xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 8795a739)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <linux/sysfs.h>
39 #include <kgd_kfd_interface.h>
40 
41 #include "amd_shared.h"
42 
43 #define KFD_MAX_RING_ENTRY_SIZE	8
44 
45 #define KFD_SYSFS_FILE_MODE 0444
46 
47 /* GPU ID hash width in bits */
48 #define KFD_GPU_ID_HASH_WIDTH 16
49 
50 /* Use upper bits of mmap offset to store KFD driver specific information.
51  * BITS[63:62] - Encode MMAP type
52  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
53  * BITS[45:0]  - MMAP offset value
54  *
55  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
56  *  defines are w.r.t to PAGE_SIZE
57  */
58 #define KFD_MMAP_TYPE_SHIFT	(62 - PAGE_SHIFT)
59 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
60 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
61 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
62 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
63 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
64 
65 #define KFD_MMAP_GPU_ID_SHIFT (46 - PAGE_SHIFT)
66 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
67 				<< KFD_MMAP_GPU_ID_SHIFT)
68 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
69 				& KFD_MMAP_GPU_ID_MASK)
70 #define KFD_MMAP_GPU_ID_GET(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
71 				>> KFD_MMAP_GPU_ID_SHIFT)
72 
73 #define KFD_MMAP_OFFSET_VALUE_MASK	(0x3FFFFFFFFFFFULL >> PAGE_SHIFT)
74 #define KFD_MMAP_OFFSET_VALUE_GET(offset) (offset & KFD_MMAP_OFFSET_VALUE_MASK)
75 
76 /*
77  * When working with cp scheduler we should assign the HIQ manually or via
78  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
79  * definitions for Kaveri. In Kaveri only the first ME queues participates
80  * in the cp scheduling taking that in mind we set the HIQ slot in the
81  * second ME.
82  */
83 #define KFD_CIK_HIQ_PIPE 4
84 #define KFD_CIK_HIQ_QUEUE 0
85 
86 /* Macro for allocating structures */
87 #define kfd_alloc_struct(ptr_to_struct)	\
88 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
89 
90 #define KFD_MAX_NUM_OF_PROCESSES 512
91 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
92 
93 /*
94  * Size of the per-process TBA+TMA buffer: 2 pages
95  *
96  * The first page is the TBA used for the CWSR ISA code. The second
97  * page is used as TMA for daisy changing a user-mode trap handler.
98  */
99 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
100 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
101 
102 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
103 	(KFD_MAX_NUM_OF_PROCESSES *			\
104 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
105 
106 #define KFD_KERNEL_QUEUE_SIZE 2048
107 
108 #define KFD_UNMAP_LATENCY_MS	(4000)
109 
110 /*
111  * 512 = 0x200
112  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
113  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
114  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
115  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
116  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
117  */
118 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
119 
120 
121 /*
122  * Kernel module parameter to specify maximum number of supported queues per
123  * device
124  */
125 extern int max_num_of_queues_per_device;
126 
127 
128 /* Kernel module parameter to specify the scheduling policy */
129 extern int sched_policy;
130 
131 /*
132  * Kernel module parameter to specify the maximum process
133  * number per HW scheduler
134  */
135 extern int hws_max_conc_proc;
136 
137 extern int cwsr_enable;
138 
139 /*
140  * Kernel module parameter to specify whether to send sigterm to HSA process on
141  * unhandled exception
142  */
143 extern int send_sigterm;
144 
145 /*
146  * This kernel module is used to simulate large bar machine on non-large bar
147  * enabled machines.
