_mask; 397 uint32_t gds_heap_base; 398 uint32_t gds_heap_size; 399 }; 400 401 struct process_queue_manager { 402 /* data */ 403 struct kfd_process *process; 404 unsigned int num_concurrent_processes; 405 struct list_head queues; 406 unsigned long *queue_slot_bitmap; 407 }; 408 409 struct qcm_process_device { 410 /* The Device Queue Manager that owns this data */ 411 struct device_queue_manager *dqm; 412 struct process_queue_manager *pqm; 413 /* Queues list */ 414 struct list_head queues_list; 415 struct list_head priv_queue_list; 416 417 unsigned int queue_count; 418 unsigned int vmid; 419 bool is_debug; 420 /* 421 * All the memory management data should be here too 422 */ 423 uint64_t gds_context_area; 424 uint32_t sh_mem_config; 425 uint32_t sh_mem_bases; 426 uint32_t sh_mem_ape1_base; 427 uint32_t sh_mem_ape1_limit; 428 uint32_t page_table_base; 429 uint32_t gds_size; 430 uint32_t num_gws; 431 uint32_t num_oac; 432 uint32_t sh_hidden_private_base; 433 }; 434 435 /* Data that is per-process-per device. */ 436 struct kfd_process_device { 437 /* 438 * List of all per-device data for a process. 439 * Starts from kfd_process.per_device_data. 440 */ 441 struct list_head per_device_list; 442 443 /* The device that owns this data. */ 444 struct kfd_dev *dev; 445 446 447 /* per-process-per device QCM data structure */ 448 struct qcm_process_device qpd; 449 450 /*Apertures*/ 451 uint64_t lds_base; 452 uint64_t lds_limit; 453 uint64_t gpuvm_base; 454 uint64_t gpuvm_limit; 455 uint64_t scratch_base; 456 uint64_t scratch_limit; 457 458 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 459 bool bound; 460 461 /* This flag tells if we should reset all 462 * wavefronts on process termination 463 */ 464 bool reset_wavefronts; 465 }; 466 467 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 468 469 /* Process data */ 470 struct kfd_process { 471 /* 472 * kfd_process are stored in an mm_struct*->kfd_process* 473 * hash table (kfd_processes in kfd_process.c) 474 */ 475 struct hlist_node kfd_processes; 476 477 struct mm_struct *mm; 478 479 struct mutex mutex; 480 481 /* 482 * In any process, the thread that started main() is the lead 483 * thread and outlives the rest. 484 * It is here because amd_iommu_bind_pasid wants a task_struct. 485 */ 486 struct task_struct *lead_thread; 487 488 /* We want to receive a notification when the mm_struct is destroyed */ 489 struct mmu_notifier mmu_notifier; 490 491 /* Use for delayed freeing of kfd_process structure */ 492 struct rcu_head rcu; 493 494 unsigned int pasid; 495 unsigned int doorbell_index; 496 497 /* 498 * List of kfd_process_device structures, 499 * one for each device the process is using. 500 */ 501 struct list_head per_device_data; 502 503 struct process_queue_manager pqm; 504 505 /* The process's queues. */ 506 size_t queue_array_size; 507 508 /* Size is queue_array_size, up to MAX_PROCESS_QUEUES. */ 509 struct kfd_queue **queues; 510 511 /*Is the user space process 32 bit?*/ 512 bool is_32bit_user_mode; 513 514 /* Event-related data */ 515 struct mutex event_mutex; 516 /* All events in process hashed by ID, linked on kfd_event.events. */ 517 DECLARE_HASHTABLE(events, 4); 518 /* struct slot_page_header.event_pages */ 519 struct list_head signal_event_pages; 520 u32 next_nonsignal_event_id; 521 size_t signal_event_count; 522 }; 523 524 /** 525 * Ioctl function type. 526 * 527 * \param filep pointer to file structure. 528 * \param p amdkfd process pointer. 529 * \param data pointer to arg that was copied from user. 530 */ 531 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 532 void *data); 533 534 struct amdkfd_ioctl_desc { 535 unsigned int cmd; 536 int flags; 537 amdkfd_ioctl_t *func; 538 unsigned int cmd_drv; 539 const char *name; 540 }; 541 542 void kfd_process_create_wq(void); 543 void kfd_process_destroy_wq(void); 544 struct kfd_process *kfd_create_process(const struct task_struct *); 545 struct kfd_process *kfd_get_process(const struct task_struct *); 546 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid); 547 548 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 549 struct kfd_process *p); 550 void kfd_unbind_process_from_device(struct kfd_dev *dev, unsigned int pasid); 551 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 552 struct kfd_process *p); 553 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 554 struct kfd_process *p); 555 556 /* Process device data iterator */ 557 struct kfd_process_device *kfd_get_first_process_device_data( 558 struct kfd_process *p); 559 struct kfd_process_device *kfd_get_next_process_device_data( 560 struct kfd_process *p, 561 struct kfd_process_device *pdd); 562 bool kfd_has_process_device_data(struct kfd_process *p); 563 564 /* PASIDs */ 565 int kfd_pasid_init(void); 566 void kfd_pasid_exit(void); 567 bool kfd_set_pasid_limit(unsigned int new_limit); 568 unsigned int kfd_get_pasid_limit(void); 569 unsigned int kfd_pasid_alloc(void); 570 void kfd_pasid_free(unsigned int pasid); 571 572 /* Doorbells */ 573 int kfd_doorbell_init(struct kfd_dev *kfd); 574 void kfd_doorbell_fini(struct kfd_dev *kfd); 575 int kfd_doorbell_mmap(struct kfd_process *process, struct vm_area_struct *vma); 576 u32 __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 577 unsigned int *doorbell_off); 578 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 579 u32 read_kernel_doorbell(u32 __iomem *db); 580 void write_kernel_doorbell(u32 __iomem *db, u32 value); 581 unsigned int kfd_queue_id_to_doorbell(struct kfd_dev *kfd, 582 struct kfd_process *process, 583 unsigned int