xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <kgd_kfd_interface.h>
39 
40 #include "amd_shared.h"
41 
42 #define KFD_MAX_RING_ENTRY_SIZE	8
43 
44 #define KFD_SYSFS_FILE_MODE 0444
45 
46 /* GPU ID hash width in bits */
47 #define KFD_GPU_ID_HASH_WIDTH 16
48 
49 /* Use upper bits of mmap offset to store KFD driver specific information.
50  * BITS[63:62] - Encode MMAP type
51  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
52  * BITS[45:0]  - MMAP offset value
53  *
54  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
55  *  defines are w.r.t to PAGE_SIZE
56  */
57 #define KFD_MMAP_TYPE_SHIFT	(62 - PAGE_SHIFT)
58 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
59 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
60 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
61 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
62 
63 #define KFD_MMAP_GPU_ID_SHIFT (46 - PAGE_SHIFT)
64 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
65 				<< KFD_MMAP_GPU_ID_SHIFT)
66 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
67 				& KFD_MMAP_GPU_ID_MASK)
68 #define KFD_MMAP_GPU_ID_GET(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
69 				>> KFD_MMAP_GPU_ID_SHIFT)
70 
71 #define KFD_MMAP_OFFSET_VALUE_MASK	(0x3FFFFFFFFFFFULL >> PAGE_SHIFT)
72 #define KFD_MMAP_OFFSET_VALUE_GET(offset) (offset & KFD_MMAP_OFFSET_VALUE_MASK)
73 
74 /*
75  * When working with cp scheduler we should assign the HIQ manually or via
76  * the radeon driver to a fixed hqd slot, here are the fixed HIQ hqd slot
77  * definitions for Kaveri. In Kaveri only the first ME queues participates
78  * in the cp scheduling taking that in mind we set the HIQ slot in the
79  * second ME.
80  */
81 #define KFD_CIK_HIQ_PIPE 4
82 #define KFD_CIK_HIQ_QUEUE 0
83 
84 /* Macro for allocating structures */
85 #define kfd_alloc_struct(ptr_to_struct)	\
86 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
87 
88 #define KFD_MAX_NUM_OF_PROCESSES 512
89 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
90 
91 /*
92  * Size of the per-process TBA+TMA buffer: 2 pages
93  *
94  * The first page is the TBA used for the CWSR ISA code. The second
95  * page is used as TMA for daisy changing a user-mode trap handler.
96  */
97 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
98 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
99 
100 /*
101  * Kernel module parameter to specify maximum number of supported queues per
102  * device
103  */
104 extern int max_num_of_queues_per_device;
105 
106 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE_DEFAULT 4096
107 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
108 	(KFD_MAX_NUM_OF_PROCESSES *			\
109 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
110 
111 #define KFD_KERNEL_QUEUE_SIZE 2048
112 
113 /* Kernel module parameter to specify the scheduling policy */
114 extern int sched_policy;
115 
116 /*
117  * Kernel module parameter to specify the maximum process
118  * number per HW scheduler
119  */
120 extern int hws_max_conc_proc;
121 
122 extern int cwsr_enable;
123 
124 /*
125  * Kernel module parameter to specify whether to send sigterm to HSA process on
126  * unhandled exception
127  */
128 extern int send_sigterm;
129 
130 /*
131  * This kernel module is used to simulate large bar machine on non-large bar
132  * enabled machines.
133  */
134 extern int debug_largebar;
135 
136 /*
137  * Ignore CRAT table during KFD initialization, can be used to work around
138  * broken CRAT tables on some AMD systems
139  */
140 extern int ignore_crat;
141 
142 /*
143  * Set sh_mem_config.retry_disable on Vega10
144  */
145 extern int vega10_noretry;
146 
147 /**
148  * enum kfd_sched_policy
149  *
150  * @KFD_SCHED_POLICY_HWS: H/W scheduling policy known as command processor (cp)
151  * scheduling. In this scheduling mode we're using the firmware code to
152  * schedule the user mode queues and kernel queues such as HIQ and DIQ.
