xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 7a2f6f61)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef KFD_PRIV_H_INCLUDED
25 #define KFD_PRIV_H_INCLUDED
26 
27 #include <linux/hashtable.h>
28 #include <linux/mmu_notifier.h>
29 #include <linux/memremap.h>
30 #include <linux/mutex.h>
31 #include <linux/types.h>
32 #include <linux/atomic.h>
33 #include <linux/workqueue.h>
34 #include <linux/spinlock.h>
35 #include <linux/kfd_ioctl.h>
36 #include <linux/idr.h>
37 #include <linux/kfifo.h>
38 #include <linux/seq_file.h>
39 #include <linux/kref.h>
40 #include <linux/sysfs.h>
41 #include <linux/device_cgroup.h>
42 #include <drm/drm_file.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_device.h>
45 #include <drm/drm_ioctl.h>
46 #include <kgd_kfd_interface.h>
47 #include <linux/swap.h>
48 
49 #include "amd_shared.h"
50 #include "amdgpu.h"
51 
52 #define KFD_MAX_RING_ENTRY_SIZE	8
53 
54 #define KFD_SYSFS_FILE_MODE 0444
55 
56 /* GPU ID hash width in bits */
57 #define KFD_GPU_ID_HASH_WIDTH 16
58 
59 /* Use upper bits of mmap offset to store KFD driver specific information.
60  * BITS[63:62] - Encode MMAP type
61  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
62  * BITS[45:0]  - MMAP offset value
63  *
64  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
65  *  defines are w.r.t to PAGE_SIZE
66  */
67 #define KFD_MMAP_TYPE_SHIFT	62
68 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
71 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
72 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
73 
74 #define KFD_MMAP_GPU_ID_SHIFT 46
75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
76 				<< KFD_MMAP_GPU_ID_SHIFT)
77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
78 				& KFD_MMAP_GPU_ID_MASK)
79 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
80 				>> KFD_MMAP_GPU_ID_SHIFT)
81 
82 /*
83  * When working with cp scheduler we should assign the HIQ manually or via
84  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
85  * definitions for Kaveri. In Kaveri only the first ME queues participates
86  * in the cp scheduling taking that in mind we set the HIQ slot in the
87  * second ME.
88  */
89 #define KFD_CIK_HIQ_PIPE 4
90 #define KFD_CIK_HIQ_QUEUE 0
91 
92 /* Macro for allocating structures */
93 #define kfd_alloc_struct(ptr_to_struct)	\
94 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
95 
96 #define KFD_MAX_NUM_OF_PROCESSES 512
97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
98 
99 /*
100  * Size of the per-process TBA+TMA buffer: 2 pages
101  *
102  * The first page is the TBA used for the CWSR ISA code. The second
103  * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
104  */
105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
106 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
107 
108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
109 	(KFD_MAX_NUM_OF_PROCESSES *			\
110 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
111 
112 #define KFD_KERNEL_QUEUE_SIZE 2048
113 
114 #define KFD_UNMAP_LATENCY_MS	(4000)
115 
116 /*
117  * 512 = 0x200
118  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
119  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
120  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
121  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
122  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
123  */
124 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
125 
126 /**
127  * enum kfd_ioctl_flags - KFD ioctl flags
128  * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
129  * userspace can use a given ioctl.
130  */
131 enum kfd_ioctl_flags {
132 	/*
133 	 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
134 	 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
135 	 * perform privileged operations and load arbitrary data into MQDs and
136 	 * eventually HQD registers when the queue is mapped by HWS. In order to
137 	 * prevent this we should perform additional security checks.
138 	 *
139 	 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
140 	 *
141 	 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
142 	 * we also allow ioctls with SYS_ADMIN capability.
143 	 */
144 	KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
145 };
146 /*
147  * Kernel module parameter to specify maximum number of supported queues per
148  * device
149  */
150 extern int max_num_of_queues_per_device;
151 
152 
153 /* Kernel module parameter to specify the scheduling policy */
154 extern int sched_policy;
155 
156 /*
157  * Kernel module parameter to specify the maximum process
158  * number per HW scheduler
159  */
160 extern int hws_max_conc_proc;
161 
162 extern int cwsr_enable;
163 
164 /*
165  * Kernel module parameter to specify whether to send sigterm to HSA process on
166  * unhandled exception
167  */
168 extern int send_sigterm;
169 
170 /*
171  * This kernel module is used to simulate large bar machine on non-large bar
172  * enabled machines.
