xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 867a0e05)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <kgd_kfd_interface.h>
35 
36 #define KFD_SYSFS_FILE_MODE 0444
37 
38 /*
39  * When working with cp scheduler we should assign the HIQ manually or via
40  * the radeon driver to a fixed hqd slot, here are the fixed HIQ hqd slot
41  * definitions for Kaveri. In Kaveri only the first ME queues participates
42  * in the cp scheduling taking that in mind we set the HIQ slot in the
43  * second ME.
44  */
45 #define KFD_CIK_HIQ_PIPE 4
46 #define KFD_CIK_HIQ_QUEUE 0
47 
48 /* GPU ID hash width in bits */
49 #define KFD_GPU_ID_HASH_WIDTH 16
50 
51 /* Macro for allocating structures */
52 #define kfd_alloc_struct(ptr_to_struct)	\
53 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
54 
55 /* Kernel module parameter to specify maximum number of supported processes */
56 extern int max_num_of_processes;
57 
58 #define KFD_MAX_NUM_OF_PROCESSES_DEFAULT 32
59 #define KFD_MAX_NUM_OF_PROCESSES 512
60 
61 /*
62  * Kernel module parameter to specify maximum number of supported queues
63  * per process
64  */
65 extern int max_num_of_queues_per_process;
66 
67 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS_DEFAULT 128
68 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
69 
70 #define KFD_KERNEL_QUEUE_SIZE 2048
71 
72 /* Kernel module parameter to specify the scheduling policy */
73 extern int sched_policy;
74 
75 /**
76  * enum kfd_sched_policy
77  *
78  * @KFD_SCHED_POLICY_HWS: H/W scheduling policy known as command processor (cp)
79  * scheduling. In this scheduling mode we're using the firmware code to
80  * schedule the user mode queues and kernel queues such as HIQ and DIQ.
81  * the HIQ queue is used as a special queue that dispatches the configuration
82  * to the cp and the user mode queues list that are currently running.
83  * the DIQ queue is a debugging queue that dispatches debugging commands to the
84  * firmware.
85  * in this scheduling mode user mode queues over subscription feature is
86  * enabled.
87  *
88  * @KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: The same as above but the over
89  * subscription feature disabled.
90  *
91  * @KFD_SCHED_POLICY_NO_HWS: no H/W scheduling policy is a mode which directly
92  * set the command processor registers and sets the queues "manually". This
93  * mode is used *ONLY* for debugging proposes.
94  *
95  */
96 enum kfd_sched_policy {
97 	KFD_SCHED_POLICY_HWS = 0,
98 	KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION,
99 	KFD_SCHED_POLICY_NO_HWS
100 };
101 
102 enum cache_policy {
103 	cache_policy_coherent,
104 	cache_policy_noncoherent
105 };
106 
107 struct kfd_device_info {
108 	unsigned int max_pasid_bits;
109 	size_t ih_ring_entry_size;
110 	uint16_t mqd_size_aligned;
111 };
112 
113 struct kfd_dev {
114 	struct kgd_dev *kgd;
115 
116 	const struct kfd_device_info *device_info;
117 	struct pci_dev *pdev;
118 
119 	unsigned int id;		/* topology stub index */
120 
121 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
122 					 * KFD. It is aligned for mapping
123 					 * into user mode
124 					 */
125 	size_t doorbell_id_offset;	/* Doorbell offset (from KFD doorbell
126 					 * to HW doorbell, GFX reserved some
127 					 * at the start)
128 					 */
129 	size_t doorbell_process_limit;	/* Number of processes we have doorbell
130 					 * space for.