153  * the HIQ queue is used as a special queue that dispatches the configuration
154  * to the cp and the user mode queues list that are currently running.
155  * the DIQ queue is a debugging queue that dispatches debugging commands to the
156  * firmware.
157  * in this scheduling mode user mode queues over subscription feature is
158  * enabled.
159  *
160  * @KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: The same as above but the over
161  * subscription feature disabled.
162  *
163  * @KFD_SCHED_POLICY_NO_HWS: no H/W scheduling policy is a mode which directly
164  * set the command processor registers and sets the queues "manually". This
165  * mode is used *ONLY* for debugging proposes.
166  *
167  */
168 enum kfd_sched_policy {
169 	KFD_SCHED_POLICY_HWS = 0,
170 	KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION,
171 	KFD_SCHED_POLICY_NO_HWS
172 };
173 
174 enum cache_policy {
175 	cache_policy_coherent,
176 	cache_policy_noncoherent
177 };
178 
179 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
180 
181 struct kfd_event_interrupt_class {
182 	bool (*interrupt_isr)(struct kfd_dev *dev,
183 				const uint32_t *ih_ring_entry);
184 	void (*interrupt_wq)(struct kfd_dev *dev,
185 				const uint32_t *ih_ring_entry);
186 };
187 
188 struct kfd_device_info {
189 	enum amd_asic_type asic_family;
190 	const struct kfd_event_interrupt_class *event_interrupt_class;
191 	unsigned int max_pasid_bits;
192 	unsigned int max_no_of_hqd;
193 	unsigned int doorbell_size;
194 	size_t ih_ring_entry_size;
195 	uint8_t num_of_watch_points;
196 	uint16_t mqd_size_aligned;
197 	bool supports_cwsr;
198 	bool needs_iommu_device;
199 	bool needs_pci_atomics;
200 };
201 
202 struct kfd_mem_obj {
203 	uint32_t range_start;
204 	uint32_t range_end;
205 	uint64_t gpu_addr;
206 	uint32_t *cpu_ptr;
207 	void *gtt_mem;
208 };
209 
210 struct kfd_vmid_info {
211 	uint32_t first_vmid_kfd;
212 	uint32_t last_vmid_kfd;
213 	uint32_t vmid_num_kfd;
214 };
215 
216 struct kfd_dev {
217 	struct kgd_dev *kgd;
218 
219 	const struct kfd_device_info *device_info;
220 	struct pci_dev *pdev;
221 
222 	unsigned int id;		/* topology stub index */
223 
224 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
225 					 * KFD. It is aligned for mapping
226 					 * into user mode
227 					 */
228 	size_t doorbell_id_offset;	/* Doorbell offset (from KFD doorbell
229 					 * to HW doorbell, GFX reserved some
230 					 * at the start)
231 					 */
232 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
233 					   * page used by kernel queue
234 					   */
235 
236 	struct kgd2kfd_shared_resources shared_resources;
237 	struct kfd_vmid_info vm_info;
238 
239 	const struct kfd2kgd_calls *kfd2kgd;
240 	struct mutex doorbell_mutex;
241 	DECLARE_BITMAP(doorbell_available_index,
242 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
243 
244 	void *gtt_mem;
245 	uint64_t gtt_start_gpu_addr;
246 	void *gtt_start_cpu_ptr;
247 	void *gtt_sa_bitmap;
248 	struct mutex gtt_sa_lock;
249 	unsigned int gtt_sa_chunk_size;
250 	unsigned int gtt_sa_num_of_chunks;
251 
252 	/* Interrupts */
253 	struct kfifo ih_fifo;
254 	struct workqueue_struct *ih_wq;
255 	struct work_struct interrupt_work;
256 	spinlock_t interrupt_lock;
257 
258 	/* QCM Device instance */
259 	struct device_queue_manager *dqm;
260 
261 	bool init_complete;
262 	/*
263 	 * Interrupts of interest to KFD are copied
264 	 * from the HW ring into a SW ring.
