xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 65844828)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef KFD_PRIV_H_INCLUDED
25 #define KFD_PRIV_H_INCLUDED
26 
27 #include <linux/hashtable.h>
28 #include <linux/mmu_notifier.h>
29 #include <linux/memremap.h>
30 #include <linux/mutex.h>
31 #include <linux/types.h>
32 #include <linux/atomic.h>
33 #include <linux/workqueue.h>
34 #include <linux/spinlock.h>
35 #include <linux/kfd_ioctl.h>
36 #include <linux/idr.h>
37 #include <linux/kfifo.h>
38 #include <linux/seq_file.h>
39 #include <linux/kref.h>
40 #include <linux/sysfs.h>
41 #include <linux/device_cgroup.h>
42 #include <drm/drm_file.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_device.h>
45 #include <drm/drm_ioctl.h>
46 #include <kgd_kfd_interface.h>
47 #include <linux/swap.h>
48 
49 #include "amd_shared.h"
50 #include "amdgpu.h"
51 
52 #define KFD_MAX_RING_ENTRY_SIZE	8
53 
54 #define KFD_SYSFS_FILE_MODE 0444
55 
56 /* GPU ID hash width in bits */
57 #define KFD_GPU_ID_HASH_WIDTH 16
58 
59 /* Use upper bits of mmap offset to store KFD driver specific information.
60  * BITS[63:62] - Encode MMAP type
61  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
62  * BITS[45:0]  - MMAP offset value
63  *
64  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
65  *  defines are w.r.t to PAGE_SIZE
66  */
67 #define KFD_MMAP_TYPE_SHIFT	62
68 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
71 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
72 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
73 
74 #define KFD_MMAP_GPU_ID_SHIFT 46
75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
76 				<< KFD_MMAP_GPU_ID_SHIFT)
77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
78 				& KFD_MMAP_GPU_ID_MASK)
79 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
80 				>> KFD_MMAP_GPU_ID_SHIFT)
81 
82 /*
83  * When working with cp scheduler we should assign the HIQ manually or via
84  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
85  * definitions for Kaveri. In Kaveri only the first ME queues participates
86  * in the cp scheduling taking that in mind we set the HIQ slot in the
87  * second ME.
88  */
89 #define KFD_CIK_HIQ_PIPE 4
90 #define KFD_CIK_HIQ_QUEUE 0
91 
92 /* Macro for allocating structures */
93 #define kfd_alloc_struct(ptr_to_struct)	\
94 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
95 
96 #define KFD_MAX_NUM_OF_PROCESSES 512
97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
98 
99 /*
100  * Size of the per-process TBA+TMA buffer: 2 pages
101  *
102  * The first page is the TBA used for the CWSR ISA code. The second
103  * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
104  */
105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
106 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
107 
108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
109 	(KFD_MAX_NUM_OF_PROCESSES *			\
110 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
111 
112 #define KFD_KERNEL_QUEUE_SIZE 2048
113 
114 #define KFD_UNMAP_LATENCY_MS	(4000)
115 
116 /*
117  * 512 = 0x200
118  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
119  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
120  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
121  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
122  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
123  */
124 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
125 
126 /**
127  * enum kfd_ioctl_flags - KFD ioctl flags
128  * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
129  * userspace can use a given ioctl.
130  */
131 enum kfd_ioctl_flags {
132 	/*
133 	 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
134 	 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
135 	 * perform privileged operations and load arbitrary data into MQDs and
136 	 * eventually HQD registers when the queue is mapped by HWS. In order to
137 	 * prevent this we should perform additional security checks.
138 	 *
139 	 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
140 	 *
141 	 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
142 	 * we also allow ioctls with SYS_ADMIN capability.
143 	 */
144 	KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
145 };
146 /*
147  * Kernel module parameter to specify maximum number of supported queues per
148  * device
149  */
150 extern int max_num_of_queues_per_device;
151 
152 
153 /* Kernel module parameter to specify the scheduling policy */
154 extern int sched_policy;
155 
156 /*
157  * Kernel module parameter to specify the maximum process
158  * number per HW scheduler
159  */
160 extern int hws_max_conc_proc;
161 
162 extern int cwsr_enable;
163 
164 /*
165  * Kernel module parameter to specify whether to send sigterm to HSA process on
166  * unhandled exception
167  */
168 extern int send_sigterm;
169 
170 /*
171  * This kernel module is used to simulate large bar machine on non-large bar
172  * enabled machines.