148  */
149 extern int debug_largebar;
150 
151 /*
152  * Ignore CRAT table during KFD initialization, can be used to work around
153  * broken CRAT tables on some AMD systems
154  */
155 extern int ignore_crat;
156 
157 /*
158  * Set sh_mem_config.retry_disable on Vega10
159  */
160 extern int amdgpu_noretry;
161 
162 /*
163  * Halt if HWS hang is detected
164  */
165 extern int halt_if_hws_hang;
166 
167 /*
168  * Whether MEC FW support GWS barriers
169  */
170 extern bool hws_gws_support;
171 
172 /*
173  * Queue preemption timeout in ms
174  */
175 extern int queue_preemption_timeout_ms;
176 
177 enum cache_policy {
178 	cache_policy_coherent,
179 	cache_policy_noncoherent
180 };
181 
182 #define KFD_IS_VI(chip) ((chip) >= CHIP_CARRIZO && (chip) <= CHIP_POLARIS11)
183 #define KFD_IS_DGPU(chip) (((chip) >= CHIP_TONGA && \
184 			   (chip) <= CHIP_NAVI10) || \
185 			   (chip) == CHIP_HAWAII)
186 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
187 
188 struct kfd_event_interrupt_class {
189 	bool (*interrupt_isr)(struct kfd_dev *dev,
190 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
191 			bool *patched_flag);
192 	void (*interrupt_wq)(struct kfd_dev *dev,
193 			const uint32_t *ih_ring_entry);
194 };
195 
196 struct kfd_device_info {
197 	enum amd_asic_type asic_family;
198 	const char *asic_name;
199 	const struct kfd_event_interrupt_class *event_interrupt_class;
200 	unsigned int max_pasid_bits;
201 	unsigned int max_no_of_hqd;
202 	unsigned int doorbell_size;
203 	size_t ih_ring_entry_size;
204 	uint8_t num_of_watch_points;
205 	uint16_t mqd_size_aligned;
206 	bool supports_cwsr;
207 	bool needs_iommu_device;
208 	bool needs_pci_atomics;
209 	unsigned int num_sdma_engines;
210 	unsigned int num_xgmi_sdma_engines;
211 	unsigned int num_sdma_queues_per_engine;
212 };
213 
214 struct kfd_mem_obj {
215 	uint32_t range_start;
216 	uint32_t range_end;
217 	uint64_t gpu_addr;
218 	uint32_t *cpu_ptr;
219 	void *gtt_mem;
220 };
221 
222 struct kfd_vmid_info {
223 	uint32_t first_vmid_kfd;
224 	uint32_t last_vmid_kfd;
225 	uint32_t vmid_num_kfd;
226 };
227 
228 struct kfd_dev {
229 	struct kgd_dev *kgd;
230 
231 	const struct kfd_device_info *device_info;
232 	struct pci_dev *pdev;
233 
234 	unsigned int id;		/* topology stub index */
235 
236 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
237 					 * KFD. It is aligned for mapping
238 					 * into user mode
239 					 */
240 	size_t doorbell_id_offset;	/* Doorbell offset (from KFD doorbell
241 					 * to HW doorbell, GFX reserved some
242 					 * at the start)
243 					 */
244 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
245 					   * page used by kernel queue
246 					   */
247 
248 	struct kgd2kfd_shared_resources shared_resources;
249 	struct kfd_vmid_info vm_info;
250 
251 	const struct kfd2kgd_calls *kfd2kgd;
252 	struct mutex doorbell_mutex;
253 	DECLARE_BITMAP(doorbell_available_index,
254 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
255 
256 	void *gtt_mem;
257 	uint64_t gtt_start_gpu_addr;
258 	void *gtt_start_cpu_ptr;
259 	void *gtt_sa_bitmap;
260 	struct mutex gtt_sa_lock;
261 	unsigned int gtt_sa_chunk_size;
262 	unsigned int gtt_sa_num_of_chunks;
263 
264 	/* Interrupts */
265 	struct kfifo ih_fifo;
266 	struct workqueue_struct *ih_wq;
267 	struct work_struct interrupt_work;
268 	spinlock_t interrupt_lock;
269 
270 	/* QCM Device instance */
271 	struct device_queue_manager *dqm;
272 
273 	bool init_complete;
274 	/*
275 	 * Interrupts of interest to KFD are copied
276 	 * from the HW ring into a SW ring.