265 	 */
266 	bool interrupts_active;
267 
268 	/* Debug manager */
269 	struct kfd_dbgmgr           *dbgmgr;
270 
271 	/* Maximum process number mapped to HW scheduler */
272 	unsigned int max_proc_per_quantum;
273 
274 	/* CWSR */
275 	bool cwsr_enabled;
276 	const void *cwsr_isa;
277 	unsigned int cwsr_isa_size;
278 };
279 
280 /* KGD2KFD callbacks */
281 void kgd2kfd_exit(void);
282 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
283 			struct pci_dev *pdev, const struct kfd2kgd_calls *f2g);
284 bool kgd2kfd_device_init(struct kfd_dev *kfd,
285 			const struct kgd2kfd_shared_resources *gpu_resources);
286 void kgd2kfd_device_exit(struct kfd_dev *kfd);
287 
288 enum kfd_mempool {
289 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
290 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
291 	KFD_MEMPOOL_FRAMEBUFFER = 3,
292 };
293 
294 /* Character device interface */
295 int kfd_chardev_init(void);
296 void kfd_chardev_exit(void);
297 struct device *kfd_chardev(void);
298 
299 /**
300  * enum kfd_unmap_queues_filter
301  *
302  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
303  *
304  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
305  *						running queues list.
306  *
307  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
308  *						specific process.
309  *
310  */
311 enum kfd_unmap_queues_filter {
312 	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
313 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
314 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
315 	KFD_UNMAP_QUEUES_FILTER_BY_PASID
316 };
317 
318 /**
319  * enum kfd_queue_type
320  *
321  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
322  *
323  * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
324  *
325  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
326  *
327  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
328  */
329 enum kfd_queue_type  {
330 	KFD_QUEUE_TYPE_COMPUTE,
331 	KFD_QUEUE_TYPE_SDMA,
332 	KFD_QUEUE_TYPE_HIQ,
333 	KFD_QUEUE_TYPE_DIQ
334 };
335 
336 enum kfd_queue_format {
337 	KFD_QUEUE_FORMAT_PM4,
338 	KFD_QUEUE_FORMAT_AQL
339 };
340 
341 /**
342  * struct queue_properties
343  *
344  * @type: The queue type.
345  *
346  * @queue_id: Queue identifier.
347  *
348  * @queue_address: Queue ring buffer address.
349  *
350  * @queue_size: Queue ring buffer size.
351  *
352  * @priority: Defines the queue priority relative to other queues in the
353  * process.
354  * This is just an indication and HW scheduling may override the priority as
355  * necessary while keeping the relative prioritization.
356  * the priority granularity is from 0 to f which f is the highest priority.
357  * currently all queues are initialized with the highest priority.
358  *
359  * @queue_percent: This field is partially implemented and currently a zero in
360  * this field defines that the queue is non active.
361  *
362  * @read_ptr: User space address which points to the number of dwords the
363  * cp read from the ring buffer. This field updates automatically by the H/W.
364  *
365  * @write_ptr: Defines the number of dwords written to the ring buffer.
366  *
367  * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
368  * the queue ring buffer. This field should be similar to write_ptr and the
369  * user should update this field after he updated the write_ptr.
370  *
371  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
372  *
373  * @is_interop: Defines if this is a interop queue. Interop queue means that
374  * the queue can access both graphics and compute resources.
375  *
376  * @is_evicted: Defines if the queue is evicted. Only active queues
377  * are evicted, rendering them inactive.
378  *
379  * @is_active: Defines if the queue is active or not. @is_active and
380  * @is_evicted are protected by the DQM lock.
381  *
382  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
383  * of the queue.
384  *
385  * This structure represents the queue properties for each queue no matter if
386  * it's user mode or kernel mode queue.