173  */
174 extern int debug_largebar;
175 
176 /*
177  * Ignore CRAT table during KFD initialization, can be used to work around
178  * broken CRAT tables on some AMD systems
179  */
180 extern int ignore_crat;
181 
182 /* Set sh_mem_config.retry_disable on GFX v9 */
183 extern int amdgpu_noretry;
184 
185 /* Halt if HWS hang is detected */
186 extern int halt_if_hws_hang;
187 
188 /* Whether MEC FW support GWS barriers */
189 extern bool hws_gws_support;
190 
191 /* Queue preemption timeout in ms */
192 extern int queue_preemption_timeout_ms;
193 
194 /*
195  * Don't evict process queues on vm fault
196  */
197 extern int amdgpu_no_queue_eviction_on_vm_fault;
198 
199 /* Enable eviction debug messages */
200 extern bool debug_evictions;
201 
202 enum cache_policy {
203 	cache_policy_coherent,
204 	cache_policy_noncoherent
205 };
206 
207 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0])
208 #define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
209 
210 struct kfd_event_interrupt_class {
211 	bool (*interrupt_isr)(struct kfd_dev *dev,
212 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
213 			bool *patched_flag);
214 	void (*interrupt_wq)(struct kfd_dev *dev,
215 			const uint32_t *ih_ring_entry);
216 };
217 
218 struct kfd_device_info {
219 	uint32_t gfx_target_version;
220 	const struct kfd_event_interrupt_class *event_interrupt_class;
221 	unsigned int max_pasid_bits;
222 	unsigned int max_no_of_hqd;
223 	unsigned int doorbell_size;
224 	size_t ih_ring_entry_size;
225 	uint8_t num_of_watch_points;
226 	uint16_t mqd_size_aligned;
227 	bool supports_cwsr;
228 	bool needs_iommu_device;
229 	bool needs_pci_atomics;
230 	uint32_t no_atomic_fw_version;
231 	unsigned int num_sdma_queues_per_engine;
232 	unsigned int num_reserved_sdma_queues_per_engine;
233 	uint64_t reserved_sdma_queues_bitmap;
234 };
235 
236 unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev);
237 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev);
238 
239 struct kfd_mem_obj {
240 	uint32_t range_start;
241 	uint32_t range_end;
242 	uint64_t gpu_addr;
243 	uint32_t *cpu_ptr;
244 	void *gtt_mem;
245 };
246 
247 struct kfd_vmid_info {
248 	uint32_t first_vmid_kfd;
249 	uint32_t last_vmid_kfd;
250 	uint32_t vmid_num_kfd;
251 };
252 
253 struct kfd_dev {
254 	struct amdgpu_device *adev;
255 
256 	struct kfd_device_info device_info;
257 
258 	unsigned int id;		/* topology stub index */
259 
260 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
261 					 * KFD. It is aligned for mapping
262 					 * into user mode
263 					 */
264 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
265 					 * doorbell BAR to the first KFD
266 					 * doorbell in dwords. GFX reserves
267 					 * the segment before this offset.
268 					 */
269 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
270 					   * page used by kernel queue
271 					   */
272 
273 	struct kgd2kfd_shared_resources shared_resources;
274 	struct kfd_vmid_info vm_info;
275 	struct kfd_local_mem_info local_mem_info;
276 
277 	const struct kfd2kgd_calls *kfd2kgd;
278 	struct mutex doorbell_mutex;
279 	DECLARE_BITMAP(doorbell_available_index,
280 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
281 
282 	void *gtt_mem;
283 	uint64_t gtt_start_gpu_addr;
284 	void *gtt_start_cpu_ptr;
285 	void *gtt_sa_bitmap;
286 	struct mutex gtt_sa_lock;
287 	unsigned int gtt_sa_chunk_size;
288 	unsigned int gtt_sa_num_of_chunks;
289 
290 	/* Interrupts */
291 	struct kfifo ih_fifo;
292 	struct workqueue_struct *ih_wq;
293 	struct work_struct interrupt_work;
294 	spinlock_t interrupt_lock;
295 
296 	/* QCM Device instance */
297 	struct device_queue_manager *dqm;
298 
299 	bool init_complete;
300 	/*
301 	 * Interrupts of interest to KFD are copied
302 	 * from the HW ring into a SW ring.
303 	 */
304 	bool interrupts_active;
305 
306 	/* Firmware versions */
307 	uint16_t mec_fw_version;
308 	uint16_t mec2_fw_version;
309 	uint16_t sdma_fw_version;
310 
311 	/* Maximum process number mapped to HW scheduler */
312 	unsigned int max_proc_per_quantum;
313 
314 	/* CWSR */
315 	bool cwsr_enabled;
316 	const void *cwsr_isa;
317 	unsigned int cwsr_isa_size;
318 
319 	/* xGMI */
320 	uint64_t hive_id;
321 
322 	bool pci_atomic_requested;
323 
324 	/* Use IOMMU v2 flag */
325 	bool use_iommu_v2;
326 
327 	/* SRAM ECC flag */
328 	atomic_t sram_ecc_flag;
329 
330 	/* Compute Profile ref. count */
331 	atomic_t compute_profile;
332 
333 	/* Global GWS resource shared between processes */
334 	void *gws;
335 
336 	/* Clients watching SMI events */
337 	struct list_head smi_clients;
338 	spinlock_t smi_lock;
339 
340 	uint32_t reset_seq_num;
341 
342 	struct ida doorbell_ida;
343 	unsigned int max_doorbell_slices;
344 
345 	int noretry;
346 
347 	/* HMM page migration MEMORY_DEVICE_PRIVATE mapping */
348 	struct dev_pagemap pgmap;
349 };
350 
351 enum kfd_mempool {
352 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
353 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
354 	KFD_MEMPOOL_FRAMEBUFFER = 3,
355 };
356 
357 /* Character device interface */
358 int kfd_chardev_init(void);
359 void kfd_chardev_exit(void);
360 
361 /**
362  * enum kfd_unmap_queues_filter - Enum for queue filters.
363  *
364  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
365  *						running queues list.
366  *
367  * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
368  *						in the run list.
369  *
370  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
371  *						specific process.
372  *
373  */
374 enum kfd_unmap_queues_filter {
375 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
376 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
377 	KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
378 };
379 
380 /**
381  * enum kfd_queue_type - Enum for various queue types.