277 	 */
278 	bool interrupts_active;
279 
280 	/* Debug manager */
281 	struct kfd_dbgmgr *dbgmgr;
282 
283 	/* Firmware versions */
284 	uint16_t mec_fw_version;
285 	uint16_t sdma_fw_version;
286 
287 	/* Maximum process number mapped to HW scheduler */
288 	unsigned int max_proc_per_quantum;
289 
290 	/* CWSR */
291 	bool cwsr_enabled;
292 	const void *cwsr_isa;
293 	unsigned int cwsr_isa_size;
294 
295 	/* xGMI */
296 	uint64_t hive_id;
297 
298 	bool pci_atomic_requested;
299 
300 	/* SRAM ECC flag */
301 	atomic_t sram_ecc_flag;
302 
303 	/* Compute Profile ref. count */
304 	atomic_t compute_profile;
305 
306 	/* Global GWS resource shared b/t processes*/
307 	void *gws;
308 };
309 
310 enum kfd_mempool {
311 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
312 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
313 	KFD_MEMPOOL_FRAMEBUFFER = 3,
314 };
315 
316 /* Character device interface */
317 int kfd_chardev_init(void);
318 void kfd_chardev_exit(void);
319 struct device *kfd_chardev(void);
320 
321 /**
322  * enum kfd_unmap_queues_filter
323  *
324  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
325  *
326  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
327  *						running queues list.
328  *
329  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
330  *						specific process.
331  *
332  */
333 enum kfd_unmap_queues_filter {
334 	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
335 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
336 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
337 	KFD_UNMAP_QUEUES_FILTER_BY_PASID
338 };
339 
340 /**
341  * enum kfd_queue_type
342  *
343  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
344  *
345  * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
346  *
347  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
348  *
349  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
350  */
351 enum kfd_queue_type  {
352 	KFD_QUEUE_TYPE_COMPUTE,
353 	KFD_QUEUE_TYPE_SDMA,
354 	KFD_QUEUE_TYPE_HIQ,
355 	KFD_QUEUE_TYPE_DIQ,
356 	KFD_QUEUE_TYPE_SDMA_XGMI
357 };
358 
359 enum kfd_queue_format {
360 	KFD_QUEUE_FORMAT_PM4,
361 	KFD_QUEUE_FORMAT_AQL
362 };
363 
364 enum KFD_QUEUE_PRIORITY {
365 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
366 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
367 };
368 
369 /**
370  * struct queue_properties
371  *
372  * @type: The queue type.
373  *
374  * @queue_id: Queue identifier.
375  *
376  * @queue_address: Queue ring buffer address.
377  *
378  * @queue_size: Queue ring buffer size.
379  *
380  * @priority: Defines the queue priority relative to other queues in the
381  * process.
382  * This is just an indication and HW scheduling may override the priority as
383  * necessary while keeping the relative prioritization.
384  * the priority granularity is from 0 to f which f is the highest priority.
385  * currently all queues are initialized with the highest priority.
386  *
387  * @queue_percent: This field is partially implemented and currently a zero in
388  * this field defines that the queue is non active.
389  *
390  * @read_ptr: User space address which points to the number of dwords the
391  * cp read from the ring buffer. This field updates automatically by the H/W.
392  *
393  * @write_ptr: Defines the number of dwords written to the ring buffer.
394  *
395  * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
396  * the queue ring buffer. This field should be similar to write_ptr and the
397  * user should update this field after he updated the write_ptr.
398  *
399  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
400  *
401  * @is_interop: Defines if this is a interop queue. Interop queue means that
402  * the queue can access both graphics and compute resources.
403  *
404  * @is_evicted: Defines if the queue is evicted. Only active queues
405  * are evicted, rendering them inactive.
406  *
407  * @is_active: Defines if the queue is active or not. @is_active and
408  * @is_evicted are protected by the DQM lock.
409  *
410  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
411  * of the queue.
412  *
413  * This structure represents the queue properties for each queue no matter if
414  * it's user mode or kernel mode queue.