387  *
388  */
389 struct queue_properties {
390 	enum kfd_queue_type type;
391 	enum kfd_queue_format format;
392 	unsigned int queue_id;
393 	uint64_t queue_address;
394 	uint64_t  queue_size;
395 	uint32_t priority;
396 	uint32_t queue_percent;
397 	uint32_t *read_ptr;
398 	uint32_t *write_ptr;
399 	void __iomem *doorbell_ptr;
400 	uint32_t doorbell_off;
401 	bool is_interop;
402 	bool is_evicted;
403 	bool is_active;
404 	/* Not relevant for user mode queues in cp scheduling */
405 	unsigned int vmid;
406 	/* Relevant only for sdma queues*/
407 	uint32_t sdma_engine_id;
408 	uint32_t sdma_queue_id;
409 	uint32_t sdma_vm_addr;
410 	/* Relevant only for VI */
411 	uint64_t eop_ring_buffer_address;
412 	uint32_t eop_ring_buffer_size;
413 	uint64_t ctx_save_restore_area_address;
414 	uint32_t ctx_save_restore_area_size;
415 	uint32_t ctl_stack_size;
416 	uint64_t tba_addr;
417 	uint64_t tma_addr;
418 };
419 
420 /**
421  * struct queue
422  *
423  * @list: Queue linked list.
424  *
425  * @mqd: The queue MQD.
426  *
427  * @mqd_mem_obj: The MQD local gpu memory object.
428  *
429  * @gart_mqd_addr: The MQD gart mc address.
430  *
431  * @properties: The queue properties.
432  *
433  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
434  *	 that the queue should be execute on.
435  *
436  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
437  *	  id.
438  *
439  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
440  *
441  * @process: The kfd process that created this queue.
442  *
443  * @device: The kfd device that created this queue.
444  *
445  * This structure represents user mode compute queues.
446  * It contains all the necessary data to handle such queues.
447  *
448  */
449 
450 struct queue {
451 	struct list_head list;
452 	void *mqd;
453 	struct kfd_mem_obj *mqd_mem_obj;
454 	uint64_t gart_mqd_addr;
455 	struct queue_properties properties;
456 
457 	uint32_t mec;
458 	uint32_t pipe;
459 	uint32_t queue;
460 
461 	unsigned int sdma_id;
462 	unsigned int doorbell_id;
463 
464 	struct kfd_process	*process;
465 	struct kfd_dev		*device;
466 };
467 
468 /*
469  * Please read the kfd_mqd_manager.h description.
470  */
471 enum KFD_MQD_TYPE {
472 	KFD_MQD_TYPE_COMPUTE = 0,	/* for no cp scheduling */
473 	KFD_MQD_TYPE_HIQ,		/* for hiq */
474 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
475 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
476 	KFD_MQD_TYPE_MAX
477 };
478 
479 struct scheduling_resources {
480 	unsigned int vmid_mask;
481 	enum kfd_queue_type type;
482 	uint64_t queue_mask;
483 	uint64_t gws_mask;
484 	uint32_t oac_mask;
485 	uint32_t gds_heap_base;
486 	uint32_t gds_heap_size;
487 };
488 
489 struct process_queue_manager {
490 	/* data */
491 	struct kfd_process	*process;
492 	struct list_head	queues;
493 	unsigned long		*queue_slot_bitmap;
494 };
495 
496 struct qcm_process_device {
497 	/* The Device Queue Manager that owns this data */
498 	struct device_queue_manager *dqm;
499 	struct process_queue_manager *pqm;
500 	/* Queues list */
501 	struct list_head queues_list;
502 	struct list_head priv_queue_list;
503 
504 	unsigned int queue_count;
505 	unsigned int vmid;
506 	bool is_debug;
507 	unsigned int evicted; /* eviction counter, 0=active */
508 
509 	/* This flag tells if we should reset all wavefronts on
510 	 * process termination
511 	 */