382  *
383  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
384  *
385  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
386  *
387  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
388  *
389  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
390  *
391  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
392  */
393 enum kfd_queue_type  {
394 	KFD_QUEUE_TYPE_COMPUTE,
395 	KFD_QUEUE_TYPE_SDMA,
396 	KFD_QUEUE_TYPE_HIQ,
397 	KFD_QUEUE_TYPE_DIQ,
398 	KFD_QUEUE_TYPE_SDMA_XGMI
399 };
400 
401 enum kfd_queue_format {
402 	KFD_QUEUE_FORMAT_PM4,
403 	KFD_QUEUE_FORMAT_AQL
404 };
405 
406 enum KFD_QUEUE_PRIORITY {
407 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
408 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
409 };
410 
411 /**
412  * struct queue_properties
413  *
414  * @type: The queue type.
415  *
416  * @queue_id: Queue identifier.
417  *
418  * @queue_address: Queue ring buffer address.
419  *
420  * @queue_size: Queue ring buffer size.
421  *
422  * @priority: Defines the queue priority relative to other queues in the
423  * process.
424  * This is just an indication and HW scheduling may override the priority as
425  * necessary while keeping the relative prioritization.
426  * the priority granularity is from 0 to f which f is the highest priority.
427  * currently all queues are initialized with the highest priority.
428  *
429  * @queue_percent: This field is partially implemented and currently a zero in
430  * this field defines that the queue is non active.
431  *
432  * @read_ptr: User space address which points to the number of dwords the
433  * cp read from the ring buffer. This field updates automatically by the H/W.
434  *
435  * @write_ptr: Defines the number of dwords written to the ring buffer.
436  *
437  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
438  * buffer. This field should be similar to write_ptr and the user should
439  * update this field after updating the write_ptr.
440  *
441  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
442  *
443  * @is_interop: Defines if this is a interop queue. Interop queue means that
444  * the queue can access both graphics and compute resources.
445  *
446  * @is_evicted: Defines if the queue is evicted. Only active queues
447  * are evicted, rendering them inactive.
448  *
449  * @is_active: Defines if the queue is active or not. @is_active and
450  * @is_evicted are protected by the DQM lock.
451  *
452  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
453  * @is_gws should be protected by the DQM lock, since changing it can yield the
454  * possibility of updating DQM state on number of GWS queues.
455  *
456  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
457  * of the queue.
458  *
459  * This structure represents the queue properties for each queue no matter if
460  * it's user mode or kernel mode queue.
461  *
462  */
463 
464 struct queue_properties {
465 	enum kfd_queue_type type;
466 	enum kfd_queue_format format;
467 	unsigned int queue_id;
468 	uint64_t queue_address;
469 	uint64_t  queue_size;
470 	uint32_t priority;
471 	uint32_t queue_percent;
472 	uint32_t *read_ptr;
473 	uint32_t *write_ptr;
474 	void __iomem *doorbell_ptr;
475 	uint32_t doorbell_off;
476 	bool is_interop;
477 	bool is_evicted;
478 	bool is_active;
479 	bool is_gws;
480 	/* Not relevant for user mode queues in cp scheduling */
481 	unsigned int vmid;
482 	/* Relevant only for sdma queues*/
483 	uint32_t sdma_engine_id;
484 	uint32_t sdma_queue_id;
485 	uint32_t sdma_vm_addr;
486 	/* Relevant only for VI */
487 	uint64_t eop_ring_buffer_address;
488 	uint32_t eop_ring_buffer_size;
489 	uint64_t ctx_save_restore_area_address;
490 	uint32_t ctx_save_restore_area_size;
491 	uint32_t ctl_stack_size;
492 	uint64_t tba_addr;
493 	uint64_t tma_addr;
494 };
495 
496 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
497 			    (q).queue_address != 0 &&	\
498 			    (q).queue_percent > 0 &&	\
499 			    !(q).is_evicted)
500 
501 enum mqd_update_flag {
502 	UPDATE_FLAG_CU_MASK = 0,
503 };
504 
505 struct mqd_update_info {
506 	union {
507 		struct {
508 			uint32_t count; /* Must be a multiple of 32 */
509 			uint32_t *ptr;
510 		} cu_mask;
511 	};
512 	enum mqd_update_flag update_flag;
513 };
514 
515 /**
516  * struct queue
517  *
518  * @list: Queue linked list.
519  *
520  * @mqd: The queue MQD (memory queue descriptor).
521  *
522  * @mqd_mem_obj: The MQD local gpu memory object.
523  *
524  * @gart_mqd_addr: The MQD gart mc address.
525  *
526  * @properties: The queue properties.
527  *
528  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
529  *	 that the queue should be executed on.
530  *
531  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
532  *	  id.
533  *
534  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
535  *
536  * @process: The kfd process that created this queue.
537  *
538  * @device: The kfd device that created this queue.
539  *
540  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
541  * otherwise.
542  *
543  * This structure represents user mode compute queues.
544  * It contains all the necessary data to handle such queues.
