1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef KFD_PRIV_H_INCLUDED 25 #define KFD_PRIV_H_INCLUDED 26 27 #include <linux/hashtable.h> 28 #include <linux/mmu_notifier.h> 29 #include <linux/memremap.h> 30 #include <linux/mutex.h> 31 #include <linux/types.h> 32 #include <linux/atomic.h> 33 #include <linux/workqueue.h> 34 #include <linux/spinlock.h> 35 #include <linux/kfd_ioctl.h> 36 #include <linux/idr.h> 37 #include <linux/kfifo.h> 38 #include <linux/seq_file.h> 39 #include <linux/kref.h> 40 #include <linux/sysfs.h> 41 #include <linux/device_cgroup.h> 42 #include <drm/drm_file.h> 43 #include <drm/drm_drv.h> 44 #include <drm/drm_device.h> 45 #include <drm/drm_ioctl.h> 46 #include <kgd_kfd_interface.h> 47 #include <linux/swap.h> 48 49 #include "amd_shared.h" 50 #include "amdgpu.h" 51 52 #define KFD_MAX_RING_ENTRY_SIZE 8 53 54 #define KFD_SYSFS_FILE_MODE 0444 55 56 /* GPU ID hash width in bits */ 57 #define KFD_GPU_ID_HASH_WIDTH 16 58 59 /* Use upper bits of mmap offset to store KFD driver specific information. 60 * BITS[63:62] - Encode MMAP type 61 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 62 * BITS[45:0] - MMAP offset value 63 * 64 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 65 * defines are w.r.t to PAGE_SIZE 66 */ 67 #define KFD_MMAP_TYPE_SHIFT 62 68 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 69 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 70 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 71 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 72 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 73 74 #define KFD_MMAP_GPU_ID_SHIFT 46 75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 76 << KFD_MMAP_GPU_ID_SHIFT) 77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 78 & KFD_MMAP_GPU_ID_MASK) 79 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 80 >> KFD_MMAP_GPU_ID_SHIFT) 81 82 /* 83 * When working with cp scheduler we should assign the HIQ manually or via 84 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 85 * definitions for Kaveri. In Kaveri only the first ME queues participates 86 * in the cp scheduling taking that in mind we set the HIQ slot in the 87 * second ME. 88 */ 89 #define KFD_CIK_HIQ_PIPE 4 90 #define KFD_CIK_HIQ_QUEUE 0 91 92 /* Macro for allocating structures */ 93 #define kfd_alloc_struct(ptr_to_struct) \ 94 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 95 96 #define KFD_MAX_NUM_OF_PROCESSES 512 97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 98 99 /* 100 * Size of the per-process TBA+TMA buffer: 2 pages 101 * 102 * The first page is the TBA used for the CWSR ISA code. The second 103 * page is used as TMA for user-mode trap handler setup in daisy-chain mode. 104 */ 105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 106 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 107 108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 109 (KFD_MAX_NUM_OF_PROCESSES * \ 110 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 111 112 #define KFD_KERNEL_QUEUE_SIZE 2048 113 114 #define KFD_UNMAP_LATENCY_MS (4000) 115 116 /* 117 * 512 = 0x200 118 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 119 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 120 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 121 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 122 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 123 */ 124 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 125 126 /** 127 * enum kfd_ioctl_flags - KFD ioctl flags 128 * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how 129 * userspace can use a given ioctl. 130 */ 131 enum kfd_ioctl_flags { 132 /* 133 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE: 134 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially 135 * perform privileged operations and load arbitrary data into MQDs and 136 * eventually HQD registers when the queue is mapped by HWS. In order to 137 * prevent this we should perform additional security checks. 138 * 139 * This is equivalent to callers with the CHECKPOINT_RESTORE capability. 140 * 141 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE, 142 * we also allow ioctls with SYS_ADMIN capability. 143 */ 144 KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0), 145 }; 146 /* 147 * Kernel module parameter to specify maximum number of supported queues per 148 * device 149 */ 150 extern int max_num_of_queues_per_device; 151 152 153 /* Kernel module parameter to specify the scheduling policy */ 154 extern int sched_policy; 155 156 /* 157 * Kernel module parameter to specify the maximum process 158 * number per HW scheduler 159 */ 160 extern int hws_max_conc_proc; 161 162 extern int cwsr_enable; 163 164 /* 165 * Kernel module parameter to specify whether to send sigterm to HSA process on 166 * unhandled exception 167 */ 168 extern int send_sigterm; 169 170 /* 171 * This kernel module is used to simulate large bar machine on non-large bar 172 * enabled machines. 