xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 680ef72a)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <kgd_kfd_interface.h>
37 
38 #include "amd_shared.h"
39 
40 #define KFD_SYSFS_FILE_MODE 0444
41 
42 #define KFD_MMAP_DOORBELL_MASK 0x8000000000000
43 #define KFD_MMAP_EVENTS_MASK 0x4000000000000
44 
45 /*
46  * When working with cp scheduler we should assign the HIQ manually or via
47  * the radeon driver to a fixed hqd slot, here are the fixed HIQ hqd slot
48  * definitions for Kaveri. In Kaveri only the first ME queues participates
49  * in the cp scheduling taking that in mind we set the HIQ slot in the
50  * second ME.
51  */
52 #define KFD_CIK_HIQ_PIPE 4
53 #define KFD_CIK_HIQ_QUEUE 0
54 
55 /* GPU ID hash width in bits */
56 #define KFD_GPU_ID_HASH_WIDTH 16
57 
58 /* Macro for allocating structures */
59 #define kfd_alloc_struct(ptr_to_struct)	\
60 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
61 
62 #define KFD_MAX_NUM_OF_PROCESSES 512
63 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
64 
65 /*
66  * Kernel module parameter to specify maximum number of supported queues per
67  * device
68  */
69 extern int max_num_of_queues_per_device;
70 
71 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE_DEFAULT 4096
72 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
73 	(KFD_MAX_NUM_OF_PROCESSES *			\
74 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
75 
76 #define KFD_KERNEL_QUEUE_SIZE 2048
77 
78 /* Kernel module parameter to specify the scheduling policy */
79 extern int sched_policy;
80 
81 /*
82  * Kernel module parameter to specify whether to send sigterm to HSA process on
83  * unhandled exception
84  */
85 extern int send_sigterm;
86 
87 /**
88  * enum kfd_sched_policy
89  *
90  * @KFD_SCHED_POLICY_HWS: H/W scheduling policy known as command processor (cp)
91  * scheduling. In this scheduling mode we're using the firmware code to
92  * schedule the user mode queues and kernel queues such as HIQ and DIQ.
93  * the HIQ queue is used as a special queue that dispatches the configuration
94  * to the cp and the user mode queues list that are currently running.
95  * the DIQ queue is a debugging queue that dispatches debugging commands to the
96  * firmware.
97  * in this scheduling mode user mode queues over subscription feature is
98  * enabled.
99  *
100  * @KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: The same as above but the over
101  * subscription feature disabled.
102  *
103  * @KFD_SCHED_POLICY_NO_HWS: no H/W scheduling policy is a mode which directly
104  * set the command processor registers and sets the queues "manually". This
105  * mode is used *ONLY* for debugging proposes.
106  *
107  */
108 enum kfd_sched_policy {
109 	KFD_SCHED_POLICY_HWS = 0,
110 	KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION,
111 	KFD_SCHED_POLICY_NO_HWS
112 };
113 
114 enum cache_policy {
115 	cache_policy_coherent,
116 	cache_policy_noncoherent
117 };
118 
119 struct kfd_event_interrupt_class {
120 	bool (*interrupt_isr)(struct kfd_dev *dev,
121 				const uint32_t *ih_ring_entry);
122 	void (*interrupt_wq)(struct kfd_dev *dev,
123 				const uint32_t *ih_ring_entry);
124 };
125 
126 struct kfd_device_info {
127 	enum amd_asic_type asic_family;
128 	const struct kfd_event_interrupt_class *event_interrupt_class;
129 	unsigned int max_pasid_bits;
130 	unsigned int max_no_of_hqd;
131 	size_t ih_ring_entry_size;
132 	uint8_t num_of_watch_points;
133 	uint16_t mqd_size_aligned;
134 };
135 
136 struct kfd_mem_obj {
137 	uint32_t range_start;
138 	uint32_t range_end;
139 	uint64_t gpu_addr;
140 	uint32_t *cpu_ptr;
141 };
