xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 90cbee20)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef KFD_PRIV_H_INCLUDED
25 #define KFD_PRIV_H_INCLUDED
26 
27 #include <linux/hashtable.h>
28 #include <linux/mmu_notifier.h>
29 #include <linux/memremap.h>
30 #include <linux/mutex.h>
31 #include <linux/types.h>
32 #include <linux/atomic.h>
33 #include <linux/workqueue.h>
34 #include <linux/spinlock.h>
35 #include <linux/kfd_ioctl.h>
36 #include <linux/idr.h>
37 #include <linux/kfifo.h>
38 #include <linux/seq_file.h>
39 #include <linux/kref.h>
40 #include <linux/sysfs.h>
41 #include <linux/device_cgroup.h>
42 #include <drm/drm_file.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_device.h>
45 #include <drm/drm_ioctl.h>
46 #include <kgd_kfd_interface.h>
47 #include <linux/swap.h>
48 
49 #include "amd_shared.h"
50 #include "amdgpu.h"
51 
52 #define KFD_MAX_RING_ENTRY_SIZE	8
53 
54 #define KFD_SYSFS_FILE_MODE 0444
55 
56 /* GPU ID hash width in bits */
57 #define KFD_GPU_ID_HASH_WIDTH 16
58 
59 /* Use upper bits of mmap offset to store KFD driver specific information.
60  * BITS[63:62] - Encode MMAP type
61  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
62  * BITS[45:0]  - MMAP offset value
63  *
64  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
65  *  defines are w.r.t to PAGE_SIZE
66  */
67 #define KFD_MMAP_TYPE_SHIFT	62
68 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
71 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
72 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
73 
74 #define KFD_MMAP_GPU_ID_SHIFT 46
75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
76 				<< KFD_MMAP_GPU_ID_SHIFT)
77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
78 				& KFD_MMAP_GPU_ID_MASK)
79 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
80 				>> KFD_MMAP_GPU_ID_SHIFT)
81 
82 /*
83  * When working with cp scheduler we should assign the HIQ manually or via
84  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
85  * definitions for Kaveri. In Kaveri only the first ME queues participates
86  * in the cp scheduling taking that in mind we set the HIQ slot in the
87  * second ME.
88  */
89 #define KFD_CIK_HIQ_PIPE 4
90 #define KFD_CIK_HIQ_QUEUE 0
91 
92 /* Macro for allocating structures */
93 #define kfd_alloc_struct(ptr_to_struct)	\
94 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
95 
96 #define KFD_MAX_NUM_OF_PROCESSES 512
97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
98 
99 /*
100  * Size of the per-process TBA+TMA buffer: 2 pages
101  *
102  * The first page is the TBA used for the CWSR ISA code. The second
103  * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
104  */
105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
106 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
107 
108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
109 	(KFD_MAX_NUM_OF_PROCESSES *			\
110 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
111 
112 #define KFD_KERNEL_QUEUE_SIZE 2048
113 
114 #define KFD_UNMAP_LATENCY_MS	(4000)
115 
116 #define KFD_MAX_SDMA_QUEUES	128
117 
118 /*
119  * 512 = 0x200
120  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
121  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
122  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
123  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
124  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
125  */
126 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
127 
128 /**
129  * enum kfd_ioctl_flags - KFD ioctl flags
130  * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
131  * userspace can use a given ioctl.
132  */
133 enum kfd_ioctl_flags {
134 	/*
135 	 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
136 	 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
137 	 * perform privileged operations and load arbitrary data into MQDs and
138 	 * eventually HQD registers when the queue is mapped by HWS. In order to
139 	 * prevent this we should perform additional security checks.
140 	 *
141 	 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
142 	 *
143 	 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
144 	 * we also allow ioctls with SYS_ADMIN capability.
145 	 */
146 	KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
147 };
148 /*
149  * Kernel module parameter to specify maximum number of supported queues per
150  * device
151  */
152 extern int max_num_of_queues_per_device;
153 
154 
155 /* Kernel module parameter to specify the scheduling policy */
156 extern int sched_policy;
157 
158 /*
159  * Kernel module parameter to specify the maximum process
160  * number per HW scheduler
161  */
162 extern int hws_max_conc_proc;
163 
164 extern int cwsr_enable;
165 
166 /*
167  * Kernel module parameter to specify whether to send sigterm to HSA process on
168  * unhandled exception
169  */
170 extern int send_sigterm;
171 
172 /*
173  * This kernel module is used to simulate large bar machine on non-large bar
174  * enabled machines.