545  *
546  */
547 
548 struct queue {
549 	struct list_head list;
550 	void *mqd;
551 	struct kfd_mem_obj *mqd_mem_obj;
552 	uint64_t gart_mqd_addr;
553 	struct queue_properties properties;
554 
555 	uint32_t mec;
556 	uint32_t pipe;
557 	uint32_t queue;
558 
559 	unsigned int sdma_id;
560 	unsigned int doorbell_id;
561 
562 	struct kfd_process	*process;
563 	struct kfd_dev		*device;
564 	void *gws;
565 
566 	/* procfs */
567 	struct kobject kobj;
568 
569 	void *gang_ctx_bo;
570 	uint64_t gang_ctx_gpu_addr;
571 	void *gang_ctx_cpu_ptr;
572 
573 	struct amdgpu_bo *wptr_bo;
574 };
575 
576 enum KFD_MQD_TYPE {
577 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
578 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
579 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
580 	KFD_MQD_TYPE_DIQ,		/* for diq */
581 	KFD_MQD_TYPE_MAX
582 };
583 
584 enum KFD_PIPE_PRIORITY {
585 	KFD_PIPE_PRIORITY_CS_LOW = 0,
586 	KFD_PIPE_PRIORITY_CS_MEDIUM,
587 	KFD_PIPE_PRIORITY_CS_HIGH
588 };
589 
590 struct scheduling_resources {
591 	unsigned int vmid_mask;
592 	enum kfd_queue_type type;
593 	uint64_t queue_mask;
594 	uint64_t gws_mask;
595 	uint32_t oac_mask;
596 	uint32_t gds_heap_base;
597 	uint32_t gds_heap_size;
598 };
599 
600 struct process_queue_manager {
601 	/* data */
602 	struct kfd_process	*process;
603 	struct list_head	queues;
604 	unsigned long		*queue_slot_bitmap;
605 };
606 
607 struct qcm_process_device {
608 	/* The Device Queue Manager that owns this data */
609 	struct device_queue_manager *dqm;
610 	struct process_queue_manager *pqm;
611 	/* Queues list */
612 	struct list_head queues_list;
613 	struct list_head priv_queue_list;
614 
615 	unsigned int queue_count;
616 	unsigned int vmid;
617 	bool is_debug;
618 	unsigned int evicted; /* eviction counter, 0=active */
619 
620 	/* This flag tells if we should reset all wavefronts on
621 	 * process termination
622 	 */
623 	bool reset_wavefronts;
624 
625 	/* This flag tells us if this process has a GWS-capable
626 	 * queue that will be mapped into the runlist. It's
627 	 * possible to request a GWS BO, but not have the queue
628 	 * currently mapped, and this changes how the MAP_PROCESS
629 	 * PM4 packet is configured.
630 	 */
631 	bool mapped_gws_queue;
632 
633 	/* All the memory management data should be here too */
634 	uint64_t gds_context_area;
635 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
636 	uint64_t page_table_base;
637 	uint32_t sh_mem_config;
638 	uint32_t sh_mem_bases;
639 	uint32_t sh_mem_ape1_base;
640 	uint32_t sh_mem_ape1_limit;
641 	uint32_t gds_size;
642 	uint32_t num_gws;
643 	uint32_t num_oac;
644 	uint32_t sh_hidden_private_base;
645 
646 	/* CWSR memory */
647 	struct kgd_mem *cwsr_mem;
648 	void *cwsr_kaddr;
649 	uint64_t cwsr_base;
650 	uint64_t tba_addr;
651 	uint64_t tma_addr;
652 
653 	/* IB memory */
654 	struct kgd_mem *ib_mem;
655 	uint64_t ib_base;
656 	void *ib_kaddr;
657 
658 	/* doorbell resources per process per device */
659 	unsigned long *doorbell_bitmap;
660 };
661 
662 /* KFD Memory Eviction */
663 
664 /* Approx. wait time before attempting to restore evicted BOs */
665 #define PROCESS_RESTORE_TIME_MS 100
666 /* Approx. back off time if restore fails due to lack of memory */
667 #define PROCESS_BACK_OFF_TIME_MS 100
668 /* Approx. time before evicting the process again */
669 #define PROCESS_ACTIVE_TIME_MS 10
670 
671 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
672  * idr_handle in the least significant 4 bytes
673  */
674 #define MAKE_HANDLE(gpu_id, idr_handle) \
675 	(((uint64_t)(gpu_id) << 32) + idr_handle)
676 #define GET_GPU_ID(handle) (handle >> 32)
677 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
678 
679 enum kfd_pdd_bound {
680 	PDD_UNBOUND = 0,
681 	PDD_BOUND,
682 	PDD_BOUND_SUSPENDED,
683 };
684 
685 #define MAX_SYSFS_FILENAME_LEN 15
686 
687 /*
688  * SDMA counter runs at 100MHz frequency.
689  * We display SDMA activity in microsecond granularity in sysfs.
690  * As a result, the divisor is 100.
691  */
692 #define SDMA_ACTIVITY_DIVISOR  100
693 
694 /* Data that is per-process-per device. */
695 struct kfd_process_device {
696 	/* The device that owns this data. */
697 	struct kfd_dev *dev;
698 
699 	/* The process that owns this kfd_process_device. */
700 	struct kfd_process *process;
701 
702 	/* per-process-per device QCM data structure */
703 	struct qcm_process_device qpd;
704 
705 	/*Apertures*/
706 	uint64_t lds_base;
707 	uint64_t lds_limit;
708 	uint64_t gpuvm_base;
709 	uint64_t gpuvm_limit;
710 	uint64_t scratch_base;
711 	uint64_t scratch_limit;
712 
713 	/* VM context for GPUVM allocations */
714 	struct file *drm_file;
715 	void *drm_priv;
716 	atomic64_t tlb_seq;
717 
718 	/* GPUVM allocations storage */
719 	struct idr alloc_idr;
720 
721 	/* Flag used to tell the pdd has dequeued from the dqm.