142 
143 struct kfd_vmid_info {
144 	uint32_t first_vmid_kfd;
145 	uint32_t last_vmid_kfd;
146 	uint32_t vmid_num_kfd;
147 };
148 
149 struct kfd_dev {
150 	struct kgd_dev *kgd;
151 
152 	const struct kfd_device_info *device_info;
153 	struct pci_dev *pdev;
154 
155 	unsigned int id;		/* topology stub index */
156 
157 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
158 					 * KFD. It is aligned for mapping
159 					 * into user mode
160 					 */
161 	size_t doorbell_id_offset;	/* Doorbell offset (from KFD doorbell
162 					 * to HW doorbell, GFX reserved some
163 					 * at the start)
164 					 */
165 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
166 					   * page used by kernel queue
167 					   */
168 
169 	struct kgd2kfd_shared_resources shared_resources;
170 	struct kfd_vmid_info vm_info;
171 
172 	const struct kfd2kgd_calls *kfd2kgd;
173 	struct mutex doorbell_mutex;
174 	DECLARE_BITMAP(doorbell_available_index,
175 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
176 
177 	void *gtt_mem;
178 	uint64_t gtt_start_gpu_addr;
179 	void *gtt_start_cpu_ptr;
180 	void *gtt_sa_bitmap;
181 	struct mutex gtt_sa_lock;
182 	unsigned int gtt_sa_chunk_size;
183 	unsigned int gtt_sa_num_of_chunks;
184 
185 	/* Interrupts */
186 	struct kfifo ih_fifo;
187 	struct workqueue_struct *ih_wq;
188 	struct work_struct interrupt_work;
189 	spinlock_t interrupt_lock;
190 
191 	/* QCM Device instance */
192 	struct device_queue_manager *dqm;
193 
194 	bool init_complete;
195 	/*
196 	 * Interrupts of interest to KFD are copied
197 	 * from the HW ring into a SW ring.
198 	 */
199 	bool interrupts_active;
200 
201 	/* Debug manager */
202 	struct kfd_dbgmgr           *dbgmgr;
203 };
204 
205 /* KGD2KFD callbacks */
206 void kgd2kfd_exit(void);
207 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
208 			struct pci_dev *pdev, const struct kfd2kgd_calls *f2g);
209 bool kgd2kfd_device_init(struct kfd_dev *kfd,
210 			const struct kgd2kfd_shared_resources *gpu_resources);
211 void kgd2kfd_device_exit(struct kfd_dev *kfd);
212 
213 enum kfd_mempool {
214 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
215 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
216 	KFD_MEMPOOL_FRAMEBUFFER = 3,
217 };
218 
219 /* Character device interface */
220 int kfd_chardev_init(void);
221 void kfd_chardev_exit(void);
222 struct device *kfd_chardev(void);
223 
224 /**
225  * enum kfd_unmap_queues_filter
226  *
227  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
228  *
229  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
230  *						running queues list.
231  *
232  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
233  *						specific process.
234  *
235  */
236 enum kfd_unmap_queues_filter {
237 	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
238 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
239 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
240 	KFD_UNMAP_QUEUES_FILTER_BY_PASID
241 };
242 
243 /**
244  * enum kfd_queue_type
245  *
246  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
247  *
248  * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
249  *
250  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
251  *
252  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
253  */
254 enum kfd_queue_type  {
255 	KFD_QUEUE_TYPE_COMPUTE,
256 	KFD_QUEUE_TYPE_SDMA,
257 	KFD_QUEUE_TYPE_HIQ,
258 	KFD_QUEUE_TYPE_DIQ
259 };
260 
261 enum kfd_queue_format {
262 	KFD_QUEUE_FORMAT_PM4,
263 	KFD_QUEUE_FORMAT_AQL
264 };
265 
266 /**
267  * struct queue_properties
268  *
269  * @type: The queue type.
270  *
271  * @queue_id: Queue identifier.