131 					 */
132 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
133 					   * page used by kernel queue
134 					   */
135 
136 	struct kgd2kfd_shared_resources shared_resources;
137 
138 	void *interrupt_ring;
139 	size_t interrupt_ring_size;
140 	atomic_t interrupt_ring_rptr;
141 	atomic_t interrupt_ring_wptr;
142 	struct work_struct interrupt_work;
143 	spinlock_t interrupt_lock;
144 
145 	/* QCM Device instance */
146 	struct device_queue_manager *dqm;
147 
148 	bool init_complete;
149 	/*
150 	 * Interrupts of interest to KFD are copied
151 	 * from the HW ring into a SW ring.
152 	 */
153 	bool interrupts_active;
154 };
155 
156 /* KGD2KFD callbacks */
157 void kgd2kfd_exit(void);
158 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, struct pci_dev *pdev);
159 bool kgd2kfd_device_init(struct kfd_dev *kfd,
160 			 const struct kgd2kfd_shared_resources *gpu_resources);
161 void kgd2kfd_device_exit(struct kfd_dev *kfd);
162 
163 extern const struct kfd2kgd_calls *kfd2kgd;
164 
165 struct kfd_mem_obj {
166 	void *bo;
167 	uint64_t gpu_addr;
168 	uint32_t *cpu_ptr;
169 };
170 
171 enum kfd_mempool {
172 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
173 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
174 	KFD_MEMPOOL_FRAMEBUFFER = 3,
175 };
176 
177 /* Character device interface */
178 int kfd_chardev_init(void);
179 void kfd_chardev_exit(void);
180 struct device *kfd_chardev(void);
181 
182 /**
183  * enum kfd_preempt_type_filter
184  *
185  * @KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE: Preempts single queue.
186  *
187  * @KFD_PRERMPT_TYPE_FILTER_ALL_QUEUES: Preempts all queues in the
188  *						running queues list.
189  *
190  * @KFD_PRERMPT_TYPE_FILTER_BY_PASID: Preempts queues that belongs to
191  *						specific process.
192  *
193  */
194 enum kfd_preempt_type_filter {
195 	KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE,
196 	KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES,
197 	KFD_PREEMPT_TYPE_FILTER_BY_PASID
198 };
199 
200 enum kfd_preempt_type {
201 	KFD_PREEMPT_TYPE_WAVEFRONT,
202 	KFD_PREEMPT_TYPE_WAVEFRONT_RESET
203 };
204 
205 /**
206  * enum kfd_queue_type
207  *
208  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
209  *
210  * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
211  *
212  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
213  *
214  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
215  */
216 enum kfd_queue_type  {
217 	KFD_QUEUE_TYPE_COMPUTE,
218 	KFD_QUEUE_TYPE_SDMA,
219 	KFD_QUEUE_TYPE_HIQ,
220 	KFD_QUEUE_TYPE_DIQ
221 };
222 
223 enum kfd_queue_format {
224 	KFD_QUEUE_FORMAT_PM4,
225 	KFD_QUEUE_FORMAT_AQL
226 };
227 
228 /**
229  * struct queue_properties
230  *
231  * @type: The queue type.
232  *
233  * @queue_id: Queue identifier.
234  *
235  * @queue_address: Queue ring buffer address.
236  *
237  * @queue_size: Queue ring buffer size.
238  *
239  * @priority: Defines the queue priority relative to other queues in the
240  * process.
241  * This is just an indication and HW scheduling may override the priority as
242  * necessary while keeping the relative prioritization.
243  * the priority granularity is from 0 to f which f is the highest priority.
244  * currently all queues are initialized with the highest priority.
245  *
246  * @queue_percent: This field is partially implemented and currently a zero in
247  * this field defines that the queue is non active.
248  *
249  * @read_ptr: User space address which points to the number of dwords the
250  * cp read from the ring buffer. This field updates automatically by the H/W.
251  *
252  * @write_ptr: Defines the number of dwords written to the ring buffer.
253  *
254  * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
255  * the queue ring buffer. This field should be similar to write_ptr and the user
256  * should update this field after he updated the write_ptr.
257  *
258  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
259  *
260  * @is_interop: Defines if this is a interop queue. Interop queue means that the
261  * queue can access both graphics and compute resources.