175  */
176 extern int debug_largebar;
177 
178 /*
179  * Ignore CRAT table during KFD initialization, can be used to work around
180  * broken CRAT tables on some AMD systems
181  */
182 extern int ignore_crat;
183 
184 /* Set sh_mem_config.retry_disable on GFX v9 */
185 extern int amdgpu_noretry;
186 
187 /* Halt if HWS hang is detected */
188 extern int halt_if_hws_hang;
189 
190 /* Whether MEC FW support GWS barriers */
191 extern bool hws_gws_support;
192 
193 /* Queue preemption timeout in ms */
194 extern int queue_preemption_timeout_ms;
195 
196 /*
197  * Don't evict process queues on vm fault
198  */
199 extern int amdgpu_no_queue_eviction_on_vm_fault;
200 
201 /* Enable eviction debug messages */
202 extern bool debug_evictions;
203 
204 extern struct mutex kfd_processes_mutex;
205 
206 enum cache_policy {
207 	cache_policy_coherent,
208 	cache_policy_noncoherent
209 };
210 
211 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0])
212 #define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
213 #define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\
214 	((KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) ||	\
215 	 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3)))
216 
217 struct kfd_node;
218 
219 struct kfd_event_interrupt_class {
220 	bool (*interrupt_isr)(struct kfd_node *dev,
221 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
222 			bool *patched_flag);
223 	void (*interrupt_wq)(struct kfd_node *dev,
224 			const uint32_t *ih_ring_entry);
225 };
226 
227 struct kfd_device_info {
228 	uint32_t gfx_target_version;
229 	const struct kfd_event_interrupt_class *event_interrupt_class;
230 	unsigned int max_pasid_bits;
231 	unsigned int max_no_of_hqd;
232 	unsigned int doorbell_size;
233 	size_t ih_ring_entry_size;
234 	uint8_t num_of_watch_points;
235 	uint16_t mqd_size_aligned;
236 	bool supports_cwsr;
237 	bool needs_iommu_device;
238 	bool needs_pci_atomics;
239 	uint32_t no_atomic_fw_version;
240 	unsigned int num_sdma_queues_per_engine;
241 	unsigned int num_reserved_sdma_queues_per_engine;
242 	uint64_t reserved_sdma_queues_bitmap;
243 };
244 
245 unsigned int kfd_get_num_sdma_engines(struct kfd_node *kdev);
246 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *kdev);
247 
248 struct kfd_mem_obj {
249 	uint32_t range_start;
250 	uint32_t range_end;
251 	uint64_t gpu_addr;
252 	uint32_t *cpu_ptr;
253 	void *gtt_mem;
254 };
255 
256 struct kfd_vmid_info {
257 	uint32_t first_vmid_kfd;
258 	uint32_t last_vmid_kfd;
259 	uint32_t vmid_num_kfd;
260 };
261 
262 #define MAX_KFD_NODES	8
263 
264 struct kfd_dev;
265 
266 struct kfd_node {
267 	unsigned int node_id;
268 	struct amdgpu_device *adev;     /* Duplicated here along with keeping
269 					 * a copy in kfd_dev to save a hop
270 					 */
271 	const struct kfd2kgd_calls *kfd2kgd; /* Duplicated here along with
272 					      * keeping a copy in kfd_dev to
273 					      * save a hop
274 					      */
275 	struct kfd_vmid_info vm_info;
276 	unsigned int id;                /* topology stub index */
277 	unsigned int num_xcc_per_node;
278 	unsigned int start_xcc_id;	/* Starting XCC instance
279 					 * number for the node
280 					 */
281 	/* Interrupts */
282 	struct kfifo ih_fifo;
283 	struct workqueue_struct *ih_wq;
284 	struct work_struct interrupt_work;
285 	spinlock_t interrupt_lock;
286 
287 	/*
288 	 * Interrupts of interest to KFD are copied
289 	 * from the HW ring into a SW ring.
290 	 */
291 	bool interrupts_active;
292 	uint32_t interrupt_bitmap; /* Only used for GFX 9.4.3 */
293 
294 	/* QCM Device instance */
295 	struct device_queue_manager *dqm;
296 
297 	/* Global GWS resource shared between processes */
298 	void *gws;
299 	bool gws_debug_workaround;
300 
301 	/* Clients watching SMI events */
302 	struct list_head smi_clients;
303 	spinlock_t smi_lock;
304 	uint32_t reset_seq_num;
305 
306 	/* SRAM ECC flag */
307 	atomic_t sram_ecc_flag;
308 
309 	/*spm process id */
310 	unsigned int spm_pasid;
311 
312 	/* Maximum process number mapped to HW scheduler */
313 	unsigned int max_proc_per_quantum;
314 
315 	unsigned int compute_vmid_bitmap;
316 
317 	struct kfd_dev *kfd;
318 };
319 
320 struct kfd_dev {
321 	struct amdgpu_device *adev;
322 
323 	struct kfd_device_info device_info;
324 
325 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
326 					 * KFD. It is aligned for mapping
327 					 * into user mode
328 					 */
329 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
330 					 * doorbell BAR to the first KFD
331 					 * doorbell in dwords. GFX reserves
332 					 * the segment before this offset.
333 					 */
334 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
335 					   * page used by kernel queue
336 					   */
337 
338 	struct kgd2kfd_shared_resources shared_resources;
339 	struct kfd_local_mem_info local_mem_info;
340 
341 	const struct kfd2kgd_calls *kfd2kgd;
342 	struct mutex doorbell_mutex;
343 	DECLARE_BITMAP(doorbell_available_index,
344 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
345 
346 	void *gtt_mem;
347 	uint64_t gtt_start_gpu_addr;
348 	void *gtt_start_cpu_ptr;
349 	void *gtt_sa_bitmap;
350 	struct mutex gtt_sa_lock;
351 	unsigned int gtt_sa_chunk_size;
352 	unsigned int gtt_sa_num_of_chunks;
353 
354 	bool init_complete;
355 
356 	/* Firmware versions */
357 	uint16_t mec_fw_version;
358 	uint16_t mec2_fw_version;
359 	uint16_t sdma_fw_version;
360 
361 	/* CWSR */
362 	bool cwsr_enabled;
363 	const void *cwsr_isa;
364 	unsigned int cwsr_isa_size;
365 
366 	/* xGMI */
367 	uint64_t hive_id;
368 
369 	bool pci_atomic_requested;
370 
371 	/* Use IOMMU v2 flag */
372 	bool use_iommu_v2;
373 
374 	/* Compute Profile ref. count */
375 	atomic_t compute_profile;
376 
377 	struct ida doorbell_ida;
378 	unsigned int max_doorbell_slices;
379 
380 	int noretry;
381 
382 	/* HMM page migration MEMORY_DEVICE_PRIVATE mapping */
383 	struct dev_pagemap pgmap;
384 
385 	struct kfd_node *nodes[MAX_KFD_NODES];
386 	unsigned int num_nodes;
387 };
388 
389 enum kfd_mempool {
390 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
391 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
392 	KFD_MEMPOOL_FRAMEBUFFER = 3,
393 };
394 
395 /* Character device interface */
396 int kfd_chardev_init(void);
397 void kfd_chardev_exit(void);
398 
399 /**
400  * enum kfd_unmap_queues_filter - Enum for queue filters.