272  *
273  * @queue_address: Queue ring buffer address.
274  *
275  * @queue_size: Queue ring buffer size.
276  *
277  * @priority: Defines the queue priority relative to other queues in the
278  * process.
279  * This is just an indication and HW scheduling may override the priority as
280  * necessary while keeping the relative prioritization.
281  * the priority granularity is from 0 to f which f is the highest priority.
282  * currently all queues are initialized with the highest priority.
283  *
284  * @queue_percent: This field is partially implemented and currently a zero in
285  * this field defines that the queue is non active.
286  *
287  * @read_ptr: User space address which points to the number of dwords the
288  * cp read from the ring buffer. This field updates automatically by the H/W.
289  *
290  * @write_ptr: Defines the number of dwords written to the ring buffer.
291  *
292  * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
293  * the queue ring buffer. This field should be similar to write_ptr and the
294  * user should update this field after he updated the write_ptr.
295  *
296  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
297  *
298  * @is_interop: Defines if this is a interop queue. Interop queue means that
299  * the queue can access both graphics and compute resources.
300  *
301  * @is_active: Defines if the queue is active or not.
302  *
303  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
304  * of the queue.
305  *
306  * This structure represents the queue properties for each queue no matter if
307  * it's user mode or kernel mode queue.
308  *
309  */
310 struct queue_properties {
311 	enum kfd_queue_type type;
312 	enum kfd_queue_format format;
313 	unsigned int queue_id;
314 	uint64_t queue_address;
315 	uint64_t  queue_size;
316 	uint32_t priority;
317 	uint32_t queue_percent;
318 	uint32_t *read_ptr;
319 	uint32_t *write_ptr;
320 	uint32_t __iomem *doorbell_ptr;
321 	uint32_t doorbell_off;
322 	bool is_interop;
323 	bool is_active;
324 	/* Not relevant for user mode queues in cp scheduling */
325 	unsigned int vmid;
326 	/* Relevant only for sdma queues*/
327 	uint32_t sdma_engine_id;
328 	uint32_t sdma_queue_id;
329 	uint32_t sdma_vm_addr;
330 	/* Relevant only for VI */
331 	uint64_t eop_ring_buffer_address;
332 	uint32_t eop_ring_buffer_size;
333 	uint64_t ctx_save_restore_area_address;
334 	uint32_t ctx_save_restore_area_size;
335 };
336 
337 /**
338  * struct queue
339  *
340  * @list: Queue linked list.
341  *
342  * @mqd: The queue MQD.
343  *
344  * @mqd_mem_obj: The MQD local gpu memory object.
345  *
346  * @gart_mqd_addr: The MQD gart mc address.
347  *
348  * @properties: The queue properties.
349  *
350  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
351  *	 that the queue should be execute on.
352  *
353  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
354  *	  id.
355  *
356  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
357  *
358  * @process: The kfd process that created this queue.
359  *
360  * @device: The kfd device that created this queue.
361  *
362  * This structure represents user mode compute queues.
363  * It contains all the necessary data to handle such queues.
364  *
365  */
366 
367 struct queue {
368 	struct list_head list;
369 	void *mqd;
370 	struct kfd_mem_obj *mqd_mem_obj;
371 	uint64_t gart_mqd_addr;
372 	struct queue_properties properties;
373 
374 	uint32_t mec;
375 	uint32_t pipe;
376 	uint32_t queue;
377 
378 	unsigned int sdma_id;
379 
380 	struct kfd_process	*process;
381 	struct kfd_dev		*device;
382 };
383 
384 /*
385  * Please read the kfd_mqd_manager.h description.
