1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef KFD_PRIV_H_INCLUDED 25 #define KFD_PRIV_H_INCLUDED 26 27 #include <linux/hashtable.h> 28 #include <linux/mmu_notifier.h> 29 #include <linux/memremap.h> 30 #include <linux/mutex.h> 31 #include <linux/types.h> 32 #include <linux/atomic.h> 33 #include <linux/workqueue.h> 34 #include <linux/spinlock.h> 35 #include <linux/kfd_ioctl.h> 36 #include <linux/idr.h> 37 #include <linux/kfifo.h> 38 #include <linux/seq_file.h> 39 #include <linux/kref.h> 40 #include <linux/sysfs.h> 41 #include <linux/device_cgroup.h> 42 #include <drm/drm_file.h> 43 #include <drm/drm_drv.h> 44 #include <drm/drm_device.h> 45 #include <drm/drm_ioctl.h> 46 #include <kgd_kfd_interface.h> 47 #include <linux/swap.h> 48 49 #include "amd_shared.h" 50 #include "amdgpu.h" 51 52 #define KFD_MAX_RING_ENTRY_SIZE 8 53 54 #define KFD_SYSFS_FILE_MODE 0444 55 56 /* GPU ID hash width in bits */ 57 #define KFD_GPU_ID_HASH_WIDTH 16 58 59 /* Use upper bits of mmap offset to store KFD driver specific information. 60 * BITS[63:62] - Encode MMAP type 61 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 62 * BITS[45:0] - MMAP offset value 63 * 64 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 65 * defines are w.r.t to PAGE_SIZE 66 */ 67 #define KFD_MMAP_TYPE_SHIFT 62 68 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 69 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 70 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 71 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 72 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 73 74 #define KFD_MMAP_GPU_ID_SHIFT 46 75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 76 << KFD_MMAP_GPU_ID_SHIFT) 77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 78 & KFD_MMAP_GPU_ID_MASK) 79 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 80 >> KFD_MMAP_GPU_ID_SHIFT) 81 82 /* 83 * When working with cp scheduler we should assign the HIQ manually or via 84 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 85 * definitions for Kaveri. In Kaveri only the first ME queues participates 86 * in the cp scheduling taking that in mind we set the HIQ slot in the 87 * second ME. 88 */ 89 #define KFD_CIK_HIQ_PIPE 4 90 #define KFD_CIK_HIQ_QUEUE 0 91 92 /* Macro for allocating structures */ 93 #define kfd_alloc_struct(ptr_to_struct) \ 94 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 95 96 #define KFD_MAX_NUM_OF_PROCESSES 512 97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 98 99 /* 100 * Size of the per-process TBA+TMA buffer: 2 pages 101 * 102 * The first page is the TBA used for the CWSR ISA code. The second 103 * page is used as TMA for user-mode trap handler setup in daisy-chain mode. 104 */ 105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 106 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 107 108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 109 (KFD_MAX_NUM_OF_PROCESSES * \ 110 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 111 112 #define KFD_KERNEL_QUEUE_SIZE 2048 113 114 #define KFD_UNMAP_LATENCY_MS (4000) 115 116 #define KFD_MAX_SDMA_QUEUES 128 117 118 /* 119 * 512 = 0x200 120 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 121 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 122 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 123 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 124 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 125 */ 126 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 127 128 /** 129 * enum kfd_ioctl_flags - KFD ioctl flags 130 * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how 131 * userspace can use a given ioctl. 132 */ 133 enum kfd_ioctl_flags { 134 /* 135 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE: 136 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially 137 * perform privileged operations and load arbitrary data into MQDs and 138 * eventually HQD registers when the queue is mapped by HWS. In order to 139 * prevent this we should perform additional security checks. 140 * 141 * This is equivalent to callers with the CHECKPOINT_RESTORE capability. 142 * 143 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE, 144 * we also allow ioctls with SYS_ADMIN capability. 145 */ 146 KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0), 147 }; 148 /* 149 * Kernel module parameter to specify maximum number of supported queues per 150 * device 151 */ 152 extern int max_num_of_queues_per_device; 153 154 155 /* Kernel module parameter to specify the scheduling policy */ 156 extern int sched_policy; 157 158 /* 159 * Kernel module parameter to specify the maximum process 160 * number per HW scheduler 161 */ 162 extern int hws_max_conc_proc; 163 164 extern int cwsr_enable; 165 166 /* 167 * Kernel module parameter to specify whether to send sigterm to HSA process on 168 * unhandled exception 169 */ 170 extern int send_sigterm; 171 172 /* 173 * This kernel module is used to simulate large bar machine on non-large bar 174 * enabled machines. 