1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef KFD_PRIV_H_INCLUDED 25 #define KFD_PRIV_H_INCLUDED 26 27 #include <linux/hashtable.h> 28 #include <linux/mmu_notifier.h> 29 #include <linux/mutex.h> 30 #include <linux/types.h> 31 #include <linux/atomic.h> 32 #include <linux/workqueue.h> 33 #include <linux/spinlock.h> 34 #include <linux/kfd_ioctl.h> 35 #include <linux/idr.h> 36 #include <linux/kfifo.h> 37 #include <linux/seq_file.h> 38 #include <linux/kref.h> 39 #include <linux/sysfs.h> 40 #include <linux/device_cgroup.h> 41 #include <drm/drm_file.h> 42 #include <drm/drm_drv.h> 43 #include <drm/drm_device.h> 44 #include <drm/drm_ioctl.h> 45 #include <kgd_kfd_interface.h> 46 #include <linux/swap.h> 47 48 #include "amd_shared.h" 49 #include "amdgpu.h" 50 51 #define KFD_MAX_RING_ENTRY_SIZE 8 52 53 #define KFD_SYSFS_FILE_MODE 0444 54 55 /* GPU ID hash width in bits */ 56 #define KFD_GPU_ID_HASH_WIDTH 16 57 58 /* Use upper bits of mmap offset to store KFD driver specific information. 59 * BITS[63:62] - Encode MMAP type 60 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 61 * BITS[45:0] - MMAP offset value 62 * 63 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 64 * defines are w.r.t to PAGE_SIZE 65 */ 66 #define KFD_MMAP_TYPE_SHIFT 62 67 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 68 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 69 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 70 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 71 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 72 73 #define KFD_MMAP_GPU_ID_SHIFT 46 74 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 75 << KFD_MMAP_GPU_ID_SHIFT) 76 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 77 & KFD_MMAP_GPU_ID_MASK) 78 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 79 >> KFD_MMAP_GPU_ID_SHIFT) 80 81 /* 82 * When working with cp scheduler we should assign the HIQ manually or via 83 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 84 * definitions for Kaveri. In Kaveri only the first ME queues participates 85 * in the cp scheduling taking that in mind we set the HIQ slot in the 86 * second ME. 87 */ 88 #define KFD_CIK_HIQ_PIPE 4 89 #define KFD_CIK_HIQ_QUEUE 0 90 91 /* Macro for allocating structures */ 92 #define kfd_alloc_struct(ptr_to_struct) \ 93 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 94 95 #define KFD_MAX_NUM_OF_PROCESSES 512 96 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 97 98 /* 99 * Size of the per-process TBA+TMA buffer: 2 pages 100 * 101 * The first page is the TBA used for the CWSR ISA code. The second 102 * page is used as TMA for user-mode trap handler setup in daisy-chain mode. 103 */ 104 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 105 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 106 107 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 108 (KFD_MAX_NUM_OF_PROCESSES * \ 109 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 110 111 #define KFD_KERNEL_QUEUE_SIZE 2048 112 113 #define KFD_UNMAP_LATENCY_MS (4000) 114 115 /* 116 * 512 = 0x200 117 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 118 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 119 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 120 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 121 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 122 */ 123 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 124 125 /** 126 * enum kfd_ioctl_flags - KFD ioctl flags 127 * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how 128 * userspace can use a given ioctl. 129 */ 130 enum kfd_ioctl_flags { 131 /* 132 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE: 133 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially 134 * perform privileged operations and load arbitrary data into MQDs and 135 * eventually HQD registers when the queue is mapped by HWS. In order to 136 * prevent this we should perform additional security checks. 137 * 138 * This is equivalent to callers with the CHECKPOINT_RESTORE capability. 139 * 140 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE, 141 * we also allow ioctls with SYS_ADMIN capability. 142 */ 143 KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0), 144 }; 145 /* 146 * Kernel module parameter to specify maximum number of supported queues per 147 * device 148 */ 149 extern int max_num_of_queues_per_device; 150 151 152 /* Kernel module parameter to specify the scheduling policy */ 153 extern int sched_policy; 154 155 /* 156 * Kernel module parameter to specify the maximum process 157 * number per HW scheduler 158 */ 159 extern int hws_max_conc_proc; 160 161 extern int cwsr_enable; 162 163 /* 164 * Kernel module parameter to specify whether to send sigterm to HSA process on 165 * unhandled exception 166 */ 167 extern int send_sigterm; 168 169 /* 170 * This kernel module is used to simulate large bar machine on non-large bar 171 * enabled machines. 