386  */
387 enum KFD_MQD_TYPE {
388 	KFD_MQD_TYPE_COMPUTE = 0,	/* for no cp scheduling */
389 	KFD_MQD_TYPE_HIQ,		/* for hiq */
390 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
391 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
392 	KFD_MQD_TYPE_MAX
393 };
394 
395 struct scheduling_resources {
396 	unsigned int vmid_mask;
397 	enum kfd_queue_type type;
398 	uint64_t queue_mask;
399 	uint64_t gws_mask;
400 	uint32_t oac_mask;
401 	uint32_t gds_heap_base;
402 	uint32_t gds_heap_size;
403 };
404 
405 struct process_queue_manager {
406 	/* data */
407 	struct kfd_process	*process;
408 	struct list_head	queues;
409 	unsigned long		*queue_slot_bitmap;
410 };
411 
412 struct qcm_process_device {
413 	/* The Device Queue Manager that owns this data */
414 	struct device_queue_manager *dqm;
415 	struct process_queue_manager *pqm;
416 	/* Queues list */
417 	struct list_head queues_list;
418 	struct list_head priv_queue_list;
419 
420 	unsigned int queue_count;
421 	unsigned int vmid;
422 	bool is_debug;
423 
424 	/* This flag tells if we should reset all wavefronts on
425 	 * process termination
426 	 */
427 	bool reset_wavefronts;
428 
429 	/*
430 	 * All the memory management data should be here too
431 	 */
432 	uint64_t gds_context_area;
433 	uint32_t sh_mem_config;
434 	uint32_t sh_mem_bases;
435 	uint32_t sh_mem_ape1_base;
436 	uint32_t sh_mem_ape1_limit;
437 	uint32_t page_table_base;
438 	uint32_t gds_size;
439 	uint32_t num_gws;
440 	uint32_t num_oac;
441 	uint32_t sh_hidden_private_base;
442 };
443 
444 
445 enum kfd_pdd_bound {
446 	PDD_UNBOUND = 0,
447 	PDD_BOUND,
448 	PDD_BOUND_SUSPENDED,
449 };
450 
451 /* Data that is per-process-per device. */
452 struct kfd_process_device {
453 	/*
454 	 * List of all per-device data for a process.
455 	 * Starts from kfd_process.per_device_data.
456 	 */
457 	struct list_head per_device_list;
458 
459 	/* The device that owns this data. */
460 	struct kfd_dev *dev;
461 
462 	/* The process that owns this kfd_process_device. */
463 	struct kfd_process *process;
464 
465 	/* per-process-per device QCM data structure */
466 	struct qcm_process_device qpd;
467 
468 	/*Apertures*/
469 	uint64_t lds_base;
470 	uint64_t lds_limit;
471 	uint64_t gpuvm_base;
472 	uint64_t gpuvm_limit;
473 	uint64_t scratch_base;
474 	uint64_t scratch_limit;
475 
476 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
477 	enum kfd_pdd_bound bound;
478 
479 	/* Flag used to tell the pdd has dequeued from the dqm.
480 	 * This is used to prevent dev->dqm->ops.process_termination() from
481 	 * being called twice when it is already called in IOMMU callback
482 	 * function.
483 	 */
484 	bool already_dequeued;
485 };
486 
487 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
488 
489 /* Process data */
490 struct kfd_process {
491 	/*
492 	 * kfd_process are stored in an mm_struct*->kfd_process*
493 	 * hash table (kfd_processes in kfd_process.c)
494 	 */
495 	struct hlist_node kfd_processes;
496 
497 	/*
498 	 * Opaque pointer to mm_struct. We don't hold a reference to
499 	 * it so it should never be dereferenced from here. This is
500 	 * only used for looking up processes by their mm.
501 	 */
502 	void *mm;
503 
504 	struct mutex mutex;
505 
506 	/*
507 	 * In any process, the thread that started main() is the lead
508 	 * thread and outlives the rest.
509 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
510 	 * It can also be used for safely getting a reference to the
511 	 * mm_struct of the process.