512 	bool reset_wavefronts;
513 
514 	/*
515 	 * All the memory management data should be here too
516 	 */
517 	uint64_t gds_context_area;
518 	uint32_t sh_mem_config;
519 	uint32_t sh_mem_bases;
520 	uint32_t sh_mem_ape1_base;
521 	uint32_t sh_mem_ape1_limit;
522 	uint32_t page_table_base;
523 	uint32_t gds_size;
524 	uint32_t num_gws;
525 	uint32_t num_oac;
526 	uint32_t sh_hidden_private_base;
527 
528 	/* CWSR memory */
529 	void *cwsr_kaddr;
530 	uint64_t cwsr_base;
531 	uint64_t tba_addr;
532 	uint64_t tma_addr;
533 
534 	/* IB memory */
535 	uint64_t ib_base;
536 	void *ib_kaddr;
537 
538 	/* doorbell resources per process per device */
539 	unsigned long *doorbell_bitmap;
540 };
541 
542 /* KFD Memory Eviction */
543 
544 /* Approx. wait time before attempting to restore evicted BOs */
545 #define PROCESS_RESTORE_TIME_MS 100
546 /* Approx. back off time if restore fails due to lack of memory */
547 #define PROCESS_BACK_OFF_TIME_MS 100
548 /* Approx. time before evicting the process again */
549 #define PROCESS_ACTIVE_TIME_MS 10
550 
551 int kgd2kfd_quiesce_mm(struct mm_struct *mm);
552 int kgd2kfd_resume_mm(struct mm_struct *mm);
553 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
554 					       struct dma_fence *fence);
555 
556 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
557  * idr_handle in the least significant 4 bytes
558  */
559 #define MAKE_HANDLE(gpu_id, idr_handle) \
560 	(((uint64_t)(gpu_id) << 32) + idr_handle)
561 #define GET_GPU_ID(handle) (handle >> 32)
562 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
563 
564 enum kfd_pdd_bound {
565 	PDD_UNBOUND = 0,
566 	PDD_BOUND,
567 	PDD_BOUND_SUSPENDED,
568 };
569 
570 /* Data that is per-process-per device. */
571 struct kfd_process_device {
572 	/*
573 	 * List of all per-device data for a process.
574 	 * Starts from kfd_process.per_device_data.
575 	 */
576 	struct list_head per_device_list;
577 
578 	/* The device that owns this data. */
579 	struct kfd_dev *dev;
580 
581 	/* The process that owns this kfd_process_device. */
582 	struct kfd_process *process;
583 
584 	/* per-process-per device QCM data structure */
585 	struct qcm_process_device qpd;
586 
587 	/*Apertures*/
588 	uint64_t lds_base;
589 	uint64_t lds_limit;
590 	uint64_t gpuvm_base;
591 	uint64_t gpuvm_limit;
592 	uint64_t scratch_base;
593 	uint64_t scratch_limit;
594 
595 	/* VM context for GPUVM allocations */
596 	struct file *drm_file;
597 	void *vm;
598 
599 	/* GPUVM allocations storage */
600 	struct idr alloc_idr;
601 
602 	/* Flag used to tell the pdd has dequeued from the dqm.
603 	 * This is used to prevent dev->dqm->ops.process_termination() from
604 	 * being called twice when it is already called in IOMMU callback
605 	 * function.
606 	 */
607 	bool already_dequeued;
608 
609 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
610 	enum kfd_pdd_bound bound;
611 };
612 
613 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
614 
615 /* Process data */
616 struct kfd_process {
617 	/*
618 	 * kfd_process are stored in an mm_struct*->kfd_process*
619 	 * hash table (kfd_processes in kfd_process.c)
620 	 */
621 	struct hlist_node kfd_processes;
622 
623 	/*
624 	 * Opaque pointer to mm_struct. We don't hold a reference to
625 	 * it so it should never be dereferenced from here. This is
626 	 * only used for looking up processes by their mm.