401  *
402  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
403  *						running queues list.
404  *
405  * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
406  *						in the run list.
407  *
408  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
409  *						specific process.
410  *
411  */
412 enum kfd_unmap_queues_filter {
413 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
414 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
415 	KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
416 };
417 
418 /**
419  * enum kfd_queue_type - Enum for various queue types.
420  *
421  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
422  *
423  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
424  *
425  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
426  *
427  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
428  *
429  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
430  */
431 enum kfd_queue_type  {
432 	KFD_QUEUE_TYPE_COMPUTE,
433 	KFD_QUEUE_TYPE_SDMA,
434 	KFD_QUEUE_TYPE_HIQ,
435 	KFD_QUEUE_TYPE_DIQ,
436 	KFD_QUEUE_TYPE_SDMA_XGMI
437 };
438 
439 enum kfd_queue_format {
440 	KFD_QUEUE_FORMAT_PM4,
441 	KFD_QUEUE_FORMAT_AQL
442 };
443 
444 enum KFD_QUEUE_PRIORITY {
445 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
446 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
447 };
448 
449 /**
450  * struct queue_properties
451  *
452  * @type: The queue type.
453  *
454  * @queue_id: Queue identifier.
455  *
456  * @queue_address: Queue ring buffer address.
457  *
458  * @queue_size: Queue ring buffer size.
459  *
460  * @priority: Defines the queue priority relative to other queues in the
461  * process.
462  * This is just an indication and HW scheduling may override the priority as
463  * necessary while keeping the relative prioritization.
464  * the priority granularity is from 0 to f which f is the highest priority.
465  * currently all queues are initialized with the highest priority.
466  *
467  * @queue_percent: This field is partially implemented and currently a zero in
468  * this field defines that the queue is non active.
469  *
470  * @read_ptr: User space address which points to the number of dwords the
471  * cp read from the ring buffer. This field updates automatically by the H/W.
472  *
473  * @write_ptr: Defines the number of dwords written to the ring buffer.
474  *
475  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
476  * buffer. This field should be similar to write_ptr and the user should
477  * update this field after updating the write_ptr.
478  *
479  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
480  *
481  * @is_interop: Defines if this is a interop queue. Interop queue means that
482  * the queue can access both graphics and compute resources.
483  *
484  * @is_evicted: Defines if the queue is evicted. Only active queues
485  * are evicted, rendering them inactive.
486  *
487  * @is_active: Defines if the queue is active or not. @is_active and
488  * @is_evicted are protected by the DQM lock.
489  *
490  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
491  * @is_gws should be protected by the DQM lock, since changing it can yield the
492  * possibility of updating DQM state on number of GWS queues.
493  *
494  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
495  * of the queue.
496  *
497  * This structure represents the queue properties for each queue no matter if
498  * it's user mode or kernel mode queue.
499  *
500  */
501 
502 struct queue_properties {
503 	enum kfd_queue_type type;
504 	enum kfd_queue_format format;
505 	unsigned int queue_id;
506 	uint64_t queue_address;
507 	uint64_t  queue_size;
508 	uint32_t priority;
509 	uint32_t queue_percent;
510 	uint32_t *read_ptr;
511 	uint32_t *write_ptr;
512 	void __iomem *doorbell_ptr;
513 	uint32_t doorbell_off;
514 	bool is_interop;
515 	bool is_evicted;
516 	bool is_active;
517 	bool is_gws;
518 	uint32_t pm4_target_xcc;
519 	/* Not relevant for user mode queues in cp scheduling */
520 	unsigned int vmid;
521 	/* Relevant only for sdma queues*/
522 	uint32_t sdma_engine_id;
523 	uint32_t sdma_queue_id;
524 	uint32_t sdma_vm_addr;
525 	/* Relevant only for VI */
526 	uint64_t eop_ring_buffer_address;
527 	uint32_t eop_ring_buffer_size;
528 	uint64_t ctx_save_restore_area_address;
529 	uint32_t ctx_save_restore_area_size;
530 	uint32_t ctl_stack_size;
531 	uint64_t tba_addr;
532 	uint64_t tma_addr;
533 };
534 
535 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
536 			    (q).queue_address != 0 &&	\
537 			    (q).queue_percent > 0 &&	\
538 			    !(q).is_evicted)
539 
540 enum mqd_update_flag {
541 	UPDATE_FLAG_CU_MASK = 0,
542 };
543 
544 struct mqd_update_info {
545 	union {
546 		struct {
547 			uint32_t count; /* Must be a multiple of 32 */
548 			uint32_t *ptr;
549 		} cu_mask;
550 	};
551 	enum mqd_update_flag update_flag;
552 };
553 
554 /**
555  * struct queue
556  *
557  * @list: Queue linked list.
558  *
559  * @mqd: The queue MQD (memory queue descriptor).
560  *
561  * @mqd_mem_obj: The MQD local gpu memory object.
562  *
563  * @gart_mqd_addr: The MQD gart mc address.
564  *
565  * @properties: The queue properties.
566  *
567  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
568  *	 that the queue should be executed on.
569  *
570  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
571  *	  id.
572  *
573  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
574  *
575  * @process: The kfd process that created this queue.
576  *
577  * @device: The kfd device that created this queue.
578  *
579  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
580  * otherwise.
581  *
582  * This structure represents user mode compute queues.
583  * It contains all the necessary data to handle such queues.
