1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #ifndef KFD_PRIV_H_INCLUDED 24 #define KFD_PRIV_H_INCLUDED 25 26 #include <linux/hashtable.h> 27 #include <linux/mmu_notifier.h> 28 #include <linux/mutex.h> 29 #include <linux/types.h> 30 #include <linux/atomic.h> 31 #include <linux/workqueue.h> 32 #include <linux/spinlock.h> 33 #include <linux/kfd_ioctl.h> 34 #include <linux/idr.h> 35 #include <linux/kfifo.h> 36 #include <linux/seq_file.h> 37 #include <linux/kref.h> 38 #include <linux/sysfs.h> 39 #include <linux/device_cgroup.h> 40 #include <drm/drm_file.h> 41 #include <drm/drm_drv.h> 42 #include <drm/drm_device.h> 43 #include <drm/drm_ioctl.h> 44 #include <kgd_kfd_interface.h> 45 #include <linux/swap.h> 46 47 #include "amd_shared.h" 48 #include "amdgpu.h" 49 50 #define KFD_MAX_RING_ENTRY_SIZE 8 51 52 #define KFD_SYSFS_FILE_MODE 0444 53 54 /* GPU ID hash width in bits */ 55 #define KFD_GPU_ID_HASH_WIDTH 16 56 57 /* Use upper bits of mmap offset to store KFD driver specific information. 58 * BITS[63:62] - Encode MMAP type 59 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 60 * BITS[45:0] - MMAP offset value 61 * 62 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 63 * defines are w.r.t to PAGE_SIZE 64 */ 65 #define KFD_MMAP_TYPE_SHIFT 62 66 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 67 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 68 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 69 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 70 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 71 72 #define KFD_MMAP_GPU_ID_SHIFT 46 73 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 74 << KFD_MMAP_GPU_ID_SHIFT) 75 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 76 & KFD_MMAP_GPU_ID_MASK) 77 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 78 >> KFD_MMAP_GPU_ID_SHIFT) 79 80 /* 81 * When working with cp scheduler we should assign the HIQ manually or via 82 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 83 * definitions for Kaveri. In Kaveri only the first ME queues participates 84 * in the cp scheduling taking that in mind we set the HIQ slot in the 85 * second ME. 86 */ 87 #define KFD_CIK_HIQ_PIPE 4 88 #define KFD_CIK_HIQ_QUEUE 0 89 90 /* Macro for allocating structures */ 91 #define kfd_alloc_struct(ptr_to_struct) \ 92 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 93 94 #define KFD_MAX_NUM_OF_PROCESSES 512 95 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 96 97 /* 98 * Size of the per-process TBA+TMA buffer: 2 pages 99 * 100 * The first page is the TBA used for the CWSR ISA code. The second 101 * page is used as TMA for user-mode trap handler setup in daisy-chain mode. 102 */ 103 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 104 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 105 106 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 107 (KFD_MAX_NUM_OF_PROCESSES * \ 108 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 109 110 #define KFD_KERNEL_QUEUE_SIZE 2048 111 112 #define KFD_UNMAP_LATENCY_MS (4000) 113 114 /* 115 * 512 = 0x200 116 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 117 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 118 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 119 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 120 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 121 */ 122 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 123 124 125 /* 126 * Kernel module parameter to specify maximum number of supported queues per 127 * device 128 */ 129 extern int max_num_of_queues_per_device; 130 131 132 /* Kernel module parameter to specify the scheduling policy */ 133 extern int sched_policy; 134 135 /* 136 * Kernel module parameter to specify the maximum process 137 * number per HW scheduler 138 */ 139 extern int hws_max_conc_proc; 140 141 extern int cwsr_enable; 142 143 /* 144 * Kernel module parameter to specify whether to send sigterm to HSA process on 145 * unhandled exception 146 */ 147 extern int send_sigterm; 148 149 /* 150 * This kernel module is used to simulate large bar machine on non-large bar 151 * enabled machines. 