627 	 */
628 	void *mm;
629 
630 	struct kref ref;
631 	struct work_struct release_work;
632 
633 	struct mutex mutex;
634 
635 	/*
636 	 * In any process, the thread that started main() is the lead
637 	 * thread and outlives the rest.
638 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
639 	 * It can also be used for safely getting a reference to the
640 	 * mm_struct of the process.
641 	 */
642 	struct task_struct *lead_thread;
643 
644 	/* We want to receive a notification when the mm_struct is destroyed */
645 	struct mmu_notifier mmu_notifier;
646 
647 	/* Use for delayed freeing of kfd_process structure */
648 	struct rcu_head	rcu;
649 
650 	unsigned int pasid;
651 	unsigned int doorbell_index;
652 
653 	/*
654 	 * List of kfd_process_device structures,
655 	 * one for each device the process is using.
656 	 */
657 	struct list_head per_device_data;
658 
659 	struct process_queue_manager pqm;
660 
661 	/*Is the user space process 32 bit?*/
662 	bool is_32bit_user_mode;
663 
664 	/* Event-related data */
665 	struct mutex event_mutex;
666 	/* Event ID allocator and lookup */
667 	struct idr event_idr;
668 	/* Event page */
669 	struct kfd_signal_page *signal_page;
670 	size_t signal_mapped_size;
671 	size_t signal_event_count;
672 	bool signal_event_limit_reached;
673 
674 	/* Information used for memory eviction */
675 	void *kgd_process_info;
676 	/* Eviction fence that is attached to all the BOs of this process. The
677 	 * fence will be triggered during eviction and new one will be created
678 	 * during restore
679 	 */
680 	struct dma_fence *ef;
681 
682 	/* Work items for evicting and restoring BOs */
683 	struct delayed_work eviction_work;
684 	struct delayed_work restore_work;
685 	/* seqno of the last scheduled eviction */
686 	unsigned int last_eviction_seqno;
687 	/* Approx. the last timestamp (in jiffies) when the process was
688 	 * restored after an eviction
689 	 */
690 	unsigned long last_restore_timestamp;
691 };
692 
693 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
694 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
695 extern struct srcu_struct kfd_processes_srcu;
696 
697 /**
698  * Ioctl function type.
699  *
700  * \param filep pointer to file structure.
701  * \param p amdkfd process pointer.
702  * \param data pointer to arg that was copied from user.
703  */
704 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
705 				void *data);
706 
707 struct amdkfd_ioctl_desc {
708 	unsigned int cmd;
709 	int flags;
710 	amdkfd_ioctl_t *func;
711 	unsigned int cmd_drv;
712 	const char *name;
713 };
714 
715 int kfd_process_create_wq(void);
716 void kfd_process_destroy_wq(void);
717 struct kfd_process *kfd_create_process(struct file *filep);
718 struct kfd_process *kfd_get_process(const struct task_struct *);
719 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
720 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
721 void kfd_unref_process(struct kfd_process *p);
722 int kfd_process_evict_queues(struct kfd_process *p);
723 int kfd_process_restore_queues(struct kfd_process *p);
724 void kfd_suspend_all_processes(void);
725 int kfd_resume_all_processes(void);
726 
727 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
728 			       struct file *drm_file);
729 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
730 						struct kfd_process *p);
731 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
732 							struct kfd_process *p);
733 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
734 							struct kfd_process *p);
735 
736 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
737 			  struct vm_area_struct *vma);
738 
739 /* KFD process API for creating and translating handles */
740 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
741 					void *mem);
742 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
743 					int handle);
744 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
745 					int handle);
746 
747 /* Process device data iterator */
748 struct kfd_process_device *kfd_get_first_process_device_data(
749 							struct kfd_process *p);
750 struct kfd_process_device *kfd_get_next_process_device_data(
751 						struct kfd_process *p,
752 						struct kfd_process_device *pdd);
753 bool kfd_has_process_device_data(struct kfd_process *p);
754 
755 /* PASIDs */
756 int kfd_pasid_init(void);
757 void kfd_pasid_exit(void);
758 bool kfd_set_pasid_limit(unsigned int new_limit);
759 unsigned int kfd_get_pasid_limit(void);
760 unsigned int kfd_pasid_alloc(void);
