1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #ifndef KFD_PRIV_H_INCLUDED 24 #define KFD_PRIV_H_INCLUDED 25 26 #include <linux/hashtable.h> 27 #include <linux/mmu_notifier.h> 28 #include <linux/mutex.h> 29 #include <linux/types.h> 30 #include <linux/atomic.h> 31 #include <linux/workqueue.h> 32 #include <linux/spinlock.h> 33 #include <linux/kfd_ioctl.h> 34 #include <linux/idr.h> 35 #include <linux/kfifo.h> 36 #include <linux/seq_file.h> 37 #include <linux/kref.h> 38 #include <linux/sysfs.h> 39 #include <linux/device_cgroup.h> 40 #include <drm/drm_file.h> 41 #include <drm/drm_drv.h> 42 #include <drm/drm_device.h> 43 #include <drm/drm_ioctl.h> 44 #include <kgd_kfd_interface.h> 45 #include <linux/swap.h> 46 47 #include "amd_shared.h" 48 49 #define KFD_MAX_RING_ENTRY_SIZE 8 50 51 #define KFD_SYSFS_FILE_MODE 0444 52 53 /* GPU ID hash width in bits */ 54 #define KFD_GPU_ID_HASH_WIDTH 16 55 56 /* Use upper bits of mmap offset to store KFD driver specific information. 57 * BITS[63:62] - Encode MMAP type 58 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 59 * BITS[45:0] - MMAP offset value 60 * 61 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 62 * defines are w.r.t to PAGE_SIZE 63 */ 64 #define KFD_MMAP_TYPE_SHIFT 62 65 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 66 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 67 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 68 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 69 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 70 71 #define KFD_MMAP_GPU_ID_SHIFT 46 72 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 73 << KFD_MMAP_GPU_ID_SHIFT) 74 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 75 & KFD_MMAP_GPU_ID_MASK) 76 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 77 >> KFD_MMAP_GPU_ID_SHIFT) 78 79 /* 80 * When working with cp scheduler we should assign the HIQ manually or via 81 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 82 * definitions for Kaveri. In Kaveri only the first ME queues participates 83 * in the cp scheduling taking that in mind we set the HIQ slot in the 84 * second ME. 85 */ 86 #define KFD_CIK_HIQ_PIPE 4 87 #define KFD_CIK_HIQ_QUEUE 0 88 89 /* Macro for allocating structures */ 90 #define kfd_alloc_struct(ptr_to_struct) \ 91 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 92 93 #define KFD_MAX_NUM_OF_PROCESSES 512 94 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 95 96 /* 97 * Size of the per-process TBA+TMA buffer: 2 pages 98 * 99 * The first page is the TBA used for the CWSR ISA code. The second 100 * page is used as TMA for user-mode trap handler setup in daisy-chain mode. 101 */ 102 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 103 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 104 105 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 106 (KFD_MAX_NUM_OF_PROCESSES * \ 107 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 108 109 #define KFD_KERNEL_QUEUE_SIZE 2048 110 111 #define KFD_UNMAP_LATENCY_MS (4000) 112 113 /* 114 * 512 = 0x200 115 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 116 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 117 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 118 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 119 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 120 */ 121 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 122 123 124 /* 125 * Kernel module parameter to specify maximum number of supported queues per 126 * device 127 */ 128 extern int max_num_of_queues_per_device; 129 130 131 /* Kernel module parameter to specify the scheduling policy */ 132 extern int sched_policy; 133 134 /* 135 * Kernel module parameter to specify the maximum process 136 * number per HW scheduler 137 */ 138 extern int hws_max_conc_proc; 139 140 extern int cwsr_enable; 141 142 /* 143 * Kernel module parameter to specify whether to send sigterm to HSA process on 144 * unhandled exception 145 */ 146 extern int send_sigterm; 147 148 /* 149 * This kernel module is used to simulate large bar machine on non-large bar 150 * enabled machines. 