722 	 * This is used to prevent dev->dqm->ops.process_termination() from
723 	 * being called twice when it is already called in IOMMU callback
724 	 * function.
725 	 */
726 	bool already_dequeued;
727 	bool runtime_inuse;
728 
729 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
730 	enum kfd_pdd_bound bound;
731 
732 	/* VRAM usage */
733 	uint64_t vram_usage;
734 	struct attribute attr_vram;
735 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
736 
737 	/* SDMA activity tracking */
738 	uint64_t sdma_past_activity_counter;
739 	struct attribute attr_sdma;
740 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
741 
742 	/* Eviction activity tracking */
743 	uint64_t last_evict_timestamp;
744 	atomic64_t evict_duration_counter;
745 	struct attribute attr_evict;
746 
747 	struct kobject *kobj_stats;
748 	unsigned int doorbell_index;
749 
750 	/*
751 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
752 	 * that is associated with device encoded by "this" struct instance. The
753 	 * value reflects CU usage by all of the waves launched by this process
754 	 * on this device. A very important property of occupancy parameter is
755 	 * that its value is a snapshot of current use.
756 	 *
757 	 * Following is to be noted regarding how this parameter is reported:
758 	 *
759 	 *  The number of waves that a CU can launch is limited by couple of
760 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
761 	 *  that is part of every device definition. For GFX9 devices this
762 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
763 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
764 	 *  when they do use scratch memory. This could change for future
765 	 *  devices and therefore this example should be considered as a guide.
766 	 *
767 	 *  All CU's of a device are available for the process. This may not be true
768 	 *  under certain conditions - e.g. CU masking.
769 	 *
770 	 *  Finally number of CU's that are occupied by a process is affected by both
771 	 *  number of CU's a device has along with number of other competing processes
772 	 */
773 	struct attribute attr_cu_occupancy;
774 
775 	/* sysfs counters for GPU retry fault and page migration tracking */
776 	struct kobject *kobj_counters;
777 	struct attribute attr_faults;
778 	struct attribute attr_page_in;
779 	struct attribute attr_page_out;
780 	uint64_t faults;
781 	uint64_t page_in;
782 	uint64_t page_out;
783 	/*
784 	 * If this process has been checkpointed before, then the user
785 	 * application will use the original gpu_id on the
786 	 * checkpointed node to refer to this device.
787 	 */
788 	uint32_t user_gpu_id;
789 
790 	void *proc_ctx_bo;
791 	uint64_t proc_ctx_gpu_addr;
792 	void *proc_ctx_cpu_ptr;
793 };
794 
795 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
796 
797 struct svm_range_list {
798 	struct mutex			lock;
799 	struct rb_root_cached		objects;
800 	struct list_head		list;
801 	struct work_struct		deferred_list_work;
802 	struct list_head		deferred_range_list;
803 	struct list_head                criu_svm_metadata_list;
804 	spinlock_t			deferred_list_lock;
805 	atomic_t			evicted_ranges;
806 	atomic_t			drain_pagefaults;
807 	struct delayed_work		restore_work;
808 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
809 	struct task_struct		*faulting_task;
810 };
811 
812 /* Process data */
813 struct kfd_process {
814 	/*
815 	 * kfd_process are stored in an mm_struct*->kfd_process*
816 	 * hash table (kfd_processes in kfd_process.c)
817 	 */
818 	struct hlist_node kfd_processes;
819 
820 	/*
821 	 * Opaque pointer to mm_struct. We don't hold a reference to
822 	 * it so it should never be dereferenced from here. This is
823 	 * only used for looking up processes by their mm.
824 	 */
825 	void *mm;
826 
827 	struct kref ref;
828 	struct work_struct release_work;
829 
830 	struct mutex mutex;
831 
832 	/*
833 	 * In any process, the thread that started main() is the lead
834 	 * thread and outlives the rest.
835 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
836 	 * It can also be used for safely getting a reference to the
837 	 * mm_struct of the process.
838 	 */
839 	struct task_struct *lead_thread;
840 
841 	/* We want to receive a notification when the mm_struct is destroyed */
842 	struct mmu_notifier mmu_notifier;
843 
844 	u32 pasid;
845 
846 	/*
847 	 * Array of kfd_process_device pointers,
848 	 * one for each device the process is using.
849 	 */
850 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
851 	uint32_t n_pdds;
852 
853 	struct process_queue_manager pqm;
854 
855 	/*Is the user space process 32 bit?*/
856 	bool is_32bit_user_mode;
857 
858 	/* Event-related data */
859 	struct mutex event_mutex;
860 	/* Event ID allocator and lookup */
861 	struct idr event_idr;
862 	/* Event page */
863 	u64 signal_handle;
864 	struct kfd_signal_page *signal_page;
865 	size_t signal_mapped_size;
866 	size_t signal_event_count;
867 	bool signal_event_limit_reached;
868 
869 	/* Information used for memory eviction */
870 	void *kgd_process_info;
871 	/* Eviction fence that is attached to all the BOs of this process. The
872 	 * fence will be triggered during eviction and new one will be created
873 	 * during restore
874 	 */
875 	struct dma_fence *ef;
876 
877 	/* Work items for evicting and restoring BOs */
878 	struct delayed_work eviction_work;
879 	struct delayed_work restore_work;
880 	/* seqno of the last scheduled eviction */
881 	unsigned int last_eviction_seqno;
882 	/* Approx. the last timestamp (in jiffies) when the process was
883 	 * restored after an eviction
884 	 */
885 	unsigned long last_restore_timestamp;
886 
887 	/* Kobj for our procfs */
888 	struct kobject *kobj;
889 	struct kobject *kobj_queues;
890 	struct attribute attr_pasid;
891 
892 	/* shared virtual memory registered by this process */
893 	struct svm_range_list svms;
894 
895 	bool xnack_enabled;
896 
897 	atomic_t poison;
898 	/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
899 	bool queues_paused;
900 };
901 
902 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
903 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
904 extern struct srcu_struct kfd_processes_srcu;
905 
906 /**
907  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
908  *
909  * @filep: pointer to file structure.