761 void kfd_pasid_free(unsigned int pasid);
762 
763 /* Doorbells */
764 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
765 int kfd_doorbell_init(struct kfd_dev *kfd);
766 void kfd_doorbell_fini(struct kfd_dev *kfd);
767 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
768 		      struct vm_area_struct *vma);
769 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
770 					unsigned int *doorbell_off);
771 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
772 u32 read_kernel_doorbell(u32 __iomem *db);
773 void write_kernel_doorbell(void __iomem *db, u32 value);
774 void write_kernel_doorbell64(void __iomem *db, u64 value);
775 unsigned int kfd_doorbell_id_to_offset(struct kfd_dev *kfd,
776 					struct kfd_process *process,
777 					unsigned int doorbell_id);
778 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
779 					struct kfd_process *process);
780 int kfd_alloc_process_doorbells(struct kfd_process *process);
781 void kfd_free_process_doorbells(struct kfd_process *process);
782 
783 /* GTT Sub-Allocator */
784 
785 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
786 			struct kfd_mem_obj **mem_obj);
787 
788 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
789 
790 extern struct device *kfd_device;
791 
792 /* Topology */
793 int kfd_topology_init(void);
794 void kfd_topology_shutdown(void);
795 int kfd_topology_add_device(struct kfd_dev *gpu);
796 int kfd_topology_remove_device(struct kfd_dev *gpu);
797 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
798 						uint32_t proximity_domain);
799 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
800 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
801 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
802 int kfd_numa_node_to_apic_id(int numa_node_id);
803 
804 /* Interrupts */
805 int kfd_interrupt_init(struct kfd_dev *dev);
806 void kfd_interrupt_exit(struct kfd_dev *dev);
807 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry);
808 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
809 bool interrupt_is_wanted(struct kfd_dev *dev, const uint32_t *ih_ring_entry);
810 
811 /* Power Management */
812 void kgd2kfd_suspend(struct kfd_dev *kfd);
813 int kgd2kfd_resume(struct kfd_dev *kfd);
814 
815 /* amdkfd Apertures */
816 int kfd_init_apertures(struct kfd_process *process);
817 
818 /* Queue Context Management */
819 int init_queue(struct queue **q, const struct queue_properties *properties);
820 void uninit_queue(struct queue *q);
821 void print_queue_properties(struct queue_properties *q);
822 void print_queue(struct queue *q);
823 
824 struct mqd_manager *mqd_manager_init(enum KFD_MQD_TYPE type,
825 					struct kfd_dev *dev);
826 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
827 		struct kfd_dev *dev);
828 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
829 		struct kfd_dev *dev);
830 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
831 		struct kfd_dev *dev);
832 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
833 		struct kfd_dev *dev);
834 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
835 		struct kfd_dev *dev);
836 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
837 void device_queue_manager_uninit(struct device_queue_manager *dqm);
838 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
839 					enum kfd_queue_type type);
840 void kernel_queue_uninit(struct kernel_queue *kq);
841 
842 /* Process Queue Manager */
843 struct process_queue_node {
844 	struct queue *q;
845 	struct kernel_queue *kq;
846 	struct list_head process_queue_list;
847 };
848 
849 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
850 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
851 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
852 void pqm_uninit(struct process_queue_manager *pqm);
853 int pqm_create_queue(struct process_queue_manager *pqm,
854 			    struct kfd_dev *dev,
855 			    struct file *f,
856 			    struct queue_properties *properties,
857 			    unsigned int *qid);
858 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
859 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
860 			struct queue_properties *p);
861 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
862 						unsigned int qid);
863 
864 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
865 				unsigned int fence_value,
866 				unsigned int timeout_ms);
867 
868 /* Packet Manager */
869 
870 #define KFD_FENCE_COMPLETED (100)
871 #define KFD_FENCE_INIT   (10)
872 
873 struct packet_manager {