151 */ 152 extern int debug_largebar; 153 154 /* 155 * Ignore CRAT table during KFD initialization, can be used to work around 156 * broken CRAT tables on some AMD systems 157 */ 158 extern int ignore_crat; 159 160 /* Set sh_mem_config.retry_disable on GFX v9 */ 161 extern int amdgpu_noretry; 162 163 /* Halt if HWS hang is detected */ 164 extern int halt_if_hws_hang; 165 166 /* Whether MEC FW support GWS barriers */ 167 extern bool hws_gws_support; 168 169 /* Queue preemption timeout in ms */ 170 extern int queue_preemption_timeout_ms; 171 172 /* 173 * Don't evict process queues on vm fault 174 */ 175 extern int amdgpu_no_queue_eviction_on_vm_fault; 176 177 /* Enable eviction debug messages */ 178 extern bool debug_evictions; 179 180 enum cache_policy { 181 cache_policy_coherent, 182 cache_policy_noncoherent 183 }; 184 185 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10) 186 187 struct kfd_event_interrupt_class { 188 bool (*interrupt_isr)(struct kfd_dev *dev, 189 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 190 bool *patched_flag); 191 void (*interrupt_wq)(struct kfd_dev *dev, 192 const uint32_t *ih_ring_entry); 193 }; 194 195 struct kfd_device_info { 196 enum amd_asic_type asic_family; 197 const char *asic_name; 198 const struct kfd_event_interrupt_class *event_interrupt_class; 199 unsigned int max_pasid_bits; 200 unsigned int max_no_of_hqd; 201 unsigned int doorbell_size; 202 size_t ih_ring_entry_size; 203 uint8_t num_of_watch_points; 204 uint16_t mqd_size_aligned; 205 bool supports_cwsr; 206 bool needs_iommu_device; 207 bool needs_pci_atomics; 208 unsigned int num_sdma_engines; 209 unsigned int num_xgmi_sdma_engines; 210 unsigned int num_sdma_queues_per_engine; 211 }; 212 213 struct kfd_mem_obj { 214 uint32_t range_start; 215 uint32_t range_end; 216 uint64_t gpu_addr; 217 uint32_t *cpu_ptr; 218 void *gtt_mem; 219 }; 220 221 struct kfd_vmid_info { 222 uint32_t first_vmid_kfd; 223 uint32_t last_vmid_kfd; 224 uint32_t vmid_num_kfd; 225 }; 226 227 struct kfd_dev { 228 struct kgd_dev *kgd; 229 230 const struct kfd_device_info *device_info; 231 struct pci_dev *pdev; 232 struct drm_device *ddev; 233 234 unsigned int id; /* topology stub index */ 235 236 phys_addr_t doorbell_base; /* Start of actual doorbells used by 237 * KFD. It is aligned for mapping 238 * into user mode 239 */ 240 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI 241 * doorbell BAR to the first KFD 242 * doorbell in dwords. GFX reserves 243 * the segment before this offset. 244 */ 245 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 246 * page used by kernel queue 247 */ 248 249 struct kgd2kfd_shared_resources shared_resources; 250 struct kfd_vmid_info vm_info; 251 252 const struct kfd2kgd_calls *kfd2kgd; 253 struct mutex doorbell_mutex; 254 DECLARE_BITMAP(doorbell_available_index, 255 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 256 257 void *gtt_mem; 258 uint64_t gtt_start_gpu_addr; 259 void *gtt_start_cpu_ptr; 260 void *gtt_sa_bitmap; 261 struct mutex gtt_sa_lock; 262 unsigned int gtt_sa_chunk_size; 263 unsigned int gtt_sa_num_of_chunks; 264 265 /* Interrupts */ 266 struct kfifo ih_fifo; 267 struct workqueue_struct *ih_wq; 268 struct work_struct interrupt_work; 269 spinlock_t interrupt_lock; 270 271 /* QCM Device instance */ 272 struct device_queue_manager *dqm; 273 274 bool init_complete; 275 /* 276 * Interrupts of interest to KFD are copied 277 * from the HW ring into a SW ring. 278 */ 279 bool interrupts_active; 280 281 /* Debug manager */ 282 struct kfd_dbgmgr *dbgmgr; 283 284 /* Firmware versions */ 285 uint16_t mec_fw_version; 286 uint16_t mec2_fw_version; 287 uint16_t sdma_fw_version; 288 289 /* Maximum process number mapped to HW scheduler */ 290 unsigned int max_proc_per_quantum; 291 292 /* CWSR */ 293 bool cwsr_enabled; 294 const void *cwsr_isa; 295 unsigned int cwsr_isa_size; 296 297 /* xGMI */ 298 uint64_t hive_id; 299 300 bool pci_atomic_requested; 301 302 /* Use IOMMU v2 flag */ 303 bool use_iommu_v2; 304 305 /* SRAM ECC flag */ 306 atomic_t sram_ecc_flag; 307 308 /* Compute Profile ref. count */ 309 atomic_t compute_profile; 310 311 /* Global GWS resource shared between processes */ 312 void *gws; 313 314 /* Clients watching SMI events */ 315 struct list_head smi_clients; 316 spinlock_t smi_lock; 317 318 uint32_t reset_seq_num; 319 320 struct ida doorbell_ida; 321 unsigned int max_doorbell_slices; 322 323 int noretry; 324 }; 325 326 enum kfd_mempool { 327 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 328 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 329 KFD_MEMPOOL_FRAMEBUFFER = 3, 330 }; 331 332 /* Character device interface */ 333 int kfd_chardev_init(void); 334 void kfd_chardev_exit(void); 335 struct device *kfd_chardev(void); 336 337 /** 338 * enum kfd_unmap_queues_filter - Enum for queue filters. 339 * 340 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue. 341 * 342 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 343 * running queues list. 344 * 345 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 346 * specific process. 