584  *
585  */
586 
587 struct queue {
588 	struct list_head list;
589 	void *mqd;
590 	struct kfd_mem_obj *mqd_mem_obj;
591 	uint64_t gart_mqd_addr;
592 	struct queue_properties properties;
593 
594 	uint32_t mec;
595 	uint32_t pipe;
596 	uint32_t queue;
597 
598 	unsigned int sdma_id;
599 	unsigned int doorbell_id;
600 
601 	struct kfd_process	*process;
602 	struct kfd_node		*device;
603 	void *gws;
604 
605 	/* procfs */
606 	struct kobject kobj;
607 
608 	void *gang_ctx_bo;
609 	uint64_t gang_ctx_gpu_addr;
610 	void *gang_ctx_cpu_ptr;
611 
612 	struct amdgpu_bo *wptr_bo;
613 };
614 
615 enum KFD_MQD_TYPE {
616 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
617 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
618 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
619 	KFD_MQD_TYPE_DIQ,		/* for diq */
620 	KFD_MQD_TYPE_MAX
621 };
622 
623 enum KFD_PIPE_PRIORITY {
624 	KFD_PIPE_PRIORITY_CS_LOW = 0,
625 	KFD_PIPE_PRIORITY_CS_MEDIUM,
626 	KFD_PIPE_PRIORITY_CS_HIGH
627 };
628 
629 struct scheduling_resources {
630 	unsigned int vmid_mask;
631 	enum kfd_queue_type type;
632 	uint64_t queue_mask;
633 	uint64_t gws_mask;
634 	uint32_t oac_mask;
635 	uint32_t gds_heap_base;
636 	uint32_t gds_heap_size;
637 };
638 
639 struct process_queue_manager {
640 	/* data */
641 	struct kfd_process	*process;
642 	struct list_head	queues;
643 	unsigned long		*queue_slot_bitmap;
644 };
645 
646 struct qcm_process_device {
647 	/* The Device Queue Manager that owns this data */
648 	struct device_queue_manager *dqm;
649 	struct process_queue_manager *pqm;
650 	/* Queues list */
651 	struct list_head queues_list;
652 	struct list_head priv_queue_list;
653 
654 	unsigned int queue_count;
655 	unsigned int vmid;
656 	bool is_debug;
657 	unsigned int evicted; /* eviction counter, 0=active */
658 
659 	/* This flag tells if we should reset all wavefronts on
660 	 * process termination
661 	 */
662 	bool reset_wavefronts;
663 
664 	/* This flag tells us if this process has a GWS-capable
665 	 * queue that will be mapped into the runlist. It's
666 	 * possible to request a GWS BO, but not have the queue
667 	 * currently mapped, and this changes how the MAP_PROCESS
668 	 * PM4 packet is configured.
669 	 */
670 	bool mapped_gws_queue;
671 
672 	/* All the memory management data should be here too */
673 	uint64_t gds_context_area;
674 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
675 	uint64_t page_table_base;
676 	uint32_t sh_mem_config;
677 	uint32_t sh_mem_bases;
678 	uint32_t sh_mem_ape1_base;
679 	uint32_t sh_mem_ape1_limit;
680 	uint32_t gds_size;
681 	uint32_t num_gws;
682 	uint32_t num_oac;
683 	uint32_t sh_hidden_private_base;
684 
685 	/* CWSR memory */
686 	struct kgd_mem *cwsr_mem;
687 	void *cwsr_kaddr;
688 	uint64_t cwsr_base;
689 	uint64_t tba_addr;
690 	uint64_t tma_addr;
691 
692 	/* IB memory */
693 	struct kgd_mem *ib_mem;
694 	uint64_t ib_base;
695 	void *ib_kaddr;
696 
697 	/* doorbell resources per process per device */
698 	unsigned long *doorbell_bitmap;
699 };
700 
701 /* KFD Memory Eviction */
702 
703 /* Approx. wait time before attempting to restore evicted BOs */
704 #define PROCESS_RESTORE_TIME_MS 100
705 /* Approx. back off time if restore fails due to lack of memory */
706 #define PROCESS_BACK_OFF_TIME_MS 100
707 /* Approx. time before evicting the process again */
708 #define PROCESS_ACTIVE_TIME_MS 10
709 
710 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
711  * idr_handle in the least significant 4 bytes
712  */
713 #define MAKE_HANDLE(gpu_id, idr_handle) \
714 	(((uint64_t)(gpu_id) << 32) + idr_handle)
715 #define GET_GPU_ID(handle) (handle >> 32)
716 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
717 
718 enum kfd_pdd_bound {
719 	PDD_UNBOUND = 0,
720 	PDD_BOUND,
721 	PDD_BOUND_SUSPENDED,
722 };
723 
724 #define MAX_SYSFS_FILENAME_LEN 15
725 
726 /*
727  * SDMA counter runs at 100MHz frequency.
728  * We display SDMA activity in microsecond granularity in sysfs.
729  * As a result, the divisor is 100.
730  */
731 #define SDMA_ACTIVITY_DIVISOR  100
732 
733 /* Data that is per-process-per device. */
734 struct kfd_process_device {
735 	/* The device that owns this data. */
736 	struct kfd_node *dev;
737 
738 	/* The process that owns this kfd_process_device. */
739 	struct kfd_process *process;
740 
741 	/* per-process-per device QCM data structure */
742 	struct qcm_process_device qpd;
743 
744 	/*Apertures*/
745 	uint64_t lds_base;
746 	uint64_t lds_limit;
747 	uint64_t gpuvm_base;
748 	uint64_t gpuvm_limit;
749 	uint64_t scratch_base;
750 	uint64_t scratch_limit;
751 
752 	/* VM context for GPUVM allocations */
753 	struct file *drm_file;
754 	void *drm_priv;
755 	atomic64_t tlb_seq;
756 
757 	/* GPUVM allocations storage */
758 	struct idr alloc_idr;
759 
760 	/* Flag used to tell the pdd has dequeued from the dqm.
761 	 * This is used to prevent dev->dqm->ops.process_termination() from
762 	 * being called twice when it is already called in IOMMU callback
763 	 * function.
