1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef KFD_PRIV_H_INCLUDED 25 #define KFD_PRIV_H_INCLUDED 26 27 #include <linux/hashtable.h> 28 #include <linux/mmu_notifier.h> 29 #include <linux/memremap.h> 30 #include <linux/mutex.h> 31 #include <linux/types.h> 32 #include <linux/atomic.h> 33 #include <linux/workqueue.h> 34 #include <linux/spinlock.h> 35 #include <linux/kfd_ioctl.h> 36 #include <linux/idr.h> 37 #include <linux/kfifo.h> 38 #include <linux/seq_file.h> 39 #include <linux/kref.h> 40 #include <linux/sysfs.h> 41 #include <linux/device_cgroup.h> 42 #include <drm/drm_file.h> 43 #include <drm/drm_drv.h> 44 #include <drm/drm_device.h> 45 #include <drm/drm_ioctl.h> 46 #include <kgd_kfd_interface.h> 47 #include <linux/swap.h> 48 49 #include "amd_shared.h" 50 #include "amdgpu.h" 51 52 #define KFD_MAX_RING_ENTRY_SIZE 8 53 54 #define KFD_SYSFS_FILE_MODE 0444 55 56 /* GPU ID hash width in bits */ 57 #define KFD_GPU_ID_HASH_WIDTH 16 58 59 /* Use upper bits of mmap offset to store KFD driver specific information. 60 * BITS[63:62] - Encode MMAP type 61 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 62 * BITS[45:0] - MMAP offset value 63 * 64 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 65 * defines are w.r.t to PAGE_SIZE 66 */ 67 #define KFD_MMAP_TYPE_SHIFT 62 68 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 69 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 70 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 71 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 72 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 73 74 #define KFD_MMAP_GPU_ID_SHIFT 46 75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 76 << KFD_MMAP_GPU_ID_SHIFT) 77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 78 & KFD_MMAP_GPU_ID_MASK) 79 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 80 >> KFD_MMAP_GPU_ID_SHIFT) 81 82 /* 83 * When working with cp scheduler we should assign the HIQ manually or via 84 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 85 * definitions for Kaveri. In Kaveri only the first ME queues participates 86 * in the cp scheduling taking that in mind we set the HIQ slot in the 87 * second ME. 88 */ 89 #define KFD_CIK_HIQ_PIPE 4 90 #define KFD_CIK_HIQ_QUEUE 0 91 92 /* Macro for allocating structures */ 93 #define kfd_alloc_struct(ptr_to_struct) \ 94 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 95 96 #define KFD_MAX_NUM_OF_PROCESSES 512 97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 98 99 /* 100 * Size of the per-process TBA+TMA buffer: 2 pages 101 * 102 * The first page is the TBA used for the CWSR ISA code. The second 103 * page is used as TMA for user-mode trap handler setup in daisy-chain mode. 104 */ 105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 106 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 107 108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 109 (KFD_MAX_NUM_OF_PROCESSES * \ 110 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 111 112 #define KFD_KERNEL_QUEUE_SIZE 2048 113 114 #define KFD_UNMAP_LATENCY_MS (4000) 115 116 /* 117 * 512 = 0x200 118 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 119 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 120 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 121 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 122 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 123 */ 124 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 125 126 /** 127 * enum kfd_ioctl_flags - KFD ioctl flags 128 * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how 129 * userspace can use a given ioctl. 130 */ 131 enum kfd_ioctl_flags { 132 /* 133 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE: 134 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially 135 * perform privileged operations and load arbitrary data into MQDs and 136 * eventually HQD registers when the queue is mapped by HWS. In order to 137 * prevent this we should perform additional security checks. 138 * 139 * This is equivalent to callers with the CHECKPOINT_RESTORE capability. 140 * 141 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE, 142 * we also allow ioctls with SYS_ADMIN capability. 143 */ 144 KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0), 145 }; 146 /* 147 * Kernel module parameter to specify maximum number of supported queues per 148 * device 149 */ 150 extern int max_num_of_queues_per_device; 151 152 153 /* Kernel module parameter to specify the scheduling policy */ 154 extern int sched_policy; 155 156 /* 157 * Kernel module parameter to specify the maximum process 158 * number per HW scheduler 159 */ 160 extern int hws_max_conc_proc; 161 162 extern int cwsr_enable; 163 164 /* 165 * Kernel module parameter to specify whether to send sigterm to HSA process on 166 * unhandled exception 167 */ 168 extern int send_sigterm; 169 170 /* 171 * This kernel module is used to simulate large bar machine on non-large bar 172 * enabled machines. 