415  *
416  */
417 struct queue_properties {
418 	enum kfd_queue_type type;
419 	enum kfd_queue_format format;
420 	unsigned int queue_id;
421 	uint64_t queue_address;
422 	uint64_t  queue_size;
423 	uint32_t priority;
424 	uint32_t queue_percent;
425 	uint32_t *read_ptr;
426 	uint32_t *write_ptr;
427 	void __iomem *doorbell_ptr;
428 	uint32_t doorbell_off;
429 	bool is_interop;
430 	bool is_evicted;
431 	bool is_active;
432 	/* Not relevant for user mode queues in cp scheduling */
433 	unsigned int vmid;
434 	/* Relevant only for sdma queues*/
435 	uint32_t sdma_engine_id;
436 	uint32_t sdma_queue_id;
437 	uint32_t sdma_vm_addr;
438 	/* Relevant only for VI */
439 	uint64_t eop_ring_buffer_address;
440 	uint32_t eop_ring_buffer_size;
441 	uint64_t ctx_save_restore_area_address;
442 	uint32_t ctx_save_restore_area_size;
443 	uint32_t ctl_stack_size;
444 	uint64_t tba_addr;
445 	uint64_t tma_addr;
446 	/* Relevant for CU */
447 	uint32_t cu_mask_count; /* Must be a multiple of 32 */
448 	uint32_t *cu_mask;
449 };
450 
451 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
452 			    (q).queue_address != 0 &&	\
453 			    (q).queue_percent > 0 &&	\
454 			    !(q).is_evicted)
455 
456 /**
457  * struct queue
458  *
459  * @list: Queue linked list.
460  *
461  * @mqd: The queue MQD.
462  *
463  * @mqd_mem_obj: The MQD local gpu memory object.
464  *
465  * @gart_mqd_addr: The MQD gart mc address.
466  *
467  * @properties: The queue properties.
468  *
469  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
470  *	 that the queue should be execute on.
471  *
472  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
473  *	  id.
474  *
475  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
476  *
477  * @process: The kfd process that created this queue.
478  *
479  * @device: The kfd device that created this queue.
480  *
481  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
482  * otherwise.
483  *
484  * This structure represents user mode compute queues.
485  * It contains all the necessary data to handle such queues.
486  *
487  */
488 
489 struct queue {
490 	struct list_head list;
491 	void *mqd;
492 	struct kfd_mem_obj *mqd_mem_obj;
493 	uint64_t gart_mqd_addr;
494 	struct queue_properties properties;
495 
496 	uint32_t mec;
497 	uint32_t pipe;
498 	uint32_t queue;
499 
500 	unsigned int sdma_id;
501 	unsigned int doorbell_id;
502 
503 	struct kfd_process	*process;
504 	struct kfd_dev		*device;
505 	void *gws;
506 };
507 
508 /*
509  * Please read the kfd_mqd_manager.h description.
510  */
511 enum KFD_MQD_TYPE {
512 	KFD_MQD_TYPE_COMPUTE = 0,	/* for no cp scheduling */
513 	KFD_MQD_TYPE_HIQ,		/* for hiq */
514 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
515 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
516 	KFD_MQD_TYPE_DIQ,		/* for diq */
517 	KFD_MQD_TYPE_MAX
518 };
519 
520 enum KFD_PIPE_PRIORITY {
521 	KFD_PIPE_PRIORITY_CS_LOW = 0,
522 	KFD_PIPE_PRIORITY_CS_MEDIUM,
523 	KFD_PIPE_PRIORITY_CS_HIGH
524 };
525 
526 struct scheduling_resources {
527 	unsigned int vmid_mask;
528 	enum kfd_queue_type type;
529 	uint64_t queue_mask;
530 	uint64_t gws_mask;
531 	uint32_t oac_mask;
532 	uint32_t gds_heap_base;
533 	uint32_t gds_heap_size;
534 };
535 
536 struct process_queue_manager {
537 	/* data */
538 	struct kfd_process	*process;
539 	struct list_head	queues;
540 	unsigned long		*queue_slot_bitmap;
541 };
542 
543 struct qcm_process_device {
544 	/* The Device Queue Manager that owns this data */
545 	struct device_queue_manager *dqm;
546 	struct process_queue_manager *pqm;
547 	/* Queues list */
548 	struct list_head queues_list;
549 	struct list_head priv_queue_list;
550 