764 	 */
765 	bool already_dequeued;
766 	bool runtime_inuse;
767 
768 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
769 	enum kfd_pdd_bound bound;
770 
771 	/* VRAM usage */
772 	uint64_t vram_usage;
773 	struct attribute attr_vram;
774 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
775 
776 	/* SDMA activity tracking */
777 	uint64_t sdma_past_activity_counter;
778 	struct attribute attr_sdma;
779 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
780 
781 	/* Eviction activity tracking */
782 	uint64_t last_evict_timestamp;
783 	atomic64_t evict_duration_counter;
784 	struct attribute attr_evict;
785 
786 	struct kobject *kobj_stats;
787 	unsigned int doorbell_index;
788 
789 	/*
790 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
791 	 * that is associated with device encoded by "this" struct instance. The
792 	 * value reflects CU usage by all of the waves launched by this process
793 	 * on this device. A very important property of occupancy parameter is
794 	 * that its value is a snapshot of current use.
795 	 *
796 	 * Following is to be noted regarding how this parameter is reported:
797 	 *
798 	 *  The number of waves that a CU can launch is limited by couple of
799 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
800 	 *  that is part of every device definition. For GFX9 devices this
801 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
802 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
803 	 *  when they do use scratch memory. This could change for future
804 	 *  devices and therefore this example should be considered as a guide.
805 	 *
806 	 *  All CU's of a device are available for the process. This may not be true
807 	 *  under certain conditions - e.g. CU masking.
808 	 *
809 	 *  Finally number of CU's that are occupied by a process is affected by both
810 	 *  number of CU's a device has along with number of other competing processes
811 	 */
812 	struct attribute attr_cu_occupancy;
813 
814 	/* sysfs counters for GPU retry fault and page migration tracking */
815 	struct kobject *kobj_counters;
816 	struct attribute attr_faults;
817 	struct attribute attr_page_in;
818 	struct attribute attr_page_out;
819 	uint64_t faults;
820 	uint64_t page_in;
821 	uint64_t page_out;
822 	/*
823 	 * If this process has been checkpointed before, then the user
824 	 * application will use the original gpu_id on the
825 	 * checkpointed node to refer to this device.
826 	 */
827 	uint32_t user_gpu_id;
828 
829 	void *proc_ctx_bo;
830 	uint64_t proc_ctx_gpu_addr;
831 	void *proc_ctx_cpu_ptr;
832 };
833 
834 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
835 
836 struct svm_range_list {
837 	struct mutex			lock;
838 	struct rb_root_cached		objects;
839 	struct list_head		list;
840 	struct work_struct		deferred_list_work;
841 	struct list_head		deferred_range_list;
842 	struct list_head                criu_svm_metadata_list;
843 	spinlock_t			deferred_list_lock;
844 	atomic_t			evicted_ranges;
845 	atomic_t			drain_pagefaults;
846 	struct delayed_work		restore_work;
847 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
848 	struct task_struct		*faulting_task;
849 };
850 
851 /* Process data */
852 struct kfd_process {
853 	/*
854 	 * kfd_process are stored in an mm_struct*->kfd_process*
855 	 * hash table (kfd_processes in kfd_process.c)
856 	 */
857 	struct hlist_node kfd_processes;
858 
859 	/*
860 	 * Opaque pointer to mm_struct. We don't hold a reference to
861 	 * it so it should never be dereferenced from here. This is
862 	 * only used for looking up processes by their mm.
863 	 */
864 	void *mm;
865 
866 	struct kref ref;
867 	struct work_struct release_work;
868 
869 	struct mutex mutex;
870 
871 	/*
872 	 * In any process, the thread that started main() is the lead
873 	 * thread and outlives the rest.
874 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
875 	 * It can also be used for safely getting a reference to the
876 	 * mm_struct of the process.
877 	 */
878 	struct task_struct *lead_thread;
879 
880 	/* We want to receive a notification when the mm_struct is destroyed */
881 	struct mmu_notifier mmu_notifier;
882 
883 	u32 pasid;
884 
885 	/*
886 	 * Array of kfd_process_device pointers,
887 	 * one for each device the process is using.
888 	 */
889 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
890 	uint32_t n_pdds;
891 
892 	struct process_queue_manager pqm;
893 
894 	/*Is the user space process 32 bit?*/
895 	bool is_32bit_user_mode;
896 
897 	/* Event-related data */
898 	struct mutex event_mutex;
899 	/* Event ID allocator and lookup */
900 	struct idr event_idr;
901 	/* Event page */
902 	u64 signal_handle;
903 	struct kfd_signal_page *signal_page;
904 	size_t signal_mapped_size;
905 	size_t signal_event_count;
906 	bool signal_event_limit_reached;
907 
908 	/* Information used for memory eviction */
909 	void *kgd_process_info;
910 	/* Eviction fence that is attached to all the BOs of this process. The
911 	 * fence will be triggered during eviction and new one will be created
912 	 * during restore
913 	 */
914 	struct dma_fence *ef;
915 
916 	/* Work items for evicting and restoring BOs */
917 	struct delayed_work eviction_work;
918 	struct delayed_work restore_work;
919 	/* seqno of the last scheduled eviction */
920 	unsigned int last_eviction_seqno;
921 	/* Approx. the last timestamp (in jiffies) when the process was
922 	 * restored after an eviction
923 	 */
924 	unsigned long last_restore_timestamp;
925 
926 	/* Kobj for our procfs */
927 	struct kobject *kobj;
928 	struct kobject *kobj_queues;
929 	struct attribute attr_pasid;
930 
931 	/* shared virtual memory registered by this process */
932 	struct svm_range_list svms;
933 
934 	bool xnack_enabled;
935 
936 	atomic_t poison;
937 	/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
938 	bool queues_paused;
939 };
940 
941 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
942 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
943 extern struct srcu_struct kfd_processes_srcu;
944 
945 /**
946  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
947  *
948  * @filep: pointer to file structure.