173 */ 174 extern int debug_largebar; 175 176 /* 177 * Ignore CRAT table during KFD initialization, can be used to work around 178 * broken CRAT tables on some AMD systems 179 */ 180 extern int ignore_crat; 181 182 /* Set sh_mem_config.retry_disable on GFX v9 */ 183 extern int amdgpu_noretry; 184 185 /* Halt if HWS hang is detected */ 186 extern int halt_if_hws_hang; 187 188 /* Whether MEC FW support GWS barriers */ 189 extern bool hws_gws_support; 190 191 /* Queue preemption timeout in ms */ 192 extern int queue_preemption_timeout_ms; 193 194 /* 195 * Don't evict process queues on vm fault 196 */ 197 extern int amdgpu_no_queue_eviction_on_vm_fault; 198 199 /* Enable eviction debug messages */ 200 extern bool debug_evictions; 201 202 enum cache_policy { 203 cache_policy_coherent, 204 cache_policy_noncoherent 205 }; 206 207 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0]) 208 #define KFD_IS_SOC15(dev) ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1))) 209 210 struct kfd_event_interrupt_class { 211 bool (*interrupt_isr)(struct kfd_dev *dev, 212 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 213 bool *patched_flag); 214 void (*interrupt_wq)(struct kfd_dev *dev, 215 const uint32_t *ih_ring_entry); 216 }; 217 218 struct kfd_device_info { 219 uint32_t gfx_target_version; 220 const struct kfd_event_interrupt_class *event_interrupt_class; 221 unsigned int max_pasid_bits; 222 unsigned int max_no_of_hqd; 223 unsigned int doorbell_size; 224 size_t ih_ring_entry_size; 225 uint8_t num_of_watch_points; 226 uint16_t mqd_size_aligned; 227 bool supports_cwsr; 228 bool needs_iommu_device; 229 bool needs_pci_atomics; 230 uint32_t no_atomic_fw_version; 231 unsigned int num_sdma_queues_per_engine; 232 }; 233 234 unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev); 235 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev); 236 237 struct kfd_mem_obj { 238 uint32_t range_start; 239 uint32_t range_end; 240 uint64_t gpu_addr; 241 uint32_t *cpu_ptr; 242 void *gtt_mem; 243 }; 244 245 struct kfd_vmid_info { 246 uint32_t first_vmid_kfd; 247 uint32_t last_vmid_kfd; 248 uint32_t vmid_num_kfd; 249 }; 250 251 struct kfd_dev { 252 struct amdgpu_device *adev; 253 254 struct kfd_device_info device_info; 255 struct pci_dev *pdev; 256 struct drm_device *ddev; 257 258 unsigned int id; /* topology stub index */ 259 260 phys_addr_t doorbell_base; /* Start of actual doorbells used by 261 * KFD. It is aligned for mapping 262 * into user mode 263 */ 264 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI 265 * doorbell BAR to the first KFD 266 * doorbell in dwords. GFX reserves 267 * the segment before this offset. 268 */ 269 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 270 * page used by kernel queue 271 */ 272 273 struct kgd2kfd_shared_resources shared_resources; 274 struct kfd_vmid_info vm_info; 275 276 const struct kfd2kgd_calls *kfd2kgd; 277 struct mutex doorbell_mutex; 278 DECLARE_BITMAP(doorbell_available_index, 279 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 280 281 void *gtt_mem; 282 uint64_t gtt_start_gpu_addr; 283 void *gtt_start_cpu_ptr; 284 void *gtt_sa_bitmap; 285 struct mutex gtt_sa_lock; 286 unsigned int gtt_sa_chunk_size; 287 unsigned int gtt_sa_num_of_chunks; 288 289 /* Interrupts */ 290 struct kfifo ih_fifo; 291 struct workqueue_struct *ih_wq; 292 struct work_struct interrupt_work; 293 spinlock_t interrupt_lock; 294 295 /* QCM Device instance */ 296 struct device_queue_manager *dqm; 297 298 bool init_complete; 299 /* 300 * Interrupts of interest to KFD are copied 301 * from the HW ring into a SW ring. 302 */ 303 bool interrupts_active; 304 305 /* Firmware versions */ 306 uint16_t mec_fw_version; 307 uint16_t mec2_fw_version; 308 uint16_t sdma_fw_version; 309 310 /* Maximum process number mapped to HW scheduler */ 311 unsigned int max_proc_per_quantum; 312 313 /* CWSR */ 314 bool cwsr_enabled; 315 const void *cwsr_isa; 316 unsigned int cwsr_isa_size; 317 318 /* xGMI */ 319 uint64_t hive_id; 320 321 bool pci_atomic_requested; 322 323 /* Use IOMMU v2 flag */ 324 bool use_iommu_v2; 325 326 /* SRAM ECC flag */ 327 atomic_t sram_ecc_flag; 328 329 /* Compute Profile ref. count */ 330 atomic_t compute_profile; 331 332 /* Global GWS resource shared between processes */ 333 void *gws; 334 335 /* Clients watching SMI events */ 336 struct list_head smi_clients; 337 spinlock_t smi_lock; 338 339 uint32_t reset_seq_num; 340 341 struct ida doorbell_ida; 342 unsigned int max_doorbell_slices; 343 344 int noretry; 345 346 /* HMM page migration MEMORY_DEVICE_PRIVATE mapping */ 347 struct dev_pagemap pgmap; 348 }; 349 350 enum kfd_mempool { 351 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 352 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 353 KFD_MEMPOOL_FRAMEBUFFER = 3, 354 }; 355 356 /* Character device interface */ 357 int kfd_chardev_init(void); 358 void kfd_chardev_exit(void); 359 360 /** 361 * enum kfd_unmap_queues_filter - Enum for queue filters. 362 * 363 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 364 * running queues list. 365 * 366 * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues 367 * in the run list. 368 * 369 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 370 * specific process. 371 * 372 */ 373 enum kfd_unmap_queues_filter { 374 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1, 375 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2, 376 KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3 377 }; 378 379 /** 380 * enum kfd_queue_type - Enum for various queue types. 