175 */ 176 extern int debug_largebar; 177 178 /* 179 * Ignore CRAT table during KFD initialization, can be used to work around 180 * broken CRAT tables on some AMD systems 181 */ 182 extern int ignore_crat; 183 184 /* Set sh_mem_config.retry_disable on GFX v9 */ 185 extern int amdgpu_noretry; 186 187 /* Halt if HWS hang is detected */ 188 extern int halt_if_hws_hang; 189 190 /* Whether MEC FW support GWS barriers */ 191 extern bool hws_gws_support; 192 193 /* Queue preemption timeout in ms */ 194 extern int queue_preemption_timeout_ms; 195 196 /* 197 * Don't evict process queues on vm fault 198 */ 199 extern int amdgpu_no_queue_eviction_on_vm_fault; 200 201 /* Enable eviction debug messages */ 202 extern bool debug_evictions; 203 204 extern struct mutex kfd_processes_mutex; 205 206 enum cache_policy { 207 cache_policy_coherent, 208 cache_policy_noncoherent 209 }; 210 211 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0]) 212 #define KFD_IS_SOC15(dev) ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1))) 213 #define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\ 214 ((KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) || \ 215 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3))) 216 217 struct kfd_node; 218 219 struct kfd_event_interrupt_class { 220 bool (*interrupt_isr)(struct kfd_node *dev, 221 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 222 bool *patched_flag); 223 void (*interrupt_wq)(struct kfd_node *dev, 224 const uint32_t *ih_ring_entry); 225 }; 226 227 struct kfd_device_info { 228 uint32_t gfx_target_version; 229 const struct kfd_event_interrupt_class *event_interrupt_class; 230 unsigned int max_pasid_bits; 231 unsigned int max_no_of_hqd; 232 unsigned int doorbell_size; 233 size_t ih_ring_entry_size; 234 uint8_t num_of_watch_points; 235 uint16_t mqd_size_aligned; 236 bool supports_cwsr; 237 bool needs_iommu_device; 238 bool needs_pci_atomics; 239 uint32_t no_atomic_fw_version; 240 unsigned int num_sdma_queues_per_engine; 241 unsigned int num_reserved_sdma_queues_per_engine; 242 uint64_t reserved_sdma_queues_bitmap; 243 }; 244 245 unsigned int kfd_get_num_sdma_engines(struct kfd_node *kdev); 246 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *kdev); 247 248 struct kfd_mem_obj { 249 uint32_t range_start; 250 uint32_t range_end; 251 uint64_t gpu_addr; 252 uint32_t *cpu_ptr; 253 void *gtt_mem; 254 }; 255 256 struct kfd_vmid_info { 257 uint32_t first_vmid_kfd; 258 uint32_t last_vmid_kfd; 259 uint32_t vmid_num_kfd; 260 }; 261 262 #define MAX_KFD_NODES 8 263 264 struct kfd_dev; 265 266 struct kfd_node { 267 unsigned int node_id; 268 struct amdgpu_device *adev; /* Duplicated here along with keeping 269 * a copy in kfd_dev to save a hop 270 */ 271 const struct kfd2kgd_calls *kfd2kgd; /* Duplicated here along with 272 * keeping a copy in kfd_dev to 273 * save a hop 274 */ 275 struct kfd_vmid_info vm_info; 276 unsigned int id; /* topology stub index */ 277 unsigned int num_xcc_per_node; 278 unsigned int start_xcc_id; /* Starting XCC instance 279 * number for the node 280 */ 281 /* Interrupts */ 282 struct kfifo ih_fifo; 283 struct workqueue_struct *ih_wq; 284 struct work_struct interrupt_work; 285 spinlock_t interrupt_lock; 286 287 /* 288 * Interrupts of interest to KFD are copied 289 * from the HW ring into a SW ring. 290 */ 291 bool interrupts_active; 292 uint32_t interrupt_bitmap; /* Only used for GFX 9.4.3 */ 293 294 /* QCM Device instance */ 295 struct device_queue_manager *dqm; 296 297 /* Global GWS resource shared between processes */ 298 void *gws; 299 bool gws_debug_workaround; 300 301 /* Clients watching SMI events */ 302 struct list_head smi_clients; 303 spinlock_t smi_lock; 304 uint32_t reset_seq_num; 305 306 /* SRAM ECC flag */ 307 atomic_t sram_ecc_flag; 308 309 /*spm process id */ 310 unsigned int spm_pasid; 311 312 /* Maximum process number mapped to HW scheduler */ 313 unsigned int max_proc_per_quantum; 314 315 unsigned int compute_vmid_bitmap; 316 317 struct kfd_dev *kfd; 318 }; 319 320 struct kfd_dev { 321 struct amdgpu_device *adev; 322 323 struct kfd_device_info device_info; 324 325 phys_addr_t doorbell_base; /* Start of actual doorbells used by 326 * KFD. It is aligned for mapping 327 * into user mode 328 */ 329 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI 330 * doorbell BAR to the first KFD 331 * doorbell in dwords. GFX reserves 332 * the segment before this offset. 333 */ 334 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 335 * page used by kernel queue 336 */ 337 338 struct kgd2kfd_shared_resources shared_resources; 339 struct kfd_local_mem_info local_mem_info; 340 341 const struct kfd2kgd_calls *kfd2kgd; 342 struct mutex doorbell_mutex; 343 DECLARE_BITMAP(doorbell_available_index, 344 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 345 346 void *gtt_mem; 347 uint64_t gtt_start_gpu_addr; 348 void *gtt_start_cpu_ptr; 349 void *gtt_sa_bitmap; 350 struct mutex gtt_sa_lock; 351 unsigned int gtt_sa_chunk_size; 352 unsigned int gtt_sa_num_of_chunks; 353 354 bool init_complete; 355 356 /* Firmware versions */ 357 uint16_t mec_fw_version; 358 uint16_t mec2_fw_version; 359 uint16_t sdma_fw_version; 360 361 /* CWSR */ 362 bool cwsr_enabled; 363 const void *cwsr_isa; 364 unsigned int cwsr_isa_size; 365 366 /* xGMI */ 367 uint64_t hive_id; 368 369 bool pci_atomic_requested; 370 371 /* Use IOMMU v2 flag */ 372 bool use_iommu_v2; 373 374 /* Compute Profile ref. count */ 375 atomic_t compute_profile; 376 377 struct ida doorbell_ida; 378 unsigned int max_doorbell_slices; 379 380 int noretry; 381 382 /* HMM page migration MEMORY_DEVICE_PRIVATE mapping */ 383 struct dev_pagemap pgmap; 384 385 struct kfd_node *nodes[MAX_KFD_NODES]; 386 unsigned int num_nodes; 387 }; 388 389 enum kfd_mempool { 390 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 391 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 392 KFD_MEMPOOL_FRAMEBUFFER = 3, 393 }; 394 395 /* Character device interface */ 396 int kfd_chardev_init(void); 397 void kfd_chardev_exit(void); 398 399 /** 400 * enum kfd_unmap_queues_filter - Enum for queue filters. 401 * 402 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 403 * running queues list. 404 * 405 * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues 406 * in the run list. 407 * 408 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 409 * specific process. 