347 * 348 */ 349 enum kfd_unmap_queues_filter { 350 KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE, 351 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 352 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 353 KFD_UNMAP_QUEUES_FILTER_BY_PASID 354 }; 355 356 /** 357 * enum kfd_queue_type - Enum for various queue types. 358 * 359 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 360 * 361 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type. 362 * 363 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 364 * 365 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 366 * 367 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface. 368 */ 369 enum kfd_queue_type { 370 KFD_QUEUE_TYPE_COMPUTE, 371 KFD_QUEUE_TYPE_SDMA, 372 KFD_QUEUE_TYPE_HIQ, 373 KFD_QUEUE_TYPE_DIQ, 374 KFD_QUEUE_TYPE_SDMA_XGMI 375 }; 376 377 enum kfd_queue_format { 378 KFD_QUEUE_FORMAT_PM4, 379 KFD_QUEUE_FORMAT_AQL 380 }; 381 382 enum KFD_QUEUE_PRIORITY { 383 KFD_QUEUE_PRIORITY_MINIMUM = 0, 384 KFD_QUEUE_PRIORITY_MAXIMUM = 15 385 }; 386 387 /** 388 * struct queue_properties 389 * 390 * @type: The queue type. 391 * 392 * @queue_id: Queue identifier. 393 * 394 * @queue_address: Queue ring buffer address. 395 * 396 * @queue_size: Queue ring buffer size. 397 * 398 * @priority: Defines the queue priority relative to other queues in the 399 * process. 400 * This is just an indication and HW scheduling may override the priority as 401 * necessary while keeping the relative prioritization. 402 * the priority granularity is from 0 to f which f is the highest priority. 403 * currently all queues are initialized with the highest priority. 404 * 405 * @queue_percent: This field is partially implemented and currently a zero in 406 * this field defines that the queue is non active. 407 * 408 * @read_ptr: User space address which points to the number of dwords the 409 * cp read from the ring buffer. This field updates automatically by the H/W. 410 * 411 * @write_ptr: Defines the number of dwords written to the ring buffer. 412 * 413 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring 414 * buffer. This field should be similar to write_ptr and the user should 415 * update this field after updating the write_ptr. 416 * 417 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 418 * 419 * @is_interop: Defines if this is a interop queue. Interop queue means that 420 * the queue can access both graphics and compute resources. 421 * 422 * @is_evicted: Defines if the queue is evicted. Only active queues 423 * are evicted, rendering them inactive. 424 * 425 * @is_active: Defines if the queue is active or not. @is_active and 426 * @is_evicted are protected by the DQM lock. 427 * 428 * @is_gws: Defines if the queue has been updated to be GWS-capable or not. 429 * @is_gws should be protected by the DQM lock, since changing it can yield the 430 * possibility of updating DQM state on number of GWS queues. 431 * 432 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 433 * of the queue. 434 * 435 * This structure represents the queue properties for each queue no matter if 436 * it's user mode or kernel mode queue. 437 * 438 */ 439 struct queue_properties { 440 enum kfd_queue_type type; 441 enum kfd_queue_format format; 442 unsigned int queue_id; 443 uint64_t queue_address; 444 uint64_t queue_size; 445 uint32_t priority; 446 uint32_t queue_percent; 447 uint32_t *read_ptr; 448 uint32_t *write_ptr; 449 void __iomem *doorbell_ptr; 450 uint32_t doorbell_off; 451 bool is_interop; 452 bool is_evicted; 453 bool is_active; 454 bool is_gws; 455 /* Not relevant for user mode queues in cp scheduling */ 456 unsigned int vmid; 457 /* Relevant only for sdma queues*/ 458 uint32_t sdma_engine_id; 459 uint32_t sdma_queue_id; 460 uint32_t sdma_vm_addr; 461 /* Relevant only for VI */ 462 uint64_t eop_ring_buffer_address; 463 uint32_t eop_ring_buffer_size; 464 uint64_t ctx_save_restore_area_address; 465 uint32_t ctx_save_restore_area_size; 466 uint32_t ctl_stack_size; 467 uint64_t tba_addr; 468 uint64_t tma_addr; 469 /* Relevant for CU */ 470 uint32_t cu_mask_count; /* Must be a multiple of 32 */ 471 uint32_t *cu_mask; 472 }; 473 474 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 475 (q).queue_address != 0 && \ 476 (q).queue_percent > 0 && \ 477 !(q).is_evicted) 478 479 /** 480 * struct queue 481 * 482 * @list: Queue linked list. 483 * 484 * @mqd: The queue MQD (memory queue descriptor). 485 * 486 * @mqd_mem_obj: The MQD local gpu memory object. 487 * 488 * @gart_mqd_addr: The MQD gart mc address. 489 * 490 * @properties: The queue properties. 