172 */ 173 extern int debug_largebar; 174 175 /* 176 * Ignore CRAT table during KFD initialization, can be used to work around 177 * broken CRAT tables on some AMD systems 178 */ 179 extern int ignore_crat; 180 181 /* Set sh_mem_config.retry_disable on GFX v9 */ 182 extern int amdgpu_noretry; 183 184 /* Halt if HWS hang is detected */ 185 extern int halt_if_hws_hang; 186 187 /* Whether MEC FW support GWS barriers */ 188 extern bool hws_gws_support; 189 190 /* Queue preemption timeout in ms */ 191 extern int queue_preemption_timeout_ms; 192 193 /* 194 * Don't evict process queues on vm fault 195 */ 196 extern int amdgpu_no_queue_eviction_on_vm_fault; 197 198 /* Enable eviction debug messages */ 199 extern bool debug_evictions; 200 201 enum cache_policy { 202 cache_policy_coherent, 203 cache_policy_noncoherent 204 }; 205 206 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0]) 207 #define KFD_IS_SOC15(dev) ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1))) 208 209 struct kfd_event_interrupt_class { 210 bool (*interrupt_isr)(struct kfd_dev *dev, 211 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 212 bool *patched_flag); 213 void (*interrupt_wq)(struct kfd_dev *dev, 214 const uint32_t *ih_ring_entry); 215 }; 216 217 struct kfd_device_info { 218 uint32_t gfx_target_version; 219 const struct kfd_event_interrupt_class *event_interrupt_class; 220 unsigned int max_pasid_bits; 221 unsigned int max_no_of_hqd; 222 unsigned int doorbell_size; 223 size_t ih_ring_entry_size; 224 uint8_t num_of_watch_points; 225 uint16_t mqd_size_aligned; 226 bool supports_cwsr; 227 bool needs_iommu_device; 228 bool needs_pci_atomics; 229 uint32_t no_atomic_fw_version; 230 unsigned int num_sdma_queues_per_engine; 231 }; 232 233 unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev); 234 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev); 235 236 struct kfd_mem_obj { 237 uint32_t range_start; 238 uint32_t range_end; 239 uint64_t gpu_addr; 240 uint32_t *cpu_ptr; 241 void *gtt_mem; 242 }; 243 244 struct kfd_vmid_info { 245 uint32_t first_vmid_kfd; 246 uint32_t last_vmid_kfd; 247 uint32_t vmid_num_kfd; 248 }; 249 250 struct kfd_dev { 251 struct amdgpu_device *adev; 252 253 struct kfd_device_info device_info; 254 struct pci_dev *pdev; 255 struct drm_device *ddev; 256 257 unsigned int id; /* topology stub index */ 258 259 phys_addr_t doorbell_base; /* Start of actual doorbells used by 260 * KFD. It is aligned for mapping 261 * into user mode 262 */ 263 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI 264 * doorbell BAR to the first KFD 265 * doorbell in dwords. GFX reserves 266 * the segment before this offset. 267 */ 268 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 269 * page used by kernel queue 270 */ 271 272 struct kgd2kfd_shared_resources shared_resources; 273 struct kfd_vmid_info vm_info; 274 275 const struct kfd2kgd_calls *kfd2kgd; 276 struct mutex doorbell_mutex; 277 DECLARE_BITMAP(doorbell_available_index, 278 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 279 280 void *gtt_mem; 281 uint64_t gtt_start_gpu_addr; 282 void *gtt_start_cpu_ptr; 283 void *gtt_sa_bitmap; 284 struct mutex gtt_sa_lock; 285 unsigned int gtt_sa_chunk_size; 286 unsigned int gtt_sa_num_of_chunks; 287 288 /* Interrupts */ 289 struct kfifo ih_fifo; 290 struct workqueue_struct *ih_wq; 291 struct work_struct interrupt_work; 292 spinlock_t interrupt_lock; 293 294 /* QCM Device instance */ 295 struct device_queue_manager *dqm; 296 297 bool init_complete; 298 /* 299 * Interrupts of interest to KFD are copied 300 * from the HW ring into a SW ring. 301 */ 302 bool interrupts_active; 303 304 /* Firmware versions */ 305 uint16_t mec_fw_version; 306 uint16_t mec2_fw_version; 307 uint16_t sdma_fw_version; 308 309 /* Maximum process number mapped to HW scheduler */ 310 unsigned int max_proc_per_quantum; 311 312 /* CWSR */ 313 bool cwsr_enabled; 314 const void *cwsr_isa; 315 unsigned int cwsr_isa_size; 316 317 /* xGMI */ 318 uint64_t hive_id; 319 320 bool pci_atomic_requested; 321 322 /* Use IOMMU v2 flag */ 323 bool use_iommu_v2; 324 325 /* SRAM ECC flag */ 326 atomic_t sram_ecc_flag; 327 328 /* Compute Profile ref. count */ 329 atomic_t compute_profile; 330 331 /* Global GWS resource shared between processes */ 332 void *gws; 333 334 /* Clients watching SMI events */ 335 struct list_head smi_clients; 336 spinlock_t smi_lock; 337 338 uint32_t reset_seq_num; 339 340 struct ida doorbell_ida; 341 unsigned int max_doorbell_slices; 342 343 int noretry; 344 345 /* HMM page migration MEMORY_DEVICE_PRIVATE mapping */ 346 struct dev_pagemap pgmap; 347 }; 348 349 enum kfd_mempool { 350 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 351 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 352 KFD_MEMPOOL_FRAMEBUFFER = 3, 353 }; 354 355 /* Character device interface */ 356 int kfd_chardev_init(void); 357 void kfd_chardev_exit(void); 358 359 /** 360 * enum kfd_unmap_queues_filter - Enum for queue filters. 361 * 362 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 363 * running queues list. 364 * 365 * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues 366 * in the run list. 367 * 368 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 369 * specific process. 370 * 371 */ 372 enum kfd_unmap_queues_filter { 373 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1, 374 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2, 375 KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3 376 }; 377 378 /** 379 * enum kfd_queue_type - Enum for various queue types. 