410 * 411 */ 412 enum kfd_unmap_queues_filter { 413 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1, 414 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2, 415 KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3 416 }; 417 418 /** 419 * enum kfd_queue_type - Enum for various queue types. 420 * 421 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 422 * 423 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type. 424 * 425 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 426 * 427 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 428 * 429 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface. 430 */ 431 enum kfd_queue_type { 432 KFD_QUEUE_TYPE_COMPUTE, 433 KFD_QUEUE_TYPE_SDMA, 434 KFD_QUEUE_TYPE_HIQ, 435 KFD_QUEUE_TYPE_DIQ, 436 KFD_QUEUE_TYPE_SDMA_XGMI 437 }; 438 439 enum kfd_queue_format { 440 KFD_QUEUE_FORMAT_PM4, 441 KFD_QUEUE_FORMAT_AQL 442 }; 443 444 enum KFD_QUEUE_PRIORITY { 445 KFD_QUEUE_PRIORITY_MINIMUM = 0, 446 KFD_QUEUE_PRIORITY_MAXIMUM = 15 447 }; 448 449 /** 450 * struct queue_properties 451 * 452 * @type: The queue type. 453 * 454 * @queue_id: Queue identifier. 455 * 456 * @queue_address: Queue ring buffer address. 457 * 458 * @queue_size: Queue ring buffer size. 459 * 460 * @priority: Defines the queue priority relative to other queues in the 461 * process. 462 * This is just an indication and HW scheduling may override the priority as 463 * necessary while keeping the relative prioritization. 464 * the priority granularity is from 0 to f which f is the highest priority. 465 * currently all queues are initialized with the highest priority. 466 * 467 * @queue_percent: This field is partially implemented and currently a zero in 468 * this field defines that the queue is non active. 469 * 470 * @read_ptr: User space address which points to the number of dwords the 471 * cp read from the ring buffer. This field updates automatically by the H/W. 472 * 473 * @write_ptr: Defines the number of dwords written to the ring buffer. 474 * 475 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring 476 * buffer. This field should be similar to write_ptr and the user should 477 * update this field after updating the write_ptr. 478 * 479 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 480 * 481 * @is_interop: Defines if this is a interop queue. Interop queue means that 482 * the queue can access both graphics and compute resources. 483 * 484 * @is_evicted: Defines if the queue is evicted. Only active queues 485 * are evicted, rendering them inactive. 486 * 487 * @is_active: Defines if the queue is active or not. @is_active and 488 * @is_evicted are protected by the DQM lock. 489 * 490 * @is_gws: Defines if the queue has been updated to be GWS-capable or not. 491 * @is_gws should be protected by the DQM lock, since changing it can yield the 492 * possibility of updating DQM state on number of GWS queues. 493 * 494 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 495 * of the queue. 496 * 497 * This structure represents the queue properties for each queue no matter if 498 * it's user mode or kernel mode queue. 499 * 500 */ 501 502 struct queue_properties { 503 enum kfd_queue_type type; 504 enum kfd_queue_format format; 505 unsigned int queue_id; 506 uint64_t queue_address; 507 uint64_t queue_size; 508 uint32_t priority; 509 uint32_t queue_percent; 510 uint32_t *read_ptr; 511 uint32_t *write_ptr; 512 void __iomem *doorbell_ptr; 513 uint32_t doorbell_off; 514 bool is_interop; 515 bool is_evicted; 516 bool is_active; 517 bool is_gws; 518 uint32_t pm4_target_xcc; 519 /* Not relevant for user mode queues in cp scheduling */ 520 unsigned int vmid; 521 /* Relevant only for sdma queues*/ 522 uint32_t sdma_engine_id; 523 uint32_t sdma_queue_id; 524 uint32_t sdma_vm_addr; 525 /* Relevant only for VI */ 526 uint64_t eop_ring_buffer_address; 527 uint32_t eop_ring_buffer_size; 528 uint64_t ctx_save_restore_area_address; 529 uint32_t ctx_save_restore_area_size; 530 uint32_t ctl_stack_size; 531 uint64_t tba_addr; 532 uint64_t tma_addr; 533 }; 534 535 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 536 (q).queue_address != 0 && \ 537 (q).queue_percent > 0 && \ 538 !(q).is_evicted) 539 540 enum mqd_update_flag { 541 UPDATE_FLAG_CU_MASK = 0, 542 }; 543 544 struct mqd_update_info { 545 union { 546 struct { 547 uint32_t count; /* Must be a multiple of 32 */ 548 uint32_t *ptr; 549 } cu_mask; 550 }; 551 enum mqd_update_flag update_flag; 552 }; 553 554 /** 555 * struct queue 556 * 557 * @list: Queue linked list. 558 * 559 * @mqd: The queue MQD (memory queue descriptor). 560 * 561 * @mqd_mem_obj: The MQD local gpu memory object. 562 * 563 * @gart_mqd_addr: The MQD gart mc address. 564 * 565 * @properties: The queue properties. 566 * 567 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 568 * that the queue should be executed on. 569 * 570 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 571 * id. 572 * 573 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 574 * 575 * @process: The kfd process that created this queue. 576 * 577 * @device: The kfd device that created this queue. 578 * 579 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 580 * otherwise. 581 * 582 * This structure represents user mode compute queues. 583 * It contains all the necessary data to handle such queues. 