491 * 492 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 493 * that the queue should be executed on. 494 * 495 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 496 * id. 497 * 498 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 499 * 500 * @process: The kfd process that created this queue. 501 * 502 * @device: The kfd device that created this queue. 503 * 504 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 505 * otherwise. 506 * 507 * This structure represents user mode compute queues. 508 * It contains all the necessary data to handle such queues. 509 * 510 */ 511 512 struct queue { 513 struct list_head list; 514 void *mqd; 515 struct kfd_mem_obj *mqd_mem_obj; 516 uint64_t gart_mqd_addr; 517 struct queue_properties properties; 518 519 uint32_t mec; 520 uint32_t pipe; 521 uint32_t queue; 522 523 unsigned int sdma_id; 524 unsigned int doorbell_id; 525 526 struct kfd_process *process; 527 struct kfd_dev *device; 528 void *gws; 529 530 /* procfs */ 531 struct kobject kobj; 532 }; 533 534 enum KFD_MQD_TYPE { 535 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 536 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 537 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 538 KFD_MQD_TYPE_DIQ, /* for diq */ 539 KFD_MQD_TYPE_MAX 540 }; 541 542 enum KFD_PIPE_PRIORITY { 543 KFD_PIPE_PRIORITY_CS_LOW = 0, 544 KFD_PIPE_PRIORITY_CS_MEDIUM, 545 KFD_PIPE_PRIORITY_CS_HIGH 546 }; 547 548 struct scheduling_resources { 549 unsigned int vmid_mask; 550 enum kfd_queue_type type; 551 uint64_t queue_mask; 552 uint64_t gws_mask; 553 uint32_t oac_mask; 554 uint32_t gds_heap_base; 555 uint32_t gds_heap_size; 556 }; 557 558 struct process_queue_manager { 559 /* data */ 560 struct kfd_process *process; 561 struct list_head queues; 562 unsigned long *queue_slot_bitmap; 563 }; 564 565 struct qcm_process_device { 566 /* The Device Queue Manager that owns this data */ 567 struct device_queue_manager *dqm; 568 struct process_queue_manager *pqm; 569 /* Queues list */ 570 struct list_head queues_list; 571 struct list_head priv_queue_list; 572 573 unsigned int queue_count; 574 unsigned int vmid; 575 bool is_debug; 576 unsigned int evicted; /* eviction counter, 0=active */ 577 578 /* This flag tells if we should reset all wavefronts on 579 * process termination 580 */ 581 bool reset_wavefronts; 582 583 /* This flag tells us if this process has a GWS-capable 584 * queue that will be mapped into the runlist. It's 585 * possible to request a GWS BO, but not have the queue 586 * currently mapped, and this changes how the MAP_PROCESS 587 * PM4 packet is configured. 588 */ 589 bool mapped_gws_queue; 590 591 /* All the memory management data should be here too */ 592 uint64_t gds_context_area; 593 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 594 uint64_t page_table_base; 595 uint32_t sh_mem_config; 596 uint32_t sh_mem_bases; 597 uint32_t sh_mem_ape1_base; 598 uint32_t sh_mem_ape1_limit; 599 uint32_t gds_size; 600 uint32_t num_gws; 601 uint32_t num_oac; 602 uint32_t sh_hidden_private_base; 603 604 /* CWSR memory */ 605 void *cwsr_kaddr; 606 uint64_t cwsr_base; 607 uint64_t tba_addr; 608 uint64_t tma_addr; 609 610 /* IB memory */ 611 uint64_t ib_base; 612 void *ib_kaddr; 613 614 /* doorbell resources per process per device */ 615 unsigned long *doorbell_bitmap; 616 }; 617 618 /* KFD Memory Eviction */ 619 620 /* Approx. wait time before attempting to restore evicted BOs */ 621 #define PROCESS_RESTORE_TIME_MS 100 622 /* Approx. back off time if restore fails due to lack of memory */ 623 #define PROCESS_BACK_OFF_TIME_MS 100 624 /* Approx. time before evicting the process again */ 625 #define PROCESS_ACTIVE_TIME_MS 10 626 627 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 628 * idr_handle in the least significant 4 bytes 629 */ 630 #define MAKE_HANDLE(gpu_id, idr_handle) \ 631 (((uint64_t)(gpu_id) << 32) + idr_handle) 632 #define GET_GPU_ID(handle) (handle >> 32) 633 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 634 635 enum kfd_pdd_bound { 636 PDD_UNBOUND = 0, 637 PDD_BOUND, 638 PDD_BOUND_SUSPENDED, 639 }; 640 641 #define MAX_SYSFS_FILENAME_LEN 15 642 643 /* 644 * SDMA counter runs at 100MHz frequency. 645 * We display SDMA activity in microsecond granularity in sysfs. 646 * As a result, the divisor is 100. 647 */ 648 #define SDMA_ACTIVITY_DIVISOR 100 649 650 /* Data that is per-process-per device. */ 651 struct kfd_process_device { 652 /* 653 * List of all per-device data for a process. 