380 * 381 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 382 * 383 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type. 384 * 385 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 386 * 387 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 388 * 389 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface. 390 */ 391 enum kfd_queue_type { 392 KFD_QUEUE_TYPE_COMPUTE, 393 KFD_QUEUE_TYPE_SDMA, 394 KFD_QUEUE_TYPE_HIQ, 395 KFD_QUEUE_TYPE_DIQ, 396 KFD_QUEUE_TYPE_SDMA_XGMI 397 }; 398 399 enum kfd_queue_format { 400 KFD_QUEUE_FORMAT_PM4, 401 KFD_QUEUE_FORMAT_AQL 402 }; 403 404 enum KFD_QUEUE_PRIORITY { 405 KFD_QUEUE_PRIORITY_MINIMUM = 0, 406 KFD_QUEUE_PRIORITY_MAXIMUM = 15 407 }; 408 409 /** 410 * struct queue_properties 411 * 412 * @type: The queue type. 413 * 414 * @queue_id: Queue identifier. 415 * 416 * @queue_address: Queue ring buffer address. 417 * 418 * @queue_size: Queue ring buffer size. 419 * 420 * @priority: Defines the queue priority relative to other queues in the 421 * process. 422 * This is just an indication and HW scheduling may override the priority as 423 * necessary while keeping the relative prioritization. 424 * the priority granularity is from 0 to f which f is the highest priority. 425 * currently all queues are initialized with the highest priority. 426 * 427 * @queue_percent: This field is partially implemented and currently a zero in 428 * this field defines that the queue is non active. 429 * 430 * @read_ptr: User space address which points to the number of dwords the 431 * cp read from the ring buffer. This field updates automatically by the H/W. 432 * 433 * @write_ptr: Defines the number of dwords written to the ring buffer. 434 * 435 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring 436 * buffer. This field should be similar to write_ptr and the user should 437 * update this field after updating the write_ptr. 438 * 439 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 440 * 441 * @is_interop: Defines if this is a interop queue. Interop queue means that 442 * the queue can access both graphics and compute resources. 443 * 444 * @is_evicted: Defines if the queue is evicted. Only active queues 445 * are evicted, rendering them inactive. 446 * 447 * @is_active: Defines if the queue is active or not. @is_active and 448 * @is_evicted are protected by the DQM lock. 449 * 450 * @is_gws: Defines if the queue has been updated to be GWS-capable or not. 451 * @is_gws should be protected by the DQM lock, since changing it can yield the 452 * possibility of updating DQM state on number of GWS queues. 453 * 454 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 455 * of the queue. 456 * 457 * This structure represents the queue properties for each queue no matter if 458 * it's user mode or kernel mode queue. 459 * 460 */ 461 462 struct queue_properties { 463 enum kfd_queue_type type; 464 enum kfd_queue_format format; 465 unsigned int queue_id; 466 uint64_t queue_address; 467 uint64_t queue_size; 468 uint32_t priority; 469 uint32_t queue_percent; 470 uint32_t *read_ptr; 471 uint32_t *write_ptr; 472 void __iomem *doorbell_ptr; 473 uint32_t doorbell_off; 474 bool is_interop; 475 bool is_evicted; 476 bool is_active; 477 bool is_gws; 478 /* Not relevant for user mode queues in cp scheduling */ 479 unsigned int vmid; 480 /* Relevant only for sdma queues*/ 481 uint32_t sdma_engine_id; 482 uint32_t sdma_queue_id; 483 uint32_t sdma_vm_addr; 484 /* Relevant only for VI */ 485 uint64_t eop_ring_buffer_address; 486 uint32_t eop_ring_buffer_size; 487 uint64_t ctx_save_restore_area_address; 488 uint32_t ctx_save_restore_area_size; 489 uint32_t ctl_stack_size; 490 uint64_t tba_addr; 491 uint64_t tma_addr; 492 }; 493 494 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 495 (q).queue_address != 0 && \ 496 (q).queue_percent > 0 && \ 497 !(q).is_evicted) 498 499 enum mqd_update_flag { 500 UPDATE_FLAG_CU_MASK = 0, 501 }; 502 503 struct mqd_update_info { 504 union { 505 struct { 506 uint32_t count; /* Must be a multiple of 32 */ 507 uint32_t *ptr; 508 } cu_mask; 509 }; 510 enum mqd_update_flag update_flag; 511 }; 512 513 /** 514 * struct queue 515 * 516 * @list: Queue linked list. 517 * 518 * @mqd: The queue MQD (memory queue descriptor). 519 * 520 * @mqd_mem_obj: The MQD local gpu memory object. 521 * 522 * @gart_mqd_addr: The MQD gart mc address. 523 * 524 * @properties: The queue properties. 525 * 526 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 527 * that the queue should be executed on. 528 * 529 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 530 * id. 531 * 532 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 533 * 534 * @process: The kfd process that created this queue. 535 * 536 * @device: The kfd device that created this queue. 537 * 538 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 539 * otherwise. 540 * 541 * This structure represents user mode compute queues. 542 * It contains all the necessary data to handle such queues. 