152 */ 153 extern int debug_largebar; 154 155 /* 156 * Ignore CRAT table during KFD initialization, can be used to work around 157 * broken CRAT tables on some AMD systems 158 */ 159 extern int ignore_crat; 160 161 /* Set sh_mem_config.retry_disable on GFX v9 */ 162 extern int amdgpu_noretry; 163 164 /* Halt if HWS hang is detected */ 165 extern int halt_if_hws_hang; 166 167 /* Whether MEC FW support GWS barriers */ 168 extern bool hws_gws_support; 169 170 /* Queue preemption timeout in ms */ 171 extern int queue_preemption_timeout_ms; 172 173 /* 174 * Don't evict process queues on vm fault 175 */ 176 extern int amdgpu_no_queue_eviction_on_vm_fault; 177 178 /* Enable eviction debug messages */ 179 extern bool debug_evictions; 180 181 enum cache_policy { 182 cache_policy_coherent, 183 cache_policy_noncoherent 184 }; 185 186 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10) 187 188 struct kfd_event_interrupt_class { 189 bool (*interrupt_isr)(struct kfd_dev *dev, 190 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 191 bool *patched_flag); 192 void (*interrupt_wq)(struct kfd_dev *dev, 193 const uint32_t *ih_ring_entry); 194 }; 195 196 struct kfd_device_info { 197 enum amd_asic_type asic_family; 198 const char *asic_name; 199 const struct kfd_event_interrupt_class *event_interrupt_class; 200 unsigned int max_pasid_bits; 201 unsigned int max_no_of_hqd; 202 unsigned int doorbell_size; 203 size_t ih_ring_entry_size; 204 uint8_t num_of_watch_points; 205 uint16_t mqd_size_aligned; 206 bool supports_cwsr; 207 bool needs_iommu_device; 208 bool needs_pci_atomics; 209 unsigned int num_sdma_engines; 210 unsigned int num_xgmi_sdma_engines; 211 unsigned int num_sdma_queues_per_engine; 212 }; 213 214 struct kfd_mem_obj { 215 uint32_t range_start; 216 uint32_t range_end; 217 uint64_t gpu_addr; 218 uint32_t *cpu_ptr; 219 void *gtt_mem; 220 }; 221 222 struct kfd_vmid_info { 223 uint32_t first_vmid_kfd; 224 uint32_t last_vmid_kfd; 225 uint32_t vmid_num_kfd; 226 }; 227 228 struct kfd_dev { 229 struct kgd_dev *kgd; 230 231 const struct kfd_device_info *device_info; 232 struct pci_dev *pdev; 233 struct drm_device *ddev; 234 235 unsigned int id; /* topology stub index */ 236 237 phys_addr_t doorbell_base; /* Start of actual doorbells used by 238 * KFD. It is aligned for mapping 239 * into user mode 240 */ 241 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI 242 * doorbell BAR to the first KFD 243 * doorbell in dwords. GFX reserves 244 * the segment before this offset. 245 */ 246 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 247 * page used by kernel queue 248 */ 249 250 struct kgd2kfd_shared_resources shared_resources; 251 struct kfd_vmid_info vm_info; 252 253 const struct kfd2kgd_calls *kfd2kgd; 254 struct mutex doorbell_mutex; 255 DECLARE_BITMAP(doorbell_available_index, 256 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 257 258 void *gtt_mem; 259 uint64_t gtt_start_gpu_addr; 260 void *gtt_start_cpu_ptr; 261 void *gtt_sa_bitmap; 262 struct mutex gtt_sa_lock; 263 unsigned int gtt_sa_chunk_size; 264 unsigned int gtt_sa_num_of_chunks; 265 266 /* Interrupts */ 267 struct kfifo ih_fifo; 268 struct workqueue_struct *ih_wq; 269 struct work_struct interrupt_work; 270 spinlock_t interrupt_lock; 271 272 /* QCM Device instance */ 273 struct device_queue_manager *dqm; 274 275 bool init_complete; 276 /* 277 * Interrupts of interest to KFD are copied 278 * from the HW ring into a SW ring. 279 */ 280 bool interrupts_active; 281 282 /* Debug manager */ 283 struct kfd_dbgmgr *dbgmgr; 284 285 /* Firmware versions */ 286 uint16_t mec_fw_version; 287 uint16_t mec2_fw_version; 288 uint16_t sdma_fw_version; 289 290 /* Maximum process number mapped to HW scheduler */ 291 unsigned int max_proc_per_quantum; 292 293 /* CWSR */ 294 bool cwsr_enabled; 295 const void *cwsr_isa; 296 unsigned int cwsr_isa_size; 297 298 /* xGMI */ 299 uint64_t hive_id; 300 301 bool pci_atomic_requested; 302 303 /* Use IOMMU v2 flag */ 304 bool use_iommu_v2; 305 306 /* SRAM ECC flag */ 307 atomic_t sram_ecc_flag; 308 309 /* Compute Profile ref. count */ 310 atomic_t compute_profile; 311 312 /* Global GWS resource shared between processes */ 313 void *gws; 314 315 /* Clients watching SMI events */ 316 struct list_head smi_clients; 317 spinlock_t smi_lock; 318 319 uint32_t reset_seq_num; 320 321 struct ida doorbell_ida; 322 unsigned int max_doorbell_slices; 323 324 int noretry; 325 }; 326 327 enum kfd_mempool { 328 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 329 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 330 KFD_MEMPOOL_FRAMEBUFFER = 3, 331 }; 332 333 /* Character device interface */ 334 int kfd_chardev_init(void); 335 void kfd_chardev_exit(void); 336 struct device *kfd_chardev(void); 337 338 /** 339 * enum kfd_unmap_queues_filter - Enum for queue filters. 