173  */
174 extern int debug_largebar;
175 
176 /*
177  * Ignore CRAT table during KFD initialization, can be used to work around
178  * broken CRAT tables on some AMD systems
179  */
180 extern int ignore_crat;
181 
182 /* Set sh_mem_config.retry_disable on GFX v9 */
183 extern int amdgpu_noretry;
184 
185 /* Halt if HWS hang is detected */
186 extern int halt_if_hws_hang;
187 
188 /* Whether MEC FW support GWS barriers */
189 extern bool hws_gws_support;
190 
191 /* Queue preemption timeout in ms */
192 extern int queue_preemption_timeout_ms;
193 
194 /*
195  * Don't evict process queues on vm fault
196  */
197 extern int amdgpu_no_queue_eviction_on_vm_fault;
198 
199 /* Enable eviction debug messages */
200 extern bool debug_evictions;
201 
202 enum cache_policy {
203 	cache_policy_coherent,
204 	cache_policy_noncoherent
205 };
206 
207 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0])
208 #define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
209 
210 struct kfd_event_interrupt_class {
211 	bool (*interrupt_isr)(struct kfd_dev *dev,
212 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
213 			bool *patched_flag);
214 	void (*interrupt_wq)(struct kfd_dev *dev,
215 			const uint32_t *ih_ring_entry);
216 };
217 
218 struct kfd_device_info {
219 	uint32_t gfx_target_version;
220 	const struct kfd_event_interrupt_class *event_interrupt_class;
221 	unsigned int max_pasid_bits;
222 	unsigned int max_no_of_hqd;
223 	unsigned int doorbell_size;
224 	size_t ih_ring_entry_size;
225 	uint8_t num_of_watch_points;
226 	uint16_t mqd_size_aligned;
227 	bool supports_cwsr;
228 	bool needs_iommu_device;
229 	bool needs_pci_atomics;
230 	uint32_t no_atomic_fw_version;
231 	unsigned int num_sdma_queues_per_engine;
232 };
233 
234 unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev);
235 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev);
236 
237 struct kfd_mem_obj {
238 	uint32_t range_start;
239 	uint32_t range_end;
240 	uint64_t gpu_addr;
241 	uint32_t *cpu_ptr;
242 	void *gtt_mem;
243 };
244 
245 struct kfd_vmid_info {
246 	uint32_t first_vmid_kfd;
247 	uint32_t last_vmid_kfd;
248 	uint32_t vmid_num_kfd;
249 };
250 
251 struct kfd_dev {
252 	struct amdgpu_device *adev;
253 
254 	struct kfd_device_info device_info;
255 	struct pci_dev *pdev;
256 	struct drm_device *ddev;
257 
258 	unsigned int id;		/* topology stub index */
259 
260 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
261 					 * KFD. It is aligned for mapping
262 					 * into user mode
263 					 */
264 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
265 					 * doorbell BAR to the first KFD
266 					 * doorbell in dwords. GFX reserves
267 					 * the segment before this offset.
268 					 */
269 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
270 					   * page used by kernel queue
271 					   */
272 
273 	struct kgd2kfd_shared_resources shared_resources;
274 	struct kfd_vmid_info vm_info;
275 
276 	const struct kfd2kgd_calls *kfd2kgd;
277 	struct mutex doorbell_mutex;
278 	DECLARE_BITMAP(doorbell_available_index,
279 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
280 
281 	void *gtt_mem;
282 	uint64_t gtt_start_gpu_addr;
283 	void *gtt_start_cpu_ptr;
284 	void *gtt_sa_bitmap;
285 	struct mutex gtt_sa_lock;
286 	unsigned int gtt_sa_chunk_size;
287 	unsigned int gtt_sa_num_of_chunks;
288 
289 	/* Interrupts */
290 	struct kfifo ih_fifo;
291 	struct workqueue_struct *ih_wq;
292 	struct work_struct interrupt_work;
293 	spinlock_t interrupt_lock;
294 
295 	/* QCM Device instance */
296 	struct device_queue_manager *dqm;
297 
298 	bool init_complete;
299 	/*
300 	 * Interrupts of interest to KFD are copied
301 	 * from the HW ring into a SW ring.
302 	 */
303 	bool interrupts_active;
304 
305 	/* Firmware versions */
306 	uint16_t mec_fw_version;
307 	uint16_t mec2_fw_version;
308 	uint16_t sdma_fw_version;
309 
310 	/* Maximum process number mapped to HW scheduler */
311 	unsigned int max_proc_per_quantum;
312 
313 	/* CWSR */
314 	bool cwsr_enabled;
315 	const void *cwsr_isa;
316 	unsigned int cwsr_isa_size;
317 
318 	/* xGMI */
319 	uint64_t hive_id;
320 
321 	bool pci_atomic_requested;
322 
323 	/* Use IOMMU v2 flag */
324 	bool use_iommu_v2;
325 
326 	/* SRAM ECC flag */
327 	atomic_t sram_ecc_flag;
328 
329 	/* Compute Profile ref. count */
330 	atomic_t compute_profile;
331 
332 	/* Global GWS resource shared between processes */
333 	void *gws;
334 
335 	/* Clients watching SMI events */
336 	struct list_head smi_clients;
337 	spinlock_t smi_lock;
338 
339 	uint32_t reset_seq_num;
340 
341 	struct ida doorbell_ida;
342 	unsigned int max_doorbell_slices;
343 
344 	int noretry;
345 
346 	/* HMM page migration MEMORY_DEVICE_PRIVATE mapping */
347 	struct dev_pagemap pgmap;
348 };
349 
350 enum kfd_mempool {
351 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
352 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
353 	KFD_MEMPOOL_FRAMEBUFFER = 3,
354 };
355 
356 /* Character device interface */
357 int kfd_chardev_init(void);
358 void kfd_chardev_exit(void);
359 
360 /**
361  * enum kfd_unmap_queues_filter - Enum for queue filters.
362  *
363  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
364  *						running queues list.
365  *
366  * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
367  *						in the run list.
368  *
369  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
370  *						specific process.
371  *
372  */
373 enum kfd_unmap_queues_filter {
374 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
375 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
376 	KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
377 };
378 
379 /**
380  * enum kfd_queue_type - Enum for various queue types.