173 */ 174 extern int debug_largebar; 175 176 /* 177 * Ignore CRAT table during KFD initialization, can be used to work around 178 * broken CRAT tables on some AMD systems 179 */ 180 extern int ignore_crat; 181 182 /* Set sh_mem_config.retry_disable on GFX v9 */ 183 extern int amdgpu_noretry; 184 185 /* Halt if HWS hang is detected */ 186 extern int halt_if_hws_hang; 187 188 /* Whether MEC FW support GWS barriers */ 189 extern bool hws_gws_support; 190 191 /* Queue preemption timeout in ms */ 192 extern int queue_preemption_timeout_ms; 193 194 /* 195 * Don't evict process queues on vm fault 196 */ 197 extern int amdgpu_no_queue_eviction_on_vm_fault; 198 199 /* Enable eviction debug messages */ 200 extern bool debug_evictions; 201 202 enum cache_policy { 203 cache_policy_coherent, 204 cache_policy_noncoherent 205 }; 206 207 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0]) 208 #define KFD_IS_SOC15(dev) ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1))) 209 210 struct kfd_event_interrupt_class { 211 bool (*interrupt_isr)(struct kfd_dev *dev, 212 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 213 bool *patched_flag); 214 void (*interrupt_wq)(struct kfd_dev *dev, 215 const uint32_t *ih_ring_entry); 216 }; 217 218 struct kfd_device_info { 219 uint32_t gfx_target_version; 220 const struct kfd_event_interrupt_class *event_interrupt_class; 221 unsigned int max_pasid_bits; 222 unsigned int max_no_of_hqd; 223 unsigned int doorbell_size; 224 size_t ih_ring_entry_size; 225 uint8_t num_of_watch_points; 226 uint16_t mqd_size_aligned; 227 bool supports_cwsr; 228 bool needs_iommu_device; 229 bool needs_pci_atomics; 230 uint32_t no_atomic_fw_version; 231 unsigned int num_sdma_queues_per_engine; 232 unsigned int num_reserved_sdma_queues_per_engine; 233 uint64_t reserved_sdma_queues_bitmap; 234 }; 235 236 unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev); 237 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev); 238 239 struct kfd_mem_obj { 240 uint32_t range_start; 241 uint32_t range_end; 242 uint64_t gpu_addr; 243 uint32_t *cpu_ptr; 244 void *gtt_mem; 245 }; 246 247 struct kfd_vmid_info { 248 uint32_t first_vmid_kfd; 249 uint32_t last_vmid_kfd; 250 uint32_t vmid_num_kfd; 251 }; 252 253 struct kfd_dev { 254 struct amdgpu_device *adev; 255 256 struct kfd_device_info device_info; 257 258 unsigned int id; /* topology stub index */ 259 260 phys_addr_t doorbell_base; /* Start of actual doorbells used by 261 * KFD. It is aligned for mapping 262 * into user mode 263 */ 264 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI 265 * doorbell BAR to the first KFD 266 * doorbell in dwords. GFX reserves 267 * the segment before this offset. 268 */ 269 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 270 * page used by kernel queue 271 */ 272 273 struct kgd2kfd_shared_resources shared_resources; 274 struct kfd_vmid_info vm_info; 275 struct kfd_local_mem_info local_mem_info; 276 277 const struct kfd2kgd_calls *kfd2kgd; 278 struct mutex doorbell_mutex; 279 DECLARE_BITMAP(doorbell_available_index, 280 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 281 282 void *gtt_mem; 283 uint64_t gtt_start_gpu_addr; 284 void *gtt_start_cpu_ptr; 285 void *gtt_sa_bitmap; 286 struct mutex gtt_sa_lock; 287 unsigned int gtt_sa_chunk_size; 288 unsigned int gtt_sa_num_of_chunks; 289 290 /* Interrupts */ 291 struct kfifo ih_fifo; 292 struct workqueue_struct *ih_wq; 293 struct work_struct interrupt_work; 294 spinlock_t interrupt_lock; 295 296 /* QCM Device instance */ 297 struct device_queue_manager *dqm; 298 299 bool init_complete; 300 /* 301 * Interrupts of interest to KFD are copied 302 * from the HW ring into a SW ring. 303 */ 304 bool interrupts_active; 305 306 /* Firmware versions */ 307 uint16_t mec_fw_version; 308 uint16_t mec2_fw_version; 309 uint16_t sdma_fw_version; 310 311 /* Maximum process number mapped to HW scheduler */ 312 unsigned int max_proc_per_quantum; 313 314 /* CWSR */ 315 bool cwsr_enabled; 316 const void *cwsr_isa; 317 unsigned int cwsr_isa_size; 318 319 /* xGMI */ 320 uint64_t hive_id; 321 322 bool pci_atomic_requested; 323 324 /* Use IOMMU v2 flag */ 325 bool use_iommu_v2; 326 327 /* SRAM ECC flag */ 328 atomic_t sram_ecc_flag; 329 330 /* Compute Profile ref. count */ 331 atomic_t compute_profile; 332 333 /* Global GWS resource shared between processes */ 334 void *gws; 335 336 /* Clients watching SMI events */ 337 struct list_head smi_clients; 338 spinlock_t smi_lock; 339 340 uint32_t reset_seq_num; 341 342 struct ida doorbell_ida; 343 unsigned int max_doorbell_slices; 344 345 int noretry; 346 347 /* HMM page migration MEMORY_DEVICE_PRIVATE mapping */ 348 struct dev_pagemap pgmap; 349 }; 350 351 enum kfd_mempool { 352 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 353 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 354 KFD_MEMPOOL_FRAMEBUFFER = 3, 355 }; 356 357 /* Character device interface */ 358 int kfd_chardev_init(void); 359 void kfd_chardev_exit(void); 360 361 /** 362 * enum kfd_unmap_queues_filter - Enum for queue filters. 363 * 364 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 365 * running queues list. 366 * 367 * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues 368 * in the run list. 369 * 370 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 371 * specific process. 372 * 373 */ 374 enum kfd_unmap_queues_filter { 375 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1, 376 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2, 377 KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3 378 }; 379 380 /** 381 * enum kfd_queue_type - Enum for various queue types. 