262  *
263  * @is_active: Defines if the queue is active or not.
264  *
265  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
266  * of the queue.
267  *
268  * This structure represents the queue properties for each queue no matter if
269  * it's user mode or kernel mode queue.
270  *
271  */
272 struct queue_properties {
273 	enum kfd_queue_type type;
274 	enum kfd_queue_format format;
275 	unsigned int queue_id;
276 	uint64_t queue_address;
277 	uint64_t  queue_size;
278 	uint32_t priority;
279 	uint32_t queue_percent;
280 	uint32_t *read_ptr;
281 	uint32_t *write_ptr;
282 	uint32_t __iomem *doorbell_ptr;
283 	uint32_t doorbell_off;
284 	bool is_interop;
285 	bool is_active;
286 	/* Not relevant for user mode queues in cp scheduling */
287 	unsigned int vmid;
288 };
289 
290 /**
291  * struct queue
292  *
293  * @list: Queue linked list.
294  *
295  * @mqd: The queue MQD.
296  *
297  * @mqd_mem_obj: The MQD local gpu memory object.
298  *
299  * @gart_mqd_addr: The MQD gart mc address.
300  *
301  * @properties: The queue properties.
302  *
303  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
304  * that the queue should be execute on.
305  *
306  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe id.
307  *
308  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
309  *
310  * @process: The kfd process that created this queue.
311  *
312  * @device: The kfd device that created this queue.
313  *
314  * This structure represents user mode compute queues.
315  * It contains all the necessary data to handle such queues.
316  *
317  */
318 
319 struct queue {
320 	struct list_head list;
321 	void *mqd;
322 	struct kfd_mem_obj *mqd_mem_obj;
323 	uint64_t gart_mqd_addr;
324 	struct queue_properties properties;
325 
326 	uint32_t mec;
327 	uint32_t pipe;
328 	uint32_t queue;
329 
330 	struct kfd_process	*process;
331 	struct kfd_dev		*device;
332 };
333 
334 /*
335  * Please read the kfd_mqd_manager.h description.
336  */
337 enum KFD_MQD_TYPE {
338 	KFD_MQD_TYPE_CIK_COMPUTE = 0, /* for no cp scheduling */
339 	KFD_MQD_TYPE_CIK_HIQ, /* for hiq */
340 	KFD_MQD_TYPE_CIK_CP, /* for cp queues and diq */
341 	KFD_MQD_TYPE_CIK_SDMA, /* for sdma queues */
342 	KFD_MQD_TYPE_MAX
343 };
344 
345 struct scheduling_resources {
346 	unsigned int vmid_mask;
347 	enum kfd_queue_type type;
348 	uint64_t queue_mask;
349 	uint64_t gws_mask;
350 	uint32_t oac_mask;
351 	uint32_t gds_heap_base;
352 	uint32_t gds_heap_size;
353 };
354 
355 struct process_queue_manager {
356 	/* data */
357 	struct kfd_process	*process;
358 	unsigned int		num_concurrent_processes;
359 	struct list_head	queues;
360 	unsigned long		*queue_slot_bitmap;
361 };
362 
363 struct qcm_process_device {
364 	/* The Device Queue Manager that owns this data */
365 	struct device_queue_manager *dqm;
366 	struct process_queue_manager *pqm;
367 	/* Device Queue Manager lock */
368 	struct mutex *lock;
369 	/* Queues list */
370 	struct list_head queues_list;
371 	struct list_head priv_queue_list;
372 
373 	unsigned int queue_count;
374 	unsigned int vmid;
375 	bool is_debug;
376 	/*
377 	 * All the memory management data should be here too
378 	 */
379 	uint64_t gds_context_area;
380 	uint32_t sh_mem_config;
381 	uint32_t sh_mem_bases;
382 	uint32_t sh_mem_ape1_base;
383 	uint32_t sh_mem_ape1_limit;
384 	uint32_t page_table_base;
385 	uint32_t gds_size;
386 	uint32_t num_gws;
387 	uint32_t num_oac;
388 };
389 
390 /* Data that is per-process-per device. */
391 struct kfd_process_device {
392 	/*
393 	 * List of all per-device data for a process.
