1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #ifndef KFD_PRIV_H_INCLUDED 24 #define KFD_PRIV_H_INCLUDED 25 26 #include <linux/hashtable.h> 27 #include <linux/mmu_notifier.h> 28 #include <linux/mutex.h> 29 #include <linux/types.h> 30 #include <linux/atomic.h> 31 #include <linux/workqueue.h> 32 #include <linux/spinlock.h> 33 #include <linux/kfd_ioctl.h> 34 #include <linux/idr.h> 35 #include <linux/kfifo.h> 36 #include <linux/seq_file.h> 37 #include <linux/kref.h> 38 #include <linux/sysfs.h> 39 #include <kgd_kfd_interface.h> 40 41 #include "amd_shared.h" 42 43 #define KFD_MAX_RING_ENTRY_SIZE 8 44 45 #define KFD_SYSFS_FILE_MODE 0444 46 47 /* GPU ID hash width in bits */ 48 #define KFD_GPU_ID_HASH_WIDTH 16 49 50 /* Use upper bits of mmap offset to store KFD driver specific information. 51 * BITS[63:62] - Encode MMAP type 52 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 53 * BITS[45:0] - MMAP offset value 54 * 55 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 56 * defines are w.r.t to PAGE_SIZE 57 */ 58 #define KFD_MMAP_TYPE_SHIFT (62 - PAGE_SHIFT) 59 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 60 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 61 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 62 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 63 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 64 65 #define KFD_MMAP_GPU_ID_SHIFT (46 - PAGE_SHIFT) 66 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 67 << KFD_MMAP_GPU_ID_SHIFT) 68 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 69 & KFD_MMAP_GPU_ID_MASK) 70 #define KFD_MMAP_GPU_ID_GET(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 71 >> KFD_MMAP_GPU_ID_SHIFT) 72 73 #define KFD_MMAP_OFFSET_VALUE_MASK (0x3FFFFFFFFFFFULL >> PAGE_SHIFT) 74 #define KFD_MMAP_OFFSET_VALUE_GET(offset) (offset & KFD_MMAP_OFFSET_VALUE_MASK) 75 76 /* 77 * When working with cp scheduler we should assign the HIQ manually or via 78 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 79 * definitions for Kaveri. In Kaveri only the first ME queues participates 80 * in the cp scheduling taking that in mind we set the HIQ slot in the 81 * second ME. 82 */ 83 #define KFD_CIK_HIQ_PIPE 4 84 #define KFD_CIK_HIQ_QUEUE 0 85 86 /* Macro for allocating structures */ 87 #define kfd_alloc_struct(ptr_to_struct) \ 88 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 89 90 #define KFD_MAX_NUM_OF_PROCESSES 512 91 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 92 93 /* 94 * Size of the per-process TBA+TMA buffer: 2 pages 95 * 96 * The first page is the TBA used for the CWSR ISA code. The second 97 * page is used as TMA for daisy changing a user-mode trap handler. 98 */ 99 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 100 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 101 102 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 103 (KFD_MAX_NUM_OF_PROCESSES * \ 104 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 105 106 #define KFD_KERNEL_QUEUE_SIZE 2048 107 108 #define KFD_UNMAP_LATENCY_MS (4000) 109 110 /* 111 * 512 = 0x200 112 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 113 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 114 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 115 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 116 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 117 */ 118 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 119 120 121 /* 122 * Kernel module parameter to specify maximum number of supported queues per 123 * device 124 */ 125 extern int max_num_of_queues_per_device; 126 127 128 /* Kernel module parameter to specify the scheduling policy */ 129 extern int sched_policy; 130 131 /* 132 * Kernel module parameter to specify the maximum process 133 * number per HW scheduler 134 */ 135 extern int hws_max_conc_proc; 136 137 extern int cwsr_enable; 138 139 /* 140 * Kernel module parameter to specify whether to send sigterm to HSA process on 141 * unhandled exception 142 */ 143 extern int send_sigterm; 144 145 /* 146 * This kernel module is used to simulate large bar machine on non-large bar 147 * enabled machines. 