381  *
382  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
383  *
384  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
385  *
386  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
387  *
388  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
389  *
390  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
391  */
392 enum kfd_queue_type  {
393 	KFD_QUEUE_TYPE_COMPUTE,
394 	KFD_QUEUE_TYPE_SDMA,
395 	KFD_QUEUE_TYPE_HIQ,
396 	KFD_QUEUE_TYPE_DIQ,
397 	KFD_QUEUE_TYPE_SDMA_XGMI
398 };
399 
400 enum kfd_queue_format {
401 	KFD_QUEUE_FORMAT_PM4,
402 	KFD_QUEUE_FORMAT_AQL
403 };
404 
405 enum KFD_QUEUE_PRIORITY {
406 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
407 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
408 };
409 
410 /**
411  * struct queue_properties
412  *
413  * @type: The queue type.
414  *
415  * @queue_id: Queue identifier.
416  *
417  * @queue_address: Queue ring buffer address.
418  *
419  * @queue_size: Queue ring buffer size.
420  *
421  * @priority: Defines the queue priority relative to other queues in the
422  * process.
423  * This is just an indication and HW scheduling may override the priority as
424  * necessary while keeping the relative prioritization.
425  * the priority granularity is from 0 to f which f is the highest priority.
426  * currently all queues are initialized with the highest priority.
427  *
428  * @queue_percent: This field is partially implemented and currently a zero in
429  * this field defines that the queue is non active.
430  *
431  * @read_ptr: User space address which points to the number of dwords the
432  * cp read from the ring buffer. This field updates automatically by the H/W.
433  *
434  * @write_ptr: Defines the number of dwords written to the ring buffer.
435  *
436  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
437  * buffer. This field should be similar to write_ptr and the user should
438  * update this field after updating the write_ptr.
439  *
440  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
441  *
442  * @is_interop: Defines if this is a interop queue. Interop queue means that
443  * the queue can access both graphics and compute resources.
444  *
445  * @is_evicted: Defines if the queue is evicted. Only active queues
446  * are evicted, rendering them inactive.
447  *
448  * @is_active: Defines if the queue is active or not. @is_active and
449  * @is_evicted are protected by the DQM lock.
450  *
451  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
452  * @is_gws should be protected by the DQM lock, since changing it can yield the
453  * possibility of updating DQM state on number of GWS queues.
454  *
455  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
456  * of the queue.
457  *
458  * This structure represents the queue properties for each queue no matter if
459  * it's user mode or kernel mode queue.
460  *
461  */
462 
463 struct queue_properties {
464 	enum kfd_queue_type type;
465 	enum kfd_queue_format format;
466 	unsigned int queue_id;
467 	uint64_t queue_address;
468 	uint64_t  queue_size;
469 	uint32_t priority;
470 	uint32_t queue_percent;
471 	uint32_t *read_ptr;
472 	uint32_t *write_ptr;
473 	void __iomem *doorbell_ptr;
474 	uint32_t doorbell_off;
475 	bool is_interop;
476 	bool is_evicted;
477 	bool is_active;
478 	bool is_gws;
479 	/* Not relevant for user mode queues in cp scheduling */
480 	unsigned int vmid;
481 	/* Relevant only for sdma queues*/
482 	uint32_t sdma_engine_id;
483 	uint32_t sdma_queue_id;
484 	uint32_t sdma_vm_addr;
485 	/* Relevant only for VI */
486 	uint64_t eop_ring_buffer_address;
487 	uint32_t eop_ring_buffer_size;
488 	uint64_t ctx_save_restore_area_address;
489 	uint32_t ctx_save_restore_area_size;
490 	uint32_t ctl_stack_size;
491 	uint64_t tba_addr;
492 	uint64_t tma_addr;
493 };
494 
495 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
496 			    (q).queue_address != 0 &&	\
497 			    (q).queue_percent > 0 &&	\
498 			    !(q).is_evicted)
499 
500 enum mqd_update_flag {
501 	UPDATE_FLAG_CU_MASK = 0,
502 };
503 
504 struct mqd_update_info {
505 	union {
506 		struct {
507 			uint32_t count; /* Must be a multiple of 32 */
508 			uint32_t *ptr;
509 		} cu_mask;
510 	};
511 	enum mqd_update_flag update_flag;
512 };
513 
514 /**
515  * struct queue
516  *
517  * @list: Queue linked list.
518  *
519  * @mqd: The queue MQD (memory queue descriptor).
520  *
521  * @mqd_mem_obj: The MQD local gpu memory object.
522  *
523  * @gart_mqd_addr: The MQD gart mc address.
524  *
525  * @properties: The queue properties.
526  *
527  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
528  *	 that the queue should be executed on.
529  *
530  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
531  *	  id.
532  *
533  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
534  *
535  * @process: The kfd process that created this queue.
536  *
537  * @device: The kfd device that created this queue.
538  *
539  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
540  * otherwise.
541  *
542  * This structure represents user mode compute queues.
543  * It contains all the necessary data to handle such queues.