654 * Starts from kfd_process.per_device_data. 655 */ 656 struct list_head per_device_list; 657 658 /* The device that owns this data. */ 659 struct kfd_dev *dev; 660 661 /* The process that owns this kfd_process_device. */ 662 struct kfd_process *process; 663 664 /* per-process-per device QCM data structure */ 665 struct qcm_process_device qpd; 666 667 /*Apertures*/ 668 uint64_t lds_base; 669 uint64_t lds_limit; 670 uint64_t gpuvm_base; 671 uint64_t gpuvm_limit; 672 uint64_t scratch_base; 673 uint64_t scratch_limit; 674 675 /* VM context for GPUVM allocations */ 676 struct file *drm_file; 677 void *vm; 678 679 /* GPUVM allocations storage */ 680 struct idr alloc_idr; 681 682 /* Flag used to tell the pdd has dequeued from the dqm. 683 * This is used to prevent dev->dqm->ops.process_termination() from 684 * being called twice when it is already called in IOMMU callback 685 * function. 686 */ 687 bool already_dequeued; 688 bool runtime_inuse; 689 690 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 691 enum kfd_pdd_bound bound; 692 693 /* VRAM usage */ 694 uint64_t vram_usage; 695 struct attribute attr_vram; 696 char vram_filename[MAX_SYSFS_FILENAME_LEN]; 697 698 /* SDMA activity tracking */ 699 uint64_t sdma_past_activity_counter; 700 struct attribute attr_sdma; 701 char sdma_filename[MAX_SYSFS_FILENAME_LEN]; 702 703 /* Eviction activity tracking */ 704 uint64_t last_evict_timestamp; 705 atomic64_t evict_duration_counter; 706 struct attribute attr_evict; 707 708 struct kobject *kobj_stats; 709 unsigned int doorbell_index; 710 711 /* 712 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process 713 * that is associated with device encoded by "this" struct instance. The 714 * value reflects CU usage by all of the waves launched by this process 715 * on this device. A very important property of occupancy parameter is 716 * that its value is a snapshot of current use. 717 * 718 * Following is to be noted regarding how this parameter is reported: 719 * 720 * The number of waves that a CU can launch is limited by couple of 721 * parameters. These are encoded by struct amdgpu_cu_info instance 722 * that is part of every device definition. For GFX9 devices this 723 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves 724 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu) 725 * when they do use scratch memory. This could change for future 726 * devices and therefore this example should be considered as a guide. 727 * 728 * All CU's of a device are available for the process. This may not be true 729 * under certain conditions - e.g. CU masking. 730 * 731 * Finally number of CU's that are occupied by a process is affected by both 732 * number of CU's a device has along with number of other competing processes 733 */ 734 struct attribute attr_cu_occupancy; 735 }; 736 737 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 738 739 /* Process data */ 740 struct kfd_process { 741 /* 742 * kfd_process are stored in an mm_struct*->kfd_process* 743 * hash table (kfd_processes in kfd_process.c) 744 */ 745 struct hlist_node kfd_processes; 746 747 /* 748 * Opaque pointer to mm_struct. We don't hold a reference to 749 * it so it should never be dereferenced from here. This is 750 * only used for looking up processes by their mm. 751 */ 752 void *mm; 753 754 struct kref ref; 755 struct work_struct release_work; 756 757 struct mutex mutex; 758 759 /* 760 * In any process, the thread that started main() is the lead 761 * thread and outlives the rest. 762 * It is here because amd_iommu_bind_pasid wants a task_struct. 763 * It can also be used for safely getting a reference to the 764 * mm_struct of the process. 765 */ 766 struct task_struct *lead_thread; 767 768 /* We want to receive a notification when the mm_struct is destroyed */ 769 struct mmu_notifier mmu_notifier; 770 771 u32 pasid; 772 773 /* 774 * List of kfd_process_device structures, 775 * one for each device the process is using. 776 */ 777 struct list_head per_device_data; 778 779 struct process_queue_manager pqm; 780 781 /*Is the user space process 32 bit?