148 */ 149 extern int debug_largebar; 150 151 /* 152 * Ignore CRAT table during KFD initialization, can be used to work around 153 * broken CRAT tables on some AMD systems 154 */ 155 extern int ignore_crat; 156 157 /* 158 * Set sh_mem_config.retry_disable on Vega10 159 */ 160 extern int amdgpu_noretry; 161 162 /* 163 * Halt if HWS hang is detected 164 */ 165 extern int halt_if_hws_hang; 166 167 /* 168 * Whether MEC FW support GWS barriers 169 */ 170 extern bool hws_gws_support; 171 172 /* 173 * Queue preemption timeout in ms 174 */ 175 extern int queue_preemption_timeout_ms; 176 177 enum cache_policy { 178 cache_policy_coherent, 179 cache_policy_noncoherent 180 }; 181 182 #define KFD_IS_VI(chip) ((chip) >= CHIP_CARRIZO && (chip) <= CHIP_POLARIS11) 183 #define KFD_IS_DGPU(chip) (((chip) >= CHIP_TONGA && \ 184 (chip) <= CHIP_NAVI10) || \ 185 (chip) == CHIP_HAWAII) 186 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10) 187 188 struct kfd_event_interrupt_class { 189 bool (*interrupt_isr)(struct kfd_dev *dev, 190 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 191 bool *patched_flag); 192 void (*interrupt_wq)(struct kfd_dev *dev, 193 const uint32_t *ih_ring_entry); 194 }; 195 196 struct kfd_device_info { 197 enum amd_asic_type asic_family; 198 const struct kfd_event_interrupt_class *event_interrupt_class; 199 unsigned int max_pasid_bits; 200 unsigned int max_no_of_hqd; 201 unsigned int doorbell_size; 202 size_t ih_ring_entry_size; 203 uint8_t num_of_watch_points; 204 uint16_t mqd_size_aligned; 205 bool supports_cwsr; 206 bool needs_iommu_device; 207 bool needs_pci_atomics; 208 unsigned int num_sdma_engines; 209 unsigned int num_xgmi_sdma_engines; 210 unsigned int num_sdma_queues_per_engine; 211 }; 212 213 struct kfd_mem_obj { 214 uint32_t range_start; 215 uint32_t range_end; 216 uint64_t gpu_addr; 217 uint32_t *cpu_ptr; 218 void *gtt_mem; 219 }; 220 221 struct kfd_vmid_info { 222 uint32_t first_vmid_kfd; 223 uint32_t last_vmid_kfd; 224 uint32_t vmid_num_kfd; 225 }; 226 227 struct kfd_dev { 228 struct kgd_dev *kgd; 229 230 const struct kfd_device_info *device_info; 231 struct pci_dev *pdev; 232 233 unsigned int id; /* topology stub index */ 234 235 phys_addr_t doorbell_base; /* Start of actual doorbells used by 236 * KFD. It is aligned for mapping 237 * into user mode 238 */ 239 size_t doorbell_id_offset; /* Doorbell offset (from KFD doorbell 240 * to HW doorbell, GFX reserved some 241 * at the start) 242 */ 243 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 244 * page used by kernel queue 245 */ 246 247 struct kgd2kfd_shared_resources shared_resources; 248 struct kfd_vmid_info vm_info; 249 250 const struct kfd2kgd_calls *kfd2kgd; 251 struct mutex doorbell_mutex; 252 DECLARE_BITMAP(doorbell_available_index, 253 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 254 255 void *gtt_mem; 256 uint64_t gtt_start_gpu_addr; 257 void *gtt_start_cpu_ptr; 258 void *gtt_sa_bitmap; 259 struct mutex gtt_sa_lock; 260 unsigned int gtt_sa_chunk_size; 261 unsigned int gtt_sa_num_of_chunks; 262 263 /* Interrupts */ 264 struct kfifo ih_fifo; 265 struct workqueue_struct *ih_wq; 266 struct work_struct interrupt_work; 267 spinlock_t interrupt_lock; 268 269 /* QCM Device instance */ 270 struct device_queue_manager *dqm; 271 272 bool init_complete; 273 /* 274 * Interrupts of interest to KFD are copied 275 * from the HW ring into a SW ring. 276 */ 277 bool interrupts_active; 278 279 /* Debug manager */ 280 struct kfd_dbgmgr *dbgmgr; 281 282 /* Firmware versions */ 283 uint16_t mec_fw_version; 284 uint16_t sdma_fw_version; 285 286 /* Maximum process number mapped to HW scheduler */ 287 unsigned int max_proc_per_quantum; 288 289 /* CWSR */ 290 bool cwsr_enabled; 291 const void *cwsr_isa; 292 unsigned int cwsr_isa_size; 293 294 /* xGMI */ 295 uint64_t hive_id; 296 297 bool pci_atomic_requested; 298 299 /* SRAM ECC flag */ 300 atomic_t sram_ecc_flag; 301 302 /* Compute Profile ref. count */ 303 atomic_t compute_profile; 304 305 /* Global GWS resource shared b/t processes*/ 306 void *gws; 307 }; 308 309 enum kfd_mempool { 310 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 311 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 312 KFD_MEMPOOL_FRAMEBUFFER = 3, 313 }; 314 315 /* Character device interface */ 316 int kfd_chardev_init(void); 317 void kfd_chardev_exit(void); 318 struct device *kfd_chardev(void); 319 320 /** 321 * enum kfd_unmap_queues_filter 322 * 323 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue. 324 * 325 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 326 * running queues list. 327 * 328 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 329 * specific process. 