340 * 341 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue. 342 * 343 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 344 * running queues list. 345 * 346 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 347 * specific process. 348 * 349 */ 350 enum kfd_unmap_queues_filter { 351 KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE, 352 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 353 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 354 KFD_UNMAP_QUEUES_FILTER_BY_PASID 355 }; 356 357 /** 358 * enum kfd_queue_type - Enum for various queue types. 359 * 360 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 361 * 362 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type. 363 * 364 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 365 * 366 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 367 * 368 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface. 369 */ 370 enum kfd_queue_type { 371 KFD_QUEUE_TYPE_COMPUTE, 372 KFD_QUEUE_TYPE_SDMA, 373 KFD_QUEUE_TYPE_HIQ, 374 KFD_QUEUE_TYPE_DIQ, 375 KFD_QUEUE_TYPE_SDMA_XGMI 376 }; 377 378 enum kfd_queue_format { 379 KFD_QUEUE_FORMAT_PM4, 380 KFD_QUEUE_FORMAT_AQL 381 }; 382 383 enum KFD_QUEUE_PRIORITY { 384 KFD_QUEUE_PRIORITY_MINIMUM = 0, 385 KFD_QUEUE_PRIORITY_MAXIMUM = 15 386 }; 387 388 /** 389 * struct queue_properties 390 * 391 * @type: The queue type. 392 * 393 * @queue_id: Queue identifier. 394 * 395 * @queue_address: Queue ring buffer address. 396 * 397 * @queue_size: Queue ring buffer size. 398 * 399 * @priority: Defines the queue priority relative to other queues in the 400 * process. 401 * This is just an indication and HW scheduling may override the priority as 402 * necessary while keeping the relative prioritization. 403 * the priority granularity is from 0 to f which f is the highest priority. 404 * currently all queues are initialized with the highest priority. 405 * 406 * @queue_percent: This field is partially implemented and currently a zero in 407 * this field defines that the queue is non active. 408 * 409 * @read_ptr: User space address which points to the number of dwords the 410 * cp read from the ring buffer. This field updates automatically by the H/W. 411 * 412 * @write_ptr: Defines the number of dwords written to the ring buffer. 413 * 414 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring 415 * buffer. This field should be similar to write_ptr and the user should 416 * update this field after updating the write_ptr. 417 * 418 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 419 * 420 * @is_interop: Defines if this is a interop queue. Interop queue means that 421 * the queue can access both graphics and compute resources. 422 * 423 * @is_evicted: Defines if the queue is evicted. Only active queues 424 * are evicted, rendering them inactive. 425 * 426 * @is_active: Defines if the queue is active or not. @is_active and 427 * @is_evicted are protected by the DQM lock. 428 * 429 * @is_gws: Defines if the queue has been updated to be GWS-capable or not. 430 * @is_gws should be protected by the DQM lock, since changing it can yield the 431 * possibility of updating DQM state on number of GWS queues. 432 * 433 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 434 * of the queue. 435 * 436 * This structure represents the queue properties for each queue no matter if 437 * it's user mode or kernel mode queue. 438 * 439 */ 440 struct queue_properties { 441 enum kfd_queue_type type; 442 enum kfd_queue_format format; 443 unsigned int queue_id; 444 uint64_t queue_address; 445 uint64_t queue_size; 446 uint32_t priority; 447 uint32_t queue_percent; 448 uint32_t *read_ptr; 449 uint32_t *write_ptr; 450 void __iomem *doorbell_ptr; 451 uint32_t doorbell_off; 452 bool is_interop; 453 bool is_evicted; 454 bool is_active; 455 bool is_gws; 456 /* Not relevant for user mode queues in cp scheduling */ 457 unsigned int vmid; 458 /* Relevant only for sdma queues*/ 459 uint32_t sdma_engine_id; 460 uint32_t sdma_queue_id; 461 uint32_t sdma_vm_addr; 462 /* Relevant only for VI */ 463 uint64_t eop_ring_buffer_address; 464 uint32_t eop_ring_buffer_size; 465 uint64_t ctx_save_restore_area_address; 466 uint32_t ctx_save_restore_area_size; 467 uint32_t ctl_stack_size; 468 uint64_t tba_addr; 469 uint64_t tma_addr; 470 /* Relevant for CU */ 471 uint32_t cu_mask_count; /* Must be a multiple of 32 */ 472 uint32_t *cu_mask; 473 }; 474 475 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 476 (q).queue_address != 0 && \ 477 (q).queue_percent > 0 && \ 478 !(q).is_evicted) 479 480 /** 481 * struct queue 482 * 483 * @list: Queue linked list. 484 * 485 * @mqd: The queue MQD (memory queue descriptor). 