382 * 383 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 384 * 385 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type. 386 * 387 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 388 * 389 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 390 * 391 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface. 392 */ 393 enum kfd_queue_type { 394 KFD_QUEUE_TYPE_COMPUTE, 395 KFD_QUEUE_TYPE_SDMA, 396 KFD_QUEUE_TYPE_HIQ, 397 KFD_QUEUE_TYPE_DIQ, 398 KFD_QUEUE_TYPE_SDMA_XGMI 399 }; 400 401 enum kfd_queue_format { 402 KFD_QUEUE_FORMAT_PM4, 403 KFD_QUEUE_FORMAT_AQL 404 }; 405 406 enum KFD_QUEUE_PRIORITY { 407 KFD_QUEUE_PRIORITY_MINIMUM = 0, 408 KFD_QUEUE_PRIORITY_MAXIMUM = 15 409 }; 410 411 /** 412 * struct queue_properties 413 * 414 * @type: The queue type. 415 * 416 * @queue_id: Queue identifier. 417 * 418 * @queue_address: Queue ring buffer address. 419 * 420 * @queue_size: Queue ring buffer size. 421 * 422 * @priority: Defines the queue priority relative to other queues in the 423 * process. 424 * This is just an indication and HW scheduling may override the priority as 425 * necessary while keeping the relative prioritization. 426 * the priority granularity is from 0 to f which f is the highest priority. 427 * currently all queues are initialized with the highest priority. 428 * 429 * @queue_percent: This field is partially implemented and currently a zero in 430 * this field defines that the queue is non active. 431 * 432 * @read_ptr: User space address which points to the number of dwords the 433 * cp read from the ring buffer. This field updates automatically by the H/W. 434 * 435 * @write_ptr: Defines the number of dwords written to the ring buffer. 436 * 437 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring 438 * buffer. This field should be similar to write_ptr and the user should 439 * update this field after updating the write_ptr. 440 * 441 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 442 * 443 * @is_interop: Defines if this is a interop queue. Interop queue means that 444 * the queue can access both graphics and compute resources. 445 * 446 * @is_evicted: Defines if the queue is evicted. Only active queues 447 * are evicted, rendering them inactive. 448 * 449 * @is_active: Defines if the queue is active or not. @is_active and 450 * @is_evicted are protected by the DQM lock. 451 * 452 * @is_gws: Defines if the queue has been updated to be GWS-capable or not. 453 * @is_gws should be protected by the DQM lock, since changing it can yield the 454 * possibility of updating DQM state on number of GWS queues. 455 * 456 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 457 * of the queue. 458 * 459 * This structure represents the queue properties for each queue no matter if 460 * it's user mode or kernel mode queue. 461 * 462 */ 463 464 struct queue_properties { 465 enum kfd_queue_type type; 466 enum kfd_queue_format format; 467 unsigned int queue_id; 468 uint64_t queue_address; 469 uint64_t queue_size; 470 uint32_t priority; 471 uint32_t queue_percent; 472 uint32_t *read_ptr; 473 uint32_t *write_ptr; 474 void __iomem *doorbell_ptr; 475 uint32_t doorbell_off; 476 bool is_interop; 477 bool is_evicted; 478 bool is_active; 479 bool is_gws; 480 /* Not relevant for user mode queues in cp scheduling */ 481 unsigned int vmid; 482 /* Relevant only for sdma queues*/ 483 uint32_t sdma_engine_id; 484 uint32_t sdma_queue_id; 485 uint32_t sdma_vm_addr; 486 /* Relevant only for VI */ 487 uint64_t eop_ring_buffer_address; 488 uint32_t eop_ring_buffer_size; 489 uint64_t ctx_save_restore_area_address; 490 uint32_t ctx_save_restore_area_size; 491 uint32_t ctl_stack_size; 492 uint64_t tba_addr; 493 uint64_t tma_addr; 494 }; 495 496 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 497 (q).queue_address != 0 && \ 498 (q).queue_percent > 0 && \ 499 !(q).is_evicted) 500 501 enum mqd_update_flag { 502 UPDATE_FLAG_CU_MASK = 0, 503 }; 504 505 struct mqd_update_info { 506 union { 507 struct { 508 uint32_t count; /* Must be a multiple of 32 */ 509 uint32_t *ptr; 510 } cu_mask; 511 }; 512 enum mqd_update_flag update_flag; 513 }; 514 515 /** 516 * struct queue 517 * 518 * @list: Queue linked list. 519 * 520 * @mqd: The queue MQD (memory queue descriptor). 521 * 522 * @mqd_mem_obj: The MQD local gpu memory object. 523 * 524 * @gart_mqd_addr: The MQD gart mc address. 525 * 526 * @properties: The queue properties. 527 * 528 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 529 * that the queue should be executed on. 530 * 531 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 532 * id. 533 * 534 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 535 * 536 * @process: The kfd process that created this queue. 537 * 538 * @device: The kfd device that created this queue. 539 * 540 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 541 * otherwise. 542 * 543 * This structure represents user mode compute queues. 544 * It contains all the necessary data to handle such queues. 545 * 546 */ 547 548 struct queue { 549 struct list_head list; 550 void *mqd; 551 struct kfd_mem_obj *mqd_mem_obj; 552 uint64_t gart_mqd_addr; 553 struct queue_properties properties; 554 555 uint32_t mec; 556 uint32_t pipe; 557 uint32_t queue; 558 559 unsigned int sdma_id; 560 unsigned int doorbell_id; 561 562 struct kfd_process *process; 563 struct kfd_dev *device; 564 void *gws; 565 566 /* procfs */ 567 struct kobject kobj; 568 569 void *gang_ctx_bo; 570 uint64_t gang_ctx_gpu_addr; 571 void *gang_ctx_cpu_ptr; 572 573 struct amdgpu_bo *wptr_bo; 574 }; 575 576 enum KFD_MQD_TYPE { 577 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 578 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 579 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 580 KFD_MQD_TYPE_DIQ, /* for diq */ 581 KFD_MQD_TYPE_MAX 582 }; 583 584 enum KFD_PIPE_PRIORITY { 585 KFD_PIPE_PRIORITY_CS_LOW = 0, 586 KFD_PIPE_PRIORITY_CS_MEDIUM, 587 KFD_PIPE_PRIORITY_CS_HIGH 588 }; 589 590 struct scheduling_resources { 591 unsigned int vmid_mask; 592 enum kfd_queue_type type; 593 uint64_t queue_mask; 594 uint64_t gws_mask; 595 uint32_t oac_mask; 596 uint32_t gds_heap_base; 597 uint32_t gds_heap_size; 598 }; 599 600 struct process_queue_manager { 601 /* data */ 602 struct kfd_process *process; 603 struct list_head queues; 604 unsigned long *queue_slot_bitmap; 605 }; 606 607 struct qcm_process_device { 608 /* The Device Queue Manager that owns this data */ 609 struct device_queue_manager *dqm; 610 struct process_queue_manager *pqm; 611 /* Queues list */ 612 struct list_head queues_list; 613 struct list_head priv_queue_list; 614 615 unsigned int queue_count; 616 unsigned int vmid; 617 bool is_debug; 618 unsigned int evicted; /* eviction counter, 0=active */ 619 620 /* This flag tells if we should reset all wavefronts on 621 * process termination 622 */ 623 bool reset_wavefronts; 624 625 /* This flag tells us if this process has a GWS-capable 626 * queue that will be mapped into the runlist. It's 627 * possible to request a GWS BO, but not have the queue 628 * currently mapped, and this changes how the MAP_PROCESS 629 * PM4 packet is configured. 630 */ 631 bool mapped_gws_queue; 632 633 /* All the memory management data should be here too */ 634 uint64_t gds_context_area; 635 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 636 uint64_t page_table_base; 637 uint32_t sh_mem_config; 638 uint32_t sh_mem_bases; 639 uint32_t sh_mem_ape1_base; 640 uint32_t sh_mem_ape1_limit; 641 uint32_t gds_size; 642 uint32_t num_gws; 643 uint32_t num_oac; 644 uint32_t sh_hidden_private_base; 645 646 /* CWSR memory */ 647 struct kgd_mem *cwsr_mem; 648 void *cwsr_kaddr; 649 uint64_t cwsr_base; 650 uint64_t tba_addr; 651 uint64_t tma_addr; 652 653 /* IB memory */ 654 struct kgd_mem *ib_mem; 655 uint64_t ib_base; 656 void *ib_kaddr; 657 658 /* doorbell resources per process per device */ 659 unsigned long *doorbell_bitmap; 660 }; 661 662 /* KFD Memory Eviction */ 663 664 /* Approx. wait time before attempting to restore evicted BOs */ 665 #define PROCESS_RESTORE_TIME_MS 100 666 /* Approx. back off time if restore fails due to lack of memory */ 667 #define PROCESS_BACK_OFF_TIME_MS 100 668 /* Approx. time before evicting the process again */ 669 #define PROCESS_ACTIVE_TIME_MS 10 670 671 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 672 * idr_handle in the least significant 4 bytes 673 */ 674 #define MAKE_HANDLE(gpu_id, idr_handle) \ 675 (((uint64_t)(gpu_id) << 32) + idr_handle) 676 #define GET_GPU_ID(handle) (handle >> 32) 677 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 678 679 enum kfd_pdd_bound { 680 PDD_UNBOUND = 0, 681 PDD_BOUND, 682 PDD_BOUND_SUSPENDED, 683 }; 684 685 #define MAX_SYSFS_FILENAME_LEN 15 686 687 /* 688 * SDMA counter runs at 100MHz frequency. 689 * We display SDMA activity in microsecond granularity in sysfs. 690 * As a result, the divisor is 100. 691 */ 692 #define SDMA_ACTIVITY_DIVISOR 100 693 694 /* Data that is per-process-per device. */ 695 struct kfd_process_device { 696 /* The device that owns this data. */ 697 struct kfd_dev *dev; 698 699 /* The process that owns this kfd_process_device. */ 700 struct kfd_process *process; 701 702 /* per-process-per device QCM data structure */ 703 struct qcm_process_device qpd; 704 705 /*Apertures*/ 706 uint64_t lds_base; 707 uint64_t lds_limit; 708 uint64_t gpuvm_base; 709 uint64_t gpuvm_limit; 710 uint64_t scratch_base; 711 uint64_t scratch_limit; 712 713 /* VM context for GPUVM allocations */ 714 struct file *drm_file; 715 void *drm_priv; 716 atomic64_t tlb_seq; 717 718 /* GPUVM allocations storage */ 719 struct idr alloc_idr; 720 721 /* Flag used to tell the pdd has dequeued from the dqm. 722 * This is used to prevent dev->dqm->ops.process_termination() from 723 * being called twice when it is already called in IOMMU callback 724 * function. 725 */ 726 bool already_dequeued; 727 bool runtime_inuse; 728 729 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 730 enum kfd_pdd_bound bound; 731 732 /* VRAM usage */ 733 uint64_t vram_usage; 734 struct attribute attr_vram; 735 char vram_filename[MAX_SYSFS_FILENAME_LEN]; 736 737 /* SDMA activity tracking */ 738 uint64_t sdma_past_activity_counter; 739 struct attribute attr_sdma; 740 char sdma_filename[MAX_SYSFS_FILENAME_LEN]; 741 742 /* Eviction activity tracking */ 743 uint64_t last_evict_timestamp; 744 atomic64_t evict_duration_counter; 745 struct attribute attr_evict; 746 747 struct kobject *kobj_stats; 748 unsigned int doorbell_index; 749 750 /* 751 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process 752 * that is associated with device encoded by "this" struct instance. The 753 * value reflects CU usage by all of the waves launched by this process 754 * on this device. A very important property of occupancy parameter is 755 * that its value is a snapshot of current use. 756 * 757 * Following is to be noted regarding how this parameter is reported: 758 * 759 * The number of waves that a CU can launch is limited by couple of 760 * parameters. These are encoded by struct amdgpu_cu_info instance 761 * that is part of every device definition. For GFX9 devices this 762 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves 763 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu) 764 * when they do use scratch memory. This could change for future 765 * devices and therefore this example should be considered as a guide. 