551 	unsigned int queue_count;
552 	unsigned int vmid;
553 	bool is_debug;
554 	unsigned int evicted; /* eviction counter, 0=active */
555 
556 	/* This flag tells if we should reset all wavefronts on
557 	 * process termination
558 	 */
559 	bool reset_wavefronts;
560 
561 	/*
562 	 * All the memory management data should be here too
563 	 */
564 	uint64_t gds_context_area;
565 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
566 	uint64_t page_table_base;
567 	uint32_t sh_mem_config;
568 	uint32_t sh_mem_bases;
569 	uint32_t sh_mem_ape1_base;
570 	uint32_t sh_mem_ape1_limit;
571 	uint32_t gds_size;
572 	uint32_t num_gws;
573 	uint32_t num_oac;
574 	uint32_t sh_hidden_private_base;
575 
576 	/* CWSR memory */
577 	void *cwsr_kaddr;
578 	uint64_t cwsr_base;
579 	uint64_t tba_addr;
580 	uint64_t tma_addr;
581 
582 	/* IB memory */
583 	uint64_t ib_base;
584 	void *ib_kaddr;
585 
586 	/* doorbell resources per process per device */
587 	unsigned long *doorbell_bitmap;
588 };
589 
590 /* KFD Memory Eviction */
591 
592 /* Approx. wait time before attempting to restore evicted BOs */
593 #define PROCESS_RESTORE_TIME_MS 100
594 /* Approx. back off time if restore fails due to lack of memory */
595 #define PROCESS_BACK_OFF_TIME_MS 100
596 /* Approx. time before evicting the process again */
597 #define PROCESS_ACTIVE_TIME_MS 10
598 
599 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
600  * idr_handle in the least significant 4 bytes
601  */
602 #define MAKE_HANDLE(gpu_id, idr_handle) \
603 	(((uint64_t)(gpu_id) << 32) + idr_handle)
604 #define GET_GPU_ID(handle) (handle >> 32)
605 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
606 
607 enum kfd_pdd_bound {
608 	PDD_UNBOUND = 0,
609 	PDD_BOUND,
610 	PDD_BOUND_SUSPENDED,
611 };
612 
613 /* Data that is per-process-per device. */
614 struct kfd_process_device {
615 	/*
616 	 * List of all per-device data for a process.
617 	 * Starts from kfd_process.per_device_data.
618 	 */
619 	struct list_head per_device_list;
620 
621 	/* The device that owns this data. */
622 	struct kfd_dev *dev;
623 
624 	/* The process that owns this kfd_process_device. */
625 	struct kfd_process *process;
626 
627 	/* per-process-per device QCM data structure */
628 	struct qcm_process_device qpd;
629 
630 	/*Apertures*/
631 	uint64_t lds_base;
632 	uint64_t lds_limit;
633 	uint64_t gpuvm_base;
634 	uint64_t gpuvm_limit;
635 	uint64_t scratch_base;
636 	uint64_t scratch_limit;
637 
638 	/* VM context for GPUVM allocations */
639 	struct file *drm_file;
640 	void *vm;
641 
642 	/* GPUVM allocations storage */
643 	struct idr alloc_idr;
644 
645 	/* Flag used to tell the pdd has dequeued from the dqm.
646 	 * This is used to prevent dev->dqm->ops.process_termination() from
647 	 * being called twice when it is already called in IOMMU callback
648 	 * function.
649 	 */
650 	bool already_dequeued;
651 
652 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
653 	enum kfd_pdd_bound bound;
654 };
655 
656 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
657 
658 /* Process data */
659 struct kfd_process {
660 	/*
661 	 * kfd_process are stored in an mm_struct*->kfd_process*
662 	 * hash table (kfd_processes in kfd_process.c)
663 	 */
664 	struct hlist_node kfd_processes;
665 
666 	/*
667 	 * Opaque pointer to mm_struct. We don't hold a reference to
668 	 * it so it should never be dereferenced from here. This is
669 	 * only used for looking up processes by their mm.
670 	 */
671 	void *mm;
672 
673 	struct kref ref;
674 	struct work_struct release_work;
675 
676 	struct mutex mutex;
677 
678 	/*
679 	 * In any process, the thread that started main() is the lead
680 	 * thread and outlives the rest.