381 * 382 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 383 * 384 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type. 385 * 386 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 387 * 388 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 389 * 390 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface. 391 */ 392 enum kfd_queue_type { 393 KFD_QUEUE_TYPE_COMPUTE, 394 KFD_QUEUE_TYPE_SDMA, 395 KFD_QUEUE_TYPE_HIQ, 396 KFD_QUEUE_TYPE_DIQ, 397 KFD_QUEUE_TYPE_SDMA_XGMI 398 }; 399 400 enum kfd_queue_format { 401 KFD_QUEUE_FORMAT_PM4, 402 KFD_QUEUE_FORMAT_AQL 403 }; 404 405 enum KFD_QUEUE_PRIORITY { 406 KFD_QUEUE_PRIORITY_MINIMUM = 0, 407 KFD_QUEUE_PRIORITY_MAXIMUM = 15 408 }; 409 410 /** 411 * struct queue_properties 412 * 413 * @type: The queue type. 414 * 415 * @queue_id: Queue identifier. 416 * 417 * @queue_address: Queue ring buffer address. 418 * 419 * @queue_size: Queue ring buffer size. 420 * 421 * @priority: Defines the queue priority relative to other queues in the 422 * process. 423 * This is just an indication and HW scheduling may override the priority as 424 * necessary while keeping the relative prioritization. 425 * the priority granularity is from 0 to f which f is the highest priority. 426 * currently all queues are initialized with the highest priority. 427 * 428 * @queue_percent: This field is partially implemented and currently a zero in 429 * this field defines that the queue is non active. 430 * 431 * @read_ptr: User space address which points to the number of dwords the 432 * cp read from the ring buffer. This field updates automatically by the H/W. 433 * 434 * @write_ptr: Defines the number of dwords written to the ring buffer. 435 * 436 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring 437 * buffer. This field should be similar to write_ptr and the user should 438 * update this field after updating the write_ptr. 439 * 440 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 441 * 442 * @is_interop: Defines if this is a interop queue. Interop queue means that 443 * the queue can access both graphics and compute resources. 444 * 445 * @is_evicted: Defines if the queue is evicted. Only active queues 446 * are evicted, rendering them inactive. 447 * 448 * @is_active: Defines if the queue is active or not. @is_active and 449 * @is_evicted are protected by the DQM lock. 450 * 451 * @is_gws: Defines if the queue has been updated to be GWS-capable or not. 452 * @is_gws should be protected by the DQM lock, since changing it can yield the 453 * possibility of updating DQM state on number of GWS queues. 454 * 455 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 456 * of the queue. 457 * 458 * This structure represents the queue properties for each queue no matter if 459 * it's user mode or kernel mode queue. 460 * 461 */ 462 463 struct queue_properties { 464 enum kfd_queue_type type; 465 enum kfd_queue_format format; 466 unsigned int queue_id; 467 uint64_t queue_address; 468 uint64_t queue_size; 469 uint32_t priority; 470 uint32_t queue_percent; 471 uint32_t *read_ptr; 472 uint32_t *write_ptr; 473 void __iomem *doorbell_ptr; 474 uint32_t doorbell_off; 475 bool is_interop; 476 bool is_evicted; 477 bool is_active; 478 bool is_gws; 479 /* Not relevant for user mode queues in cp scheduling */ 480 unsigned int vmid; 481 /* Relevant only for sdma queues*/ 482 uint32_t sdma_engine_id; 483 uint32_t sdma_queue_id; 484 uint32_t sdma_vm_addr; 485 /* Relevant only for VI */ 486 uint64_t eop_ring_buffer_address; 487 uint32_t eop_ring_buffer_size; 488 uint64_t ctx_save_restore_area_address; 489 uint32_t ctx_save_restore_area_size; 490 uint32_t ctl_stack_size; 491 uint64_t tba_addr; 492 uint64_t tma_addr; 493 }; 494 495 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 496 (q).queue_address != 0 && \ 497 (q).queue_percent > 0 && \ 498 !(q).is_evicted) 499 500 enum mqd_update_flag { 501 UPDATE_FLAG_CU_MASK = 0, 502 }; 503 504 struct mqd_update_info { 505 union { 506 struct { 507 uint32_t count; /* Must be a multiple of 32 */ 508 uint32_t *ptr; 509 } cu_mask; 510 }; 511 enum mqd_update_flag update_flag; 512 }; 513 514 /** 515 * struct queue 516 * 517 * @list: Queue linked list. 518 * 519 * @mqd: The queue MQD (memory queue descriptor). 520 * 521 * @mqd_mem_obj: The MQD local gpu memory object. 522 * 523 * @gart_mqd_addr: The MQD gart mc address. 524 * 525 * @properties: The queue properties. 526 * 527 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 528 * that the queue should be executed on. 529 * 530 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 531 * id. 532 * 533 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 534 * 535 * @process: The kfd process that created this queue. 536 * 537 * @device: The kfd device that created this queue. 538 * 539 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 540 * otherwise. 541 * 542 * This structure represents user mode compute queues. 543 * It contains all the necessary data to handle such queues. 