544  *
545  */
546 
547 struct queue {
548 	struct list_head list;
549 	void *mqd;
550 	struct kfd_mem_obj *mqd_mem_obj;
551 	uint64_t gart_mqd_addr;
552 	struct queue_properties properties;
553 
554 	uint32_t mec;
555 	uint32_t pipe;
556 	uint32_t queue;
557 
558 	unsigned int sdma_id;
559 	unsigned int doorbell_id;
560 
561 	struct kfd_process	*process;
562 	struct kfd_dev		*device;
563 	void *gws;
564 
565 	/* procfs */
566 	struct kobject kobj;
567 };
568 
569 enum KFD_MQD_TYPE {
570 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
571 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
572 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
573 	KFD_MQD_TYPE_DIQ,		/* for diq */
574 	KFD_MQD_TYPE_MAX
575 };
576 
577 enum KFD_PIPE_PRIORITY {
578 	KFD_PIPE_PRIORITY_CS_LOW = 0,
579 	KFD_PIPE_PRIORITY_CS_MEDIUM,
580 	KFD_PIPE_PRIORITY_CS_HIGH
581 };
582 
583 struct scheduling_resources {
584 	unsigned int vmid_mask;
585 	enum kfd_queue_type type;
586 	uint64_t queue_mask;
587 	uint64_t gws_mask;
588 	uint32_t oac_mask;
589 	uint32_t gds_heap_base;
590 	uint32_t gds_heap_size;
591 };
592 
593 struct process_queue_manager {
594 	/* data */
595 	struct kfd_process	*process;
596 	struct list_head	queues;
597 	unsigned long		*queue_slot_bitmap;
598 };
599 
600 struct qcm_process_device {
601 	/* The Device Queue Manager that owns this data */
602 	struct device_queue_manager *dqm;
603 	struct process_queue_manager *pqm;
604 	/* Queues list */
605 	struct list_head queues_list;
606 	struct list_head priv_queue_list;
607 
608 	unsigned int queue_count;
609 	unsigned int vmid;
610 	bool is_debug;
611 	unsigned int evicted; /* eviction counter, 0=active */
612 
613 	/* This flag tells if we should reset all wavefronts on
614 	 * process termination
615 	 */
616 	bool reset_wavefronts;
617 
618 	/* This flag tells us if this process has a GWS-capable
619 	 * queue that will be mapped into the runlist. It's
620 	 * possible to request a GWS BO, but not have the queue
621 	 * currently mapped, and this changes how the MAP_PROCESS
622 	 * PM4 packet is configured.
623 	 */
624 	bool mapped_gws_queue;
625 
626 	/* All the memory management data should be here too */
627 	uint64_t gds_context_area;
628 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
629 	uint64_t page_table_base;
630 	uint32_t sh_mem_config;
631 	uint32_t sh_mem_bases;
632 	uint32_t sh_mem_ape1_base;
633 	uint32_t sh_mem_ape1_limit;
634 	uint32_t gds_size;
635 	uint32_t num_gws;
636 	uint32_t num_oac;
637 	uint32_t sh_hidden_private_base;
638 
639 	/* CWSR memory */
640 	struct kgd_mem *cwsr_mem;
641 	void *cwsr_kaddr;
642 	uint64_t cwsr_base;
643 	uint64_t tba_addr;
644 	uint64_t tma_addr;
645 
646 	/* IB memory */
647 	struct kgd_mem *ib_mem;
648 	uint64_t ib_base;
649 	void *ib_kaddr;
650 
651 	/* doorbell resources per process per device */
652 	unsigned long *doorbell_bitmap;
653 };
654 
655 /* KFD Memory Eviction */
656 
657 /* Approx. wait time before attempting to restore evicted BOs */
658 #define PROCESS_RESTORE_TIME_MS 100
659 /* Approx. back off time if restore fails due to lack of memory */
660 #define PROCESS_BACK_OFF_TIME_MS 100
661 /* Approx. time before evicting the process again */
662 #define PROCESS_ACTIVE_TIME_MS 10
663 
664 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
665  * idr_handle in the least significant 4 bytes
666  */
667 #define MAKE_HANDLE(gpu_id, idr_handle) \
668 	(((uint64_t)(gpu_id) << 32) + idr_handle)
669 #define GET_GPU_ID(handle) (handle >> 32)
670 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
671 
672 enum kfd_pdd_bound {
673 	PDD_UNBOUND = 0,
674 	PDD_BOUND,
675 	PDD_BOUND_SUSPENDED,
676 };
677 
678 #define MAX_SYSFS_FILENAME_LEN 15
679 
680 /*
681  * SDMA counter runs at 100MHz frequency.
682  * We display SDMA activity in microsecond granularity in sysfs.
683  * As a result, the divisor is 100.
684  */
685 #define SDMA_ACTIVITY_DIVISOR  100
686 
687 /* Data that is per-process-per device. */
688 struct kfd_process_device {
689 	/* The device that owns this data. */
690 	struct kfd_dev *dev;
691 
692 	/* The process that owns this kfd_process_device. */
693 	struct kfd_process *process;
694 
695 	/* per-process-per device QCM data structure */
696 	struct qcm_process_device qpd;
697 
698 	/*Apertures*/
699 	uint64_t lds_base;
700 	uint64_t lds_limit;
701 	uint64_t gpuvm_base;
702 	uint64_t gpuvm_limit;
703 	uint64_t scratch_base;
704 	uint64_t scratch_limit;
705 
706 	/* VM context for GPUVM allocations */
707 	struct file *drm_file;
708 	void *drm_priv;
709 
710 	/* GPUVM allocations storage */
711 	struct idr alloc_idr;
712 
713 	/* Flag used to tell the pdd has dequeued from the dqm.