486 * 487 * @mqd_mem_obj: The MQD local gpu memory object. 488 * 489 * @gart_mqd_addr: The MQD gart mc address. 490 * 491 * @properties: The queue properties. 492 * 493 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 494 * that the queue should be executed on. 495 * 496 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 497 * id. 498 * 499 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 500 * 501 * @process: The kfd process that created this queue. 502 * 503 * @device: The kfd device that created this queue. 504 * 505 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 506 * otherwise. 507 * 508 * This structure represents user mode compute queues. 509 * It contains all the necessary data to handle such queues. 510 * 511 */ 512 513 struct queue { 514 struct list_head list; 515 void *mqd; 516 struct kfd_mem_obj *mqd_mem_obj; 517 uint64_t gart_mqd_addr; 518 struct queue_properties properties; 519 520 uint32_t mec; 521 uint32_t pipe; 522 uint32_t queue; 523 524 unsigned int sdma_id; 525 unsigned int doorbell_id; 526 527 struct kfd_process *process; 528 struct kfd_dev *device; 529 void *gws; 530 531 /* procfs */ 532 struct kobject kobj; 533 }; 534 535 enum KFD_MQD_TYPE { 536 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 537 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 538 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 539 KFD_MQD_TYPE_DIQ, /* for diq */ 540 KFD_MQD_TYPE_MAX 541 }; 542 543 enum KFD_PIPE_PRIORITY { 544 KFD_PIPE_PRIORITY_CS_LOW = 0, 545 KFD_PIPE_PRIORITY_CS_MEDIUM, 546 KFD_PIPE_PRIORITY_CS_HIGH 547 }; 548 549 struct scheduling_resources { 550 unsigned int vmid_mask; 551 enum kfd_queue_type type; 552 uint64_t queue_mask; 553 uint64_t gws_mask; 554 uint32_t oac_mask; 555 uint32_t gds_heap_base; 556 uint32_t gds_heap_size; 557 }; 558 559 struct process_queue_manager { 560 /* data */ 561 struct kfd_process *process; 562 struct list_head queues; 563 unsigned long *queue_slot_bitmap; 564 }; 565 566 struct qcm_process_device { 567 /* The Device Queue Manager that owns this data */ 568 struct device_queue_manager *dqm; 569 struct process_queue_manager *pqm; 570 /* Queues list */ 571 struct list_head queues_list; 572 struct list_head priv_queue_list; 573 574 unsigned int queue_count; 575 unsigned int vmid; 576 bool is_debug; 577 unsigned int evicted; /* eviction counter, 0=active */ 578 579 /* This flag tells if we should reset all wavefronts on 580 * process termination 581 */ 582 bool reset_wavefronts; 583 584 /* This flag tells us if this process has a GWS-capable 585 * queue that will be mapped into the runlist. It's 586 * possible to request a GWS BO, but not have the queue 587 * currently mapped, and this changes how the MAP_PROCESS 588 * PM4 packet is configured. 589 */ 590 bool mapped_gws_queue; 591 592 /* All the memory management data should be here too */ 593 uint64_t gds_context_area; 594 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 595 uint64_t page_table_base; 596 uint32_t sh_mem_config; 597 uint32_t sh_mem_bases; 598 uint32_t sh_mem_ape1_base; 599 uint32_t sh_mem_ape1_limit; 600 uint32_t gds_size; 601 uint32_t num_gws; 602 uint32_t num_oac; 603 uint32_t sh_hidden_private_base; 604 605 /* CWSR memory */ 606 void *cwsr_kaddr; 607 uint64_t cwsr_base; 608 uint64_t tba_addr; 609 uint64_t tma_addr; 610 611 /* IB memory */ 612 uint64_t ib_base; 613 void *ib_kaddr; 614 615 /* doorbell resources per process per device */ 616 unsigned long *doorbell_bitmap; 617 }; 618 619 /* KFD Memory Eviction */ 620 621 /* Approx. wait time before attempting to restore evicted BOs */ 622 #define PROCESS_RESTORE_TIME_MS 100 623 /* Approx. back off time if restore fails due to lack of memory */ 624 #define PROCESS_BACK_OFF_TIME_MS 100 625 /* Approx. time before evicting the process again */ 626 #define PROCESS_ACTIVE_TIME_MS 10 627 628 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 629 * idr_handle in the least significant 4 bytes 630 */ 631 #define MAKE_HANDLE(gpu_id, idr_handle) \ 632 (((uint64_t)(gpu_id) << 32) + idr_handle) 633 #define GET_GPU_ID(handle) (handle >> 32) 634 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 635 636 enum kfd_pdd_bound { 637 PDD_UNBOUND = 0, 638 PDD_BOUND, 639 PDD_BOUND_SUSPENDED, 640 }; 641 642 #define MAX_SYSFS_FILENAME_LEN 15 643 644 /* 645 * SDMA counter runs at 100MHz frequency. 646 * We display SDMA activity in microsecond granularity in sysfs. 647 * As a result, the divisor is 100. 