544 * 545 */ 546 547 struct queue { 548 struct list_head list; 549 void *mqd; 550 struct kfd_mem_obj *mqd_mem_obj; 551 uint64_t gart_mqd_addr; 552 struct queue_properties properties; 553 554 uint32_t mec; 555 uint32_t pipe; 556 uint32_t queue; 557 558 unsigned int sdma_id; 559 unsigned int doorbell_id; 560 561 struct kfd_process *process; 562 struct kfd_dev *device; 563 void *gws; 564 565 /* procfs */ 566 struct kobject kobj; 567 }; 568 569 enum KFD_MQD_TYPE { 570 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 571 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 572 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 573 KFD_MQD_TYPE_DIQ, /* for diq */ 574 KFD_MQD_TYPE_MAX 575 }; 576 577 enum KFD_PIPE_PRIORITY { 578 KFD_PIPE_PRIORITY_CS_LOW = 0, 579 KFD_PIPE_PRIORITY_CS_MEDIUM, 580 KFD_PIPE_PRIORITY_CS_HIGH 581 }; 582 583 struct scheduling_resources { 584 unsigned int vmid_mask; 585 enum kfd_queue_type type; 586 uint64_t queue_mask; 587 uint64_t gws_mask; 588 uint32_t oac_mask; 589 uint32_t gds_heap_base; 590 uint32_t gds_heap_size; 591 }; 592 593 struct process_queue_manager { 594 /* data */ 595 struct kfd_process *process; 596 struct list_head queues; 597 unsigned long *queue_slot_bitmap; 598 }; 599 600 struct qcm_process_device { 601 /* The Device Queue Manager that owns this data */ 602 struct device_queue_manager *dqm; 603 struct process_queue_manager *pqm; 604 /* Queues list */ 605 struct list_head queues_list; 606 struct list_head priv_queue_list; 607 608 unsigned int queue_count; 609 unsigned int vmid; 610 bool is_debug; 611 unsigned int evicted; /* eviction counter, 0=active */ 612 613 /* This flag tells if we should reset all wavefronts on 614 * process termination 615 */ 616 bool reset_wavefronts; 617 618 /* This flag tells us if this process has a GWS-capable 619 * queue that will be mapped into the runlist. It's 620 * possible to request a GWS BO, but not have the queue 621 * currently mapped, and this changes how the MAP_PROCESS 622 * PM4 packet is configured. 623 */ 624 bool mapped_gws_queue; 625 626 /* All the memory management data should be here too */ 627 uint64_t gds_context_area; 628 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 629 uint64_t page_table_base; 630 uint32_t sh_mem_config; 631 uint32_t sh_mem_bases; 632 uint32_t sh_mem_ape1_base; 633 uint32_t sh_mem_ape1_limit; 634 uint32_t gds_size; 635 uint32_t num_gws; 636 uint32_t num_oac; 637 uint32_t sh_hidden_private_base; 638 639 /* CWSR memory */ 640 struct kgd_mem *cwsr_mem; 641 void *cwsr_kaddr; 642 uint64_t cwsr_base; 643 uint64_t tba_addr; 644 uint64_t tma_addr; 645 646 /* IB memory */ 647 struct kgd_mem *ib_mem; 648 uint64_t ib_base; 649 void *ib_kaddr; 650 651 /* doorbell resources per process per device */ 652 unsigned long *doorbell_bitmap; 653 }; 654 655 /* KFD Memory Eviction */ 656 657 /* Approx. wait time before attempting to restore evicted BOs */ 658 #define PROCESS_RESTORE_TIME_MS 100 659 /* Approx. back off time if restore fails due to lack of memory */ 660 #define PROCESS_BACK_OFF_TIME_MS 100 661 /* Approx. time before evicting the process again */ 662 #define PROCESS_ACTIVE_TIME_MS 10 663 664 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 665 * idr_handle in the least significant 4 bytes 666 */ 667 #define MAKE_HANDLE(gpu_id, idr_handle) \ 668 (((uint64_t)(gpu_id) << 32) + idr_handle) 669 #define GET_GPU_ID(handle) (handle >> 32) 670 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 671 672 enum kfd_pdd_bound { 673 PDD_UNBOUND = 0, 674 PDD_BOUND, 675 PDD_BOUND_SUSPENDED, 676 }; 677 678 #define MAX_SYSFS_FILENAME_LEN 15 679 680 /* 681 * SDMA counter runs at 100MHz frequency. 682 * We display SDMA activity in microsecond granularity in sysfs. 683 * As a result, the divisor is 100. 684 */ 685 #define SDMA_ACTIVITY_DIVISOR 100 686 687 /* Data that is per-process-per device. */ 688 struct kfd_process_device { 689 /* The device that owns this data. */ 690 struct kfd_dev *dev; 691 692 /* The process that owns this kfd_process_device. */ 693 struct kfd_process *process; 694 695 /* per-process-per device QCM data structure */ 696 struct qcm_process_device qpd; 697 698 /*Apertures*/ 699 uint64_t lds_base; 700 uint64_t lds_limit; 701 uint64_t gpuvm_base; 702 uint64_t gpuvm_limit; 703 uint64_t scratch_base; 704 uint64_t scratch_limit; 705 706 /* VM context for GPUVM allocations */ 707 struct file *drm_file; 708 void *drm_priv; 709 710 /* GPUVM allocations storage */ 711 struct idr alloc_idr; 712 713 /* Flag used to tell the pdd has dequeued from the dqm. 714 * This is used to prevent dev->dqm->ops.process_termination() from 715 * being called twice when it is already called in IOMMU callback 716 * function. 717 */ 718 bool already_dequeued; 719 bool runtime_inuse; 720 721 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 722 enum kfd_pdd_bound bound; 723 724 /* VRAM usage */ 725 uint64_t vram_usage; 726 struct attribute attr_vram; 727 char vram_filename[MAX_SYSFS_FILENAME_LEN]; 728 729 /* SDMA activity tracking */ 730 uint64_t sdma_past_activity_counter; 731 struct attribute attr_sdma; 732 char sdma_filename[MAX_SYSFS_FILENAME_LEN]; 733 734 /* Eviction activity tracking */ 735 uint64_t last_evict_timestamp; 736 atomic64_t evict_duration_counter; 737 struct attribute attr_evict; 738 739 struct kobject *kobj_stats; 740 unsigned int doorbell_index; 741 742 /* 743 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process 744 * that is associated with device encoded by "this" struct instance. The 745 * value reflects CU usage by all of the waves launched by this process 746 * on this device. A very important property of occupancy parameter is 747 * that its value is a snapshot of current use. 748 * 749 * Following is to be noted regarding how this parameter is reported: 750 * 751 * The number of waves that a CU can launch is limited by couple of 752 * parameters. These are encoded by struct amdgpu_cu_info instance 753 * that is part of every device definition. For GFX9 devices this 754 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves 755 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu) 756 * when they do use scratch memory. This could change for future 757 * devices and therefore this example should be considered as a guide. 