714 	 * This is used to prevent dev->dqm->ops.process_termination() from
715 	 * being called twice when it is already called in IOMMU callback
716 	 * function.
717 	 */
718 	bool already_dequeued;
719 	bool runtime_inuse;
720 
721 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
722 	enum kfd_pdd_bound bound;
723 
724 	/* VRAM usage */
725 	uint64_t vram_usage;
726 	struct attribute attr_vram;
727 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
728 
729 	/* SDMA activity tracking */
730 	uint64_t sdma_past_activity_counter;
731 	struct attribute attr_sdma;
732 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
733 
734 	/* Eviction activity tracking */
735 	uint64_t last_evict_timestamp;
736 	atomic64_t evict_duration_counter;
737 	struct attribute attr_evict;
738 
739 	struct kobject *kobj_stats;
740 	unsigned int doorbell_index;
741 
742 	/*
743 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
744 	 * that is associated with device encoded by "this" struct instance. The
745 	 * value reflects CU usage by all of the waves launched by this process
746 	 * on this device. A very important property of occupancy parameter is
747 	 * that its value is a snapshot of current use.
748 	 *
749 	 * Following is to be noted regarding how this parameter is reported:
750 	 *
751 	 *  The number of waves that a CU can launch is limited by couple of
752 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
753 	 *  that is part of every device definition. For GFX9 devices this
754 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
755 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
756 	 *  when they do use scratch memory. This could change for future
757 	 *  devices and therefore this example should be considered as a guide.
758 	 *
759 	 *  All CU's of a device are available for the process. This may not be true
760 	 *  under certain conditions - e.g. CU masking.
761 	 *
762 	 *  Finally number of CU's that are occupied by a process is affected by both
763 	 *  number of CU's a device has along with number of other competing processes
764 	 */
765 	struct attribute attr_cu_occupancy;
766 
767 	/* sysfs counters for GPU retry fault and page migration tracking */
768 	struct kobject *kobj_counters;
769 	struct attribute attr_faults;
770 	struct attribute attr_page_in;
771 	struct attribute attr_page_out;
772 	uint64_t faults;
773 	uint64_t page_in;
774 	uint64_t page_out;
775 	/*
776 	 * If this process has been checkpointed before, then the user
777 	 * application will use the original gpu_id on the
778 	 * checkpointed node to refer to this device.
779 	 */
780 	uint32_t user_gpu_id;
781 };
782 
783 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
784 
785 struct svm_range_list {
786 	struct mutex			lock;
787 	struct rb_root_cached		objects;
788 	struct list_head		list;
789 	struct work_struct		deferred_list_work;
790 	struct list_head		deferred_range_list;
791 	struct list_head                criu_svm_metadata_list;
792 	spinlock_t			deferred_list_lock;
793 	atomic_t			evicted_ranges;
794 	atomic_t			drain_pagefaults;
795 	struct delayed_work		restore_work;
796 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
797 	struct task_struct		*faulting_task;
798 };
799 
800 /* Process data */
801 struct kfd_process {
802 	/*
803 	 * kfd_process are stored in an mm_struct*->kfd_process*
804 	 * hash table (kfd_processes in kfd_process.c)
805 	 */
806 	struct hlist_node kfd_processes;
807 
808 	/*
809 	 * Opaque pointer to mm_struct. We don't hold a reference to
810 	 * it so it should never be dereferenced from here. This is
811 	 * only used for looking up processes by their mm.
812 	 */
813 	void *mm;
814 
815 	struct kref ref;
816 	struct work_struct release_work;
817 
818 	struct mutex mutex;
819 
820 	/*
821 	 * In any process, the thread that started main() is the lead
822 	 * thread and outlives the rest.
823 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
824 	 * It can also be used for safely getting a reference to the
825 	 * mm_struct of the process.
826 	 */
827 	struct task_struct *lead_thread;
828 
829 	/* We want to receive a notification when the mm_struct is destroyed */
830 	struct mmu_notifier mmu_notifier;
831 
832 	u32 pasid;
833 
834 	/*
835 	 * Array of kfd_process_device pointers,
836 	 * one for each device the process is using.
837 	 */
838 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
839 	uint32_t n_pdds;
840 
841 	struct process_queue_manager pqm;
842 
843 	/*Is the user space process 32 bit?*/
844 	bool is_32bit_user_mode;
845 
846 	/* Event-related data */
847 	struct mutex event_mutex;
848 	/* Event ID allocator and lookup */
849 	struct idr event_idr;
850 	/* Event page */
851 	u64 signal_handle;
852 	struct kfd_signal_page *signal_page;
853 	size_t signal_mapped_size;
854 	size_t signal_event_count;
855 	bool signal_event_limit_reached;
856 
857 	/* Information used for memory eviction */
858 	void *kgd_process_info;
859 	/* Eviction fence that is attached to all the BOs of this process. The
860 	 * fence will be triggered during eviction and new one will be created
861 	 * during restore
862 	 */
863 	struct dma_fence *ef;
864 
865 	/* Work items for evicting and restoring BOs */
866 	struct delayed_work eviction_work;
867 	struct delayed_work restore_work;
868 	/* seqno of the last scheduled eviction */
869 	unsigned int last_eviction_seqno;
870 	/* Approx. the last timestamp (in jiffies) when the process was
871 	 * restored after an eviction
872 	 */
873 	unsigned long last_restore_timestamp;
874 
875 	/* Kobj for our procfs */
876 	struct kobject *kobj;
877 	struct kobject *kobj_queues;
878 	struct attribute attr_pasid;
879 
880 	/* shared virtual memory registered by this process */
881 	struct svm_range_list svms;
882 
883 	bool xnack_enabled;
884 
885 	atomic_t poison;
886 	/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
887 	bool queues_paused;
888 };
889 
890 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
891 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
892 extern struct srcu_struct kfd_processes_srcu;
893 
894 /**
895  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
896  *
897  * @filep: pointer to file structure.