648 */ 649 #define SDMA_ACTIVITY_DIVISOR 100 650 651 /* Data that is per-process-per device. */ 652 struct kfd_process_device { 653 /* The device that owns this data. */ 654 struct kfd_dev *dev; 655 656 /* The process that owns this kfd_process_device. */ 657 struct kfd_process *process; 658 659 /* per-process-per device QCM data structure */ 660 struct qcm_process_device qpd; 661 662 /*Apertures*/ 663 uint64_t lds_base; 664 uint64_t lds_limit; 665 uint64_t gpuvm_base; 666 uint64_t gpuvm_limit; 667 uint64_t scratch_base; 668 uint64_t scratch_limit; 669 670 /* VM context for GPUVM allocations */ 671 struct file *drm_file; 672 void *vm; 673 674 /* GPUVM allocations storage */ 675 struct idr alloc_idr; 676 677 /* Flag used to tell the pdd has dequeued from the dqm. 678 * This is used to prevent dev->dqm->ops.process_termination() from 679 * being called twice when it is already called in IOMMU callback 680 * function. 681 */ 682 bool already_dequeued; 683 bool runtime_inuse; 684 685 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 686 enum kfd_pdd_bound bound; 687 688 /* VRAM usage */ 689 uint64_t vram_usage; 690 struct attribute attr_vram; 691 char vram_filename[MAX_SYSFS_FILENAME_LEN]; 692 693 /* SDMA activity tracking */ 694 uint64_t sdma_past_activity_counter; 695 struct attribute attr_sdma; 696 char sdma_filename[MAX_SYSFS_FILENAME_LEN]; 697 698 /* Eviction activity tracking */ 699 uint64_t last_evict_timestamp; 700 atomic64_t evict_duration_counter; 701 struct attribute attr_evict; 702 703 struct kobject *kobj_stats; 704 unsigned int doorbell_index; 705 706 /* 707 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process 708 * that is associated with device encoded by "this" struct instance. The 709 * value reflects CU usage by all of the waves launched by this process 710 * on this device. A very important property of occupancy parameter is 711 * that its value is a snapshot of current use. 712 * 713 * Following is to be noted regarding how this parameter is reported: 714 * 715 * The number of waves that a CU can launch is limited by couple of 716 * parameters. These are encoded by struct amdgpu_cu_info instance 717 * that is part of every device definition. For GFX9 devices this 718 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves 719 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu) 720 * when they do use scratch memory. This could change for future 721 * devices and therefore this example should be considered as a guide. 722 * 723 * All CU's of a device are available for the process. This may not be true 724 * under certain conditions - e.g. CU masking. 725 * 726 * Finally number of CU's that are occupied by a process is affected by both 727 * number of CU's a device has along with number of other competing processes 728 */ 729 struct attribute attr_cu_occupancy; 730 }; 731 732 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 733 734 /* Process data */ 735 struct kfd_process { 736 /* 737 * kfd_process are stored in an mm_struct*->kfd_process* 738 * hash table (kfd_processes in kfd_process.c) 739 */ 740 struct hlist_node kfd_processes; 741 742 /* 743 * Opaque pointer to mm_struct. We don't hold a reference to 744 * it so it should never be dereferenced from here. This is 745 * only used for looking up processes by their mm. 746 */ 747 void *mm; 748 749 struct kref ref; 750 struct work_struct release_work; 751 752 struct mutex mutex; 753 754 /* 755 * In any process, the thread that started main() is the lead 756 * thread and outlives the rest. 757 * It is here because amd_iommu_bind_pasid wants a task_struct. 758 * It can also be used for safely getting a reference to the 759 * mm_struct of the process. 760 */ 761 struct task_struct *lead_thread; 762 763 /* We want to receive a notification when the mm_struct is destroyed */ 764 struct mmu_notifier mmu_notifier; 765 766 u32 pasid; 767 768 /* 769 * Array of kfd_process_device pointers, 770 * one for each device the process is using. 771 */ 772 struct kfd_process_device *pdds[MAX_GPU_INSTANCE]; 773 uint32_t n_pdds; 774 775 struct process_queue_manager pqm; 776 777 /*Is the user space process 32 bit?