543 * 544 */ 545 546 struct queue { 547 struct list_head list; 548 void *mqd; 549 struct kfd_mem_obj *mqd_mem_obj; 550 uint64_t gart_mqd_addr; 551 struct queue_properties properties; 552 553 uint32_t mec; 554 uint32_t pipe; 555 uint32_t queue; 556 557 unsigned int sdma_id; 558 unsigned int doorbell_id; 559 560 struct kfd_process *process; 561 struct kfd_dev *device; 562 void *gws; 563 564 /* procfs */ 565 struct kobject kobj; 566 }; 567 568 enum KFD_MQD_TYPE { 569 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 570 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 571 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 572 KFD_MQD_TYPE_DIQ, /* for diq */ 573 KFD_MQD_TYPE_MAX 574 }; 575 576 enum KFD_PIPE_PRIORITY { 577 KFD_PIPE_PRIORITY_CS_LOW = 0, 578 KFD_PIPE_PRIORITY_CS_MEDIUM, 579 KFD_PIPE_PRIORITY_CS_HIGH 580 }; 581 582 struct scheduling_resources { 583 unsigned int vmid_mask; 584 enum kfd_queue_type type; 585 uint64_t queue_mask; 586 uint64_t gws_mask; 587 uint32_t oac_mask; 588 uint32_t gds_heap_base; 589 uint32_t gds_heap_size; 590 }; 591 592 struct process_queue_manager { 593 /* data */ 594 struct kfd_process *process; 595 struct list_head queues; 596 unsigned long *queue_slot_bitmap; 597 }; 598 599 struct qcm_process_device { 600 /* The Device Queue Manager that owns this data */ 601 struct device_queue_manager *dqm; 602 struct process_queue_manager *pqm; 603 /* Queues list */ 604 struct list_head queues_list; 605 struct list_head priv_queue_list; 606 607 unsigned int queue_count; 608 unsigned int vmid; 609 bool is_debug; 610 unsigned int evicted; /* eviction counter, 0=active */ 611 612 /* This flag tells if we should reset all wavefronts on 613 * process termination 614 */ 615 bool reset_wavefronts; 616 617 /* This flag tells us if this process has a GWS-capable 618 * queue that will be mapped into the runlist. It's 619 * possible to request a GWS BO, but not have the queue 620 * currently mapped, and this changes how the MAP_PROCESS 621 * PM4 packet is configured. 622 */ 623 bool mapped_gws_queue; 624 625 /* All the memory management data should be here too */ 626 uint64_t gds_context_area; 627 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 628 uint64_t page_table_base; 629 uint32_t sh_mem_config; 630 uint32_t sh_mem_bases; 631 uint32_t sh_mem_ape1_base; 632 uint32_t sh_mem_ape1_limit; 633 uint32_t gds_size; 634 uint32_t num_gws; 635 uint32_t num_oac; 636 uint32_t sh_hidden_private_base; 637 638 /* CWSR memory */ 639 struct kgd_mem *cwsr_mem; 640 void *cwsr_kaddr; 641 uint64_t cwsr_base; 642 uint64_t tba_addr; 643 uint64_t tma_addr; 644 645 /* IB memory */ 646 struct kgd_mem *ib_mem; 647 uint64_t ib_base; 648 void *ib_kaddr; 649 650 /* doorbell resources per process per device */ 651 unsigned long *doorbell_bitmap; 652 }; 653 654 /* KFD Memory Eviction */ 655 656 /* Approx. wait time before attempting to restore evicted BOs */ 657 #define PROCESS_RESTORE_TIME_MS 100 658 /* Approx. back off time if restore fails due to lack of memory */ 659 #define PROCESS_BACK_OFF_TIME_MS 100 660 /* Approx. time before evicting the process again */ 661 #define PROCESS_ACTIVE_TIME_MS 10 662 663 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 664 * idr_handle in the least significant 4 bytes 665 */ 666 #define MAKE_HANDLE(gpu_id, idr_handle) \ 667 (((uint64_t)(gpu_id) << 32) + idr_handle) 668 #define GET_GPU_ID(handle) (handle >> 32) 669 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 670 671 enum kfd_pdd_bound { 672 PDD_UNBOUND = 0, 673 PDD_BOUND, 674 PDD_BOUND_SUSPENDED, 675 }; 676 677 #define MAX_SYSFS_FILENAME_LEN 15 678 679 /* 680 * SDMA counter runs at 100MHz frequency. 681 * We display SDMA activity in microsecond granularity in sysfs. 682 * As a result, the divisor is 100. 683 */ 684 #define SDMA_ACTIVITY_DIVISOR 100 685 686 /* Data that is per-process-per device. */ 687 struct kfd_process_device { 688 /* The device that owns this data. */ 689 struct kfd_dev *dev; 690 691 /* The process that owns this kfd_process_device. */ 692 struct kfd_process *process; 693 694 /* per-process-per device QCM data structure */ 695 struct qcm_process_device qpd; 696 697 /*Apertures*/ 698 uint64_t lds_base; 699 uint64_t lds_limit; 700 uint64_t gpuvm_base; 701 uint64_t gpuvm_limit; 702 uint64_t scratch_base; 703 uint64_t scratch_limit; 704 705 /* VM context for GPUVM allocations */ 706 struct file *drm_file; 707 void *drm_priv; 708 atomic64_t tlb_seq; 709 710 /* GPUVM allocations storage */ 711 struct idr alloc_idr; 712 713 /* Flag used to tell the pdd has dequeued from the dqm. 714 * This is used to prevent dev->dqm->ops.process_termination() from 715 * being called twice when it is already called in IOMMU callback 716 * function. 717 */ 718 bool already_dequeued; 719 bool runtime_inuse; 720 721 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 722 enum kfd_pdd_bound bound; 723 724 /* VRAM usage */ 725 uint64_t vram_usage; 726 struct attribute attr_vram; 727 char vram_filename[MAX_SYSFS_FILENAME_LEN]; 728 729 /* SDMA activity tracking */ 730 uint64_t sdma_past_activity_counter; 731 struct attribute attr_sdma; 732 char sdma_filename[MAX_SYSFS_FILENAME_LEN]; 733 734 /* Eviction activity tracking */ 735 uint64_t last_evict_timestamp; 736 atomic64_t evict_duration_counter; 737 struct attribute attr_evict; 738 739 struct kobject *kobj_stats; 740 unsigned int doorbell_index; 741 742 /* 743 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process 744 * that is associated with device encoded by "this" struct instance. The 745 * value reflects CU usage by all of the waves launched by this process 746 * on this device. A very important property of occupancy parameter is 747 * that its value is a snapshot of current use. 748 * 749 * Following is to be noted regarding how this parameter is reported: 750 * 751 * The number of waves that a CU can launch is limited by couple of 752 * parameters. These are encoded by struct amdgpu_cu_info instance 753 * that is part of every device definition. For GFX9 devices this 754 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves 755 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu) 756 * when they do use scratch memory. This could change for future 757 * devices and therefore this example should be considered as a guide. 