898  * @p: amdkfd process pointer.
899  * @data: pointer to arg that was copied from user.
900  *
901  * Return: returns ioctl completion code.
902  */
903 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
904 				void *data);
905 
906 struct amdkfd_ioctl_desc {
907 	unsigned int cmd;
908 	int flags;
909 	amdkfd_ioctl_t *func;
910 	unsigned int cmd_drv;
911 	const char *name;
912 };
913 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
914 
915 int kfd_process_create_wq(void);
916 void kfd_process_destroy_wq(void);
917 struct kfd_process *kfd_create_process(struct file *filep);
918 struct kfd_process *kfd_get_process(const struct task_struct *task);
919 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
920 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
921 
922 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
923 int kfd_process_gpuid_from_adev(struct kfd_process *p,
924 			       struct amdgpu_device *adev, uint32_t *gpuid,
925 			       uint32_t *gpuidx);
926 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
927 				uint32_t gpuidx, uint32_t *gpuid) {
928 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
929 }
930 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
931 				struct kfd_process *p, uint32_t gpuidx) {
932 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
933 }
934 
935 void kfd_unref_process(struct kfd_process *p);
936 int kfd_process_evict_queues(struct kfd_process *p);
937 int kfd_process_restore_queues(struct kfd_process *p);
938 void kfd_suspend_all_processes(void);
939 int kfd_resume_all_processes(void);
940 
941 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
942 							 uint32_t gpu_id);
943 
944 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
945 
946 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
947 			       struct file *drm_file);
948 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
949 						struct kfd_process *p);
950 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
951 							struct kfd_process *p);
952 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
953 							struct kfd_process *p);
954 
955 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
956 
957 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
958 			  struct vm_area_struct *vma);
959 
960 /* KFD process API for creating and translating handles */
961 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
962 					void *mem);
963 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
964 					int handle);
965 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
966 					int handle);
967 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
968 
969 /* PASIDs */
970 int kfd_pasid_init(void);
971 void kfd_pasid_exit(void);
972 bool kfd_set_pasid_limit(unsigned int new_limit);
973 unsigned int kfd_get_pasid_limit(void);
974 u32 kfd_pasid_alloc(void);
975 void kfd_pasid_free(u32 pasid);
976 
977 /* Doorbells */
978 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
979 int kfd_doorbell_init(struct kfd_dev *kfd);
980 void kfd_doorbell_fini(struct kfd_dev *kfd);
981 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
982 		      struct vm_area_struct *vma);
983 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
984 					unsigned int *doorbell_off);
985 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
986 u32 read_kernel_doorbell(u32 __iomem *db);
987 void write_kernel_doorbell(void __iomem *db, u32 value);
988 void write_kernel_doorbell64(void __iomem *db, u64 value);
989 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
990 					struct kfd_process_device *pdd,
991 					unsigned int doorbell_id);
992 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
993 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
994 				unsigned int *doorbell_index);
995 void kfd_free_process_doorbells(struct kfd_dev *kfd,
996 				unsigned int doorbell_index);
997 /* GTT Sub-Allocator */
998 
999 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1000 			struct kfd_mem_obj **mem_obj);
1001 
1002 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
1003 
1004 extern struct device *kfd_device;
1005 
1006 /* KFD's procfs */
1007 void kfd_procfs_init(void);
1008 void kfd_procfs_shutdown(void);
1009 int kfd_procfs_add_queue(struct queue *q);
1010 void kfd_procfs_del_queue(struct queue *q);
1011 
1012 /* Topology */
1013 int kfd_topology_init(void);
1014 void kfd_topology_shutdown(void);
1015 int kfd_topology_add_device(struct kfd_dev *gpu);
1016 int kfd_topology_remove_device(struct kfd_dev *gpu);
1017 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1018 						uint32_t proximity_domain);
1019 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1020 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
1021 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
1022 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev);
1023 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
1024 int kfd_numa_node_to_apic_id(int numa_node_id);
1025 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
1026 
1027 /* Interrupts */
1028 int kfd_interrupt_init(struct kfd_dev *dev);
1029 void kfd_interrupt_exit(struct kfd_dev *dev);
1030 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
1031 bool interrupt_is_wanted(struct kfd_dev *dev,
1032 				const uint32_t *ih_ring_entry,
1033 				uint32_t *patched_ihre, bool *flag);
1034 
1035 /* amdkfd Apertures */
1036 int kfd_init_apertures(struct kfd_process *process);
1037 
1038 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1039 				  uint64_t tba_addr,
1040 				  uint64_t tma_addr);
1041 
1042 /* CRIU */
1043 /*
1044  * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1045  * structures:
1046  * kfd_criu_process_priv_data
1047  * kfd_criu_device_priv_data