910  * @p: amdkfd process pointer.
911  * @data: pointer to arg that was copied from user.
912  *
913  * Return: returns ioctl completion code.
914  */
915 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
916 				void *data);
917 
918 struct amdkfd_ioctl_desc {
919 	unsigned int cmd;
920 	int flags;
921 	amdkfd_ioctl_t *func;
922 	unsigned int cmd_drv;
923 	const char *name;
924 };
925 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
926 
927 int kfd_process_create_wq(void);
928 void kfd_process_destroy_wq(void);
929 struct kfd_process *kfd_create_process(struct file *filep);
930 struct kfd_process *kfd_get_process(const struct task_struct *task);
931 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
932 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
933 
934 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
935 int kfd_process_gpuid_from_adev(struct kfd_process *p,
936 			       struct amdgpu_device *adev, uint32_t *gpuid,
937 			       uint32_t *gpuidx);
938 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
939 				uint32_t gpuidx, uint32_t *gpuid) {
940 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
941 }
942 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
943 				struct kfd_process *p, uint32_t gpuidx) {
944 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
945 }
946 
947 void kfd_unref_process(struct kfd_process *p);
948 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger);
949 int kfd_process_restore_queues(struct kfd_process *p);
950 void kfd_suspend_all_processes(void);
951 int kfd_resume_all_processes(void);
952 
953 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
954 							 uint32_t gpu_id);
955 
956 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
957 
958 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
959 			       struct file *drm_file);
960 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
961 						struct kfd_process *p);
962 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
963 							struct kfd_process *p);
964 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
965 							struct kfd_process *p);
966 
967 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
968 
969 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
970 			  struct vm_area_struct *vma);
971 
972 /* KFD process API for creating and translating handles */
973 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
974 					void *mem);
975 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
976 					int handle);
977 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
978 					int handle);
979 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
980 
981 /* PASIDs */
982 int kfd_pasid_init(void);
983 void kfd_pasid_exit(void);
984 bool kfd_set_pasid_limit(unsigned int new_limit);
985 unsigned int kfd_get_pasid_limit(void);
986 u32 kfd_pasid_alloc(void);
987 void kfd_pasid_free(u32 pasid);
988 
989 /* Doorbells */
990 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
991 int kfd_doorbell_init(struct kfd_dev *kfd);
992 void kfd_doorbell_fini(struct kfd_dev *kfd);
993 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
994 		      struct vm_area_struct *vma);
995 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
996 					unsigned int *doorbell_off);
997 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
998 u32 read_kernel_doorbell(u32 __iomem *db);
999 void write_kernel_doorbell(void __iomem *db, u32 value);
1000 void write_kernel_doorbell64(void __iomem *db, u64 value);
1001 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
1002 					struct kfd_process_device *pdd,
1003 					unsigned int doorbell_id);
1004 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
1005 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
1006 				unsigned int *doorbell_index);
1007 void kfd_free_process_doorbells(struct kfd_dev *kfd,
1008 				unsigned int doorbell_index);
1009 /* GTT Sub-Allocator */
1010 
1011 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1012 			struct kfd_mem_obj **mem_obj);
1013 
1014 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
1015 
1016 extern struct device *kfd_device;
1017 
1018 /* KFD's procfs */
1019 void kfd_procfs_init(void);
1020 void kfd_procfs_shutdown(void);
1021 int kfd_procfs_add_queue(struct queue *q);
1022 void kfd_procfs_del_queue(struct queue *q);
1023 
1024 /* Topology */
1025 int kfd_topology_init(void);
1026 void kfd_topology_shutdown(void);
1027 int kfd_topology_add_device(struct kfd_dev *gpu);
1028 int kfd_topology_remove_device(struct kfd_dev *gpu);
1029 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1030 						uint32_t proximity_domain);
1031 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
1032 						uint32_t proximity_domain);
1033 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1034 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
1035 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
1036 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev);
1037 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
1038 int kfd_numa_node_to_apic_id(int numa_node_id);
1039 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
1040 
1041 /* Interrupts */
1042 int kfd_interrupt_init(struct kfd_dev *dev);
1043 void kfd_interrupt_exit(struct kfd_dev *dev);
1044 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
1045 bool interrupt_is_wanted(struct kfd_dev *dev,
1046 				const uint32_t *ih_ring_entry,
1047 				uint32_t *patched_ihre, bool *flag);
1048 
1049 /* amdkfd Apertures */
1050 int kfd_init_apertures(struct kfd_process *process);
1051 
1052 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1053 				  uint64_t tba_addr,
1054 				  uint64_t tma_addr);
1055 
1056 /* CRIU */
1057 /*
1058  * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1059  * structures:
1060  * kfd_criu_process_priv_data
1061  * kfd_criu_device_priv_data
1062  * kfd_criu_bo_priv_data
1063  * kfd_criu_queue_priv_data
1064  * kfd_criu_event_priv_data
1065  * kfd_criu_svm_range_priv_data