766 * 767 * All CU's of a device are available for the process. This may not be true 768 * under certain conditions - e.g. CU masking. 769 * 770 * Finally number of CU's that are occupied by a process is affected by both 771 * number of CU's a device has along with number of other competing processes 772 */ 773 struct attribute attr_cu_occupancy; 774 775 /* sysfs counters for GPU retry fault and page migration tracking */ 776 struct kobject *kobj_counters; 777 struct attribute attr_faults; 778 struct attribute attr_page_in; 779 struct attribute attr_page_out; 780 uint64_t faults; 781 uint64_t page_in; 782 uint64_t page_out; 783 /* 784 * If this process has been checkpointed before, then the user 785 * application will use the original gpu_id on the 786 * checkpointed node to refer to this device. 787 */ 788 uint32_t user_gpu_id; 789 790 void *proc_ctx_bo; 791 uint64_t proc_ctx_gpu_addr; 792 void *proc_ctx_cpu_ptr; 793 }; 794 795 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 796 797 struct svm_range_list { 798 struct mutex lock; 799 struct rb_root_cached objects; 800 struct list_head list; 801 struct work_struct deferred_list_work; 802 struct list_head deferred_range_list; 803 struct list_head criu_svm_metadata_list; 804 spinlock_t deferred_list_lock; 805 atomic_t evicted_ranges; 806 atomic_t drain_pagefaults; 807 struct delayed_work restore_work; 808 DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE); 809 struct task_struct *faulting_task; 810 }; 811 812 /* Process data */ 813 struct kfd_process { 814 /* 815 * kfd_process are stored in an mm_struct*->kfd_process* 816 * hash table (kfd_processes in kfd_process.c) 817 */ 818 struct hlist_node kfd_processes; 819 820 /* 821 * Opaque pointer to mm_struct. We don't hold a reference to 822 * it so it should never be dereferenced from here. This is 823 * only used for looking up processes by their mm. 824 */ 825 void *mm; 826 827 struct kref ref; 828 struct work_struct release_work; 829 830 struct mutex mutex; 831 832 /* 833 * In any process, the thread that started main() is the lead 834 * thread and outlives the rest. 835 * It is here because amd_iommu_bind_pasid wants a task_struct. 836 * It can also be used for safely getting a reference to the 837 * mm_struct of the process. 838 */ 839 struct task_struct *lead_thread; 840 841 /* We want to receive a notification when the mm_struct is destroyed */ 842 struct mmu_notifier mmu_notifier; 843 844 u32 pasid; 845 846 /* 847 * Array of kfd_process_device pointers, 848 * one for each device the process is using. 849 */ 850 struct kfd_process_device *pdds[MAX_GPU_INSTANCE]; 851 uint32_t n_pdds; 852 853 struct process_queue_manager pqm; 854 855 /*Is the user space process 32 bit?*/ 856 bool is_32bit_user_mode; 857 858 /* Event-related data */ 859 struct mutex event_mutex; 860 /* Event ID allocator and lookup */ 861 struct idr event_idr; 862 /* Event page */ 863 u64 signal_handle; 864 struct kfd_signal_page *signal_page; 865 size_t signal_mapped_size; 866 size_t signal_event_count; 867 bool signal_event_limit_reached; 868 869 /* Information used for memory eviction */ 870 void *kgd_process_info; 871 /* Eviction fence that is attached to all the BOs of this process. The 872 * fence will be triggered during eviction and new one will be created 873 * during restore 874 */ 875 struct dma_fence *ef; 876 877 /* Work items for evicting and restoring BOs */ 878 struct delayed_work eviction_work; 879 struct delayed_work restore_work; 880 /* seqno of the last scheduled eviction */ 881 unsigned int last_eviction_seqno; 882 /* Approx. the last timestamp (in jiffies) when the process was 883 * restored after an eviction 884 */ 885 unsigned long last_restore_timestamp; 886 887 /* Kobj for our procfs */ 888 struct kobject *kobj; 889 struct kobject *kobj_queues; 890 struct attribute attr_pasid; 891 892 /* shared virtual memory registered by this process */ 893 struct svm_range_list svms; 894 895 bool xnack_enabled; 896 897 atomic_t poison; 898 /* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */ 899 bool queues_paused; 900 }; 901 902 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 903 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 904 extern struct srcu_struct kfd_processes_srcu; 905 906 /** 907 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer. 908 * 909 * @filep: pointer to file structure. 910 * @p: amdkfd process pointer. 911 * @data: pointer to arg that was copied from user. 912 * 913 * Return: returns ioctl completion code. 914 */ 915 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 916 void *data); 917 918 struct amdkfd_ioctl_desc { 919 unsigned int cmd; 920 int flags; 921 amdkfd_ioctl_t *func; 922 unsigned int cmd_drv; 923 const char *name; 924 }; 925 bool kfd_dev_is_large_bar(struct kfd_dev *dev); 926 927 int kfd_process_create_wq(void); 928 void kfd_process_destroy_wq(void); 929 struct kfd_process *kfd_create_process(struct file *filep); 930 struct kfd_process *kfd_get_process(const struct task_struct *task); 931 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid); 932 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 933 934 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id); 935 int kfd_process_gpuid_from_adev(struct kfd_process *p, 936 struct amdgpu_device *adev, uint32_t *gpuid, 937 uint32_t *gpuidx); 938 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p, 