1048  * kfd_criu_bo_priv_data
1049  * kfd_criu_queue_priv_data
1050  * kfd_criu_event_priv_data
1051  * kfd_criu_svm_range_priv_data
1052  */
1053 
1054 #define KFD_CRIU_PRIV_VERSION 1
1055 
1056 struct kfd_criu_process_priv_data {
1057 	uint32_t version;
1058 	uint32_t xnack_mode;
1059 };
1060 
1061 struct kfd_criu_device_priv_data {
1062 	/* For future use */
1063 	uint64_t reserved;
1064 };
1065 
1066 struct kfd_criu_bo_priv_data {
1067 	uint64_t user_addr;
1068 	uint32_t idr_handle;
1069 	uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1070 };
1071 
1072 /*
1073  * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1074  * kfd_criu_svm_range_priv_data is the object type
1075  */
1076 enum kfd_criu_object_type {
1077 	KFD_CRIU_OBJECT_TYPE_QUEUE,
1078 	KFD_CRIU_OBJECT_TYPE_EVENT,
1079 	KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1080 };
1081 
1082 struct kfd_criu_svm_range_priv_data {
1083 	uint32_t object_type;
1084 	uint64_t start_addr;
1085 	uint64_t size;
1086 	/* Variable length array of attributes */
1087 	struct kfd_ioctl_svm_attribute attrs[];
1088 };
1089 
1090 struct kfd_criu_queue_priv_data {
1091 	uint32_t object_type;
1092 	uint64_t q_address;
1093 	uint64_t q_size;
1094 	uint64_t read_ptr_addr;
1095 	uint64_t write_ptr_addr;
1096 	uint64_t doorbell_off;
1097 	uint64_t eop_ring_buffer_address;
1098 	uint64_t ctx_save_restore_area_address;
1099 	uint32_t gpu_id;
1100 	uint32_t type;
1101 	uint32_t format;
1102 	uint32_t q_id;
1103 	uint32_t priority;
1104 	uint32_t q_percent;
1105 	uint32_t doorbell_id;
1106 	uint32_t gws;
1107 	uint32_t sdma_id;
1108 	uint32_t eop_ring_buffer_size;
1109 	uint32_t ctx_save_restore_area_size;
1110 	uint32_t ctl_stack_size;
1111 	uint32_t mqd_size;
1112 };
1113 
1114 struct kfd_criu_event_priv_data {
1115 	uint32_t object_type;
1116 	uint64_t user_handle;
1117 	uint32_t event_id;
1118 	uint32_t auto_reset;
1119 	uint32_t type;
1120 	uint32_t signaled;
1121 
1122 	union {
1123 		struct kfd_hsa_memory_exception_data memory_exception_data;
1124 		struct kfd_hsa_hw_exception_data hw_exception_data;
1125 	};
1126 };
1127 
1128 int kfd_process_get_queue_info(struct kfd_process *p,
1129 			       uint32_t *num_queues,
1130 			       uint64_t *priv_data_sizes);
1131 
1132 int kfd_criu_checkpoint_queues(struct kfd_process *p,
1133 			 uint8_t __user *user_priv_data,
1134 			 uint64_t *priv_data_offset);
1135 
1136 int kfd_criu_restore_queue(struct kfd_process *p,
1137 			   uint8_t __user *user_priv_data,
1138 			   uint64_t *priv_data_offset,
1139 			   uint64_t max_priv_data_size);
1140 
1141 int kfd_criu_checkpoint_events(struct kfd_process *p,
1142 			 uint8_t __user *user_priv_data,
1143 			 uint64_t *priv_data_offset);
1144 
1145 int kfd_criu_restore_event(struct file *devkfd,
1146 			   struct kfd_process *p,
1147 			   uint8_t __user *user_priv_data,
1148 			   uint64_t *priv_data_offset,
1149 			   uint64_t max_priv_data_size);
1150 /* CRIU - End */
1151 
1152 /* Queue Context Management */
1153 int init_queue(struct queue **q, const struct queue_properties *properties);
1154 void uninit_queue(struct queue *q);
1155 void print_queue_properties(struct queue_properties *q);
1156 void print_queue(struct queue *q);
1157 
1158 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1159 		struct kfd_dev *dev);
1160 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
1161 		struct kfd_dev *dev);
1162 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1163 		struct kfd_dev *dev);
1164 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1165 		struct kfd_dev *dev);
1166 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1167 		struct kfd_dev *dev);
1168 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1169 		struct kfd_dev *dev);
1170 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
1171 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1172 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
1173 					enum kfd_queue_type type);
1174 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1175 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid);
1176 
1177 /* Process Queue Manager */
1178 struct process_queue_node {
1179 	struct queue *q;
1180 	struct kernel_queue *kq;
1181 	struct list_head process_queue_list;
1182 };
1183 
1184 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1185 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1186 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1187 void pqm_uninit(struct process_queue_manager *pqm);
1188 int pqm_create_queue(struct process_queue_manager *pqm,
1189 			    struct kfd_dev *dev,
1190 			    struct file *f,
1191 			    struct queue_properties *properties,
1192 			    unsigned int *qid,
1193 			    const struct kfd_criu_queue_priv_data *q_data,
1194 			    const void *restore_mqd,
1195 			    const void *restore_ctl_stack,
1196 			    uint32_t *p_doorbell_offset_in_process);
1197 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1198 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1199 			struct queue_properties *p);
1200 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1201 			struct mqd_update_info *minfo);
1202 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1203 			void *gws);
1204 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1205 						unsigned int qid);
1206 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1207 						unsigned int qid);
1208 int pqm_get_wave_state(struct process_queue_manager *pqm,
1209 		       unsigned int qid,
1210 		       void __user *ctl_stack,
1211 		       u32 *ctl_stack_used_size,
1212 		       u32 *save_area_used_size);
1213 
1214 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1215 			      uint64_t fence_value,
1216 			      unsigned int timeout_ms);
1217 