758 * 759 * All CU's of a device are available for the process. This may not be true 760 * under certain conditions - e.g. CU masking. 761 * 762 * Finally number of CU's that are occupied by a process is affected by both 763 * number of CU's a device has along with number of other competing processes 764 */ 765 struct attribute attr_cu_occupancy; 766 767 /* sysfs counters for GPU retry fault and page migration tracking */ 768 struct kobject *kobj_counters; 769 struct attribute attr_faults; 770 struct attribute attr_page_in; 771 struct attribute attr_page_out; 772 uint64_t faults; 773 uint64_t page_in; 774 uint64_t page_out; 775 /* 776 * If this process has been checkpointed before, then the user 777 * application will use the original gpu_id on the 778 * checkpointed node to refer to this device. 779 */ 780 uint32_t user_gpu_id; 781 }; 782 783 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 784 785 struct svm_range_list { 786 struct mutex lock; 787 struct rb_root_cached objects; 788 struct list_head list; 789 struct work_struct deferred_list_work; 790 struct list_head deferred_range_list; 791 struct list_head criu_svm_metadata_list; 792 spinlock_t deferred_list_lock; 793 atomic_t evicted_ranges; 794 atomic_t drain_pagefaults; 795 struct delayed_work restore_work; 796 DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE); 797 struct task_struct *faulting_task; 798 }; 799 800 /* Process data */ 801 struct kfd_process { 802 /* 803 * kfd_process are stored in an mm_struct*->kfd_process* 804 * hash table (kfd_processes in kfd_process.c) 805 */ 806 struct hlist_node kfd_processes; 807 808 /* 809 * Opaque pointer to mm_struct. We don't hold a reference to 810 * it so it should never be dereferenced from here. This is 811 * only used for looking up processes by their mm. 812 */ 813 void *mm; 814 815 struct kref ref; 816 struct work_struct release_work; 817 818 struct mutex mutex; 819 820 /* 821 * In any process, the thread that started main() is the lead 822 * thread and outlives the rest. 823 * It is here because amd_iommu_bind_pasid wants a task_struct. 824 * It can also be used for safely getting a reference to the 825 * mm_struct of the process. 826 */ 827 struct task_struct *lead_thread; 828 829 /* We want to receive a notification when the mm_struct is destroyed */ 830 struct mmu_notifier mmu_notifier; 831 832 u32 pasid; 833 834 /* 835 * Array of kfd_process_device pointers, 836 * one for each device the process is using. 837 */ 838 struct kfd_process_device *pdds[MAX_GPU_INSTANCE]; 839 uint32_t n_pdds; 840 841 struct process_queue_manager pqm; 842 843 /*Is the user space process 32 bit?*/ 844 bool is_32bit_user_mode; 845 846 /* Event-related data */ 847 struct mutex event_mutex; 848 /* Event ID allocator and lookup */ 849 struct idr event_idr; 850 /* Event page */ 851 u64 signal_handle; 852 struct kfd_signal_page *signal_page; 853 size_t signal_mapped_size; 854 size_t signal_event_count; 855 bool signal_event_limit_reached; 856 857 /* Information used for memory eviction */ 858 void *kgd_process_info; 859 /* Eviction fence that is attached to all the BOs of this process. The 860 * fence will be triggered during eviction and new one will be created 861 * during restore 862 */ 863 struct dma_fence *ef; 864 865 /* Work items for evicting and restoring BOs */ 866 struct delayed_work eviction_work; 867 struct delayed_work restore_work; 868 /* seqno of the last scheduled eviction */ 869 unsigned int last_eviction_seqno; 870 /* Approx. the last timestamp (in jiffies) when the process was 871 * restored after an eviction 872 */ 873 unsigned long last_restore_timestamp; 874 875 /* Kobj for our procfs */ 876 struct kobject *kobj; 877 struct kobject *kobj_queues; 878 struct attribute attr_pasid; 879 880 /* shared virtual memory registered by this process */ 881 struct svm_range_list svms; 882 883 bool xnack_enabled; 884 885 atomic_t poison; 886 /* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */ 887 bool queues_paused; 888 }; 889 890 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 891 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 892 extern struct srcu_struct kfd_processes_srcu; 893 894 /** 895 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer. 896 * 897 * @filep: pointer to file structure. 898 * @p: amdkfd process pointer. 899 * @data: pointer to arg that was copied from user. 900 * 901 * Return: returns ioctl completion code. 902 */ 903 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 904 void *data); 905 906 struct amdkfd_ioctl_desc { 907 unsigned int cmd; 908 int flags; 909 amdkfd_ioctl_t *func; 910 unsigned int cmd_drv; 911 const char *name; 912 }; 913 bool kfd_dev_is_large_bar(struct kfd_dev *dev); 914 915 int kfd_process_create_wq(void); 916 void kfd_process_destroy_wq(void); 917 struct kfd_process *kfd_create_process(struct file *filep); 918 struct kfd_process *kfd_get_process(const struct task_struct *task); 919 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid); 920 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 921 922 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id); 923 int kfd_process_gpuid_from_adev(struct kfd_process *p, 924 struct amdgpu_device *adev, uint32_t *gpuid, 925 uint32_t *gpuidx); 926 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p, 