*/ 782 bool is_32bit_user_mode; 783 784 /* Event-related data */ 785 struct mutex event_mutex; 786 /* Event ID allocator and lookup */ 787 struct idr event_idr; 788 /* Event page */ 789 struct kfd_signal_page *signal_page; 790 size_t signal_mapped_size; 791 size_t signal_event_count; 792 bool signal_event_limit_reached; 793 794 /* Information used for memory eviction */ 795 void *kgd_process_info; 796 /* Eviction fence that is attached to all the BOs of this process. The 797 * fence will be triggered during eviction and new one will be created 798 * during restore 799 */ 800 struct dma_fence *ef; 801 802 /* Work items for evicting and restoring BOs */ 803 struct delayed_work eviction_work; 804 struct delayed_work restore_work; 805 /* seqno of the last scheduled eviction */ 806 unsigned int last_eviction_seqno; 807 /* Approx. the last timestamp (in jiffies) when the process was 808 * restored after an eviction 809 */ 810 unsigned long last_restore_timestamp; 811 812 /* Kobj for our procfs */ 813 struct kobject *kobj; 814 struct kobject *kobj_queues; 815 struct attribute attr_pasid; 816 }; 817 818 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 819 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 820 extern struct srcu_struct kfd_processes_srcu; 821 822 /** 823 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer. 824 * 825 * @filep: pointer to file structure. 826 * @p: amdkfd process pointer. 827 * @data: pointer to arg that was copied from user. 828 * 829 * Return: returns ioctl completion code. 830 */ 831 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 832 void *data); 833 834 struct amdkfd_ioctl_desc { 835 unsigned int cmd; 836 int flags; 837 amdkfd_ioctl_t *func; 838 unsigned int cmd_drv; 839 const char *name; 840 }; 841 bool kfd_dev_is_large_bar(struct kfd_dev *dev); 842 843 int kfd_process_create_wq(void); 844 void kfd_process_destroy_wq(void); 845 struct kfd_process *kfd_create_process(struct file *filep); 846 struct kfd_process *kfd_get_process(const struct task_struct *); 847 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid); 848 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 849 void kfd_unref_process(struct kfd_process *p); 850 int kfd_process_evict_queues(struct kfd_process *p); 851 int kfd_process_restore_queues(struct kfd_process *p); 852 void kfd_suspend_all_processes(void); 853 int kfd_resume_all_processes(void); 854 855 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 856 struct file *drm_file); 857 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 858 struct kfd_process *p); 859 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 860 struct kfd_process *p); 861 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 862 struct kfd_process *p); 863 864 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 865 struct vm_area_struct *vma); 866 867 /* KFD process API for creating and translating handles */ 868 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 869 void *mem); 870 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 871 int handle); 872 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 873 int handle); 874 875 /* Process device data iterator */ 876 struct kfd_process_device *kfd_get_first_process_device_data( 877 struct kfd_process *p); 878 struct kfd_process_device *kfd_get_next_process_device_data( 879 struct kfd_process *p, 880 struct kfd_process_device *pdd); 881 bool kfd_has_process_device_data(struct kfd_process *p); 882 883 /* PASIDs */ 884 int kfd_pasid_init(void); 885 void kfd_pasid_exit(void); 886 bool kfd_set_pasid_limit(unsigned int new_limit); 887 unsigned int kfd_get_pasid_limit(void); 888 u32 kfd_pasid_alloc(void); 889 void kfd_pasid_free(u32 pasid); 890 891 /* Doorbells */ 892 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 893 int kfd_doorbell_init(struct kfd_dev *kfd); 894 void kfd_doorbell_fini(struct kfd_dev *kfd); 895 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, 896 struct vm_area_struct *vma); 897 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 898 unsigned int *doorbell_off); 899 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 900 u32 read_kernel_doorbell(u32 __iomem *db); 901 void write_kernel_doorbell(void __iomem *db, u32 value); 902 void write_kernel_doorbell64(void __iomem *db, u64 value); 903 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 904 struct kfd_process_device *pdd, 905 unsigned int doorbell_id); 906 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd); 907 int kfd_alloc_process_doorbells(struct kfd_dev *kfd, 908 unsigned int *doorbell_index); 909 void kfd_free_process_doorbells(struct kfd_dev *kfd, 910 unsigned int doorbell_index); 911 /* GTT Sub-Allocator */ 912 913 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 914 struct kfd_mem_obj **mem_obj); 915 916 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 917 918 extern struct device *kfd_device; 919 920 /* KFD's procfs */ 921 void kfd_procfs_init(void); 922 void kfd_procfs_shutdown(void); 923 int kfd_procfs_add_queue(struct queue *q); 924 void kfd_procfs_del_queue(struct queue *q); 925 926 /* Topology */ 927 int kfd_topology_init(void); 928 void kfd_topology_shutdown(void); 929 int