512 	 */
513 	struct task_struct *lead_thread;
514 
515 	/* We want to receive a notification when the mm_struct is destroyed */
516 	struct mmu_notifier mmu_notifier;
517 
518 	/* Use for delayed freeing of kfd_process structure */
519 	struct rcu_head	rcu;
520 
521 	unsigned int pasid;
522 	unsigned int doorbell_index;
523 
524 	/*
525 	 * List of kfd_process_device structures,
526 	 * one for each device the process is using.
527 	 */
528 	struct list_head per_device_data;
529 
530 	struct process_queue_manager pqm;
531 
532 	/*Is the user space process 32 bit?*/
533 	bool is_32bit_user_mode;
534 
535 	/* Event-related data */
536 	struct mutex event_mutex;
537 	/* Event ID allocator and lookup */
538 	struct idr event_idr;
539 	/* Event page */
540 	struct kfd_signal_page *signal_page;
541 	size_t signal_mapped_size;
542 	size_t signal_event_count;
543 	bool signal_event_limit_reached;
544 };
545 
546 /**
547  * Ioctl function type.
548  *
549  * \param filep pointer to file structure.
550  * \param p amdkfd process pointer.
551  * \param data pointer to arg that was copied from user.
552  */
553 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
554 				void *data);
555 
556 struct amdkfd_ioctl_desc {
557 	unsigned int cmd;
558 	int flags;
559 	amdkfd_ioctl_t *func;
560 	unsigned int cmd_drv;
561 	const char *name;
562 };
563 
564 void kfd_process_create_wq(void);
565 void kfd_process_destroy_wq(void);
566 struct kfd_process *kfd_create_process(const struct task_struct *);
567 struct kfd_process *kfd_get_process(const struct task_struct *);
568 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
569 
570 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
571 						struct kfd_process *p);
572 int kfd_bind_processes_to_device(struct kfd_dev *dev);
573 void kfd_unbind_processes_from_device(struct kfd_dev *dev);
574 void kfd_process_iommu_unbind_callback(struct kfd_dev *dev, unsigned int pasid);
575 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
576 							struct kfd_process *p);
577 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
578 							struct kfd_process *p);
579 
580 /* Process device data iterator */
581 struct kfd_process_device *kfd_get_first_process_device_data(
582 							struct kfd_process *p);
583 struct kfd_process_device *kfd_get_next_process_device_data(
584 						struct kfd_process *p,
585 						struct kfd_process_device *pdd);
586 bool kfd_has_process_device_data(struct kfd_process *p);
587 
588 /* PASIDs */
589 int kfd_pasid_init(void);
590 void kfd_pasid_exit(void);
591 bool kfd_set_pasid_limit(unsigned int new_limit);
592 unsigned int kfd_get_pasid_limit(void);
593 unsigned int kfd_pasid_alloc(void);
594 void kfd_pasid_free(unsigned int pasid);
595 
596 /* Doorbells */
597 int kfd_doorbell_init(struct kfd_dev *kfd);
598 void kfd_doorbell_fini(struct kfd_dev *kfd);
599 int kfd_doorbell_mmap(struct kfd_process *process, struct vm_area_struct *vma);
600 u32 __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
601 					unsigned int *doorbell_off);
602 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
603 u32 read_kernel_doorbell(u32 __iomem *db);
604 void write_kernel_doorbell(u32 __iomem *db, u32 value);
605 unsigned int kfd_queue_id_to_doorbell(struct kfd_dev *kfd,
606 					struct kfd_process *process,
607 					unsigned int queue_id);
608 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
609 					struct kfd_process *process);
610 int kfd_alloc_process_doorbells(struct kfd_process *process);
611 void kfd_free_process_doorbells(struct kfd_process *process);
612 
613 /* GTT Sub-Allocator */
614 
615 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
616 			struct kfd_mem_obj **mem_obj);
617 
618 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
619 
620 extern struct device *kfd_device;
621 
622 /* Topology */
623 int kfd_topology_init(void);
624 void kfd_topology_shutdown(void);
625 int kfd_topology_add_device(struct kfd_dev *gpu);
626 int kfd_topology_remove_device(struct kfd_dev *gpu);
627 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
628 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
629 struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx);
630 
631 /* Interrupts */
632 int kfd_interrupt_init(struct kfd_dev *dev);
633 void kfd_interrupt_exit(struct kfd_dev *dev);
634 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry);
635 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