330 * 331 */ 332 enum kfd_unmap_queues_filter { 333 KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE, 334 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 335 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 336 KFD_UNMAP_QUEUES_FILTER_BY_PASID 337 }; 338 339 /** 340 * enum kfd_queue_type 341 * 342 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 343 * 344 * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type. 345 * 346 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 347 * 348 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 349 */ 350 enum kfd_queue_type { 351 KFD_QUEUE_TYPE_COMPUTE, 352 KFD_QUEUE_TYPE_SDMA, 353 KFD_QUEUE_TYPE_HIQ, 354 KFD_QUEUE_TYPE_DIQ, 355 KFD_QUEUE_TYPE_SDMA_XGMI 356 }; 357 358 enum kfd_queue_format { 359 KFD_QUEUE_FORMAT_PM4, 360 KFD_QUEUE_FORMAT_AQL 361 }; 362 363 enum KFD_QUEUE_PRIORITY { 364 KFD_QUEUE_PRIORITY_MINIMUM = 0, 365 KFD_QUEUE_PRIORITY_MAXIMUM = 15 366 }; 367 368 /** 369 * struct queue_properties 370 * 371 * @type: The queue type. 372 * 373 * @queue_id: Queue identifier. 374 * 375 * @queue_address: Queue ring buffer address. 376 * 377 * @queue_size: Queue ring buffer size. 378 * 379 * @priority: Defines the queue priority relative to other queues in the 380 * process. 381 * This is just an indication and HW scheduling may override the priority as 382 * necessary while keeping the relative prioritization. 383 * the priority granularity is from 0 to f which f is the highest priority. 384 * currently all queues are initialized with the highest priority. 385 * 386 * @queue_percent: This field is partially implemented and currently a zero in 387 * this field defines that the queue is non active. 388 * 389 * @read_ptr: User space address which points to the number of dwords the 390 * cp read from the ring buffer. This field updates automatically by the H/W. 391 * 392 * @write_ptr: Defines the number of dwords written to the ring buffer. 393 * 394 * @doorbell_ptr: This field aim is to notify the H/W of new packet written to 395 * the queue ring buffer. This field should be similar to write_ptr and the 396 * user should update this field after he updated the write_ptr. 397 * 398 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 399 * 400 * @is_interop: Defines if this is a interop queue. Interop queue means that 401 * the queue can access both graphics and compute resources. 402 * 403 * @is_evicted: Defines if the queue is evicted. Only active queues 404 * are evicted, rendering them inactive. 405 * 406 * @is_active: Defines if the queue is active or not. @is_active and 407 * @is_evicted are protected by the DQM lock. 408 * 409 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 410 * of the queue. 411 * 412 * This structure represents the queue properties for each queue no matter if 413 * it's user mode or kernel mode queue. 414 * 415 */ 416 struct queue_properties { 417 enum kfd_queue_type type; 418 enum kfd_queue_format format; 419 unsigned int queue_id; 420 uint64_t queue_address; 421 uint64_t queue_size; 422 uint32_t priority; 423 uint32_t queue_percent; 424 uint32_t *read_ptr; 425 uint32_t *write_ptr; 426 void __iomem *doorbell_ptr; 427 uint32_t doorbell_off; 428 bool is_interop; 429 bool is_evicted; 430 bool is_active; 431 /* Not relevant for user mode queues in cp scheduling */ 432 unsigned int vmid; 433 /* Relevant only for sdma queues*/ 434 uint32_t sdma_engine_id; 435 uint32_t sdma_queue_id; 436 uint32_t sdma_vm_addr; 437 /* Relevant only for VI */ 438 uint64_t eop_ring_buffer_address; 439 uint32_t eop_ring_buffer_size; 440 uint64_t ctx_save_restore_area_address; 441 uint32_t ctx_save_restore_area_size; 442 uint32_t ctl_stack_size; 443 uint64_t tba_addr; 444 uint64_t tma_addr; 445 /* Relevant for CU */ 446 uint32_t cu_mask_count; /* Must be a multiple of 32 */ 447 uint32_t *cu_mask; 448 }; 449 450 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 451 (q).queue_address != 0 && \ 452 (q).queue_percent > 0 && \ 453 !