584 * 585 */ 586 587 struct queue { 588 struct list_head list; 589 void *mqd; 590 struct kfd_mem_obj *mqd_mem_obj; 591 uint64_t gart_mqd_addr; 592 struct queue_properties properties; 593 594 uint32_t mec; 595 uint32_t pipe; 596 uint32_t queue; 597 598 unsigned int sdma_id; 599 unsigned int doorbell_id; 600 601 struct kfd_process *process; 602 struct kfd_node *device; 603 void *gws; 604 605 /* procfs */ 606 struct kobject kobj; 607 608 void *gang_ctx_bo; 609 uint64_t gang_ctx_gpu_addr; 610 void *gang_ctx_cpu_ptr; 611 612 struct amdgpu_bo *wptr_bo; 613 }; 614 615 enum KFD_MQD_TYPE { 616 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 617 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 618 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 619 KFD_MQD_TYPE_DIQ, /* for diq */ 620 KFD_MQD_TYPE_MAX 621 }; 622 623 enum KFD_PIPE_PRIORITY { 624 KFD_PIPE_PRIORITY_CS_LOW = 0, 625 KFD_PIPE_PRIORITY_CS_MEDIUM, 626 KFD_PIPE_PRIORITY_CS_HIGH 627 }; 628 629 struct scheduling_resources { 630 unsigned int vmid_mask; 631 enum kfd_queue_type type; 632 uint64_t queue_mask; 633 uint64_t gws_mask; 634 uint32_t oac_mask; 635 uint32_t gds_heap_base; 636 uint32_t gds_heap_size; 637 }; 638 639 struct process_queue_manager { 640 /* data */ 641 struct kfd_process *process; 642 struct list_head queues; 643 unsigned long *queue_slot_bitmap; 644 }; 645 646 struct qcm_process_device { 647 /* The Device Queue Manager that owns this data */ 648 struct device_queue_manager *dqm; 649 struct process_queue_manager *pqm; 650 /* Queues list */ 651 struct list_head queues_list; 652 struct list_head priv_queue_list; 653 654 unsigned int queue_count; 655 unsigned int vmid; 656 bool is_debug; 657 unsigned int evicted; /* eviction counter, 0=active */ 658 659 /* This flag tells if we should reset all wavefronts on 660 * process termination 661 */ 662 bool reset_wavefronts; 663 664 /* This flag tells us if this process has a GWS-capable 665 * queue that will be mapped into the runlist. It's 666 * possible to request a GWS BO, but not have the queue 667 * currently mapped, and this changes how the MAP_PROCESS 668 * PM4 packet is configured. 669 */ 670 bool mapped_gws_queue; 671 672 /* All the memory management data should be here too */ 673 uint64_t gds_context_area; 674 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 675 uint64_t page_table_base; 676 uint32_t sh_mem_config; 677 uint32_t sh_mem_bases; 678 uint32_t sh_mem_ape1_base; 679 uint32_t sh_mem_ape1_limit; 680 uint32_t gds_size; 681 uint32_t num_gws; 682 uint32_t num_oac; 683 uint32_t sh_hidden_private_base; 684 685 /* CWSR memory */ 686 struct kgd_mem *cwsr_mem; 687 void *cwsr_kaddr; 688 uint64_t cwsr_base; 689 uint64_t tba_addr; 690 uint64_t tma_addr; 691 692 /* IB memory */ 693 struct kgd_mem *ib_mem; 694 uint64_t ib_base; 695 void *ib_kaddr; 696 697 /* doorbell resources per process per device */ 698 unsigned long *doorbell_bitmap; 699 }; 700 701 /* KFD Memory Eviction */ 702 703 /* Approx. wait time before attempting to restore evicted BOs */ 704 #define PROCESS_RESTORE_TIME_MS 100 705 /* Approx. back off time if restore fails due to lack of memory */ 706 #define PROCESS_BACK_OFF_TIME_MS 100 707 /* Approx. time before evicting the process again */ 708 #define PROCESS_ACTIVE_TIME_MS 10 709 710 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 711 * idr_handle in the least significant 4 bytes 712 */ 713 #define MAKE_HANDLE(gpu_id, idr_handle) \ 714 (((uint64_t)(gpu_id) << 32) + idr_handle) 715 #define GET_GPU_ID(handle) (handle >> 32) 716 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 717 718 enum kfd_pdd_bound { 719 PDD_UNBOUND = 0, 720 PDD_BOUND, 721 PDD_BOUND_SUSPENDED, 722 }; 723 724 #define MAX_SYSFS_FILENAME_LEN 15 725 726 /* 727 * SDMA counter runs at 100MHz frequency. 728 * We display SDMA activity in microsecond granularity in sysfs. 729 * As a result, the divisor is 100. 730 */ 731 #define SDMA_ACTIVITY_DIVISOR 100 732 733 /* Data that is per-process-per device. */ 734 struct kfd_process_device { 735 /* The device that owns this data. */ 736 struct kfd_node *dev; 737 738 /* The process that owns this kfd_process_device. */ 739 struct kfd_process *process; 740 741 /* per-process-per device QCM data structure */ 742 struct qcm_process_device qpd; 743 744 /*Apertures*/ 745 uint64_t lds_base; 746 uint64_t lds_limit; 747 uint64_t gpuvm_base; 748 uint64_t gpuvm_limit; 749 uint64_t scratch_base; 750 uint64_t scratch_limit; 751 752 /* VM context for GPUVM allocations */ 753 struct file *drm_file; 754 void *drm_priv; 755 atomic64_t tlb_seq; 756 757 /* GPUVM allocations storage */ 758 struct idr alloc_idr; 759 760 /* Flag used to tell the pdd has dequeued from the dqm. 761 * This is used to prevent dev->dqm->ops.process_termination() from 762 * being called twice when it is already called in IOMMU callback 763 * function. 764 */ 765 bool already_dequeued; 766 bool runtime_inuse; 767 768 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 769 enum kfd_pdd_bound bound; 770 771 /* VRAM usage */ 772 uint64_t vram_usage; 773 struct attribute attr_vram; 774 char vram_filename[MAX_SYSFS_FILENAME_LEN]; 775 776 /* SDMA activity tracking */ 777 uint64_t sdma_past_activity_counter; 778 struct attribute attr_sdma; 779 char sdma_filename[MAX_SYSFS_FILENAME_LEN]; 780 781 /* Eviction activity tracking */ 782 uint64_t last_evict_timestamp; 783 atomic64_t evict_duration_counter; 784 struct attribute attr_evict; 785 786 struct kobject *kobj_stats; 787 unsigned int doorbell_index; 788 789 /* 790 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process 791 * that is associated with device encoded by "this" struct instance. The 792 * value reflects CU usage by all of the waves launched by this process 793 * on this device. A very important property of occupancy parameter is 794 * that its value is a snapshot of current use. 795 * 796 * Following is to be noted regarding how this parameter is reported: 797 * 798 * The number of waves that a CU can launch is limited by couple of 799 * parameters. These are encoded by struct amdgpu_cu_info instance 800 * that is part of every device definition. For GFX9 devices this 801 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves 802 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu) 803 * when they do use scratch memory. This could change for future 804 * devices and therefore this example should be considered as a guide. 