758 * 759 * All CU's of a device are available for the process. This may not be true 760 * under certain conditions - e.g. CU masking. 761 * 762 * Finally number of CU's that are occupied by a process is affected by both 763 * number of CU's a device has along with number of other competing processes 764 */ 765 struct attribute attr_cu_occupancy; 766 767 /* sysfs counters for GPU retry fault and page migration tracking */ 768 struct kobject *kobj_counters; 769 struct attribute attr_faults; 770 struct attribute attr_page_in; 771 struct attribute attr_page_out; 772 uint64_t faults; 773 uint64_t page_in; 774 uint64_t page_out; 775 /* 776 * If this process has been checkpointed before, then the user 777 * application will use the original gpu_id on the 778 * checkpointed node to refer to this device. 779 */ 780 uint32_t user_gpu_id; 781 }; 782 783 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 784 785 struct svm_range_list { 786 struct mutex lock; 787 struct rb_root_cached objects; 788 struct list_head list; 789 struct work_struct deferred_list_work; 790 struct list_head deferred_range_list; 791 struct list_head criu_svm_metadata_list; 792 spinlock_t deferred_list_lock; 793 atomic_t evicted_ranges; 794 atomic_t drain_pagefaults; 795 struct delayed_work restore_work; 796 DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE); 797 struct task_struct *faulting_task; 798 }; 799 800 /* Process data */ 801 struct kfd_process { 802 /* 803 * kfd_process are stored in an mm_struct*->kfd_process* 804 * hash table (kfd_processes in kfd_process.c) 805 */ 806 struct hlist_node kfd_processes; 807 808 /* 809 * Opaque pointer to mm_struct. We don't hold a reference to 810 * it so it should never be dereferenced from here. This is 811 * only used for looking up processes by their mm. 812 */ 813 void *mm; 814 815 struct kref ref; 816 struct work_struct release_work; 817 818 struct mutex mutex; 819 820 /* 821 * In any process, the thread that started main() is the lead 822 * thread and outlives the rest. 823 * It is here because amd_iommu_bind_pasid wants a task_struct. 824 * It can also be used for safely getting a reference to the 825 * mm_struct of the process. 826 */ 827 struct task_struct *lead_thread; 828 829 /* We want to receive a notification when the mm_struct is destroyed */ 830 struct mmu_notifier mmu_notifier; 831 832 u32 pasid; 833 834 /* 835 * Array of kfd_process_device pointers, 836 * one for each device the process is using. 837 */ 838 struct kfd_process_device *pdds[MAX_GPU_INSTANCE]; 839 uint32_t n_pdds; 840 841 struct process_queue_manager pqm; 842 843 /*Is the user space process 32 bit?*/ 844 bool is_32bit_user_mode; 845 846 /* Event-related data */ 847 struct mutex event_mutex; 848 /* Event ID allocator and lookup */ 849 struct idr event_idr; 850 /* Event page */ 851 u64 signal_handle; 852 struct kfd_signal_page *signal_page; 853 size_t signal_mapped_size; 854 size_t signal_event_count; 855 bool signal_event_limit_reached; 856 857 /* Information used for memory eviction */ 858 void *kgd_process_info; 859 /* Eviction fence that is attached to all the BOs of this process. The 860 * fence will be triggered during eviction and new one will be created 861 * during restore 862 */ 863 struct dma_fence *ef; 864 865 /* Work items for evicting and restoring BOs */ 866 struct delayed_work eviction_work; 867 struct delayed_work restore_work; 868 /* seqno of the last scheduled eviction */ 869 unsigned int last_eviction_seqno; 870 /* Approx. the last timestamp (in jiffies) when the process was 871 * restored after an eviction 872 */ 873 unsigned long last_restore_timestamp; 874 875 /* Kobj for our procfs */ 876 struct kobject *kobj; 877 struct kobject *kobj_queues; 878 struct attribute attr_pasid; 879 880 /* shared virtual memory registered by this process */ 881 struct svm_range_list svms; 882 883 bool xnack_enabled; 884 885 atomic_t poison; 886 /* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */ 887 bool queues_paused; 888 }; 889 890 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 891 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 892 extern struct srcu_struct kfd_processes_srcu; 893 894 /** 895 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer. 896 * 897 * @filep: pointer to file structure. 898 * @p: amdkfd process pointer. 