*/ 778 bool is_32bit_user_mode; 779 780 /* Event-related data */ 781 struct mutex event_mutex; 782 /* Event ID allocator and lookup */ 783 struct idr event_idr; 784 /* Event page */ 785 struct kfd_signal_page *signal_page; 786 size_t signal_mapped_size; 787 size_t signal_event_count; 788 bool signal_event_limit_reached; 789 790 /* Information used for memory eviction */ 791 void *kgd_process_info; 792 /* Eviction fence that is attached to all the BOs of this process. The 793 * fence will be triggered during eviction and new one will be created 794 * during restore 795 */ 796 struct dma_fence *ef; 797 798 /* Work items for evicting and restoring BOs */ 799 struct delayed_work eviction_work; 800 struct delayed_work restore_work; 801 /* seqno of the last scheduled eviction */ 802 unsigned int last_eviction_seqno; 803 /* Approx. the last timestamp (in jiffies) when the process was 804 * restored after an eviction 805 */ 806 unsigned long last_restore_timestamp; 807 808 /* Kobj for our procfs */ 809 struct kobject *kobj; 810 struct kobject *kobj_queues; 811 struct attribute attr_pasid; 812 }; 813 814 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 815 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 816 extern struct srcu_struct kfd_processes_srcu; 817 818 /** 819 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer. 820 * 821 * @filep: pointer to file structure. 822 * @p: amdkfd process pointer. 823 * @data: pointer to arg that was copied from user. 824 * 825 * Return: returns ioctl completion code. 826 */ 827 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 828 void *data); 829 830 struct amdkfd_ioctl_desc { 831 unsigned int cmd; 832 int flags; 833 amdkfd_ioctl_t *func; 834 unsigned int cmd_drv; 835 const char *name; 836 }; 837 bool kfd_dev_is_large_bar(struct kfd_dev *dev); 838 839 int kfd_process_create_wq(void); 840 void kfd_process_destroy_wq(void); 841 struct kfd_process *kfd_create_process(struct file *filep); 842 struct kfd_process *kfd_get_process(const struct task_struct *); 843 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid); 844 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 845 void kfd_unref_process(struct kfd_process *p); 846 int kfd_process_evict_queues(struct kfd_process *p); 847 int kfd_process_restore_queues(struct kfd_process *p); 848 void kfd_suspend_all_processes(void); 849 int kfd_resume_all_processes(void); 850 851 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 852 struct file *drm_file); 853 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 854 struct kfd_process *p); 855 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 856 struct kfd_process *p); 857 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 858 struct kfd_process *p); 859 860 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 861 struct vm_area_struct *vma); 862 863 /* KFD process API for creating and translating handles */ 864 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 865 void *mem); 866 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 867 int handle); 868 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 869 int handle); 870 871 /* PASIDs */ 872 int kfd_pasid_init(void); 873 void kfd_pasid_exit(void); 874 bool kfd_set_pasid_limit(unsigned int new_limit); 875 unsigned int kfd_get_pasid_limit(void); 876 u32 kfd_pasid_alloc(void); 877 void kfd_pasid_free(u32 pasid); 878 879 /* Doorbells */ 880 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 881 int kfd_doorbell_init(struct kfd_dev *kfd); 882 void kfd_doorbell_fini(struct kfd_dev *kfd); 883 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, 884 struct vm_area_struct *vma); 885 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 886 unsigned int *doorbell_off); 887 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 888 u32 read_kernel_doorbell(u32 __iomem *db); 889 void write_kernel_doorbell(void __iomem *db, u32 value); 890 void write_kernel_doorbell64(void __iomem *db, u64 value); 891 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 892 struct kfd_process_device *pdd, 893 unsigned int doorbell_id); 894 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd); 895 int kfd_alloc_process_doorbells(struct kfd_dev *kfd, 896 unsigned int *doorbell_index); 897 void kfd_free_process_doorbells(struct kfd_dev *kfd, 898 unsigned int doorbell_index); 899 /* GTT Sub-Allocator */ 900 901 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 902 struct kfd_mem_obj **mem_obj); 903 904 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 905 906 extern struct device *kfd_device; 907 908 /* KFD's procfs */ 909 void kfd_procfs_init(void); 910 void kfd_procfs_shutdown(void); 911 int kfd_procfs_add_queue(struct queue *q); 912 void kfd_procfs_del_queue(struct queue *q); 913 914 /* Topology */ 915 int kfd_topology_init(void); 916 void kfd_topology_shutdown(void); 917 int kfd_topology_add_device(struct kfd_dev *gpu); 918 int kfd_topology_remove_device(struct