805 * 806 * All CU's of a device are available for the process. This may not be true 807 * under certain conditions - e.g. CU masking. 808 * 809 * Finally number of CU's that are occupied by a process is affected by both 810 * number of CU's a device has along with number of other competing processes 811 */ 812 struct attribute attr_cu_occupancy; 813 814 /* sysfs counters for GPU retry fault and page migration tracking */ 815 struct kobject *kobj_counters; 816 struct attribute attr_faults; 817 struct attribute attr_page_in; 818 struct attribute attr_page_out; 819 uint64_t faults; 820 uint64_t page_in; 821 uint64_t page_out; 822 /* 823 * If this process has been checkpointed before, then the user 824 * application will use the original gpu_id on the 825 * checkpointed node to refer to this device. 826 */ 827 uint32_t user_gpu_id; 828 829 void *proc_ctx_bo; 830 uint64_t proc_ctx_gpu_addr; 831 void *proc_ctx_cpu_ptr; 832 }; 833 834 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 835 836 struct svm_range_list { 837 struct mutex lock; 838 struct rb_root_cached objects; 839 struct list_head list; 840 struct work_struct deferred_list_work; 841 struct list_head deferred_range_list; 842 struct list_head criu_svm_metadata_list; 843 spinlock_t deferred_list_lock; 844 atomic_t evicted_ranges; 845 atomic_t drain_pagefaults; 846 struct delayed_work restore_work; 847 DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE); 848 struct task_struct *faulting_task; 849 }; 850 851 /* Process data */ 852 struct kfd_process { 853 /* 854 * kfd_process are stored in an mm_struct*->kfd_process* 855 * hash table (kfd_processes in kfd_process.c) 856 */ 857 struct hlist_node kfd_processes; 858 859 /* 860 * Opaque pointer to mm_struct. We don't hold a reference to 861 * it so it should never be dereferenced from here. This is 862 * only used for looking up processes by their mm. 863 */ 864 void *mm; 865 866 struct kref ref; 867 struct work_struct release_work; 868 869 struct mutex mutex; 870 871 /* 872 * In any process, the thread that started main() is the lead 873 * thread and outlives the rest. 874 * It is here because amd_iommu_bind_pasid wants a task_struct. 875 * It can also be used for safely getting a reference to the 876 * mm_struct of the process. 877 */ 878 struct task_struct *lead_thread; 879 880 /* We want to receive a notification when the mm_struct is destroyed */ 881 struct mmu_notifier mmu_notifier; 882 883 u32 pasid; 884 885 /* 886 * Array of kfd_process_device pointers, 887 * one for each device the process is using. 888 */ 889 struct kfd_process_device *pdds[MAX_GPU_INSTANCE]; 890 uint32_t n_pdds; 891 892 struct process_queue_manager pqm; 893 894 /*Is the user space process 32 bit?*/ 895 bool is_32bit_user_mode; 896 897 /* Event-related data */ 898 struct mutex event_mutex; 899 /* Event ID allocator and lookup */ 900 struct idr event_idr; 901 /* Event page */ 902 u64 signal_handle; 903 struct kfd_signal_page *signal_page; 904 size_t signal_mapped_size; 905 size_t signal_event_count; 906 bool signal_event_limit_reached; 907 908 /* Information used for memory eviction */ 909 void *kgd_process_info; 910 /* Eviction fence that is attached to all the BOs of this process. The 911 * fence will be triggered during eviction and new one will be created 912 * during restore 913 */ 914 struct dma_fence *ef; 915 916 /* Work items for evicting and restoring BOs */ 917 struct delayed_work eviction_work; 918 struct delayed_work restore_work; 919 /* seqno of the last scheduled eviction */ 920 unsigned int last_eviction_seqno; 921 /* Approx. the last timestamp (in jiffies) when the process was 922 * restored after an eviction 923 */ 924 unsigned long last_restore_timestamp; 925 926 /* Kobj for our procfs */ 927 struct kobject *kobj; 928 struct kobject *kobj_queues; 929 struct attribute attr_pasid; 930 931 /* shared virtual memory registered by this process */ 932 struct svm_range_list svms; 933 934 bool xnack_enabled; 935 936 atomic_t poison; 937 /* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */ 938 bool queues_paused; 939 }; 940 941 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 942 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 943 extern struct srcu_struct kfd_processes_srcu; 944 945 /** 946 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer. 947 * 948 * @filep: pointer to file structure. 949 * @p: amdkfd process pointer. 950 * @data: pointer to arg that was copied from user. 951 * 952 * Return: returns ioctl completion code. 953 */ 954 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 955 void *data); 956 957 struct amdkfd_ioctl_desc { 958 unsigned int cmd; 959 int flags; 960 amdkfd_ioctl_t *func; 961 unsigned int cmd_drv; 962 const char *name; 963 }; 964 bool kfd_dev_is_large_bar(struct kfd_node *dev); 965 966 int kfd_process_create_wq(void); 967 void kfd_process_destroy_wq(void); 968 void kfd_cleanup_processes(void); 969 struct kfd_process *kfd_create_process(struct file *filep); 970 struct kfd_process *kfd_get_process(const struct task_struct *task); 971 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid); 972 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 973 974 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id); 975 int kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, 976 uint32_t *gpuid, uint32_t *gpuidx); 977 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p, 978 uint32_t gpuidx, uint32_t *gpuid) { 979 return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL; 980 } 981 static inline struct kfd_process_device *kfd_process_device_from_gpuidx( 