899 * @data: pointer to arg that was copied from user. 900 * 901 * Return: returns ioctl completion code. 902 */ 903 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 904 void *data); 905 906 struct amdkfd_ioctl_desc { 907 unsigned int cmd; 908 int flags; 909 amdkfd_ioctl_t *func; 910 unsigned int cmd_drv; 911 const char *name; 912 }; 913 bool kfd_dev_is_large_bar(struct kfd_dev *dev); 914 915 int kfd_process_create_wq(void); 916 void kfd_process_destroy_wq(void); 917 struct kfd_process *kfd_create_process(struct file *filep); 918 struct kfd_process *kfd_get_process(const struct task_struct *task); 919 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid); 920 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 921 922 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id); 923 int kfd_process_gpuid_from_adev(struct kfd_process *p, 924 struct amdgpu_device *adev, uint32_t *gpuid, 925 uint32_t *gpuidx); 926 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p, 927 uint32_t gpuidx, uint32_t *gpuid) { 928 return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL; 929 } 930 static inline struct kfd_process_device *kfd_process_device_from_gpuidx( 931 struct kfd_process *p, uint32_t gpuidx) { 932 return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL; 933 } 934 935 void kfd_unref_process(struct kfd_process *p); 936 int kfd_process_evict_queues(struct kfd_process *p); 937 int kfd_process_restore_queues(struct kfd_process *p); 938 void kfd_suspend_all_processes(void); 939 int kfd_resume_all_processes(void); 940 941 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process, 942 uint32_t gpu_id); 943 944 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id); 945 946 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 947 struct file *drm_file); 948 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 949 struct kfd_process *p); 950 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 951 struct kfd_process *p); 952 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 953 struct kfd_process *p); 954 955 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported); 956 957 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 958 struct vm_area_struct *vma); 959 960 /* KFD process API for creating and translating handles */ 961 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 962 void *mem); 963 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 964 int handle); 965 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 966 int handle); 967 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid); 968 969 /* PASIDs */ 970 int kfd_pasid_init(void); 971 void kfd_pasid_exit(void); 972 bool kfd_set_pasid_limit(unsigned int new_limit); 973 unsigned int kfd_get_pasid_limit(void); 974 u32 kfd_pasid_alloc(void); 975 void kfd_pasid_free(u32 pasid); 976 977 /* Doorbells */ 978 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 979 int kfd_doorbell_init(struct kfd_dev *kfd); 980 void kfd_doorbell_fini(struct kfd_dev *kfd); 981 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, 982 struct vm_area_struct *vma); 983 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 984 unsigned int *doorbell_off); 985 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 986 u32 read_kernel_doorbell(u32 __iomem *db); 987 void write_kernel_doorbell(void __iomem *db, u32 value); 988 void write_kernel_doorbell64(void __iomem *db, u64 value); 989 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 990 struct kfd_process_device *pdd, 991 unsigned int doorbell_id); 992 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd); 993 int kfd_alloc_process_doorbells(struct kfd_dev *kfd, 994 unsigned int *doorbell_index); 995 void kfd_free_process_doorbells(struct kfd_dev *kfd, 996 unsigned int doorbell_index); 997 /* GTT Sub-Allocator */ 998 999 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 1000 struct kfd_mem_obj **mem_obj); 1001 1002 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 1003 1004 extern struct device *kfd_device; 1005 1006 /* KFD's procfs */ 1007 void kfd_procfs_init(void); 1008 void kfd_procfs_shutdown(void); 1009 int kfd_procfs_add_queue(struct queue *q); 1010 void kfd_procfs_del_queue(struct queue *q); 1011 1012 /* Topology */ 1013 int kfd_topology_init(void); 1014 void kfd_topology_shutdown(void); 1015 int kfd_topology_add_device(struct kfd_dev *gpu); 1016 int kfd_topology_remove_device(struct kfd_dev *gpu); 1017 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 1018 uint32_t proximity_domain); 1019 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 1020 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 1021 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 1022 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev); 1023 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); 1024 int kfd_numa_node_to_apic_id(int numa_node_id); 1025 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu); 1026 1027 /* Interrupts */ 1028 int kfd_interrupt_init(struct kfd_dev *dev); 1029 void kfd_interrupt_exit(struct kfd_dev *dev); 1030 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 1031 bool interrupt_is_wanted(struct kfd_dev *dev, 1032 const uint32_t *ih_ring_entry, 1033 uint32_t *patched_ihre, bool *flag); 1034 1035 /* amdkfd Apertures */ 1036 int kfd_init_apertures(struct kfd_process *process); 1037 1038 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1039 uint64_t tba_addr, 1040 uint64_t tma_addr); 1041 1042 /* CRIU */ 1043 /* 1044 * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private 1045 * structures: 1046 * kfd_criu_process_priv_data 1047 * kfd_criu_device_priv_data 1048 * kfd_criu_bo_priv_data 1049 * kfd_criu_queue_priv_data 1050 * kfd_criu_event_priv_data 1051 * kfd_criu_svm_range_priv_data 1052 */ 1053 1054 #define KFD_CRIU_PRIV_VERSION 1 1055 1056 struct kfd_criu_process_priv_data { 1057 uint32_t version; 1058 uint32_t xnack_mode; 1059 }; 1060 1061 struct kfd_criu_device_priv_data { 1062 /* For future use */ 1063 uint64_t reserved; 1064 }; 1065 1066 struct kfd_criu_bo_priv_data { 1067 