1218 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1219 				  unsigned int qid,
1220 				  u32 *mqd_size,
1221 				  u32 *ctl_stack_size);
1222 /* Packet Manager */
1223 
1224 #define KFD_FENCE_COMPLETED (100)
1225 #define KFD_FENCE_INIT   (10)
1226 
1227 struct packet_manager {
1228 	struct device_queue_manager *dqm;
1229 	struct kernel_queue *priv_queue;
1230 	struct mutex lock;
1231 	bool allocated;
1232 	struct kfd_mem_obj *ib_buffer_obj;
1233 	unsigned int ib_size_bytes;
1234 	bool is_over_subscription;
1235 
1236 	const struct packet_manager_funcs *pmf;
1237 };
1238 
1239 struct packet_manager_funcs {
1240 	/* Support ASIC-specific packet formats for PM4 packets */
1241 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1242 			struct qcm_process_device *qpd);
1243 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1244 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1245 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1246 			struct scheduling_resources *res);
1247 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1248 			struct queue *q, bool is_static);
1249 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1250 			enum kfd_unmap_queues_filter mode,
1251 			uint32_t filter_param, bool reset);
1252 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1253 			uint64_t fence_address,	uint64_t fence_value);
1254 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1255 
1256 	/* Packet sizes */
1257 	int map_process_size;
1258 	int runlist_size;
1259 	int set_resources_size;
1260 	int map_queues_size;
1261 	int unmap_queues_size;
1262 	int query_status_size;
1263 	int release_mem_size;
1264 };
1265 
1266 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1267 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1268 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1269 
1270 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1271 void pm_uninit(struct packet_manager *pm, bool hanging);
1272 int pm_send_set_resources(struct packet_manager *pm,
1273 				struct scheduling_resources *res);
1274 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1275 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1276 				uint64_t fence_value);
1277 
1278 int pm_send_unmap_queue(struct packet_manager *pm,
1279 			enum kfd_unmap_queues_filter mode,
1280 			uint32_t filter_param, bool reset);
1281 
1282 void pm_release_ib(struct packet_manager *pm);
1283 
1284 /* Following PM funcs can be shared among VI and AI */
1285 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1286 
1287 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1288 
1289 /* Events */
1290 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1291 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1292 
1293 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1294 
1295 void kfd_event_init_process(struct kfd_process *p);
1296 void kfd_event_free_process(struct kfd_process *p);
1297 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1298 int kfd_wait_on_events(struct kfd_process *p,
1299 		       uint32_t num_events, void __user *data,
1300 		       bool all, uint32_t user_timeout_ms,
1301 		       uint32_t *wait_result);
1302 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1303 				uint32_t valid_id_bits);
1304 void kfd_signal_iommu_event(struct kfd_dev *dev,
1305 			    u32 pasid, unsigned long address,
1306 			    bool is_write_requested, bool is_execute_requested);
1307 void kfd_signal_hw_exception_event(u32 pasid);
1308 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1309 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1310 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1311 
1312 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1313 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1314 		     uint32_t *event_id, uint32_t *event_trigger_data,
1315 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1316 
1317 int kfd_get_num_events(struct kfd_process *p);
1318 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1319 
1320 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1321 				struct kfd_vm_fault_info *info);
1322 
1323 void kfd_signal_reset_event(struct kfd_dev *dev);
1324 
1325 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid);
1326 
1327 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1328 
1329 bool kfd_is_locked(void);
1330 
1331 /* Compute profile */
1332 void kfd_inc_compute_active(struct kfd_dev *dev);
1333 void kfd_dec_compute_active(struct kfd_dev *dev);
1334 
1335 /* Cgroup Support */
1336 /* Check with device cgroup if @kfd device is accessible */
1337 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1338 {
1339 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1340 	struct drm_device *ddev = kfd->ddev;
1341 
1342 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1343 					  ddev->render->index,
1344 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1345 #else
1346 	return 0;
1347 #endif
1348 }
1349 
1350 /* Debugfs */
1351 #if defined(CONFIG_DEBUG_FS)
1352 
1353 void kfd_debugfs_init(void);
1354 void kfd_debugfs_fini(void);
1355 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1356 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1357 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1358 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1359 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1360 int pm_debugfs_runlist(struct seq_file *m, void *data);
1361 
1362 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1363 int pm_debugfs_hang_hws(struct packet_manager *pm);
1364 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1365 
1366 #else
1367 
1368 static inline void kfd_debugfs_init(void) {}
1369 static inline void kfd_debugfs_fini(void) {}
1370 
1371 #endif
1372 
1373 #endif
1374