kfd_dev *gpu); 919 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 920 uint32_t proximity_domain); 921 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 922 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 923 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 924 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd); 925 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); 926 int kfd_numa_node_to_apic_id(int numa_node_id); 927 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu); 928 929 /* Interrupts */ 930 int kfd_interrupt_init(struct kfd_dev *dev); 931 void kfd_interrupt_exit(struct kfd_dev *dev); 932 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 933 bool interrupt_is_wanted(struct kfd_dev *dev, 934 const uint32_t *ih_ring_entry, 935 uint32_t *patched_ihre, bool *flag); 936 937 /* amdkfd Apertures */ 938 int kfd_init_apertures(struct kfd_process *process); 939 940 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 941 uint64_t tba_addr, 942 uint64_t tma_addr); 943 944 /* Queue Context Management */ 945 int init_queue(struct queue **q, const struct queue_properties *properties); 946 void uninit_queue(struct queue *q); 947 void print_queue_properties(struct queue_properties *q); 948 void print_queue(struct queue *q); 949 950 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 951 struct kfd_dev *dev); 952 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 953 struct kfd_dev *dev); 954 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 955 struct kfd_dev *dev); 956 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 957 struct kfd_dev *dev); 958 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 959 struct kfd_dev *dev); 960 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 961 struct kfd_dev *dev); 962 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 963 void device_queue_manager_uninit(struct device_queue_manager *dqm); 964 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 965 enum kfd_queue_type type); 966 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging); 967 int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid); 968 969 /* Process Queue Manager */ 970 struct process_queue_node { 971 struct queue *q; 972 struct kernel_queue *kq; 973 struct list_head process_queue_list; 974 }; 975 976 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 977 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 978 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 979 void pqm_uninit(struct process_queue_manager *pqm); 980 int pqm_create_queue(struct process_queue_manager *pqm, 981 struct kfd_dev *dev, 982 struct file *f, 983 struct queue_properties *properties, 984 unsigned int *qid, 985 uint32_t *p_doorbell_offset_in_process); 986 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 987 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid, 988 struct queue_properties *p); 989 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid, 990 struct queue_properties *p); 991 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 992 void *gws); 993 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 994 unsigned int qid); 995 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm, 996 unsigned int qid); 997 int pqm_get_wave_state(struct process_queue_manager *pqm, 998 unsigned int qid, 999 void __user *ctl_stack, 1000 u32 *ctl_stack_used_size, 1001 u32 *save_area_used_size); 1002 1003 int amdkfd_fence_wait_timeout(uint64_t *fence_addr, 1004 uint64_t fence_value, 1005 unsigned int timeout_ms); 1006 1007 /* Packet Manager */ 1008 1009 #define KFD_FENCE_COMPLETED (100) 1010 #define KFD_FENCE_INIT (10) 1011 1012 struct packet_manager { 1013 struct device_queue_manager *dqm; 1014 struct kernel_queue *priv_queue; 1015 struct mutex lock; 1016 bool allocated; 1017 struct kfd_mem_obj *ib_buffer_obj; 1018 unsigned int ib_size_bytes; 1019 bool is_over_subscription; 1020 1021 const struct packet_manager_funcs *pmf; 1022 }; 1023 1024 struct packet_manager_funcs { 1025 /* Support ASIC-specific packet formats for PM4 packets */ 1026 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 1027 struct qcm_process_device *qpd); 1028 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 1029 uint64_t ib, size_t ib_size_in_dwords, bool chain); 1030 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 1031 struct scheduling_resources *res); 1032 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 1033 struct queue *q, bool is_static); 1034 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 1035 enum