uint64_t user_addr; 1068 uint32_t idr_handle; 1069 uint32_t mapped_gpuids[MAX_GPU_INSTANCE]; 1070 }; 1071 1072 /* 1073 * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data, 1074 * kfd_criu_svm_range_priv_data is the object type 1075 */ 1076 enum kfd_criu_object_type { 1077 KFD_CRIU_OBJECT_TYPE_QUEUE, 1078 KFD_CRIU_OBJECT_TYPE_EVENT, 1079 KFD_CRIU_OBJECT_TYPE_SVM_RANGE, 1080 }; 1081 1082 struct kfd_criu_svm_range_priv_data { 1083 uint32_t object_type; 1084 uint64_t start_addr; 1085 uint64_t size; 1086 /* Variable length array of attributes */ 1087 struct kfd_ioctl_svm_attribute attrs[]; 1088 }; 1089 1090 struct kfd_criu_queue_priv_data { 1091 uint32_t object_type; 1092 uint64_t q_address; 1093 uint64_t q_size; 1094 uint64_t read_ptr_addr; 1095 uint64_t write_ptr_addr; 1096 uint64_t doorbell_off; 1097 uint64_t eop_ring_buffer_address; 1098 uint64_t ctx_save_restore_area_address; 1099 uint32_t gpu_id; 1100 uint32_t type; 1101 uint32_t format; 1102 uint32_t q_id; 1103 uint32_t priority; 1104 uint32_t q_percent; 1105 uint32_t doorbell_id; 1106 uint32_t gws; 1107 uint32_t sdma_id; 1108 uint32_t eop_ring_buffer_size; 1109 uint32_t ctx_save_restore_area_size; 1110 uint32_t ctl_stack_size; 1111 uint32_t mqd_size; 1112 }; 1113 1114 struct kfd_criu_event_priv_data { 1115 uint32_t object_type; 1116 uint64_t user_handle; 1117 uint32_t event_id; 1118 uint32_t auto_reset; 1119 uint32_t type; 1120 uint32_t signaled; 1121 1122 union { 1123 struct kfd_hsa_memory_exception_data memory_exception_data; 1124 struct kfd_hsa_hw_exception_data hw_exception_data; 1125 }; 1126 }; 1127 1128 int kfd_process_get_queue_info(struct kfd_process *p, 1129 uint32_t *num_queues, 1130 uint64_t *priv_data_sizes); 1131 1132 int kfd_criu_checkpoint_queues(struct kfd_process *p, 1133 uint8_t __user *user_priv_data, 1134 uint64_t *priv_data_offset); 1135 1136 int kfd_criu_restore_queue(struct kfd_process *p, 1137 uint8_t __user *user_priv_data, 1138 uint64_t *priv_data_offset, 1139 uint64_t max_priv_data_size); 1140 1141 int kfd_criu_checkpoint_events(struct kfd_process *p, 1142 uint8_t __user *user_priv_data, 1143 uint64_t *priv_data_offset); 1144 1145 int kfd_criu_restore_event(struct file *devkfd, 1146 struct kfd_process *p, 1147 uint8_t __user *user_priv_data, 1148 uint64_t *priv_data_offset, 1149 uint64_t max_priv_data_size); 1150 /* CRIU - End */ 1151 1152 /* Queue Context Management */ 1153 int init_queue(struct queue **q, const struct queue_properties *properties); 1154 void uninit_queue(struct queue *q); 1155 void print_queue_properties(struct queue_properties *q); 1156 void print_queue(struct queue *q); 1157 1158 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 1159 struct kfd_dev *dev); 1160 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 1161 struct kfd_dev *dev); 1162 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 1163 struct kfd_dev *dev); 1164 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 1165 struct kfd_dev *dev); 1166 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 1167 struct kfd_dev *dev); 1168 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 1169 struct kfd_dev *dev); 1170 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 1171 void device_queue_manager_uninit(struct device_queue_manager *dqm); 1172 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 1173 enum kfd_queue_type type); 1174 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging); 1175 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid); 1176 1177 /* Process Queue Manager */ 1178 struct process_queue_node { 1179 struct queue *q; 1180 struct kernel_queue *kq; 1181 struct list_head process_queue_list; 1182 }; 1183 1184 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 1185 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 1186 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 1187 void pqm_uninit(struct process_queue_manager *pqm); 1188 int pqm_create_queue(struct process_queue_manager *pqm, 1189 struct kfd_dev *dev, 1190 struct file *f, 1191 struct queue_properties *properties, 1192 unsigned int *qid, 1193 const struct kfd_criu_queue_priv_data *q_data, 1194 const void *restore_mqd, 1195 const void *restore_ctl_stack, 1196 uint32_t *p_doorbell_offset_in_process); 1197 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 1198 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid, 1199 struct queue_properties *p); 1200 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid, 1201 struct mqd_update_info *minfo); 1202 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 1203 void *gws); 1204 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 1205 unsigned int qid); 1206 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm, 1207 unsigned int qid); 1208 int pqm_get_wave_state(struct process_queue_manager *pqm, 1209 unsigned int qid, 1210 void __user *ctl_stack, 1211 u32 *ctl_stack_used_size, 1212 u32 *save_area_used_size); 1213 1214 int amdkfd_fence_wait_timeout(uint64_t *fence_addr, 1215 uint64_t fence_value, 1216 unsigned int timeout_ms); 1217 1218 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm, 1219 unsigned int qid, 1220 u32 *mqd_size, 1221 u32 *ctl_stack_size); 1222 /* Packet Manager */ 1223 1224 #define KFD_FENCE_COMPLETED (100) 1225 #define KFD_FENCE_INIT (10) 1226 1227 struct packet_manager { 1228 struct device_queue_manager *dqm; 1229 