982 struct kfd_process *p, uint32_t gpuidx) { 983 return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL; 984 } 985 986 void kfd_unref_process(struct kfd_process *p); 987 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger); 988 int kfd_process_restore_queues(struct kfd_process *p); 989 void kfd_suspend_all_processes(void); 990 int kfd_resume_all_processes(void); 991 992 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process, 993 uint32_t gpu_id); 994 995 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id); 996 997 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 998 struct file *drm_file); 999 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, 1000 struct kfd_process *p); 1001 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, 1002 struct kfd_process *p); 1003 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, 1004 struct kfd_process *p); 1005 1006 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported); 1007 1008 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, 1009 struct vm_area_struct *vma); 1010 1011 /* KFD process API for creating and translating handles */ 1012 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1013 void *mem); 1014 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 1015 int handle); 1016 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1017 int handle); 1018 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid); 1019 1020 /* PASIDs */ 1021 int kfd_pasid_init(void); 1022 void kfd_pasid_exit(void); 1023 bool kfd_set_pasid_limit(unsigned int new_limit); 1024 unsigned int kfd_get_pasid_limit(void); 1025 u32 kfd_pasid_alloc(void); 1026 void kfd_pasid_free(u32 pasid); 1027 1028 /* Doorbells */ 1029 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 1030 int kfd_doorbell_init(struct kfd_dev *kfd); 1031 void kfd_doorbell_fini(struct kfd_dev *kfd); 1032 int kfd_doorbell_mmap(struct kfd_node *dev, struct kfd_process *process, 1033 struct vm_area_struct *vma); 1034 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 1035 unsigned int *doorbell_off); 1036 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 1037 u32 read_kernel_doorbell(u32 __iomem *db); 1038 void write_kernel_doorbell(void __iomem *db, u32 value); 1039 void write_kernel_doorbell64(void __iomem *db, u64 value); 1040 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 1041 struct kfd_process_device *pdd, 1042 unsigned int doorbell_id); 1043 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd); 1044 int kfd_alloc_process_doorbells(struct kfd_dev *kfd, 1045 unsigned int *doorbell_index); 1046 void kfd_free_process_doorbells(struct kfd_dev *kfd, 1047 unsigned int doorbell_index); 1048 /* GTT Sub-Allocator */ 1049 1050 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size, 1051 struct kfd_mem_obj **mem_obj); 1052 1053 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj); 1054 1055 extern struct device *kfd_device; 1056 1057 /* KFD's procfs */ 1058 void kfd_procfs_init(void); 1059 void kfd_procfs_shutdown(void); 1060 int kfd_procfs_add_queue(struct queue *q); 1061 void kfd_procfs_del_queue(struct queue *q); 1062 1063 /* Topology */ 1064 int kfd_topology_init(void); 1065 void kfd_topology_shutdown(void); 1066 int kfd_topology_add_device(struct kfd_node *gpu); 1067 int kfd_topology_remove_device(struct kfd_node *gpu); 1068 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 1069 uint32_t proximity_domain); 1070 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock( 1071 uint32_t proximity_domain); 1072 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 1073 struct kfd_node *kfd_device_by_id(uint32_t gpu_id); 1074 struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev); 1075 struct kfd_node *kfd_device_by_adev(const struct amdgpu_device *adev); 1076 static inline bool kfd_irq_is_from_node(struct kfd_node *node, uint32_t node_id, 1077 uint32_t vmid) 1078 { 1079 return (node->interrupt_bitmap & (1 << node_id)) != 0 && 1080 (node->compute_vmid_bitmap & (1 << vmid)) != 0; 1081 } 1082 static inline struct kfd_node *kfd_node_by_irq_ids(struct amdgpu_device *adev, 1083 uint32_t node_id, uint32_t vmid) { 1084 struct kfd_dev *dev = adev->kfd.dev; 1085 uint32_t i; 1086 1087 if (adev->ip_versions[GC_HWIP][0] != IP_VERSION(9, 4, 3)) 1088 return dev->nodes[0]; 1089 1090 for (i = 0; i < dev->num_nodes; i++) 1091 if (kfd_irq_is_from_node(dev->nodes[i], node_id, vmid)) 1092 return dev->nodes[i]; 1093 1094 return NULL; 1095 } 1096 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev); 1097 int kfd_numa_node_to_apic_id(int numa_node_id); 1098 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu); 1099 1100 /* Interrupts */ 1101 int kfd_interrupt_init(struct kfd_node *dev); 1102 void kfd_interrupt_exit(struct kfd_node *dev); 1103 bool enqueue_ih_ring_entry(struct kfd_node *kfd, const void *ih_ring_entry); 1104 bool interrupt_is_wanted(struct kfd_node *dev, 1105 const uint32_t *ih_ring_entry, 1106 uint32_t *patched_ihre, bool *flag); 1107 1108 /* amdkfd Apertures */ 1109 int kfd_init_apertures(struct kfd_process *process); 1110 1111 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1112 uint64_t tba_addr, 1113 uint64_t tma_addr); 1114 1115 /* CRIU */ 1116 /* 1117 * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private 1118 * structures: 1119 * kfd_criu_process_priv_data 1120 * kfd_criu_device_priv_data 1121 * kfd_criu_bo_priv_data 1122 * kfd_criu_queue_priv_data 1123 * kfd_criu_event_priv_data 1124 * kfd_criu_svm_range_priv_data 1125 */ 1126 1127 #define KFD_CRIU_PRIV_VERSION 1 1128 1129 struct kfd_criu_process_priv_data { 1130 uint32_t version; 1131 uint32_t xnack_mode; 1132 }; 1133 1134 struct kfd_criu_device_priv_data { 1135 /* For future use */ 1136 uint64_t reserved; 