636 bool interrupt_is_wanted(struct kfd_dev *dev, const uint32_t *ih_ring_entry);
637 
638 /* Power Management */
639 void kgd2kfd_suspend(struct kfd_dev *kfd);
640 int kgd2kfd_resume(struct kfd_dev *kfd);
641 
642 /* amdkfd Apertures */
643 int kfd_init_apertures(struct kfd_process *process);
644 
645 /* Queue Context Management */
646 struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd);
647 
648 int init_queue(struct queue **q, const struct queue_properties *properties);
649 void uninit_queue(struct queue *q);
650 void print_queue_properties(struct queue_properties *q);
651 void print_queue(struct queue *q);
652 
653 struct mqd_manager *mqd_manager_init(enum KFD_MQD_TYPE type,
654 					struct kfd_dev *dev);
655 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
656 		struct kfd_dev *dev);
657 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
658 		struct kfd_dev *dev);
659 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
660 void device_queue_manager_uninit(struct device_queue_manager *dqm);
661 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
662 					enum kfd_queue_type type);
663 void kernel_queue_uninit(struct kernel_queue *kq);
664 
665 /* Process Queue Manager */
666 struct process_queue_node {
667 	struct queue *q;
668 	struct kernel_queue *kq;
669 	struct list_head process_queue_list;
670 };
671 
672 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
673 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
674 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
675 void pqm_uninit(struct process_queue_manager *pqm);
676 int pqm_create_queue(struct process_queue_manager *pqm,
677 			    struct kfd_dev *dev,
678 			    struct file *f,
679 			    struct queue_properties *properties,
680 			    unsigned int *qid);
681 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
682 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
683 			struct queue_properties *p);
684 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
685 						unsigned int qid);
686 
687 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
688 				unsigned int fence_value,
689 				unsigned int timeout_ms);
690 
691 /* Packet Manager */
692 
693 #define KFD_FENCE_COMPLETED (100)
694 #define KFD_FENCE_INIT   (10)
695 
696 struct packet_manager {
697 	struct device_queue_manager *dqm;
698 	struct kernel_queue *priv_queue;
699 	struct mutex lock;
700 	bool allocated;
701 	struct kfd_mem_obj *ib_buffer_obj;
702 };
703 
704 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
705 void pm_uninit(struct packet_manager *pm);
706 int pm_send_set_resources(struct packet_manager *pm,
707 				struct scheduling_resources *res);
708 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
709 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
710 				uint32_t fence_value);
711 
712 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
713 			enum kfd_unmap_queues_filter mode,
714 			uint32_t filter_param, bool reset,
715 			unsigned int sdma_engine);
716 
717 void pm_release_ib(struct packet_manager *pm);
718 
719 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
720 
721 /* Events */
722 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
723 extern const struct kfd_device_global_init_class device_global_init_class_cik;
724 
725 void kfd_event_init_process(struct kfd_process *p);
726 void kfd_event_free_process(struct kfd_process *p);
727 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
728 int kfd_wait_on_events(struct kfd_process *p,
729 		       uint32_t num_events, void __user *data,
730 		       bool all, uint32_t user_timeout_ms,
731 		       uint32_t *wait_result);
732 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
733 				uint32_t valid_id_bits);
734 void kfd_signal_iommu_event(struct kfd_dev *dev,
735 		unsigned int pasid, unsigned long address,
736 		bool is_write_requested, bool is_execute_requested);
737 void kfd_signal_hw_exception_event(unsigned int pasid);
738 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
739 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
740 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
741 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
742 		     uint32_t *event_id, uint32_t *event_trigger_data,
743 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
744 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
745 
746 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
747 
748 #endif
749