(q).is_evicted) 454 455 /** 456 * struct queue 457 * 458 * @list: Queue linked list. 459 * 460 * @mqd: The queue MQD. 461 * 462 * @mqd_mem_obj: The MQD local gpu memory object. 463 * 464 * @gart_mqd_addr: The MQD gart mc address. 465 * 466 * @properties: The queue properties. 467 * 468 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 469 * that the queue should be execute on. 470 * 471 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 472 * id. 473 * 474 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 475 * 476 * @process: The kfd process that created this queue. 477 * 478 * @device: The kfd device that created this queue. 479 * 480 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 481 * otherwise. 482 * 483 * This structure represents user mode compute queues. 484 * It contains all the necessary data to handle such queues. 485 * 486 */ 487 488 struct queue { 489 struct list_head list; 490 void *mqd; 491 struct kfd_mem_obj *mqd_mem_obj; 492 uint64_t gart_mqd_addr; 493 struct queue_properties properties; 494 495 uint32_t mec; 496 uint32_t pipe; 497 uint32_t queue; 498 499 unsigned int sdma_id; 500 unsigned int doorbell_id; 501 502 struct kfd_process *process; 503 struct kfd_dev *device; 504 void *gws; 505 }; 506 507 /* 508 * Please read the kfd_mqd_manager.h description. 509 */ 510 enum KFD_MQD_TYPE { 511 KFD_MQD_TYPE_COMPUTE = 0, /* for no cp scheduling */ 512 KFD_MQD_TYPE_HIQ, /* for hiq */ 513 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 514 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 515 KFD_MQD_TYPE_DIQ, /* for diq */ 516 KFD_MQD_TYPE_MAX 517 }; 518 519 enum KFD_PIPE_PRIORITY { 520 KFD_PIPE_PRIORITY_CS_LOW = 0, 521 KFD_PIPE_PRIORITY_CS_MEDIUM, 522 KFD_PIPE_PRIORITY_CS_HIGH 523 }; 524 525 struct scheduling_resources { 526 unsigned int vmid_mask; 527 enum kfd_queue_type type; 528 uint64_t queue_mask; 529 uint64_t gws_mask; 530 uint32_t oac_mask; 531 uint32_t gds_heap_base; 532 uint32_t gds_heap_size; 533 }; 534 535 struct process_queue_manager { 536 /* data */ 537 struct kfd_process *process; 538 struct list_head queues; 539 unsigned long *queue_slot_bitmap; 540 }; 541 542 struct qcm_process_device { 543 /* The Device Queue Manager that owns this data */ 544 struct device_queue_manager *dqm; 545 struct process_queue_manager *pqm; 546 /* Queues list */ 547 struct list_head queues_list; 548 struct list_head priv_queue_list; 549 550 unsigned int queue_count; 551 unsigned int vmid; 552 bool is_debug; 553 unsigned int evicted; /* eviction counter, 0=active */ 554 555 /* This flag tells if we should reset all wavefronts on 556 * process termination 557 */ 558 bool reset_wavefronts; 559 560 /* 561 * All the memory management data should be here too 562 */ 563 uint64_t gds_context_area; 564 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 565 uint64_t page_table_base; 566 uint32_t sh_mem_config; 567 uint32_t sh_mem_bases; 568 uint32_t sh_mem_ape1_base; 569 uint32_t sh_mem_ape1_limit; 570 uint32_t gds_size; 571 uint32_t num_gws; 572 uint32_t num_oac; 573 uint32_t sh_hidden_private_base; 574 575 /* CWSR memory */ 576 void *cwsr_kaddr; 577 uint64_t cwsr_base; 578 uint64_t tba_addr; 579 uint64_t tma_addr; 580 581 /* IB memory */ 582 uint64_t ib_base; 583 void *ib_kaddr; 584 585 /* doorbell resources per process per device */ 586 unsigned long *doorbell_bitmap; 587 }; 588 589 /* KFD Memory Eviction */ 590 591 /* Approx. wait time before attempting to restore evicted BOs */ 592 #define PROCESS_RESTORE_TIME_MS 100 593 /* Approx. back off time if restore fails due to lack of memory */ 594 #define PROCESS_BACK_OFF_TIME_MS 100 595 /* Approx. time before evicting the process again */ 596 #define PROCESS_ACTIVE_TIME_MS 10 597 598 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 599 * idr_handle in the least significant 4 bytes 600 */ 601 #define MAKE_HANDLE(gpu_id, idr_handle) \ 602 (((uint64_t)(gpu_id) << 32) + idr_handle) 603 #define GET_GPU_ID(handle) (handle >> 32) 604 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 605 606 enum kfd_pdd_bound { 607 PDD_UNBOUND = 0, 608 PDD_BOUND, 609 PDD_BOUND_SUSPENDED, 610 }; 611 612 /* Data that is per-process-per device. */ 613 struct kfd_process_device { 614 /* 615 * List of all per-device data for a process. 