874 	struct device_queue_manager *dqm;
875 	struct kernel_queue *priv_queue;
876 	struct mutex lock;
877 	bool allocated;
878 	struct kfd_mem_obj *ib_buffer_obj;
879 	unsigned int ib_size_bytes;
880 
881 	const struct packet_manager_funcs *pmf;
882 };
883 
884 struct packet_manager_funcs {
885 	/* Support ASIC-specific packet formats for PM4 packets */
886 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
887 			struct qcm_process_device *qpd);
888 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
889 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
890 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
891 			struct scheduling_resources *res);
892 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
893 			struct queue *q, bool is_static);
894 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
895 			enum kfd_queue_type type,
896 			enum kfd_unmap_queues_filter mode,
897 			uint32_t filter_param, bool reset,
898 			unsigned int sdma_engine);
899 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
900 			uint64_t fence_address,	uint32_t fence_value);
901 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
902 
903 	/* Packet sizes */
904 	int map_process_size;
905 	int runlist_size;
906 	int set_resources_size;
907 	int map_queues_size;
908 	int unmap_queues_size;
909 	int query_status_size;
910 	int release_mem_size;
911 };
912 
913 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
914 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
915 
916 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
917 void pm_uninit(struct packet_manager *pm);
918 int pm_send_set_resources(struct packet_manager *pm,
919 				struct scheduling_resources *res);
920 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
921 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
922 				uint32_t fence_value);
923 
924 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
925 			enum kfd_unmap_queues_filter mode,
926 			uint32_t filter_param, bool reset,
927 			unsigned int sdma_engine);
928 
929 void pm_release_ib(struct packet_manager *pm);
930 
931 /* Following PM funcs can be shared among VI and AI */
932 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
933 int pm_set_resources_vi(struct packet_manager *pm, uint32_t *buffer,
934 				struct scheduling_resources *res);
935 
936 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
937 
938 /* Events */
939 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
940 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
941 
942 extern const struct kfd_device_global_init_class device_global_init_class_cik;
943 
944 void kfd_event_init_process(struct kfd_process *p);
945 void kfd_event_free_process(struct kfd_process *p);
946 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
947 int kfd_wait_on_events(struct kfd_process *p,
948 		       uint32_t num_events, void __user *data,
949 		       bool all, uint32_t user_timeout_ms,
950 		       uint32_t *wait_result);
951 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
952 				uint32_t valid_id_bits);
953 void kfd_signal_iommu_event(struct kfd_dev *dev,
954 		unsigned int pasid, unsigned long address,
955 		bool is_write_requested, bool is_execute_requested);
956 void kfd_signal_hw_exception_event(unsigned int pasid);
957 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
958 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
959 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
960 		       uint64_t size);
961 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
962 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
963 		     uint32_t *event_id, uint32_t *event_trigger_data,
964 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
965 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
966 
967 void kfd_flush_tlb(struct kfd_process_device *pdd);
968 
969 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
970 
971 /* Debugfs */
972 #if defined(CONFIG_DEBUG_FS)
973 
974 void kfd_debugfs_init(void);
975 void kfd_debugfs_fini(void);
976 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
977 int pqm_debugfs_mqds(struct seq_file *m, void *data);
978 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
979 int dqm_debugfs_hqds(struct seq_file *m, void *data);
980 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
981 int pm_debugfs_runlist(struct seq_file *m, void *data);
982 
983 #else
984 
985 static inline void kfd_debugfs_init(void) {}
986 static inline void kfd_debugfs_fini(void) {}
987 
988 #endif
989 
990 #endif
991