kfd_topology_add_device(struct kfd_dev *gpu); 930 int kfd_topology_remove_device(struct kfd_dev *gpu); 931 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 932 uint32_t proximity_domain); 933 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 934 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 935 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 936 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd); 937 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); 938 int kfd_numa_node_to_apic_id(int numa_node_id); 939 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu); 940 941 /* Interrupts */ 942 int kfd_interrupt_init(struct kfd_dev *dev); 943 void kfd_interrupt_exit(struct kfd_dev *dev); 944 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 945 bool interrupt_is_wanted(struct kfd_dev *dev, 946 const uint32_t *ih_ring_entry, 947 uint32_t *patched_ihre, bool *flag); 948 949 /* amdkfd Apertures */ 950 int kfd_init_apertures(struct kfd_process *process); 951 952 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 953 uint64_t tba_addr, 954 uint64_t tma_addr); 955 956 /* Queue Context Management */ 957 int init_queue(struct queue **q, const struct queue_properties *properties); 958 void uninit_queue(struct queue *q); 959 void print_queue_properties(struct queue_properties *q); 960 void print_queue(struct queue *q); 961 962 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 963 struct kfd_dev *dev); 964 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 965 struct kfd_dev *dev); 966 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 967 struct kfd_dev *dev); 968 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 969 struct kfd_dev *dev); 970 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 971 struct kfd_dev *dev); 972 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 973 struct kfd_dev *dev); 974 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 975 void device_queue_manager_uninit(struct device_queue_manager *dqm); 976 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 977 enum kfd_queue_type type); 978 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging); 979 int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid); 980 981 /* Process Queue Manager */ 982 struct process_queue_node { 983 struct queue *q; 984 struct kernel_queue *kq; 985 struct list_head process_queue_list; 986 }; 987 988 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 989 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 990 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 991 void pqm_uninit(struct process_queue_manager *pqm); 992 int pqm_create_queue(struct process_queue_manager *pqm, 993 struct kfd_dev *dev, 994 struct file *f, 995 struct queue_properties *properties, 996 unsigned int *qid, 997 uint32_t *p_doorbell_offset_in_process); 998 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 999 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid, 1000 struct queue_properties *p); 1001 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid, 1002 struct queue_properties *p); 1003 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 1004 void *gws); 1005 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 1006 unsigned int qid); 1007 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm, 1008 unsigned int qid); 1009 int pqm_get_wave_state(struct process_queue_manager *pqm, 1010 unsigned int qid, 1011 void __user *ctl_stack, 1012 u32 *ctl_stack_used_size, 1013 u32 *save_area_used_size); 1014 1015 int amdkfd_fence_wait_timeout(unsigned int *fence_addr, 1016 unsigned int fence_value, 1017 unsigned int timeout_ms); 1018 1019 /* Packet Manager */ 1020 1021 #define KFD_FENCE_COMPLETED (100) 1022 #define KFD_FENCE_INIT (10) 1023 1024 struct packet_manager { 1025 struct device_queue_manager *dqm; 1026 struct kernel_queue *priv_queue; 1027 struct mutex lock; 1028 bool allocated; 1029 struct kfd_mem_obj *ib_buffer_obj; 1030 unsigned int ib_size_bytes; 1031 bool is_over_subscription; 1032 1033 const struct packet_manager_funcs *pmf; 1034 }; 1035 1036 struct packet_manager_funcs { 1037 /* Support ASIC-specific packet formats for PM4 packets */ 1038 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 1039 struct qcm_process_device *qpd); 1040 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 1041 uint64_t ib, size_t ib_size_in_dwords, bool chain); 1042 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 1043 struct scheduling_resources *res); 1044 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 1045 struct queue *q, bool is_static); 1046 