1066  */
1067 
1068 #define KFD_CRIU_PRIV_VERSION 1
1069 
1070 struct kfd_criu_process_priv_data {
1071 	uint32_t version;
1072 	uint32_t xnack_mode;
1073 };
1074 
1075 struct kfd_criu_device_priv_data {
1076 	/* For future use */
1077 	uint64_t reserved;
1078 };
1079 
1080 struct kfd_criu_bo_priv_data {
1081 	uint64_t user_addr;
1082 	uint32_t idr_handle;
1083 	uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1084 };
1085 
1086 /*
1087  * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1088  * kfd_criu_svm_range_priv_data is the object type
1089  */
1090 enum kfd_criu_object_type {
1091 	KFD_CRIU_OBJECT_TYPE_QUEUE,
1092 	KFD_CRIU_OBJECT_TYPE_EVENT,
1093 	KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1094 };
1095 
1096 struct kfd_criu_svm_range_priv_data {
1097 	uint32_t object_type;
1098 	uint64_t start_addr;
1099 	uint64_t size;
1100 	/* Variable length array of attributes */
1101 	struct kfd_ioctl_svm_attribute attrs[];
1102 };
1103 
1104 struct kfd_criu_queue_priv_data {
1105 	uint32_t object_type;
1106 	uint64_t q_address;
1107 	uint64_t q_size;
1108 	uint64_t read_ptr_addr;
1109 	uint64_t write_ptr_addr;
1110 	uint64_t doorbell_off;
1111 	uint64_t eop_ring_buffer_address;
1112 	uint64_t ctx_save_restore_area_address;
1113 	uint32_t gpu_id;
1114 	uint32_t type;
1115 	uint32_t format;
1116 	uint32_t q_id;
1117 	uint32_t priority;
1118 	uint32_t q_percent;
1119 	uint32_t doorbell_id;
1120 	uint32_t gws;
1121 	uint32_t sdma_id;
1122 	uint32_t eop_ring_buffer_size;
1123 	uint32_t ctx_save_restore_area_size;
1124 	uint32_t ctl_stack_size;
1125 	uint32_t mqd_size;
1126 };
1127 
1128 struct kfd_criu_event_priv_data {
1129 	uint32_t object_type;
1130 	uint64_t user_handle;
1131 	uint32_t event_id;
1132 	uint32_t auto_reset;
1133 	uint32_t type;
1134 	uint32_t signaled;
1135 
1136 	union {
1137 		struct kfd_hsa_memory_exception_data memory_exception_data;
1138 		struct kfd_hsa_hw_exception_data hw_exception_data;
1139 	};
1140 };
1141 
1142 int kfd_process_get_queue_info(struct kfd_process *p,
1143 			       uint32_t *num_queues,
1144 			       uint64_t *priv_data_sizes);
1145 
1146 int kfd_criu_checkpoint_queues(struct kfd_process *p,
1147 			 uint8_t __user *user_priv_data,
1148 			 uint64_t *priv_data_offset);
1149 
1150 int kfd_criu_restore_queue(struct kfd_process *p,
1151 			   uint8_t __user *user_priv_data,
1152 			   uint64_t *priv_data_offset,
1153 			   uint64_t max_priv_data_size);
1154 
1155 int kfd_criu_checkpoint_events(struct kfd_process *p,
1156 			 uint8_t __user *user_priv_data,
1157 			 uint64_t *priv_data_offset);
1158 
1159 int kfd_criu_restore_event(struct file *devkfd,
1160 			   struct kfd_process *p,
1161 			   uint8_t __user *user_priv_data,
1162 			   uint64_t *priv_data_offset,
1163 			   uint64_t max_priv_data_size);
1164 /* CRIU - End */
1165 
1166 /* Queue Context Management */
1167 int init_queue(struct queue **q, const struct queue_properties *properties);
1168 void uninit_queue(struct queue *q);
1169 void print_queue_properties(struct queue_properties *q);
1170 void print_queue(struct queue *q);
1171 
1172 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1173 		struct kfd_dev *dev);
1174 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
1175 		struct kfd_dev *dev);
1176 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1177 		struct kfd_dev *dev);
1178 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1179 		struct kfd_dev *dev);
1180 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1181 		struct kfd_dev *dev);
1182 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1183 		struct kfd_dev *dev);
1184 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type,
1185 		struct kfd_dev *dev);
1186 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
1187 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1188 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
1189 					enum kfd_queue_type type);
1190 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1191 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid);
1192 
1193 /* Process Queue Manager */
1194 struct process_queue_node {
1195 	struct queue *q;
1196 	struct kernel_queue *kq;
1197 	struct list_head process_queue_list;
1198 };
1199 
1200 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1201 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1202 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1203 void pqm_uninit(struct process_queue_manager *pqm);
1204 int pqm_create_queue(struct process_queue_manager *pqm,
1205 			    struct kfd_dev *dev,
1206 			    struct file *f,
1207 			    struct queue_properties *properties,
1208 			    unsigned int *qid,
1209 			    struct amdgpu_bo *wptr_bo,
1210 			    const struct kfd_criu_queue_priv_data *q_data,
1211 			    const void *restore_mqd,
1212 			    const void *restore_ctl_stack,
1213 			    uint32_t *p_doorbell_offset_in_process);
1214 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1215 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1216 			struct queue_properties *p);
1217 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1218 			struct mqd_update_info *minfo);
1219 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1220 			void *gws);
1221 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1222 						unsigned int qid);
1223 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1224 						unsigned int qid);
1225 int pqm_get_wave_state(struct process_queue_manager *pqm,
1226 		       unsigned int qid,
1227 		       void __user *ctl_stack,
1228 		       u32 *ctl_stack_used_size,
1229 		       u32 *save_area_used_size);
1230 
1231 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1232 			      uint64_t fence_value,
1233 			      unsigned int timeout_ms);
1234 
1235 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1236 				  unsigned int qid,
1237 				  u32 *mqd_size,
1238 				  u32 *ctl_stack_size);
1239 /* Packet Manager */
1240 
1241 #define KFD_FENCE_COMPLETED (100)