949  * @p: amdkfd process pointer.
950  * @data: pointer to arg that was copied from user.
951  *
952  * Return: returns ioctl completion code.
953  */
954 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
955 				void *data);
956 
957 struct amdkfd_ioctl_desc {
958 	unsigned int cmd;
959 	int flags;
960 	amdkfd_ioctl_t *func;
961 	unsigned int cmd_drv;
962 	const char *name;
963 };
964 bool kfd_dev_is_large_bar(struct kfd_node *dev);
965 
966 int kfd_process_create_wq(void);
967 void kfd_process_destroy_wq(void);
968 void kfd_cleanup_processes(void);
969 struct kfd_process *kfd_create_process(struct file *filep);
970 struct kfd_process *kfd_get_process(const struct task_struct *task);
971 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
972 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
973 
974 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
975 int kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
976 				uint32_t *gpuid, uint32_t *gpuidx);
977 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
978 				uint32_t gpuidx, uint32_t *gpuid) {
979 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
980 }
981 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
982 				struct kfd_process *p, uint32_t gpuidx) {
983 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
984 }
985 
986 void kfd_unref_process(struct kfd_process *p);
987 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger);
988 int kfd_process_restore_queues(struct kfd_process *p);
989 void kfd_suspend_all_processes(void);
990 int kfd_resume_all_processes(void);
991 
992 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
993 							 uint32_t gpu_id);
994 
995 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
996 
997 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
998 			       struct file *drm_file);
999 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1000 						struct kfd_process *p);
1001 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1002 							struct kfd_process *p);
1003 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1004 							struct kfd_process *p);
1005 
1006 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
1007 
1008 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
1009 			  struct vm_area_struct *vma);
1010 
1011 /* KFD process API for creating and translating handles */
1012 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1013 					void *mem);
1014 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
1015 					int handle);
1016 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1017 					int handle);
1018 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
1019 
1020 /* PASIDs */
1021 int kfd_pasid_init(void);
1022 void kfd_pasid_exit(void);
1023 bool kfd_set_pasid_limit(unsigned int new_limit);
1024 unsigned int kfd_get_pasid_limit(void);
1025 u32 kfd_pasid_alloc(void);
1026 void kfd_pasid_free(u32 pasid);
1027 
1028 /* Doorbells */
1029 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
1030 int kfd_doorbell_init(struct kfd_dev *kfd);
1031 void kfd_doorbell_fini(struct kfd_dev *kfd);
1032 int kfd_doorbell_mmap(struct kfd_node *dev, struct kfd_process *process,
1033 		      struct vm_area_struct *vma);
1034 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
1035 					unsigned int *doorbell_off);
1036 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
1037 u32 read_kernel_doorbell(u32 __iomem *db);
1038 void write_kernel_doorbell(void __iomem *db, u32 value);
1039 void write_kernel_doorbell64(void __iomem *db, u64 value);
1040 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
1041 					struct kfd_process_device *pdd,
1042 					unsigned int doorbell_id);
1043 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
1044 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
1045 				unsigned int *doorbell_index);
1046 void kfd_free_process_doorbells(struct kfd_dev *kfd,
1047 				unsigned int doorbell_index);
1048 /* GTT Sub-Allocator */
1049 
1050 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1051 			struct kfd_mem_obj **mem_obj);
1052 
1053 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj);
1054 
1055 extern struct device *kfd_device;
1056 
1057 /* KFD's procfs */
1058 void kfd_procfs_init(void);
1059 void kfd_procfs_shutdown(void);
1060 int kfd_procfs_add_queue(struct queue *q);
1061 void kfd_procfs_del_queue(struct queue *q);
1062 
1063 /* Topology */
1064 int kfd_topology_init(void);
1065 void kfd_topology_shutdown(void);
1066 int kfd_topology_add_device(struct kfd_node *gpu);
1067 int kfd_topology_remove_device(struct kfd_node *gpu);
1068 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1069 						uint32_t proximity_domain);
1070 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
1071 						uint32_t proximity_domain);
1072 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1073 struct kfd_node *kfd_device_by_id(uint32_t gpu_id);
1074 struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev);
1075 struct kfd_node *kfd_device_by_adev(const struct amdgpu_device *adev);
1076 static inline bool kfd_irq_is_from_node(struct kfd_node *node, uint32_t node_id,
1077 					uint32_t vmid)
1078 {
1079 	return (node->interrupt_bitmap & (1 << node_id)) != 0 &&
1080 	       (node->compute_vmid_bitmap & (1 << vmid)) != 0;
1081 }
1082 static inline struct kfd_node *kfd_node_by_irq_ids(struct amdgpu_device *adev,
1083 					uint32_t node_id, uint32_t vmid) {
1084 	struct kfd_dev *dev = adev->kfd.dev;
1085 	uint32_t i;
1086 
1087 	if (adev->ip_versions[GC_HWIP][0] != IP_VERSION(9, 4, 3))
1088 		return dev->nodes[0];
1089 
1090 	for (i = 0; i < dev->num_nodes; i++)
1091 		if (kfd_irq_is_from_node(dev->nodes[i], node_id, vmid))
1092 			return dev->nodes[i];
1093 
1094 	return NULL;
1095 }
1096 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev);
1097 int kfd_numa_node_to_apic_id(int numa_node_id);
1098 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
1099 
1100 /* Interrupts */
1101 int kfd_interrupt_init(struct kfd_node *dev);
1102 void kfd_interrupt_exit(struct kfd_node *dev);
1103 bool enqueue_ih_ring_entry(struct kfd_node *kfd, const void *ih_ring_entry);
1104 bool interrupt_is_wanted(struct kfd_node *dev,
1105 				const uint32_t *ih_ring_entry,
1106 				uint32_t *patched_ihre, bool *flag);
1107 
1108 /* amdkfd Apertures */