394 	 * Starts from kfd_process.per_device_data.
395 	 */
396 	struct list_head per_device_list;
397 
398 	/* The device that owns this data. */
399 	struct kfd_dev *dev;
400 
401 
402 	/* per-process-per device QCM data structure */
403 	struct qcm_process_device qpd;
404 
405 	/*Apertures*/
406 	uint64_t lds_base;
407 	uint64_t lds_limit;
408 	uint64_t gpuvm_base;
409 	uint64_t gpuvm_limit;
410 	uint64_t scratch_base;
411 	uint64_t scratch_limit;
412 
413 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
414 	bool bound;
415 };
416 
417 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
418 
419 /* Process data */
420 struct kfd_process {
421 	/*
422 	 * kfd_process are stored in an mm_struct*->kfd_process*
423 	 * hash table (kfd_processes in kfd_process.c)
424 	 */
425 	struct hlist_node kfd_processes;
426 
427 	struct mm_struct *mm;
428 
429 	struct mutex mutex;
430 
431 	/*
432 	 * In any process, the thread that started main() is the lead
433 	 * thread and outlives the rest.
434 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
435 	 */
436 	struct task_struct *lead_thread;
437 
438 	/* We want to receive a notification when the mm_struct is destroyed */
439 	struct mmu_notifier mmu_notifier;
440 
441 	/* Use for delayed freeing of kfd_process structure */
442 	struct rcu_head	rcu;
443 
444 	unsigned int pasid;
445 
446 	/*
447 	 * List of kfd_process_device structures,
448 	 * one for each device the process is using.
449 	 */
450 	struct list_head per_device_data;
451 
452 	struct process_queue_manager pqm;
453 
454 	/* The process's queues. */
455 	size_t queue_array_size;
456 
457 	/* Size is queue_array_size, up to MAX_PROCESS_QUEUES. */
458 	struct kfd_queue **queues;
459 
460 	unsigned long allocated_queue_bitmap[DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, BITS_PER_LONG)];
461 
462 	/*Is the user space process 32 bit?*/
463 	bool is_32bit_user_mode;
464 };
465 
466 /**
467  * Ioctl function type.
468  *
469  * \param filep pointer to file structure.
470  * \param p amdkfd process pointer.
471  * \param data pointer to arg that was copied from user.
472  */
473 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
474 				void *data);
475 
476 struct amdkfd_ioctl_desc {
477 	unsigned int cmd;
478 	int flags;
479 	amdkfd_ioctl_t *func;
480 	unsigned int cmd_drv;
481 	const char *name;
482 };
483 
484 void kfd_process_create_wq(void);
485 void kfd_process_destroy_wq(void);
486 struct kfd_process *kfd_create_process(const struct task_struct *);
487 struct kfd_process *kfd_get_process(const struct task_struct *);
488 
489 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
490 							struct kfd_process *p);
491 void kfd_unbind_process_from_device(struct kfd_dev *dev, unsigned int pasid);
492 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
493 							struct kfd_process *p,
494 							int create_pdd);
495 
496 /* Process device data iterator */
497 struct kfd_process_device *kfd_get_first_process_device_data(struct kfd_process *p);
498 struct kfd_process_device *kfd_get_next_process_device_data(struct kfd_process *p,
499 						struct kfd_process_device *pdd);
500 bool kfd_has_process_device_data(struct kfd_process *p);
501 
502 /* PASIDs */
503 int kfd_pasid_init(void);
504 void kfd_pasid_exit(void);
505 bool kfd_set_pasid_limit(unsigned int new_limit);
506 unsigned int kfd_get_pasid_limit(void);
507 unsigned int kfd_pasid_alloc(void);
508 void kfd_pasid_free(unsigned int pasid);
509 
510 /* Doorbells */
511 void kfd_doorbell_init(struct kfd_dev *kfd);
512 int kfd_doorbell_mmap(struct kfd_process *process, struct vm_area_struct *vma);
513 u32 __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
514 					unsigned int *doorbell_off);