939 uint32_t gpuidx, uint32_t *gpuid) { 940 return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL; 941 } 942 static inline struct kfd_process_device *kfd_process_device_from_gpuidx( 943 struct kfd_process *p, uint32_t gpuidx) { 944 return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL; 945 } 946 947 void kfd_unref_process(struct kfd_process *p); 948 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger); 949 int kfd_process_restore_queues(struct kfd_process *p); 950 void kfd_suspend_all_processes(void); 951 int kfd_resume_all_processes(void); 952 953 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process, 954 uint32_t gpu_id); 955 956 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id); 957 958 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 959 struct file *drm_file); 960 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 961 struct kfd_process *p); 962 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 963 struct kfd_process *p); 964 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 965 struct kfd_process *p); 966 967 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported); 968 969 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 970 struct vm_area_struct *vma); 971 972 /* KFD process API for creating and translating handles */ 973 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 974 void *mem); 975 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 976 int handle); 977 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 978 int handle); 979 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid); 980 981 /* PASIDs */ 982 int kfd_pasid_init(void); 983 void kfd_pasid_exit(void); 984 bool kfd_set_pasid_limit(unsigned int new_limit); 985 unsigned int kfd_get_pasid_limit(void); 986 u32 kfd_pasid_alloc(void); 987 void kfd_pasid_free(u32 pasid); 988 989 /* Doorbells */ 990 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 991 int kfd_doorbell_init(struct kfd_dev *kfd); 992 void kfd_doorbell_fini(struct kfd_dev *kfd); 993 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, 994 struct vm_area_struct *vma); 995 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 996 unsigned int *doorbell_off); 997 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 998 u32 read_kernel_doorbell(u32 __iomem *db); 999 void write_kernel_doorbell(void __iomem *db, u32 value); 1000 void write_kernel_doorbell64(void __iomem *db, u64 value); 1001 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 1002 struct kfd_process_device *pdd, 1003 unsigned int doorbell_id); 1004 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd); 1005 int kfd_alloc_process_doorbells(struct kfd_dev *kfd, 1006 unsigned int *doorbell_index); 1007 void kfd_free_process_doorbells(struct kfd_dev *kfd, 1008 unsigned int doorbell_index); 1009 /* GTT Sub-Allocator */ 1010 1011 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 1012 struct kfd_mem_obj **mem_obj); 1013 1014 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 1015 1016 extern struct device *kfd_device; 1017 1018 /* KFD's procfs */ 1019 void kfd_procfs_init(void); 1020 void kfd_procfs_shutdown(void); 1021 int kfd_procfs_add_queue(struct queue *q); 1022 void kfd_procfs_del_queue(struct queue *q); 1023 1024 /* Topology */ 1025 int kfd_topology_init(void); 1026 void kfd_topology_shutdown(void); 1027 int kfd_topology_add_device(struct kfd_dev *gpu); 1028 int kfd_topology_remove_device(struct kfd_dev *gpu); 1029 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 1030 uint32_t proximity_domain); 1031 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock( 1032 uint32_t proximity_domain); 1033 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 1034 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 1035 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 1036 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev); 1037 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); 1038 int kfd_numa_node_to_apic_id(int numa_node_id); 1039 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu); 1040 1041 /* Interrupts */ 1042 int kfd_interrupt_init(struct kfd_dev *dev); 1043 void kfd_interrupt_exit(struct kfd_dev *dev); 1044 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 1045 bool interrupt_is_wanted(struct kfd_dev *dev, 1046 const uint32_t *ih_ring_entry, 1047 uint32_t *patched_ihre, bool *flag); 1048 1049 /* amdkfd Apertures */ 1050 int kfd_init_apertures(struct kfd_process *process); 1051 1052 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1053 uint64_t tba_addr, 1054 uint64_t tma_addr); 1055 1056 /* CRIU */ 1057 /* 1058 * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private 1059 * structures: 1060 * kfd_criu_process_priv_data 1061 * kfd_criu_device_priv_data 1062 * kfd_criu_bo_priv_data 1063 * kfd_criu_queue_priv_data 1064 * kfd_criu_event_priv_data 1065 * kfd_criu_svm_range_priv_data 1066 */ 1067 1068 #define KFD_CRIU_PRIV_VERSION 1 1069 1070 struct kfd_criu_process_priv_data { 1071 uint32_t version; 1072 uint32_t xnack_mode; 1073 }; 1074 1075 struct kfd_criu_device_priv_data { 1076 /* For future use */ 1077 uint64_t reserved; 1078 }; 1079 1080 struct kfd_criu_bo_priv_data { 1081 uint64_t user_addr; 1082 uint32_t idr_handle; 1083 uint32_t mapped_gpuids[MAX_GPU_INSTANCE]; 1084 }; 1085 1086 /* 1087 * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data, 1088 * kfd_criu_svm_range_priv_data is the object type 1089 */ 1090 enum kfd_criu_object_type { 1091 KFD_CRIU_OBJECT_TYPE_QUEUE, 