616 * Starts from kfd_process.per_device_data. 617 */ 618 struct list_head per_device_list; 619 620 /* The device that owns this data. */ 621 struct kfd_dev *dev; 622 623 /* The process that owns this kfd_process_device. */ 624 struct kfd_process *process; 625 626 /* per-process-per device QCM data structure */ 627 struct qcm_process_device qpd; 628 629 /*Apertures*/ 630 uint64_t lds_base; 631 uint64_t lds_limit; 632 uint64_t gpuvm_base; 633 uint64_t gpuvm_limit; 634 uint64_t scratch_base; 635 uint64_t scratch_limit; 636 637 /* VM context for GPUVM allocations */ 638 struct file *drm_file; 639 void *vm; 640 641 /* GPUVM allocations storage */ 642 struct idr alloc_idr; 643 644 /* Flag used to tell the pdd has dequeued from the dqm. 645 * This is used to prevent dev->dqm->ops.process_termination() from 646 * being called twice when it is already called in IOMMU callback 647 * function. 648 */ 649 bool already_dequeued; 650 651 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 652 enum kfd_pdd_bound bound; 653 }; 654 655 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 656 657 /* Process data */ 658 struct kfd_process { 659 /* 660 * kfd_process are stored in an mm_struct*->kfd_process* 661 * hash table (kfd_processes in kfd_process.c) 662 */ 663 struct hlist_node kfd_processes; 664 665 /* 666 * Opaque pointer to mm_struct. We don't hold a reference to 667 * it so it should never be dereferenced from here. This is 668 * only used for looking up processes by their mm. 669 */ 670 void *mm; 671 672 struct kref ref; 673 struct work_struct release_work; 674 675 struct mutex mutex; 676 677 /* 678 * In any process, the thread that started main() is the lead 679 * thread and outlives the rest. 680 * It is here because amd_iommu_bind_pasid wants a task_struct. 681 * It can also be used for safely getting a reference to the 682 * mm_struct of the process. 683 */ 684 struct task_struct *lead_thread; 685 686 /* We want to receive a notification when the mm_struct is destroyed */ 687 struct mmu_notifier mmu_notifier; 688 689 /* Use for delayed freeing of kfd_process structure */ 690 struct rcu_head rcu; 691 692 unsigned int pasid; 693 unsigned int doorbell_index; 694 695 /* 696 * List of kfd_process_device structures, 697 * one for each device the process is using. 698 */ 699 struct list_head per_device_data; 700 701 struct process_queue_manager pqm; 702 703 /*Is the user space process 32 bit?*/ 704 bool is_32bit_user_mode; 705 706 /* Event-related data */ 707 struct mutex event_mutex; 708 /* Event ID allocator and lookup */ 709 struct idr event_idr; 710 /* Event page */ 711 struct kfd_signal_page *signal_page; 712 size_t signal_mapped_size; 713 size_t signal_event_count; 714 bool signal_event_limit_reached; 715 716 /* Information used for memory eviction */ 717 void *kgd_process_info; 718 /* Eviction fence that is attached to all the BOs of this process. The 719 * fence will be triggered during eviction and new one will be created 720 * during restore 721 */ 722 struct dma_fence *ef; 723 724 /* Work items for evicting and restoring BOs */ 725 struct delayed_work eviction_work; 726 struct delayed_work restore_work; 727 /* seqno of the last scheduled eviction */ 728 unsigned int last_eviction_seqno; 729 /* Approx. the last timestamp (in jiffies) when the process was 730 * restored after an eviction 731 */ 732 unsigned long last_restore_timestamp; 733 734 /* Kobj for our procfs */ 735 struct kobject *kobj; 736 struct attribute attr_pasid; 737 }; 738 739 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 740 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 741 extern struct srcu_struct kfd_processes_srcu; 742 743 /** 744 * Ioctl function type. 745 * 746 * \param filep pointer to file structure. 