struct kernel_queue *priv_queue; 1230 struct mutex lock; 1231 bool allocated; 1232 struct kfd_mem_obj *ib_buffer_obj; 1233 unsigned int ib_size_bytes; 1234 bool is_over_subscription; 1235 1236 const struct packet_manager_funcs *pmf; 1237 }; 1238 1239 struct packet_manager_funcs { 1240 /* Support ASIC-specific packet formats for PM4 packets */ 1241 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 1242 struct qcm_process_device *qpd); 1243 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 1244 uint64_t ib, size_t ib_size_in_dwords, bool chain); 1245 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 1246 struct scheduling_resources *res); 1247 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 1248 struct queue *q, bool is_static); 1249 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 1250 enum kfd_unmap_queues_filter mode, 1251 uint32_t filter_param, bool reset); 1252 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 1253 uint64_t fence_address, uint64_t fence_value); 1254 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 1255 1256 /* Packet sizes */ 1257 int map_process_size; 1258 int runlist_size; 1259 int set_resources_size; 1260 int map_queues_size; 1261 int unmap_queues_size; 1262 int query_status_size; 1263 int release_mem_size; 1264 }; 1265 1266 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 1267 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 1268 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs; 1269 1270 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 1271 void pm_uninit(struct packet_manager *pm, bool hanging); 1272 int pm_send_set_resources(struct packet_manager *pm, 1273 struct scheduling_resources *res); 1274 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 1275 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 1276 uint64_t fence_value); 1277 1278 int pm_send_unmap_queue(struct packet_manager *pm, 1279 enum kfd_unmap_queues_filter mode, 1280 uint32_t filter_param, bool reset); 1281 1282 void pm_release_ib(struct packet_manager *pm); 1283 1284 /* Following PM funcs can be shared among VI and AI */ 1285 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 1286 1287 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1288 1289 /* Events */ 1290 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1291 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1292 1293 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1294 1295 void kfd_event_init_process(struct kfd_process *p); 1296 void kfd_event_free_process(struct kfd_process *p); 1297 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1298 int kfd_wait_on_events(struct kfd_process *p, 1299 uint32_t num_events, void __user *data, 1300 bool all, uint32_t user_timeout_ms, 1301 uint32_t *wait_result); 1302 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 1303 uint32_t valid_id_bits); 1304 void kfd_signal_iommu_event(struct kfd_dev *dev, 1305 u32 pasid, unsigned long address, 1306 bool is_write_requested, bool is_execute_requested); 1307 void kfd_signal_hw_exception_event(u32 pasid); 1308 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1309 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1310 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset); 1311 1312 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1313 uint32_t event_type, bool auto_reset, uint32_t node_id, 1314 uint32_t *event_id, uint32_t *event_trigger_data, 1315 uint64_t *event_page_offset, uint32_t *event_slot_index); 1316 1317 int kfd_get_num_events(struct kfd_process *p); 1318 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1319 1320 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid, 1321 struct kfd_vm_fault_info *info); 1322 1323 void kfd_signal_reset_event(struct kfd_dev *dev); 1324 1325 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid); 1326 1327 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type); 1328 1329 bool kfd_is_locked(void); 1330 1331 /* Compute profile */ 1332 void kfd_inc_compute_active(struct kfd_dev *dev); 1333 void kfd_dec_compute_active(struct kfd_dev *dev); 1334 1335 /* Cgroup Support */ 1336 /* Check with device cgroup if @kfd device is accessible */ 1337 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd) 1338 { 1339 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) 1340 struct drm_device *ddev = kfd->ddev; 1341 1342 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, 1343 ddev->render->index, 1344 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1345 #else 1346 return 0; 1347 #endif 1348 } 1349 1350 /* Debugfs */ 1351 #if defined(CONFIG_DEBUG_FS) 1352 1353 void kfd_debugfs_init(void); 1354 void kfd_debugfs_fini(void); 1355 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1356 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1357 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1358 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1359 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1360 int pm_debugfs_runlist(struct seq_file *m, void *data); 1361 1362 int kfd_debugfs_hang_hws(struct kfd_dev *dev); 1363 int pm_debugfs_hang_hws(struct packet_manager *pm); 1364 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm); 1365 1366 #else 1367 1368 static inline void kfd_debugfs_init(void) {} 1369 static inline void kfd_debugfs_fini(void) {} 1370 1371 #endif 1372 1373 #endif 1374