1109 int kfd_init_apertures(struct kfd_process *process);
1110 
1111 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1112 				  uint64_t tba_addr,
1113 				  uint64_t tma_addr);
1114 
1115 /* CRIU */
1116 /*
1117  * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1118  * structures:
1119  * kfd_criu_process_priv_data
1120  * kfd_criu_device_priv_data
1121  * kfd_criu_bo_priv_data
1122  * kfd_criu_queue_priv_data
1123  * kfd_criu_event_priv_data
1124  * kfd_criu_svm_range_priv_data
1125  */
1126 
1127 #define KFD_CRIU_PRIV_VERSION 1
1128 
1129 struct kfd_criu_process_priv_data {
1130 	uint32_t version;
1131 	uint32_t xnack_mode;
1132 };
1133 
1134 struct kfd_criu_device_priv_data {
1135 	/* For future use */
1136 	uint64_t reserved;
1137 };
1138 
1139 struct kfd_criu_bo_priv_data {
1140 	uint64_t user_addr;
1141 	uint32_t idr_handle;
1142 	uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1143 };
1144 
1145 /*
1146  * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1147  * kfd_criu_svm_range_priv_data is the object type
1148  */
1149 enum kfd_criu_object_type {
1150 	KFD_CRIU_OBJECT_TYPE_QUEUE,
1151 	KFD_CRIU_OBJECT_TYPE_EVENT,
1152 	KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1153 };
1154 
1155 struct kfd_criu_svm_range_priv_data {
1156 	uint32_t object_type;
1157 	uint64_t start_addr;
1158 	uint64_t size;
1159 	/* Variable length array of attributes */
1160 	struct kfd_ioctl_svm_attribute attrs[];
1161 };
1162 
1163 struct kfd_criu_queue_priv_data {
1164 	uint32_t object_type;
1165 	uint64_t q_address;
1166 	uint64_t q_size;
1167 	uint64_t read_ptr_addr;
1168 	uint64_t write_ptr_addr;
1169 	uint64_t doorbell_off;
1170 	uint64_t eop_ring_buffer_address;
1171 	uint64_t ctx_save_restore_area_address;
1172 	uint32_t gpu_id;
1173 	uint32_t type;
1174 	uint32_t format;
1175 	uint32_t q_id;
1176 	uint32_t priority;
1177 	uint32_t q_percent;
1178 	uint32_t doorbell_id;
1179 	uint32_t gws;
1180 	uint32_t sdma_id;
1181 	uint32_t eop_ring_buffer_size;
1182 	uint32_t ctx_save_restore_area_size;
1183 	uint32_t ctl_stack_size;
1184 	uint32_t mqd_size;
1185 };
1186 
1187 struct kfd_criu_event_priv_data {
1188 	uint32_t object_type;
1189 	uint64_t user_handle;
1190 	uint32_t event_id;
1191 	uint32_t auto_reset;
1192 	uint32_t type;
1193 	uint32_t signaled;
1194 
1195 	union {
1196 		struct kfd_hsa_memory_exception_data memory_exception_data;
1197 		struct kfd_hsa_hw_exception_data hw_exception_data;
1198 	};
1199 };
1200 
1201 int kfd_process_get_queue_info(struct kfd_process *p,
1202 			       uint32_t *num_queues,
1203 			       uint64_t *priv_data_sizes);
1204 
1205 int kfd_criu_checkpoint_queues(struct kfd_process *p,
1206 			 uint8_t __user *user_priv_data,
1207 			 uint64_t *priv_data_offset);
1208 
1209 int kfd_criu_restore_queue(struct kfd_process *p,
1210 			   uint8_t __user *user_priv_data,
1211 			   uint64_t *priv_data_offset,
1212 			   uint64_t max_priv_data_size);
1213 
1214 int kfd_criu_checkpoint_events(struct kfd_process *p,
1215 			 uint8_t __user *user_priv_data,
1216 			 uint64_t *priv_data_offset);
1217 
1218 int kfd_criu_restore_event(struct file *devkfd,
1219 			   struct kfd_process *p,
1220 			   uint8_t __user *user_priv_data,
1221 			   uint64_t *priv_data_offset,
1222 			   uint64_t max_priv_data_size);
1223 /* CRIU - End */
1224 
1225 /* Queue Context Management */
1226 int init_queue(struct queue **q, const struct queue_properties *properties);
1227 void uninit_queue(struct queue *q);
1228 void print_queue_properties(struct queue_properties *q);
1229 void print_queue(struct queue *q);
1230 
1231 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1232 		struct kfd_node *dev);
1233 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
1234 		struct kfd_node *dev);
1235 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1236 		struct kfd_node *dev);
1237 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1238 		struct kfd_node *dev);
1239 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1240 		struct kfd_node *dev);
1241 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1242 		struct kfd_node *dev);
1243 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type,
1244 		struct kfd_node *dev);
1245 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev);
1246 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1247 struct kernel_queue *kernel_queue_init(struct kfd_node *dev,
1248 					enum kfd_queue_type type);
1249 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1250 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid);
1251 
1252 /* Process Queue Manager */
1253 struct process_queue_node {
1254 	struct queue *q;
1255 	struct kernel_queue *kq;
1256 	struct list_head process_queue_list;
1257 };
1258 
1259 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1260 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1261 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1262 void pqm_uninit(struct process_queue_manager *pqm);
1263 int pqm_create_queue(struct process_queue_manager *pqm,
1264 			    struct kfd_node *dev,
1265 			    struct file *f,
1266 			    struct queue_properties *properties,
1267 			    unsigned int *qid,
1268 			    struct amdgpu_bo *wptr_bo,
1269 			    const struct kfd_criu_queue_priv_data *q_data,
1270 			    const void *restore_mqd,
1271 			    const void *restore_ctl_stack,
1272 			    uint32_t *p_doorbell_offset_in_process);
1273 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1274 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1275 			struct queue_properties *p);
1276 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1277 			struct mqd_update_info *minfo);
1278 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1279 			void *gws);
1280 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1281 						unsigned int qid);
1282 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1283 						unsigned int qid);
1284 int pqm_get_wave_state(struct process_queue_manager *pqm,
1285 		       unsigned int qid,
1286 		       void __user *ctl_stack,
1287 		       u32 *ctl_stack_used_size,
1288 		       u32 *save_area_used_size);
1289 
1290 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1291 			      uint64_t fence_value,
1292 			      unsigned int timeout_ms);
1293 
1294 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1295 				  unsigned int qid,