747 * \param p amdkfd process pointer. 748 * \param data pointer to arg that was copied from user. 749 */ 750 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 751 void *data); 752 753 struct amdkfd_ioctl_desc { 754 unsigned int cmd; 755 int flags; 756 amdkfd_ioctl_t *func; 757 unsigned int cmd_drv; 758 const char *name; 759 }; 760 bool kfd_dev_is_large_bar(struct kfd_dev *dev); 761 762 int kfd_process_create_wq(void); 763 void kfd_process_destroy_wq(void); 764 struct kfd_process *kfd_create_process(struct file *filep); 765 struct kfd_process *kfd_get_process(const struct task_struct *); 766 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid); 767 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 768 void kfd_unref_process(struct kfd_process *p); 769 int kfd_process_evict_queues(struct kfd_process *p); 770 int kfd_process_restore_queues(struct kfd_process *p); 771 void kfd_suspend_all_processes(void); 772 int kfd_resume_all_processes(void); 773 774 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 775 struct file *drm_file); 776 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 777 struct kfd_process *p); 778 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 779 struct kfd_process *p); 780 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 781 struct kfd_process *p); 782 783 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 784 struct vm_area_struct *vma); 785 786 /* KFD process API for creating and translating handles */ 787 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 788 void *mem); 789 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 790 int handle); 791 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 792 int handle); 793 794 /* Process device data iterator */ 795 struct kfd_process_device *kfd_get_first_process_device_data( 796 struct kfd_process *p); 797 struct kfd_process_device *kfd_get_next_process_device_data( 798 struct kfd_process *p, 799 struct kfd_process_device *pdd); 800 bool kfd_has_process_device_data(struct kfd_process *p); 801 802 /* PASIDs */ 803 int kfd_pasid_init(void); 804 void kfd_pasid_exit(void); 805 bool kfd_set_pasid_limit(unsigned int new_limit); 806 unsigned int kfd_get_pasid_limit(void); 807 unsigned int kfd_pasid_alloc(void); 808 void kfd_pasid_free(unsigned int pasid); 809 810 /* Doorbells */ 811 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 812 int kfd_doorbell_init(struct kfd_dev *kfd); 813 void kfd_doorbell_fini(struct kfd_dev *kfd); 814 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, 815 struct vm_area_struct *vma); 816 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 817 unsigned int *doorbell_off); 818 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 819 u32 read_kernel_doorbell(u32 __iomem *db); 820 void write_kernel_doorbell(void __iomem *db, u32 value); 821 void write_kernel_doorbell64(void __iomem *db, u64 value); 822 unsigned int kfd_doorbell_id_to_offset(struct kfd_dev *kfd, 823 struct kfd_process *process, 824 unsigned int doorbell_id); 825 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev, 826 struct kfd_process *process); 827 int kfd_alloc_process_doorbells(struct kfd_process *process); 828 void kfd_free_process_doorbells(struct kfd_process *process); 829 830 /* GTT Sub-Allocator */ 831 832 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 833 struct kfd_mem_obj **mem_obj); 834 835 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 836 837 extern struct device *kfd_device; 838 839 /* KFD's procfs */ 840 void kfd_procfs_init(void); 841 void kfd_procfs_shutdown(void); 842 843 /* Topology */ 844 int kfd_topology_init(void); 845 void kfd_topology_shutdown(void); 846 int kfd_topology_add_device(struct kfd_dev *gpu); 847 int kfd_topology_remove_device(struct kfd_dev *gpu); 848 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 849 uint32_t proximity_domain); 850 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 851 