1137 }; 1138 1139 struct kfd_criu_bo_priv_data { 1140 uint64_t user_addr; 1141 uint32_t idr_handle; 1142 uint32_t mapped_gpuids[MAX_GPU_INSTANCE]; 1143 }; 1144 1145 /* 1146 * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data, 1147 * kfd_criu_svm_range_priv_data is the object type 1148 */ 1149 enum kfd_criu_object_type { 1150 KFD_CRIU_OBJECT_TYPE_QUEUE, 1151 KFD_CRIU_OBJECT_TYPE_EVENT, 1152 KFD_CRIU_OBJECT_TYPE_SVM_RANGE, 1153 }; 1154 1155 struct kfd_criu_svm_range_priv_data { 1156 uint32_t object_type; 1157 uint64_t start_addr; 1158 uint64_t size; 1159 /* Variable length array of attributes */ 1160 struct kfd_ioctl_svm_attribute attrs[]; 1161 }; 1162 1163 struct kfd_criu_queue_priv_data { 1164 uint32_t object_type; 1165 uint64_t q_address; 1166 uint64_t q_size; 1167 uint64_t read_ptr_addr; 1168 uint64_t write_ptr_addr; 1169 uint64_t doorbell_off; 1170 uint64_t eop_ring_buffer_address; 1171 uint64_t ctx_save_restore_area_address; 1172 uint32_t gpu_id; 1173 uint32_t type; 1174 uint32_t format; 1175 uint32_t q_id; 1176 uint32_t priority; 1177 uint32_t q_percent; 1178 uint32_t doorbell_id; 1179 uint32_t gws; 1180 uint32_t sdma_id; 1181 uint32_t eop_ring_buffer_size; 1182 uint32_t ctx_save_restore_area_size; 1183 uint32_t ctl_stack_size; 1184 uint32_t mqd_size; 1185 }; 1186 1187 struct kfd_criu_event_priv_data { 1188 uint32_t object_type; 1189 uint64_t user_handle; 1190 uint32_t event_id; 1191 uint32_t auto_reset; 1192 uint32_t type; 1193 uint32_t signaled; 1194 1195 union { 1196 struct kfd_hsa_memory_exception_data memory_exception_data; 1197 struct kfd_hsa_hw_exception_data hw_exception_data; 1198 }; 1199 }; 1200 1201 int kfd_process_get_queue_info(struct kfd_process *p, 1202 uint32_t *num_queues, 1203 uint64_t *priv_data_sizes); 1204 1205 int kfd_criu_checkpoint_queues(struct kfd_process *p, 1206 uint8_t __user *user_priv_data, 1207 uint64_t *priv_data_offset); 1208 1209 int kfd_criu_restore_queue(struct kfd_process *p, 1210 uint8_t __user *user_priv_data, 1211 uint64_t *priv_data_offset, 1212 uint64_t max_priv_data_size); 1213 1214 int kfd_criu_checkpoint_events(struct kfd_process *p, 1215 uint8_t __user *user_priv_data, 1216 uint64_t *priv_data_offset); 1217 1218 int kfd_criu_restore_event(struct file *devkfd, 1219 struct kfd_process *p, 1220 uint8_t __user *user_priv_data, 1221 uint64_t *priv_data_offset, 1222 uint64_t max_priv_data_size); 1223 /* CRIU - End */ 1224 1225 /* Queue Context Management */ 1226 int init_queue(struct queue **q, const struct queue_properties *properties); 1227 void uninit_queue(struct queue *q); 1228 void print_queue_properties(struct queue_properties *q); 1229 void print_queue(struct queue *q); 1230 1231 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 1232 struct kfd_node *dev); 1233 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 1234 struct kfd_node *dev); 1235 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 1236 struct kfd_node *dev); 1237 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 1238 struct kfd_node *dev); 1239 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 1240 struct kfd_node *dev); 1241 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 1242 struct kfd_node *dev); 1243 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type, 1244 struct kfd_node *dev); 1245 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev); 1246 void device_queue_manager_uninit(struct device_queue_manager *dqm); 1247 struct kernel_queue *kernel_queue_init(struct kfd_node *dev, 1248 enum kfd_queue_type type); 1249 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging); 1250 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid); 1251 1252 /* Process Queue Manager */ 1253 struct process_queue_node { 1254 struct queue *q; 1255 struct kernel_queue *kq; 1256 struct list_head process_queue_list; 1257 }; 1258 1259 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 1260 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 1261 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 1262 void pqm_uninit(struct process_queue_manager *pqm); 1263 int pqm_create_queue(struct process_queue_manager *pqm, 1264 struct kfd_node *dev, 1265 struct file *f, 1266 struct queue_properties *properties, 1267 unsigned int *qid, 1268 struct amdgpu_bo *wptr_bo, 1269 const struct kfd_criu_queue_priv_data *q_data, 1270 const void *restore_mqd, 1271 const void *restore_ctl_stack, 1272 uint32_t *p_doorbell_offset_in_process); 1273 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 1274 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid, 1275 struct queue_properties *p); 1276 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid, 1277 struct mqd_update_info *minfo); 1278 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 1279 void *gws); 1280 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 1281 unsigned int qid); 1282 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm, 1283 unsigned int qid); 1284 int pqm_get_wave_state(struct process_queue_manager *pqm, 1285 unsigned int qid, 1286 void __user *ctl_stack, 1287 u32 *ctl_stack_used_size, 1288 u32 *save_area_used_size); 1289 1290 int amdkfd_fence_wait_timeout(uint64_t *fence_addr, 1291 uint64_t fence_value, 1292 unsigned int timeout_ms); 1293 1294 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm, 1295 unsigned int qid, 1296 u32 *mqd_size, 1297 u32 *ctl_stack_size); 1298 /* Packet Manager */ 1299 1300 #define KFD_FENCE_COMPLETED (100) 1301 #define KFD_FENCE_INIT (10) 1302 1303 struct packet_manager { 1304 struct device_queue_manager *dqm; 1305 struct kernel_queue *priv_queue; 1306 struct mutex lock; 1307 bool allocated; 1308 struct kfd_mem_obj *ib_buffer_obj; 1309 unsigned int ib_size_bytes; 1310 bool is_over_subscription; 1311 