1296 				  u32 *mqd_size,
1297 				  u32 *ctl_stack_size);
1298 /* Packet Manager */
1299 
1300 #define KFD_FENCE_COMPLETED (100)
1301 #define KFD_FENCE_INIT   (10)
1302 
1303 struct packet_manager {
1304 	struct device_queue_manager *dqm;
1305 	struct kernel_queue *priv_queue;
1306 	struct mutex lock;
1307 	bool allocated;
1308 	struct kfd_mem_obj *ib_buffer_obj;
1309 	unsigned int ib_size_bytes;
1310 	bool is_over_subscription;
1311 
1312 	const struct packet_manager_funcs *pmf;
1313 };
1314 
1315 struct packet_manager_funcs {
1316 	/* Support ASIC-specific packet formats for PM4 packets */
1317 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1318 			struct qcm_process_device *qpd);
1319 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1320 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1321 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1322 			struct scheduling_resources *res);
1323 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1324 			struct queue *q, bool is_static);
1325 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1326 			enum kfd_unmap_queues_filter mode,
1327 			uint32_t filter_param, bool reset);
1328 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1329 			uint64_t fence_address,	uint64_t fence_value);
1330 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1331 
1332 	/* Packet sizes */
1333 	int map_process_size;
1334 	int runlist_size;
1335 	int set_resources_size;
1336 	int map_queues_size;
1337 	int unmap_queues_size;
1338 	int query_status_size;
1339 	int release_mem_size;
1340 };
1341 
1342 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1343 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1344 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1345 
1346 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1347 void pm_uninit(struct packet_manager *pm, bool hanging);
1348 int pm_send_set_resources(struct packet_manager *pm,
1349 				struct scheduling_resources *res);
1350 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1351 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1352 				uint64_t fence_value);
1353 
1354 int pm_send_unmap_queue(struct packet_manager *pm,
1355 			enum kfd_unmap_queues_filter mode,
1356 			uint32_t filter_param, bool reset);
1357 
1358 void pm_release_ib(struct packet_manager *pm);
1359 
1360 /* Following PM funcs can be shared among VI and AI */
1361 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1362 
1363 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1364 
1365 /* Events */
1366 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1367 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1368 extern const struct kfd_event_interrupt_class event_interrupt_class_v11;
1369 
1370 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1371 
1372 int kfd_event_init_process(struct kfd_process *p);
1373 void kfd_event_free_process(struct kfd_process *p);
1374 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1375 int kfd_wait_on_events(struct kfd_process *p,
1376 		       uint32_t num_events, void __user *data,
1377 		       bool all, uint32_t *user_timeout_ms,
1378 		       uint32_t *wait_result);
1379 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1380 				uint32_t valid_id_bits);
1381 void kfd_signal_iommu_event(struct kfd_node *dev,
1382 			    u32 pasid, unsigned long address,
1383 			    bool is_write_requested, bool is_execute_requested);
1384 void kfd_signal_hw_exception_event(u32 pasid);
1385 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1386 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1387 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1388 
1389 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1390 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1391 		     uint32_t *event_id, uint32_t *event_trigger_data,
1392 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1393 
1394 int kfd_get_num_events(struct kfd_process *p);
1395 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1396 
1397 void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid,
1398 				struct kfd_vm_fault_info *info);
1399 
1400 void kfd_signal_reset_event(struct kfd_node *dev);
1401 
1402 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid);
1403 
1404 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1405 
1406 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev)
1407 {
1408 	return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) ||
1409 	       (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) &&
1410 	       dev->adev->sdma.instance[0].fw_version >= 18) ||
1411 	       KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0);
1412 }
1413 
1414 bool kfd_is_locked(void);
1415 
1416 /* Compute profile */
1417 void kfd_inc_compute_active(struct kfd_node *dev);
1418 void kfd_dec_compute_active(struct kfd_node *dev);
1419 
1420 /* Cgroup Support */
1421 /* Check with device cgroup if @kfd device is accessible */
1422 static inline int kfd_devcgroup_check_permission(struct kfd_node *kfd)
1423 {
1424 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1425 	struct drm_device *ddev = adev_to_drm(kfd->adev);
1426 
1427 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1428 					  ddev->render->index,
1429 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1430 #else
1431 	return 0;
1432 #endif
1433 }
1434 
1435 static inline bool kfd_is_first_node(struct kfd_node *node)
1436 {
1437 	return (node == node->kfd->nodes[0]);
1438 }
1439 
1440 /* Debugfs */
1441 #if defined(CONFIG_DEBUG_FS)
1442 
1443 void kfd_debugfs_init(void);
1444 void kfd_debugfs_fini(void);
1445 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1446 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1447 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1448 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1449 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1450 int pm_debugfs_runlist(struct seq_file *m, void *data);
1451 
1452 int kfd_debugfs_hang_hws(struct kfd_node *dev);
1453 int pm_debugfs_hang_hws(struct packet_manager *pm);
1454 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1455 
1456 #else
1457 
1458 static inline void kfd_debugfs_init(void) {}
1459 static inline void kfd_debugfs_fini(void) {}
1460 
1461 #endif
1462 
1463 #endif
1464