681 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
682 	 * It can also be used for safely getting a reference to the
683 	 * mm_struct of the process.
684 	 */
685 	struct task_struct *lead_thread;
686 
687 	/* We want to receive a notification when the mm_struct is destroyed */
688 	struct mmu_notifier mmu_notifier;
689 
690 	unsigned int pasid;
691 	unsigned int doorbell_index;
692 
693 	/*
694 	 * List of kfd_process_device structures,
695 	 * one for each device the process is using.
696 	 */
697 	struct list_head per_device_data;
698 
699 	struct process_queue_manager pqm;
700 
701 	/*Is the user space process 32 bit?*/
702 	bool is_32bit_user_mode;
703 
704 	/* Event-related data */
705 	struct mutex event_mutex;
706 	/* Event ID allocator and lookup */
707 	struct idr event_idr;
708 	/* Event page */
709 	struct kfd_signal_page *signal_page;
710 	size_t signal_mapped_size;
711 	size_t signal_event_count;
712 	bool signal_event_limit_reached;
713 
714 	/* Information used for memory eviction */
715 	void *kgd_process_info;
716 	/* Eviction fence that is attached to all the BOs of this process. The
717 	 * fence will be triggered during eviction and new one will be created
718 	 * during restore
719 	 */
720 	struct dma_fence *ef;
721 
722 	/* Work items for evicting and restoring BOs */
723 	struct delayed_work eviction_work;
724 	struct delayed_work restore_work;
725 	/* seqno of the last scheduled eviction */
726 	unsigned int last_eviction_seqno;
727 	/* Approx. the last timestamp (in jiffies) when the process was
728 	 * restored after an eviction
729 	 */
730 	unsigned long last_restore_timestamp;
731 
732 	/* Kobj for our procfs */
733 	struct kobject *kobj;
734 	struct attribute attr_pasid;
735 };
736 
737 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
738 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
739 extern struct srcu_struct kfd_processes_srcu;
740 
741 /**
742  * Ioctl function type.
743  *
744  * \param filep pointer to file structure.
745  * \param p amdkfd process pointer.
746  * \param data pointer to arg that was copied from user.
747  */
748 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
749 				void *data);
750 
751 struct amdkfd_ioctl_desc {
752 	unsigned int cmd;
753 	int flags;
754 	amdkfd_ioctl_t *func;
755 	unsigned int cmd_drv;
756 	const char *name;
757 };
758 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
759 
760 int kfd_process_create_wq(void);
761 void kfd_process_destroy_wq(void);
762 struct kfd_process *kfd_create_process(struct file *filep);
763 struct kfd_process *kfd_get_process(const struct task_struct *);
764 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
765 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
766 void kfd_unref_process(struct kfd_process *p);
767 int kfd_process_evict_queues(struct kfd_process *p);
768 int kfd_process_restore_queues(struct kfd_process *p);
769 void kfd_suspend_all_processes(void);
770 int kfd_resume_all_processes(void);
771 
772 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
773 			       struct file *drm_file);
774 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
775 						struct kfd_process *p);
776 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
777 							struct kfd_process *p);
778 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
779 							struct kfd_process *p);
780 
781 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
782 			  struct vm_area_struct *vma);
783 
784 /* KFD process API for creating and translating handles */
785 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
786 					void *mem);
787 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
788 					int handle);
789 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
790 					int handle);
791 
792 /* Process device data iterator */
793 struct kfd_process_device *kfd_get_first_process_device_data(
794 							struct kfd_process *p);
795 struct kfd_process_device *kfd_get_next_process_device_data(
796 						struct kfd_process *p,
797 						struct kfd_process_device *pdd);
798 bool kfd_has_process_device_data(struct kfd_process *p);
799 
800 /* PASIDs */
801 int kfd_pasid_init(void);
802 void kfd_pasid_exit(void);
803 bool kfd_set_pasid_limit(unsigned int new_limit);
804 unsigned int kfd_get_pasid_limit(void);
805 unsigned int kfd_pasid_alloc(void);
806 void kfd_pasid_free(unsigned int pasid);
807 
808 /* Doorbells */
809 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
810 int kfd_doorbell_init(struct kfd_dev *kfd);
811 void kfd_doorbell_fini(struct kfd_dev *kfd);
812 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
813 		      struct vm_area_struct *vma);
814 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
815 					unsigned int *doorbell_off);
816 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