1092 KFD_CRIU_OBJECT_TYPE_EVENT, 1093 KFD_CRIU_OBJECT_TYPE_SVM_RANGE, 1094 }; 1095 1096 struct kfd_criu_svm_range_priv_data { 1097 uint32_t object_type; 1098 uint64_t start_addr; 1099 uint64_t size; 1100 /* Variable length array of attributes */ 1101 struct kfd_ioctl_svm_attribute attrs[]; 1102 }; 1103 1104 struct kfd_criu_queue_priv_data { 1105 uint32_t object_type; 1106 uint64_t q_address; 1107 uint64_t q_size; 1108 uint64_t read_ptr_addr; 1109 uint64_t write_ptr_addr; 1110 uint64_t doorbell_off; 1111 uint64_t eop_ring_buffer_address; 1112 uint64_t ctx_save_restore_area_address; 1113 uint32_t gpu_id; 1114 uint32_t type; 1115 uint32_t format; 1116 uint32_t q_id; 1117 uint32_t priority; 1118 uint32_t q_percent; 1119 uint32_t doorbell_id; 1120 uint32_t gws; 1121 uint32_t sdma_id; 1122 uint32_t eop_ring_buffer_size; 1123 uint32_t ctx_save_restore_area_size; 1124 uint32_t ctl_stack_size; 1125 uint32_t mqd_size; 1126 }; 1127 1128 struct kfd_criu_event_priv_data { 1129 uint32_t object_type; 1130 uint64_t user_handle; 1131 uint32_t event_id; 1132 uint32_t auto_reset; 1133 uint32_t type; 1134 uint32_t signaled; 1135 1136 union { 1137 struct kfd_hsa_memory_exception_data memory_exception_data; 1138 struct kfd_hsa_hw_exception_data hw_exception_data; 1139 }; 1140 }; 1141 1142 int kfd_process_get_queue_info(struct kfd_process *p, 1143 uint32_t *num_queues, 1144 uint64_t *priv_data_sizes); 1145 1146 int kfd_criu_checkpoint_queues(struct kfd_process *p, 1147 uint8_t __user *user_priv_data, 1148 uint64_t *priv_data_offset); 1149 1150 int kfd_criu_restore_queue(struct kfd_process *p, 1151 uint8_t __user *user_priv_data, 1152 uint64_t *priv_data_offset, 1153 uint64_t max_priv_data_size); 1154 1155 int kfd_criu_checkpoint_events(struct kfd_process *p, 1156 uint8_t __user *user_priv_data, 1157 uint64_t *priv_data_offset); 1158 1159 int kfd_criu_restore_event(struct file *devkfd, 1160 struct kfd_process *p, 1161 uint8_t __user *user_priv_data, 1162 uint64_t *priv_data_offset, 1163 uint64_t max_priv_data_size); 1164 /* CRIU - End */ 1165 1166 /* Queue Context Management */ 1167 int init_queue(struct queue **q, const struct queue_properties *properties); 1168 void uninit_queue(struct queue *q); 1169 void print_queue_properties(struct queue_properties *q); 1170 void print_queue(struct queue *q); 1171 1172 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 1173 struct kfd_dev *dev); 1174 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 1175 struct kfd_dev *dev); 1176 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 1177 struct kfd_dev *dev); 1178 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 1179 struct kfd_dev *dev); 1180 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 1181 struct kfd_dev *dev); 1182 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 1183 struct kfd_dev *dev); 1184 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type, 1185 struct kfd_dev *dev); 1186 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 1187 void device_queue_manager_uninit(struct device_queue_manager *dqm); 1188 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 1189 enum kfd_queue_type type); 1190 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging); 1191 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid); 1192 1193 /* Process Queue Manager */ 1194 struct process_queue_node { 1195 struct queue *q; 1196 struct kernel_queue *kq; 1197 struct list_head process_queue_list; 1198 }; 1199 1200 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 1201 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 1202 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 1203 void pqm_uninit(struct process_queue_manager *pqm); 1204 int pqm_create_queue(struct process_queue_manager *pqm, 1205 struct kfd_dev *dev, 1206 struct file *f, 1207 struct queue_properties *properties, 1208 unsigned int *qid, 1209 struct amdgpu_bo *wptr_bo, 1210 const struct kfd_criu_queue_priv_data *q_data, 1211 const void *restore_mqd, 1212 const void *restore_ctl_stack, 1213 uint32_t *p_doorbell_offset_in_process); 1214 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 1215 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid, 1216 struct queue_properties *p); 1217 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid, 1218 struct mqd_update_info *minfo); 1219 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 1220 void *gws); 1221 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 1222 unsigned int qid); 1223 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm, 1224 unsigned int qid); 1225 int pqm_get_wave_state(struct process_queue_manager *pqm, 1226 unsigned int qid, 1227 void __user *ctl_stack, 1228 u32 *ctl_stack_used_size, 1229 u32 *save_area_used_size); 1230 1231 int amdkfd_fence_wait_timeout(uint64_t *fence_addr, 1232 uint64_t fence_value, 1233 unsigned int timeout_ms); 1234 1235 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm, 1236 unsigned int qid, 1237 u32 *mqd_size, 1238 u32 *ctl_stack_size); 1239 /* Packet Manager */ 1240 1241 #define KFD_FENCE_COMPLETED (100) 1242 #define KFD_FENCE_INIT (10) 1243 1244 struct packet_manager { 1245 struct device_queue_manager *dqm; 1246 struct kernel_queue *priv_queue; 1247 struct mutex lock; 1248 bool allocated; 1249 struct kfd_mem_obj *ib_buffer_obj; 1250 unsigned int ib_size_bytes; 1251 bool is_over_subscription; 1252 1253 const struct packet_manager_funcs *pmf; 1254 }; 1255 1256 struct packet_manager_funcs { 1257 /* Support