1312 const struct packet_manager_funcs *pmf; 1313 }; 1314 1315 struct packet_manager_funcs { 1316 /* Support ASIC-specific packet formats for PM4 packets */ 1317 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 1318 struct qcm_process_device *qpd); 1319 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 1320 uint64_t ib, size_t ib_size_in_dwords, bool chain); 1321 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 1322 struct scheduling_resources *res); 1323 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 1324 struct queue *q, bool is_static); 1325 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 1326 enum kfd_unmap_queues_filter mode, 1327 uint32_t filter_param, bool reset); 1328 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 1329 uint64_t fence_address, uint64_t fence_value); 1330 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 1331 1332 /* Packet sizes */ 1333 int map_process_size; 1334 int runlist_size; 1335 int set_resources_size; 1336 int map_queues_size; 1337 int unmap_queues_size; 1338 int query_status_size; 1339 int release_mem_size; 1340 }; 1341 1342 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 1343 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 1344 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs; 1345 1346 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 1347 void pm_uninit(struct packet_manager *pm, bool hanging); 1348 int pm_send_set_resources(struct packet_manager *pm, 1349 struct scheduling_resources *res); 1350 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 1351 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 1352 uint64_t fence_value); 1353 1354 int pm_send_unmap_queue(struct packet_manager *pm, 1355 enum kfd_unmap_queues_filter mode, 1356 uint32_t filter_param, bool reset); 1357 1358 void pm_release_ib(struct packet_manager *pm); 1359 1360 /* Following PM funcs can be shared among VI and AI */ 1361 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 1362 1363 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1364 1365 /* Events */ 1366 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1367 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1368 extern const struct kfd_event_interrupt_class event_interrupt_class_v11; 1369 1370 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1371 1372 int kfd_event_init_process(struct kfd_process *p); 1373 void kfd_event_free_process(struct kfd_process *p); 1374 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1375 int kfd_wait_on_events(struct kfd_process *p, 1376 uint32_t num_events, void __user *data, 1377 bool all, uint32_t *user_timeout_ms, 1378 uint32_t *wait_result); 1379 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 1380 uint32_t valid_id_bits); 1381 void kfd_signal_iommu_event(struct kfd_node *dev, 1382 u32 pasid, unsigned long address, 1383 bool is_write_requested, bool is_execute_requested); 1384 void kfd_signal_hw_exception_event(u32 pasid); 1385 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1386 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1387 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset); 1388 1389 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1390 uint32_t event_type, bool auto_reset, uint32_t node_id, 1391 uint32_t *event_id, uint32_t *event_trigger_data, 1392 uint64_t *event_page_offset, uint32_t *event_slot_index); 1393 1394 int kfd_get_num_events(struct kfd_process *p); 1395 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1396 1397 void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid, 1398 struct kfd_vm_fault_info *info); 1399 1400 void kfd_signal_reset_event(struct kfd_node *dev); 1401 1402 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid); 1403 1404 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type); 1405 1406 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev) 1407 { 1408 return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) || 1409 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && 1410 dev->adev->sdma.instance[0].fw_version >= 18) || 1411 KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0); 1412 } 1413 1414 bool kfd_is_locked(void); 1415 1416 /* Compute profile */ 1417 void kfd_inc_compute_active(struct kfd_node *dev); 1418 void kfd_dec_compute_active(struct kfd_node *dev); 1419 1420 /* Cgroup Support */ 1421 /* Check with device cgroup if @kfd device is accessible */ 1422 static inline int kfd_devcgroup_check_permission(struct kfd_node *kfd) 1423 { 1424 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) 1425 struct drm_device *ddev = adev_to_drm(kfd->adev); 1426 1427 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, 1428 ddev->render->index, 1429 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1430 #else 1431 return 0; 1432 #endif 1433 } 1434 1435 static inline bool kfd_is_first_node(struct kfd_node *node) 1436 { 1437 return (node == node->kfd->nodes[0]); 1438 } 1439 1440 /* Debugfs */ 1441 #if defined(CONFIG_DEBUG_FS) 1442 1443 void kfd_debugfs_init(void); 1444 void kfd_debugfs_fini(void); 1445 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1446 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1447 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1448 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1449 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1450 int pm_debugfs_runlist(struct seq_file *m, void *data); 1451 1452 int kfd_debugfs_hang_hws(struct kfd_node *dev); 1453 int pm_debugfs_hang_hws(struct packet_manager *pm); 1454 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm); 1455 1456 #else 1457 1458 static inline void kfd_debugfs_init(void) {} 1459 static inline void kfd_debugfs_fini(void) {} 1460 1461 #endif 1462 1463 #endif 1464