queue_id); 584 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev, 585 struct kfd_process *process); 586 int kfd_alloc_process_doorbells(struct kfd_process *process); 587 void kfd_free_process_doorbells(struct kfd_process *process); 588 589 /* GTT Sub-Allocator */ 590 591 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 592 struct kfd_mem_obj **mem_obj); 593 594 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 595 596 extern struct device *kfd_device; 597 598 /* Topology */ 599 int kfd_topology_init(void); 600 void kfd_topology_shutdown(void); 601 int kfd_topology_add_device(struct kfd_dev *gpu); 602 int kfd_topology_remove_device(struct kfd_dev *gpu); 603 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 604 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 605 struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx); 606 607 /* Interrupts */ 608 int kfd_interrupt_init(struct kfd_dev *dev); 609 void kfd_interrupt_exit(struct kfd_dev *dev); 610 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry); 611 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 612 bool interrupt_is_wanted(struct kfd_dev *dev, const uint32_t *ih_ring_entry); 613 614 /* Power Management */ 615 void kgd2kfd_suspend(struct kfd_dev *kfd); 616 int kgd2kfd_resume(struct kfd_dev *kfd); 617 618 /* amdkfd Apertures */ 619 int kfd_init_apertures(struct kfd_process *process); 620 621 /* Queue Context Management */ 622 struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd); 623 624 int init_queue(struct queue **q, const struct queue_properties *properties); 625 void uninit_queue(struct queue *q); 626 void print_queue_properties(struct queue_properties *q); 627 void print_queue(struct queue *q); 628 629 struct mqd_manager *mqd_manager_init(enum KFD_MQD_TYPE type, 630 struct kfd_dev *dev); 631 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 632 struct kfd_dev *dev); 633 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 634 struct kfd_dev *dev); 635 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 636 void device_queue_manager_uninit(struct device_queue_manager *dqm); 637 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 638 enum kfd_queue_type type); 639 void kernel_queue_uninit(struct kernel_queue *kq); 640 641 /* Process Queue Manager */ 642 struct process_queue_node { 643 struct queue *q; 644 struct kernel_queue *kq; 645 struct list_head process_queue_list; 646 }; 647 648 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 649 void pqm_uninit(struct process_queue_manager *pqm); 650 int pqm_create_queue(struct process_queue_manager *pqm, 651 struct kfd_dev *dev, 652 struct file *f, 653 struct queue_properties *properties, 654 unsigned int flags, 655 enum kfd_queue_type type, 656 unsigned int *qid); 657 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 658 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid, 659 struct queue_properties *p); 660 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 661 unsigned int qid); 662 663 int amdkfd_fence_wait_timeout(unsigned int *fence_addr, 664 unsigned int fence_value, 665 unsigned long timeout); 666 667 /* Packet Manager */ 668 669 #define KFD_HIQ_TIMEOUT (500) 670 671 #define KFD_FENCE_COMPLETED (100) 672 #define KFD_FENCE_INIT (10) 673 #define KFD_UNMAP_LATENCY (150) 674 675 struct packet_manager { 676 struct device_queue_manager *dqm; 677 struct kernel_queue *priv_queue; 678 struct mutex lock; 679 bool allocated; 680 struct kfd_mem_obj *ib_buffer_obj; 681 }; 682 683 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 684 void pm_uninit(struct packet_manager *pm); 685 int pm_send_set_resources(struct packet_manager *pm, 686 struct scheduling_resources *res); 687 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 688 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 689 uint32_t fence_value); 690 691 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type, 692 enum kfd_preempt_type_filter mode, 693 uint32_t filter_param, bool reset, 694 unsigned int sdma_engine); 695 696 void pm_release_ib(struct packet_manager *pm); 697 698 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 699 700 /* Events */ 701 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 702 extern const struct kfd_device_global_init_class device_global_init_class_cik; 703 704 enum kfd_event_wait_result { 705 KFD_WAIT_COMPLETE, 706 KFD_WAIT_TIMEOUT, 707 KFD_WAIT_ERROR 708 }; 709 710 void kfd_event_init_process(struct kfd_process *p); 711 void kfd_event_free_process(struct kfd_process *p); 712 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 713 int kfd_wait_on_events(struct kfd_process *p, 714 uint32_t num_events, void __user *data, 715 bool all, uint32_t user_timeout_ms, 716 enum kfd_event_wait_result *wait_result); 717 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, 718 uint32_t valid_id_bits); 719 void kfd_signal_iommu_event(struct kfd_dev *dev, 720 unsigned int pasid, unsigned long address, 721 bool is_write_requested, bool is_execute_requested); 722 void kfd_signal_hw_exception_event(unsigned int pasid); 723 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 724 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 725 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 726 uint32_t event_type, bool auto_reset, uint32_t node_id, 727 uint32_t *event_id, uint32_t *event_trigger_data, 728 uint64_t *event_page_offset, uint32_t *event_slot_index); 729 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 730 731 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p); 732 733 #endif 734