ASIC-specific packet formats for PM4 packets */ 1258 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 1259 struct qcm_process_device *qpd); 1260 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 1261 uint64_t ib, size_t ib_size_in_dwords, bool chain); 1262 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 1263 struct scheduling_resources *res); 1264 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 1265 struct queue *q, bool is_static); 1266 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 1267 enum kfd_unmap_queues_filter mode, 1268 uint32_t filter_param, bool reset); 1269 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 1270 uint64_t fence_address, uint64_t fence_value); 1271 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 1272 1273 /* Packet sizes */ 1274 int map_process_size; 1275 int runlist_size; 1276 int set_resources_size; 1277 int map_queues_size; 1278 int unmap_queues_size; 1279 int query_status_size; 1280 int release_mem_size; 1281 }; 1282 1283 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 1284 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 1285 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs; 1286 1287 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 1288 void pm_uninit(struct packet_manager *pm, bool hanging); 1289 int pm_send_set_resources(struct packet_manager *pm, 1290 struct scheduling_resources *res); 1291 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 1292 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 1293 uint64_t fence_value); 1294 1295 int pm_send_unmap_queue(struct packet_manager *pm, 1296 enum kfd_unmap_queues_filter mode, 1297 uint32_t filter_param, bool reset); 1298 1299 void pm_release_ib(struct packet_manager *pm); 1300 1301 /* Following PM funcs can be shared among VI and AI */ 1302 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 1303 1304 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1305 1306 /* Events */ 1307 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1308 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1309 extern const struct kfd_event_interrupt_class event_interrupt_class_v11; 1310 1311 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1312 1313 int kfd_event_init_process(struct kfd_process *p); 1314 void kfd_event_free_process(struct kfd_process *p); 1315 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1316 int kfd_wait_on_events(struct kfd_process *p, 1317 uint32_t num_events, void __user *data, 1318 bool all, uint32_t *user_timeout_ms, 1319 uint32_t *wait_result); 1320 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 1321 uint32_t valid_id_bits); 1322 void kfd_signal_iommu_event(struct kfd_dev *dev, 1323 u32 pasid, unsigned long address, 1324 bool is_write_requested, bool is_execute_requested); 1325 void kfd_signal_hw_exception_event(u32 pasid); 1326 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1327 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1328 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset); 1329 1330 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1331 uint32_t event_type, bool auto_reset, uint32_t node_id, 1332 uint32_t *event_id, uint32_t *event_trigger_data, 1333 uint64_t *event_page_offset, uint32_t *event_slot_index); 1334 1335 int kfd_get_num_events(struct kfd_process *p); 1336 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1337 1338 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid, 1339 struct kfd_vm_fault_info *info); 1340 1341 void kfd_signal_reset_event(struct kfd_dev *dev); 1342 1343 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid); 1344 1345 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type); 1346 1347 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev) 1348 { 1349 return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) || 1350 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && 1351 dev->adev->sdma.instance[0].fw_version >= 18) || 1352 KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0); 1353 } 1354 1355 bool kfd_is_locked(void); 1356 1357 /* Compute profile */ 1358 void kfd_inc_compute_active(struct kfd_dev *dev); 1359 void kfd_dec_compute_active(struct kfd_dev *dev); 1360 1361 /* Cgroup Support */ 1362 /* Check with device cgroup if @kfd device is accessible */ 1363 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd) 1364 { 1365 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) 1366 struct drm_device *ddev = adev_to_drm(kfd->adev); 1367 1368 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, 1369 ddev->render->index, 1370 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1371 #else 1372 return 0; 1373 #endif 1374 } 1375 1376 /* Debugfs */ 1377 #if defined(CONFIG_DEBUG_FS) 1378 1379 void kfd_debugfs_init(void); 1380 void kfd_debugfs_fini(void); 1381 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1382 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1383 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1384 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1385 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1386 int pm_debugfs_runlist(struct seq_file *m, void *data); 1387 1388 int kfd_debugfs_hang_hws(struct kfd_dev *dev); 1389 int pm_debugfs_hang_hws(struct packet_manager *pm); 1390 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm); 1391 1392 #else 1393 1394 static inline void kfd_debugfs_init(void) {} 1395 static inline void kfd_debugfs_fini(void) {} 1396 1397 #endif 1398 1399 #endif 1400