817 u32 read_kernel_doorbell(u32 __iomem *db);
818 void write_kernel_doorbell(void __iomem *db, u32 value);
819 void write_kernel_doorbell64(void __iomem *db, u64 value);
820 unsigned int kfd_doorbell_id_to_offset(struct kfd_dev *kfd,
821 					struct kfd_process *process,
822 					unsigned int doorbell_id);
823 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
824 					struct kfd_process *process);
825 int kfd_alloc_process_doorbells(struct kfd_process *process);
826 void kfd_free_process_doorbells(struct kfd_process *process);
827 
828 /* GTT Sub-Allocator */
829 
830 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
831 			struct kfd_mem_obj **mem_obj);
832 
833 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
834 
835 extern struct device *kfd_device;
836 
837 /* KFD's procfs */
838 void kfd_procfs_init(void);
839 void kfd_procfs_shutdown(void);
840 
841 /* Topology */
842 int kfd_topology_init(void);
843 void kfd_topology_shutdown(void);
844 int kfd_topology_add_device(struct kfd_dev *gpu);
845 int kfd_topology_remove_device(struct kfd_dev *gpu);
846 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
847 						uint32_t proximity_domain);
848 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
849 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
850 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
851 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
852 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
853 int kfd_numa_node_to_apic_id(int numa_node_id);
854 
855 /* Interrupts */
856 int kfd_interrupt_init(struct kfd_dev *dev);
857 void kfd_interrupt_exit(struct kfd_dev *dev);
858 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
859 bool interrupt_is_wanted(struct kfd_dev *dev,
860 				const uint32_t *ih_ring_entry,
861 				uint32_t *patched_ihre, bool *flag);
862 
863 /* amdkfd Apertures */
864 int kfd_init_apertures(struct kfd_process *process);
865 
866 /* Queue Context Management */
867 int init_queue(struct queue **q, const struct queue_properties *properties);
868 void uninit_queue(struct queue *q);
869 void print_queue_properties(struct queue_properties *q);
870 void print_queue(struct queue *q);
871 
872 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
873 		struct kfd_dev *dev);
874 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
875 		struct kfd_dev *dev);
876 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
877 		struct kfd_dev *dev);
878 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
879 		struct kfd_dev *dev);
880 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
881 		struct kfd_dev *dev);
882 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
883 		struct kfd_dev *dev);
884 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
885 void device_queue_manager_uninit(struct device_queue_manager *dqm);
886 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
887 					enum kfd_queue_type type);
888 void kernel_queue_uninit(struct kernel_queue *kq);
889 int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid);
890 
891 /* Process Queue Manager */
892 struct process_queue_node {
893 	struct queue *q;
894 	struct kernel_queue *kq;
895 	struct list_head process_queue_list;
896 };
897 
898 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
899 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
900 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
901 void pqm_uninit(struct process_queue_manager *pqm);
902 int pqm_create_queue(struct process_queue_manager *pqm,
903 			    struct kfd_dev *dev,
904 			    struct file *f,
905 			    struct queue_properties *properties,
906 			    unsigned int *qid);
907 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
908 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
909 			struct queue_properties *p);
910 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
911 			struct queue_properties *p);
912 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
913 			void *gws);
914 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
915 						unsigned int qid);
916 int pqm_get_wave_state(struct process_queue_manager *pqm,
917 		       unsigned int qid,
918 		       void __user *ctl_stack,
919 		       u32 *ctl_stack_used_size,
920 		       u32 *save_area_used_size);
921 
922 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
923 			      unsigned int fence_value,
924 			      unsigned int timeout_ms);
925 
926 /* Packet Manager */
927 
928 #define KFD_FENCE_COMPLETED (100)
929 #define KFD_FENCE_INIT   (10)
930 
931 struct packet_manager {
932 	struct device_queue_manager *dqm;
933 	struct kernel_queue *priv_queue;
934 	struct mutex lock;
935 	bool allocated;
936 	struct kfd_mem_obj *ib_buffer_obj;
937 	unsigned int ib_size_bytes;
938 	bool is_over_subscription;
939 
940 	const struct packet_manager_funcs *pmf;
941 };
942 
943 struct packet_manager_funcs {