1242 #define KFD_FENCE_INIT   (10)
1243 
1244 struct packet_manager {
1245 	struct device_queue_manager *dqm;
1246 	struct kernel_queue *priv_queue;
1247 	struct mutex lock;
1248 	bool allocated;
1249 	struct kfd_mem_obj *ib_buffer_obj;
1250 	unsigned int ib_size_bytes;
1251 	bool is_over_subscription;
1252 
1253 	const struct packet_manager_funcs *pmf;
1254 };
1255 
1256 struct packet_manager_funcs {
1257 	/* Support ASIC-specific packet formats for PM4 packets */
1258 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1259 			struct qcm_process_device *qpd);
1260 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1261 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1262 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1263 			struct scheduling_resources *res);
1264 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1265 			struct queue *q, bool is_static);
1266 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1267 			enum kfd_unmap_queues_filter mode,
1268 			uint32_t filter_param, bool reset);
1269 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1270 			uint64_t fence_address,	uint64_t fence_value);
1271 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1272 
1273 	/* Packet sizes */
1274 	int map_process_size;
1275 	int runlist_size;
1276 	int set_resources_size;
1277 	int map_queues_size;
1278 	int unmap_queues_size;
1279 	int query_status_size;
1280 	int release_mem_size;
1281 };
1282 
1283 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1284 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1285 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1286 
1287 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1288 void pm_uninit(struct packet_manager *pm, bool hanging);
1289 int pm_send_set_resources(struct packet_manager *pm,
1290 				struct scheduling_resources *res);
1291 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1292 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1293 				uint64_t fence_value);
1294 
1295 int pm_send_unmap_queue(struct packet_manager *pm,
1296 			enum kfd_unmap_queues_filter mode,
1297 			uint32_t filter_param, bool reset);
1298 
1299 void pm_release_ib(struct packet_manager *pm);
1300 
1301 /* Following PM funcs can be shared among VI and AI */
1302 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1303 
1304 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1305 
1306 /* Events */
1307 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1308 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1309 extern const struct kfd_event_interrupt_class event_interrupt_class_v11;
1310 
1311 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1312 
1313 int kfd_event_init_process(struct kfd_process *p);
1314 void kfd_event_free_process(struct kfd_process *p);
1315 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1316 int kfd_wait_on_events(struct kfd_process *p,
1317 		       uint32_t num_events, void __user *data,
1318 		       bool all, uint32_t *user_timeout_ms,
1319 		       uint32_t *wait_result);
1320 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1321 				uint32_t valid_id_bits);
1322 void kfd_signal_iommu_event(struct kfd_dev *dev,
1323 			    u32 pasid, unsigned long address,
1324 			    bool is_write_requested, bool is_execute_requested);
1325 void kfd_signal_hw_exception_event(u32 pasid);
1326 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1327 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1328 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1329 
1330 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1331 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1332 		     uint32_t *event_id, uint32_t *event_trigger_data,
1333 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1334 
1335 int kfd_get_num_events(struct kfd_process *p);
1336 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1337 
1338 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1339 				struct kfd_vm_fault_info *info);
1340 
1341 void kfd_signal_reset_event(struct kfd_dev *dev);
1342 
1343 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid);
1344 
1345 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1346 
1347 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev)
1348 {
1349 	return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) ||
1350 	       (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) &&
1351 	       dev->adev->sdma.instance[0].fw_version >= 18) ||
1352 	       KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0);
1353 }
1354 
1355 bool kfd_is_locked(void);
1356 
1357 /* Compute profile */
1358 void kfd_inc_compute_active(struct kfd_dev *dev);
1359 void kfd_dec_compute_active(struct kfd_dev *dev);
1360 
1361 /* Cgroup Support */
1362 /* Check with device cgroup if @kfd device is accessible */
1363 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1364 {
1365 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1366 	struct drm_device *ddev = adev_to_drm(kfd->adev);
1367 
1368 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1369 					  ddev->render->index,
1370 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1371 #else
1372 	return 0;
1373 #endif
1374 }
1375 
1376 /* Debugfs */
1377 #if defined(CONFIG_DEBUG_FS)
1378 
1379 void kfd_debugfs_init(void);
1380 void kfd_debugfs_fini(void);
1381 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1382 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1383 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1384 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1385 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1386 int pm_debugfs_runlist(struct seq_file *m, void *data);
1387 
1388 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1389 int pm_debugfs_hang_hws(struct packet_manager *pm);
1390 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1391 
1392 #else
1393 
1394 static inline void kfd_debugfs_init(void) {}
1395 static inline void kfd_debugfs_fini(void) {}
1396 
1397 #endif
1398 
1399 #endif
1400