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 1047 enum kfd_queue_type type, 1048 enum kfd_unmap_queues_filter mode, 1049 uint32_t filter_param, bool reset, 1050 unsigned int sdma_engine); 1051 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 1052 uint64_t fence_address, uint32_t fence_value); 1053 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 1054 1055 /* Packet sizes */ 1056 int map_process_size; 1057 int runlist_size; 1058 int set_resources_size; 1059 int map_queues_size; 1060 int unmap_queues_size; 1061 int query_status_size; 1062 int release_mem_size; 1063 }; 1064 1065 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 1066 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 1067 1068 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 1069 void pm_uninit(struct packet_manager *pm, bool hanging); 1070 int pm_send_set_resources(struct packet_manager *pm, 1071 struct scheduling_resources *res); 1072 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 1073 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 1074 uint32_t fence_value); 1075 1076 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type, 1077 enum kfd_unmap_queues_filter mode, 1078 uint32_t filter_param, bool reset, 1079 unsigned int sdma_engine); 1080 1081 void pm_release_ib(struct packet_manager *pm); 1082 1083 /* Following PM funcs can be shared among VI and AI */ 1084 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 1085 1086 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1087 1088 /* Events */ 1089 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1090 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1091 1092 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1093 1094 void kfd_event_init_process(struct kfd_process *p); 1095 void kfd_event_free_process(struct kfd_process *p); 1096 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1097 int kfd_wait_on_events(struct kfd_process *p, 1098 uint32_t num_events, void __user *data, 1099 bool all, uint32_t user_timeout_ms, 1100 uint32_t *wait_result); 1101 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 1102 uint32_t valid_id_bits); 1103 void kfd_signal_iommu_event(struct kfd_dev *dev, 1104 u32 pasid, unsigned long address, 1105 bool is_write_requested, bool is_execute_requested); 1106 void kfd_signal_hw_exception_event(u32 pasid); 1107 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1108 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1109 int kfd_event_page_set(struct kfd_process *p, void *kernel_address, 1110 uint64_t size); 1111 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1112 uint32_t event_type, bool auto_reset, uint32_t node_id, 1113 uint32_t *event_id, uint32_t *event_trigger_data, 1114 uint64_t *event_page_offset, uint32_t *event_slot_index); 1115 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1116 1117 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid, 1118 struct kfd_vm_fault_info *info); 1119 1120 void kfd_signal_reset_event(struct kfd_dev *dev); 1121 1122 void kfd_flush_tlb(struct kfd_process_device *pdd); 1123 1124 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p); 1125 1126 bool kfd_is_locked(void); 1127 1128 /* Compute profile */ 1129 void kfd_inc_compute_active(struct kfd_dev *dev); 1130 void kfd_dec_compute_active(struct kfd_dev *dev); 1131 1132 /* Cgroup Support */ 1133 /* Check with device cgroup if @kfd device is accessible */ 1134 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd) 1135 { 1136 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) 1137 struct drm_device *ddev = kfd->ddev; 1138 1139 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, 1140 ddev->render->index, 1141 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1142 #else 1143 return 0; 1144 #endif 1145 } 1146 1147 /* Debugfs */ 1148 #if defined(CONFIG_DEBUG_FS) 1149 1150 void kfd_debugfs_init(void); 1151 void kfd_debugfs_fini(void); 1152 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1153 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1154 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1155 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1156 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1157 int pm_debugfs_runlist(struct seq_file *m, void *data); 1158 1159 int kfd_debugfs_hang_hws(struct kfd_dev *dev); 1160 int pm_debugfs_hang_hws(struct packet_manager *pm); 1161 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm); 1162 1163 #else 1164 1165 static inline void kfd_debugfs_init(void) {} 1166 static inline void kfd_debugfs_fini(void) {} 1167 1168 #endif 1169 1170 #endif 1171