515 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
516 u32 read_kernel_doorbell(u32 __iomem *db);
517 void write_kernel_doorbell(u32 __iomem *db, u32 value);
518 unsigned int kfd_queue_id_to_doorbell(struct kfd_dev *kfd,
519 					struct kfd_process *process,
520 					unsigned int queue_id);
521 
522 extern struct device *kfd_device;
523 
524 /* Topology */
525 int kfd_topology_init(void);
526 void kfd_topology_shutdown(void);
527 int kfd_topology_add_device(struct kfd_dev *gpu);
528 int kfd_topology_remove_device(struct kfd_dev *gpu);
529 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
530 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
531 struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx);
532 
533 /* Interrupts */
534 int kfd_interrupt_init(struct kfd_dev *dev);
535 void kfd_interrupt_exit(struct kfd_dev *dev);
536 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry);
537 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
538 
539 /* Power Management */
540 void kgd2kfd_suspend(struct kfd_dev *kfd);
541 int kgd2kfd_resume(struct kfd_dev *kfd);
542 
543 /* amdkfd Apertures */
544 int kfd_init_apertures(struct kfd_process *process);
545 
546 /* Queue Context Management */
547 inline uint32_t lower_32(uint64_t x);
548 inline uint32_t upper_32(uint64_t x);
549 
550 int init_queue(struct queue **q, struct queue_properties properties);
551 void uninit_queue(struct queue *q);
552 void print_queue_properties(struct queue_properties *q);
553 void print_queue(struct queue *q);
554 
555 struct mqd_manager *mqd_manager_init(enum KFD_MQD_TYPE type,
556 					struct kfd_dev *dev);
557 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
558 void device_queue_manager_uninit(struct device_queue_manager *dqm);
559 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
560 					enum kfd_queue_type type);
561 void kernel_queue_uninit(struct kernel_queue *kq);
562 
563 /* Process Queue Manager */
564 struct process_queue_node {
565 	struct queue *q;
566 	struct kernel_queue *kq;
567 	struct list_head process_queue_list;
568 };
569 
570 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
571 void pqm_uninit(struct process_queue_manager *pqm);
572 int pqm_create_queue(struct process_queue_manager *pqm,
573 			    struct kfd_dev *dev,
574 			    struct file *f,
575 			    struct queue_properties *properties,
576 			    unsigned int flags,
577 			    enum kfd_queue_type type,
578 			    unsigned int *qid);
579 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
580 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
581 			struct queue_properties *p);
582 
583 /* Packet Manager */
584 
585 #define KFD_HIQ_TIMEOUT (500)
586 
587 #define KFD_FENCE_COMPLETED (100)
588 #define KFD_FENCE_INIT   (10)
589 #define KFD_UNMAP_LATENCY (150)
590 
591 struct packet_manager {
592 	struct device_queue_manager *dqm;
593 	struct kernel_queue *priv_queue;
594 	struct mutex lock;
595 	bool allocated;
596 	struct kfd_mem_obj *ib_buffer_obj;
597 };
598 
599 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
600 void pm_uninit(struct packet_manager *pm);
601 int pm_send_set_resources(struct packet_manager *pm,
602 				struct scheduling_resources *res);
603 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
604 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
605 				uint32_t fence_value);
606 
607 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
608 			enum kfd_preempt_type_filter mode,
609 			uint32_t filter_param, bool reset,
610 			unsigned int sdma_engine);
611 
612 void pm_release_ib(struct packet_manager *pm);
613 
614 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
615 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
616 					struct kfd_process *process);
617 
618 #endif
619