kfd_queue_type type, 1036 enum kfd_unmap_queues_filter mode, 1037 uint32_t filter_param, bool reset, 1038 unsigned int sdma_engine); 1039 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 1040 uint64_t fence_address, uint64_t fence_value); 1041 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 1042 1043 /* Packet sizes */ 1044 int map_process_size; 1045 int runlist_size; 1046 int set_resources_size; 1047 int map_queues_size; 1048 int unmap_queues_size; 1049 int query_status_size; 1050 int release_mem_size; 1051 }; 1052 1053 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 1054 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 1055 1056 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 1057 void pm_uninit(struct packet_manager *pm, bool hanging); 1058 int pm_send_set_resources(struct packet_manager *pm, 1059 struct scheduling_resources *res); 1060 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 1061 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 1062 uint64_t fence_value); 1063 1064 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type, 1065 enum kfd_unmap_queues_filter mode, 1066 uint32_t filter_param, bool reset, 1067 unsigned int sdma_engine); 1068 1069 void pm_release_ib(struct packet_manager *pm); 1070 1071 /* Following PM funcs can be shared among VI and AI */ 1072 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 1073 1074 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1075 1076 /* Events */ 1077 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1078 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1079 1080 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1081 1082 void kfd_event_init_process(struct kfd_process *p); 1083 void kfd_event_free_process(struct kfd_process *p); 1084 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1085 int kfd_wait_on_events(struct kfd_process *p, 1086 uint32_t num_events, void __user *data, 1087 bool all, uint32_t user_timeout_ms, 1088 uint32_t *wait_result); 1089 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 1090 uint32_t valid_id_bits); 1091 void kfd_signal_iommu_event(struct kfd_dev *dev, 1092 u32 pasid, unsigned long address, 1093 bool is_write_requested, bool is_execute_requested); 1094 void kfd_signal_hw_exception_event(u32 pasid); 1095 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1096 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1097 int kfd_event_page_set(struct kfd_process *p, void *kernel_address, 1098 uint64_t size); 1099 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1100 uint32_t event_type, bool auto_reset, uint32_t node_id, 1101 uint32_t *event_id, uint32_t *event_trigger_data, 1102 uint64_t *event_page_offset, uint32_t *event_slot_index); 1103 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1104 1105 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid, 1106 struct kfd_vm_fault_info *info); 1107 1108 void kfd_signal_reset_event(struct kfd_dev *dev); 1109 1110 void kfd_flush_tlb(struct kfd_process_device *pdd); 1111 1112 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p); 1113 1114 bool kfd_is_locked(void); 1115 1116 /* Compute profile */ 1117 void kfd_inc_compute_active(struct kfd_dev *dev); 1118 void kfd_dec_compute_active(struct kfd_dev *dev); 1119 1120 /* Cgroup Support */ 1121 /* Check with device cgroup if @kfd device is accessible */ 1122 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd) 1123 { 1124 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) 1125 struct drm_device *ddev = kfd->ddev; 1126 1127 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, 1128 ddev->render->index, 1129 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1130 #else 1131 return 0; 1132 #endif 1133 } 1134 1135 /* Debugfs */ 1136 #if defined(CONFIG_DEBUG_FS) 1137 1138 void kfd_debugfs_init(void); 1139 void kfd_debugfs_fini(void); 1140 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1141 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1142 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1143 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1144 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1145 int pm_debugfs_runlist(struct seq_file *m, void *data); 1146 1147 int kfd_debugfs_hang_hws(struct kfd_dev *dev); 1148 int pm_debugfs_hang_hws(struct packet_manager *pm); 1149 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm); 1150 1151 #else 1152 1153 static inline void kfd_debugfs_init(void) {} 1154 static inline void kfd_debugfs_fini(void) {} 1155 1156 #endif 1157 1158 #endif 1159