944 	/* Support ASIC-specific packet formats for PM4 packets */
945 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
946 			struct qcm_process_device *qpd);
947 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
948 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
949 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
950 			struct scheduling_resources *res);
951 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
952 			struct queue *q, bool is_static);
953 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
954 			enum kfd_queue_type type,
955 			enum kfd_unmap_queues_filter mode,
956 			uint32_t filter_param, bool reset,
957 			unsigned int sdma_engine);
958 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
959 			uint64_t fence_address,	uint32_t fence_value);
960 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
961 
962 	/* Packet sizes */
963 	int map_process_size;
964 	int runlist_size;
965 	int set_resources_size;
966 	int map_queues_size;
967 	int unmap_queues_size;
968 	int query_status_size;
969 	int release_mem_size;
970 };
971 
972 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
973 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
974 extern const struct packet_manager_funcs kfd_v10_pm_funcs;
975 
976 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
977 void pm_uninit(struct packet_manager *pm);
978 int pm_send_set_resources(struct packet_manager *pm,
979 				struct scheduling_resources *res);
980 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
981 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
982 				uint32_t fence_value);
983 
984 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
985 			enum kfd_unmap_queues_filter mode,
986 			uint32_t filter_param, bool reset,
987 			unsigned int sdma_engine);
988 
989 void pm_release_ib(struct packet_manager *pm);
990 
991 /* Following PM funcs can be shared among VI and AI */
992 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
993 int pm_set_resources_vi(struct packet_manager *pm, uint32_t *buffer,
994 			struct scheduling_resources *res);
995 
996 
997 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
998 
999 /* Events */
1000 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1001 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1002 
1003 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1004 
1005 void kfd_event_init_process(struct kfd_process *p);
1006 void kfd_event_free_process(struct kfd_process *p);
1007 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1008 int kfd_wait_on_events(struct kfd_process *p,
1009 		       uint32_t num_events, void __user *data,
1010 		       bool all, uint32_t user_timeout_ms,
1011 		       uint32_t *wait_result);
1012 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
1013 				uint32_t valid_id_bits);
1014 void kfd_signal_iommu_event(struct kfd_dev *dev,
1015 		unsigned int pasid, unsigned long address,
1016 		bool is_write_requested, bool is_execute_requested);
1017 void kfd_signal_hw_exception_event(unsigned int pasid);
1018 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1019 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1020 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1021 		       uint64_t size);
1022 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1023 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1024 		     uint32_t *event_id, uint32_t *event_trigger_data,
1025 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1026 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1027 
1028 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
1029 				struct kfd_vm_fault_info *info);
1030 
1031 void kfd_signal_reset_event(struct kfd_dev *dev);
1032 
1033 void kfd_flush_tlb(struct kfd_process_device *pdd);
1034 
1035 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1036 
1037 bool kfd_is_locked(void);
1038 
1039 /* Compute profile */
1040 void kfd_inc_compute_active(struct kfd_dev *dev);
1041 void kfd_dec_compute_active(struct kfd_dev *dev);
1042 
1043 /* Debugfs */
1044 #if defined(CONFIG_DEBUG_FS)
1045 
1046 void kfd_debugfs_init(void);
1047 void kfd_debugfs_fini(void);
1048 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1049 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1050 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1051 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1052 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1053 int pm_debugfs_runlist(struct seq_file *m, void *data);
1054 
1055 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1056 int pm_debugfs_hang_hws(struct packet_manager *pm);
1057 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1058 
1059 #else
1060 
1061 static inline void kfd_debugfs_init(void) {}
1062 static inline void kfd_debugfs_fini(void) {}
1063 
1064 #endif
1065 
1066 #endif
1067