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 852 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 853 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd); 854 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); 855 int kfd_numa_node_to_apic_id(int numa_node_id); 856 857 /* Interrupts */ 858 int kfd_interrupt_init(struct kfd_dev *dev); 859 void kfd_interrupt_exit(struct kfd_dev *dev); 860 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 861 bool interrupt_is_wanted(struct kfd_dev *dev, 862 const uint32_t *ih_ring_entry, 863 uint32_t *patched_ihre, bool *flag); 864 865 /* amdkfd Apertures */ 866 int kfd_init_apertures(struct kfd_process *process); 867 868 /* Queue Context Management */ 869 int init_queue(struct queue **q, const struct queue_properties *properties); 870 void uninit_queue(struct queue *q); 871 void print_queue_properties(struct queue_properties *q); 872 void print_queue(struct queue *q); 873 874 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 875 struct kfd_dev *dev); 876 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 877 struct kfd_dev *dev); 878 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 879 struct kfd_dev *dev); 880 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 881 struct kfd_dev *dev); 882 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 883 struct kfd_dev *dev); 884 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 885 struct kfd_dev *dev); 886 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 887 void device_queue_manager_uninit(struct device_queue_manager *dqm); 888 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 889 enum kfd_queue_type type); 890 void kernel_queue_uninit(struct kernel_queue *kq); 891 int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid); 892 893 /* Process Queue Manager */ 894 struct process_queue_node { 895 struct queue *q; 896 struct kernel_queue *kq; 897 struct list_head process_queue_list; 898 }; 899 900 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 901 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 902 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 903 void pqm_uninit(struct process_queue_manager *pqm); 904 int pqm_create_queue(struct process_queue_manager *pqm, 905 struct kfd_dev *dev, 906 struct file *f, 907 struct queue_properties *properties, 908 unsigned int *qid); 909 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 910 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid, 911 struct queue_properties *p); 912 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid, 913 struct queue_properties *p); 914 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 915 void *gws); 916 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 917 unsigned int qid); 918 int pqm_get_wave_state(struct process_queue_manager *pqm, 919 unsigned int qid, 920 void __user *ctl_stack, 921 u32 *ctl_stack_used_size, 922 u32 *save_area_used_size); 923 924 int amdkfd_fence_wait_timeout(unsigned int *fence_addr, 925 unsigned int fence_value, 926 unsigned int timeout_ms); 927 928 /* Packet Manager */ 929 930 #define KFD_FENCE_COMPLETED (100) 931 #define KFD_FENCE_INIT (10) 932 933 struct packet_manager { 934 struct device_queue_manager *dqm; 935 struct kernel_queue *priv_queue; 936 struct mutex lock; 937 bool allocated; 938 struct kfd_mem_obj *ib_buffer_obj; 939 unsigned int ib_size_bytes; 940 bool is_over_subscription; 941 942 const struct packet_manager_funcs *pmf; 943 }; 944 945 struct packet_manager_funcs { 946 /* Support ASIC-specific packet formats for PM4 packets */ 947 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 948 struct qcm_process_device *qpd); 949 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 950 uint64_t ib, size_t ib_size_in_dwords, bool chain); 951 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 952 struct scheduling_resources *res); 953 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 954 struct queue *q, bool is_static); 955 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 956 enum kfd_queue_type type, 957 enum kfd_unmap_queues_filter mode, 958 uint32_t filter_param, bool reset, 