927 uint32_t gpuidx, uint32_t *gpuid) { 928 return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL; 929 } 930 static inline struct kfd_process_device *kfd_process_device_from_gpuidx( 931 struct kfd_process *p, uint32_t gpuidx) { 932 return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL; 933 } 934 935 void kfd_unref_process(struct kfd_process *p); 936 int kfd_process_evict_queues(struct kfd_process *p); 937 int kfd_process_restore_queues(struct kfd_process *p); 938 void kfd_suspend_all_processes(void); 939 int kfd_resume_all_processes(void); 940 941 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process, 942 uint32_t gpu_id); 943 944 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id); 945 946 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 947 struct file *drm_file); 948 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 949 struct kfd_process *p); 950 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 951 struct kfd_process *p); 952 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 953 struct kfd_process *p); 954 955 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported); 956 957 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 958 struct vm_area_struct *vma); 959 960 /* KFD process API for creating and translating handles */ 961 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 962 void *mem); 963 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 964 int handle); 965 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 966 int handle); 967 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid); 968 969 /* PASIDs */ 970 int kfd_pasid_init(void); 971 void kfd_pasid_exit(void); 972 bool kfd_set_pasid_limit(unsigned int new_limit); 973 unsigned int kfd_get_pasid_limit(void); 974 u32 kfd_pasid_alloc(void); 975 void kfd_pasid_free(u32 pasid); 976 977 /* Doorbells */ 978 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 979 int kfd_doorbell_init(struct kfd_dev *kfd); 980 void kfd_doorbell_fini(struct kfd_dev *kfd); 981 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, 982 struct vm_area_struct *vma); 983 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 984 unsigned int *doorbell_off); 985 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 986 u32 read_kernel_doorbell(u32 __iomem *db); 987 void write_kernel_doorbell(void __iomem *db, u32 value); 988 void write_kernel_doorbell64(void __iomem *db, u64 value); 989 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 990 struct kfd_process_device *pdd, 991 unsigned int doorbell_id); 992 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd); 993 int kfd_alloc_process_doorbells(struct kfd_dev *kfd, 994 unsigned int *doorbell_index); 995 void kfd_free_process_doorbells(struct kfd_dev *kfd, 996 unsigned int doorbell_index); 997 /* GTT Sub-Allocator */ 998 999 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 1000 struct kfd_mem_obj **mem_obj); 1001 1002 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 1003 1004 extern struct device *kfd_device; 1005 1006 /* KFD's procfs */ 1007 void kfd_procfs_init(void); 1008 void kfd_procfs_shutdown(void); 1009 int kfd_procfs_add_queue(struct queue *q); 1010 void kfd_procfs_del_queue(struct queue *q); 1011 1012 /* Topology */ 1013 int kfd_topology_init(void); 1014 void kfd_topology_shutdown(void); 1015 int kfd_topology_add_device(struct kfd_dev *gpu); 1016 int kfd_topology_remove_device(struct kfd_dev *gpu); 1017 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 1018 uint32_t proximity_domain); 1019 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock( 1020 uint32_t proximity_domain); 1021 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 1022 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 1023 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 1024 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev); 1025 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); 1026 int kfd_numa_node_to_apic_id(int numa_node_id); 1027 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu); 1028 1029 /* Interrupts */ 1030 int kfd_interrupt_init(struct kfd_dev *dev); 1031 void kfd_interrupt_exit(struct kfd_dev *dev); 1032 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 1033 bool interrupt_is_wanted(struct kfd_dev *dev, 1034 const uint32_t *ih_ring_entry, 1035 uint32_t *patched_ihre, bool *flag); 1036 1037 /* amdkfd Apertures */ 1038 int kfd_init_apertures(struct kfd_process *process); 1039 1040 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1041 uint64_t tba_addr, 1042 uint64_t tma_addr); 1043 1044 /* CRIU */ 1045 /* 1046 * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private 1047 * structures: 1048 * kfd_criu_process_priv_data 1049 * kfd_criu_device_priv_data 1050 * kfd_criu_bo_priv_data 1051 * kfd_criu_queue_priv_data 1052 * kfd_criu_event_priv_data 1053 * kfd_criu_svm_range_priv_data 1054 */ 1055 1056 #define KFD_CRIU_PRIV_VERSION 1 1057 1058 struct kfd_criu_process_priv_data { 1059 uint32_t version; 1060 uint32_t xnack_mode; 1061 }; 1062 1063 struct kfd_criu_device_priv_data { 1064 /* For future use */ 1065 uint64_t reserved; 1066 }; 1067 1068 struct kfd_criu_bo_priv_data { 1069 uint64_t user_addr; 1070 uint32_t idr_handle; 1071 uint32_t mapped_gpuids[MAX_GPU_INSTANCE]; 1072 }; 1073 1074 /* 1075 * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data, 1076 * kfd_criu_svm_range_priv_data is