959 unsigned int sdma_engine); 960 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 961 uint64_t fence_address, uint32_t fence_value); 962 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 963 964 /* Packet sizes */ 965 int map_process_size; 966 int runlist_size; 967 int set_resources_size; 968 int map_queues_size; 969 int unmap_queues_size; 970 int query_status_size; 971 int release_mem_size; 972 }; 973 974 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 975 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 976 extern const struct packet_manager_funcs kfd_v10_pm_funcs; 977 978 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 979 void pm_uninit(struct packet_manager *pm); 980 int pm_send_set_resources(struct packet_manager *pm, 981 struct scheduling_resources *res); 982 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 983 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 984 uint32_t fence_value); 985 986 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type, 987 enum kfd_unmap_queues_filter mode, 988 uint32_t filter_param, bool reset, 989 unsigned int sdma_engine); 990 991 void pm_release_ib(struct packet_manager *pm); 992 993 /* Following PM funcs can be shared among VI and AI */ 994 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 995 int pm_set_resources_vi(struct packet_manager *pm, uint32_t *buffer, 996 struct scheduling_resources *res); 997 998 999 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1000 1001 /* Events */ 1002 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1003 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1004 1005 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1006 1007 void kfd_event_init_process(struct kfd_process *p); 1008 void kfd_event_free_process(struct kfd_process *p); 1009 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1010 int kfd_wait_on_events(struct kfd_process *p, 1011 uint32_t num_events, void __user *data, 1012 bool all, uint32_t user_timeout_ms, 1013 uint32_t *wait_result); 1014 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, 1015 uint32_t valid_id_bits); 1016 void kfd_signal_iommu_event(struct kfd_dev *dev, 1017 unsigned int pasid, unsigned long address, 1018 bool is_write_requested, bool is_execute_requested); 1019 void kfd_signal_hw_exception_event(unsigned int pasid); 1020 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1021 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1022 int kfd_event_page_set(struct kfd_process *p, void *kernel_address, 1023 uint64_t size); 1024 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1025 uint32_t event_type, bool auto_reset, uint32_t node_id, 1026 uint32_t *event_id, uint32_t *event_trigger_data, 1027 uint64_t *event_page_offset, uint32_t *event_slot_index); 1028 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1029 1030 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid, 1031 struct kfd_vm_fault_info *info); 1032 1033 void kfd_signal_reset_event(struct kfd_dev *dev); 1034 1035 void kfd_flush_tlb(struct kfd_process_device *pdd); 1036 1037 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p); 1038 1039 bool kfd_is_locked(void); 1040 1041 /* Compute profile */ 1042 void kfd_inc_compute_active(struct kfd_dev *dev); 1043 void kfd_dec_compute_active(struct kfd_dev *dev); 1044 1045 /* Debugfs */ 1046 #if defined(CONFIG_DEBUG_FS) 1047 1048 void kfd_debugfs_init(void); 1049 void kfd_debugfs_fini(void); 1050 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1051 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1052 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1053 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1054 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1055 int pm_debugfs_runlist(struct seq_file *m, void *data); 1056 1057 int kfd_debugfs_hang_hws(struct kfd_dev *dev); 1058 int pm_debugfs_hang_hws(struct packet_manager *pm); 1059 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm); 1060 1061 #else 1062 1063 static inline void kfd_debugfs_init(void) {} 1064 static inline void kfd_debugfs_fini(void) {} 1065 1066 #endif 1067 1068 #endif 1069