the object type 1077 */ 1078 enum kfd_criu_object_type { 1079 KFD_CRIU_OBJECT_TYPE_QUEUE, 1080 KFD_CRIU_OBJECT_TYPE_EVENT, 1081 KFD_CRIU_OBJECT_TYPE_SVM_RANGE, 1082 }; 1083 1084 struct kfd_criu_svm_range_priv_data { 1085 uint32_t object_type; 1086 uint64_t start_addr; 1087 uint64_t size; 1088 /* Variable length array of attributes */ 1089 struct kfd_ioctl_svm_attribute attrs[]; 1090 }; 1091 1092 struct kfd_criu_queue_priv_data { 1093 uint32_t object_type; 1094 uint64_t q_address; 1095 uint64_t q_size; 1096 uint64_t read_ptr_addr; 1097 uint64_t write_ptr_addr; 1098 uint64_t doorbell_off; 1099 uint64_t eop_ring_buffer_address; 1100 uint64_t ctx_save_restore_area_address; 1101 uint32_t gpu_id; 1102 uint32_t type; 1103 uint32_t format; 1104 uint32_t q_id; 1105 uint32_t priority; 1106 uint32_t q_percent; 1107 uint32_t doorbell_id; 1108 uint32_t gws; 1109 uint32_t sdma_id; 1110 uint32_t eop_ring_buffer_size; 1111 uint32_t ctx_save_restore_area_size; 1112 uint32_t ctl_stack_size; 1113 uint32_t mqd_size; 1114 }; 1115 1116 struct kfd_criu_event_priv_data { 1117 uint32_t object_type; 1118 uint64_t user_handle; 1119 uint32_t event_id; 1120 uint32_t auto_reset; 1121 uint32_t type; 1122 uint32_t signaled; 1123 1124 union { 1125 struct kfd_hsa_memory_exception_data memory_exception_data; 1126 struct kfd_hsa_hw_exception_data hw_exception_data; 1127 }; 1128 }; 1129 1130 int kfd_process_get_queue_info(struct kfd_process *p, 1131 uint32_t *num_queues, 1132 uint64_t *priv_data_sizes); 1133 1134 int kfd_criu_checkpoint_queues(struct kfd_process *p, 1135 uint8_t __user *user_priv_data, 1136 uint64_t *priv_data_offset); 1137 1138 int kfd_criu_restore_queue(struct kfd_process *p, 1139 uint8_t __user *user_priv_data, 1140 uint64_t *priv_data_offset, 1141 uint64_t max_priv_data_size); 1142 1143 int kfd_criu_checkpoint_events(struct kfd_process *p, 1144 uint8_t __user *user_priv_data, 1145 uint64_t *priv_data_offset); 1146 1147 int kfd_criu_restore_event(struct file *devkfd, 1148 struct kfd_process *p, 1149 uint8_t __user *user_priv_data, 1150 uint64_t *priv_data_offset, 1151 uint64_t max_priv_data_size); 1152 /* CRIU - End */ 1153 1154 /* Queue Context Management */ 1155 int init_queue(struct queue **q, const struct queue_properties *properties); 1156 void uninit_queue(struct queue *q); 1157 void print_queue_properties(struct queue_properties *q); 1158 void print_queue(struct queue *q); 1159 1160 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 1161 struct kfd_dev *dev); 1162 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 1163 struct kfd_dev *dev); 1164 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 1165 struct kfd_dev *dev); 1166 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 1167 struct kfd_dev *dev); 1168 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 1169 struct kfd_dev *dev); 1170 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 1171 struct kfd_dev *dev); 1172 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 1173 void device_queue_manager_uninit(struct device_queue_manager *dqm); 1174 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 1175 enum kfd_queue_type type); 1176 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging); 1177 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid); 1178 1179 /* Process Queue Manager */ 1180 struct process_queue_node { 1181 struct queue *q; 1182 struct kernel_queue *kq; 1183 struct list_head process_queue_list; 1184 }; 1185 1186 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 1187 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 1188 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 1189 void pqm_uninit(struct process_queue_manager *pqm); 1190 int pqm_create_queue(struct process_queue_manager *pqm, 1191 struct kfd_dev *dev, 1192 struct file *f, 1193 struct queue_properties *properties, 1194 unsigned int *qid, 1195 const struct kfd_criu_queue_priv_data *q_data, 1196 const void *restore_mqd, 1197 const void *restore_ctl_stack, 1198 uint32_t *p_doorbell_offset_in_process); 1199 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 1200 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid, 1201 struct queue_properties *p); 1202 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid, 1203 struct mqd_update_info *minfo); 1204 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 1205 void *gws); 1206 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 1207 unsigned int qid); 1208 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm, 1209 unsigned int qid); 1210 int pqm_get_wave_state(struct process_queue_manager *pqm, 1211 unsigned int qid, 1212 void __user *ctl_stack, 1213 u32 *ctl_stack_used_size, 1214 u32 *save_area_used_size); 1215 1216 int amdkfd_fence_wait_timeout(uint64_t *fence_addr, 1217 uint64_t fence_value, 1218 unsigned int timeout_ms); 1219 1220 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm, 1221 unsigned int qid, 1222 u32 *mqd_size, 1223 u32 *ctl_stack_size); 1224 /* Packet Manager */ 1225 1226 #define KFD_FENCE_COMPLETED (100) 1227 #define KFD_FENCE_INIT (10) 1228 1229 struct packet_manager { 1230 struct device_queue_manager *dqm; 1231 struct kernel_queue *priv_queue; 1232 struct mutex lock; 1233 bool allocated; 1234 struct kfd_mem_obj *ib_buffer_obj; 1235 unsigned int ib_size_bytes; 1236 bool is_over_subscription; 1237 1238 const struct packet_manager_funcs *pmf; 1239 }; 1240 1241 struct packet_manager_funcs { 1242 /* Support ASIC-specific packet formats for PM4 packets */ 1243 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 1244 struct qcm_process_device *qpd); 1245 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 1246 uint64_t ib, size_t ib_size_in_dwords, bool chain); 1247 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 1248 struct scheduling_resources *res); 1249 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 1250 struct queue *q, bool is_static); 1251 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 1252 enum kfd_unmap_queues_filter mode, 1253 uint32_t filter_param, bool reset); 1254 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 1255 uint64_t fence_address, uint64_t fence_value); 1256 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 1257 1258 /* Packet sizes */ 1259 int map_process_size; 1260 int runlist_size; 1261 int set_resources_size; 1262 int map_queues_size; 1263 int unmap_queues_size; 1264 int query_status_size; 1265 int release_mem_size; 1266 }; 1267 1268 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 1269 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 1270 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs; 1271 1272 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 1273 void pm_uninit(struct packet_manager *pm, bool hanging); 1274 int pm_send_set_resources(struct packet_manager *pm, 1275 struct scheduling_resources *res); 1276 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 1277 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 1278 uint64_t fence_value); 1279 1280 int pm_send_unmap_queue(struct packet_manager *pm, 1281 enum kfd_unmap_queues_filter mode, 1282 uint32_t filter_param, bool reset); 1283 1284 void pm_release_ib(struct packet_manager *pm); 1285 1286 /* Following PM funcs can be shared among VI and AI */ 1287 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 1288 1289 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1290 1291 /* Events */ 1292 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1293 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1294 1295 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1296 1297 int kfd_event_init_process(struct kfd_process *p); 1298 void kfd_event_free_process(struct kfd_process *p); 1299 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1300 int kfd_wait_on_events(struct kfd_process *p, 1301 uint32_t num_events, void __user *data, 1302 bool all, uint32_t user_timeout_ms, 1303 uint32_t *wait_result); 1304 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 1305 uint32_t valid_id_bits); 1306 void kfd_signal_iommu_event(struct kfd_dev *dev, 1307 u32 pasid, unsigned long address, 1308 bool is_write_requested, bool is_execute_requested); 1309 void kfd_signal_hw_exception_event(u32 pasid); 1310 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1311 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1312 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset); 1313 1314 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1315 uint32_t event_type, bool auto_reset, uint32_t node_id, 1316 uint32_t *event_id, uint32_t *event_trigger_data, 1317 uint64_t *event_page_offset, uint32_t *event_slot_index); 1318 1319 int kfd_get_num_events(struct kfd_process *p); 1320 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1321 1322 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid, 1323 struct kfd_vm_fault_info *info); 1324 1325 void kfd_signal_reset_event(struct kfd_dev *dev); 1326 1327 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid); 1328 1329 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type); 1330 1331 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev) 1332 { 1333 return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) || 1334 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && 1335 dev->adev->sdma.instance[0].fw_version >= 18) || 1336 KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0); 1337 } 1338 1339 bool kfd_is_locked(void); 1340 1341 /* Compute profile */ 1342 void kfd_inc_compute_active(struct kfd_dev *dev); 1343 void kfd_dec_compute_active(struct kfd_dev *dev); 1344 1345 /* Cgroup Support */ 1346 /* Check with device cgroup if @kfd device is accessible */ 1347 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd) 1348 { 1349 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) 1350 struct drm_device *ddev = kfd->ddev; 1351 1352 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, 1353 ddev->render->index, 1354 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1355 #else 1356 return 0; 1357 #endif 1358 } 1359 1360 /* Debugfs */ 1361 #if defined(CONFIG_DEBUG_FS) 1362 1363 void kfd_debugfs_init(void); 1364 void kfd_debugfs_fini(void); 1365 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1366 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1367 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1368 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1369 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1370 int pm_debugfs_runlist(struct seq_file *m, void *data); 1371 1372 int kfd_debugfs_hang_hws(struct kfd_dev *dev); 1373 int pm_debugfs_hang_hws(struct packet_manager *pm); 1374 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm); 1375 1376 #else 1377 1378 static inline void kfd_debugfs_init(void) {} 1379 static inline void kfd_debugfs_fini(void) {} 1380 1381 #endif 1382 1383 #endif 1384