xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 55fd7e02)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <linux/sysfs.h>
39 #include <linux/device_cgroup.h>
40 #include <drm/drm_file.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_device.h>
43 #include <drm/drm_ioctl.h>
44 #include <kgd_kfd_interface.h>
45 #include <linux/swap.h>
46 
47 #include "amd_shared.h"
48 
49 #define KFD_MAX_RING_ENTRY_SIZE	8
50 
51 #define KFD_SYSFS_FILE_MODE 0444
52 
53 /* GPU ID hash width in bits */
54 #define KFD_GPU_ID_HASH_WIDTH 16
55 
56 /* Use upper bits of mmap offset to store KFD driver specific information.
57  * BITS[63:62] - Encode MMAP type
58  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
59  * BITS[45:0]  - MMAP offset value
60  *
61  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
62  *  defines are w.r.t to PAGE_SIZE
63  */
64 #define KFD_MMAP_TYPE_SHIFT	62
65 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
66 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
67 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
68 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
70 
71 #define KFD_MMAP_GPU_ID_SHIFT 46
72 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
73 				<< KFD_MMAP_GPU_ID_SHIFT)
74 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
75 				& KFD_MMAP_GPU_ID_MASK)
76 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
77 				>> KFD_MMAP_GPU_ID_SHIFT)
78 
79 /*
80  * When working with cp scheduler we should assign the HIQ manually or via
81  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
82  * definitions for Kaveri. In Kaveri only the first ME queues participates
83  * in the cp scheduling taking that in mind we set the HIQ slot in the
84  * second ME.
85  */
86 #define KFD_CIK_HIQ_PIPE 4
87 #define KFD_CIK_HIQ_QUEUE 0
88 
89 /* Macro for allocating structures */
90 #define kfd_alloc_struct(ptr_to_struct)	\
91 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
92 
93 #define KFD_MAX_NUM_OF_PROCESSES 512
94 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
95 
96 /*
97  * Size of the per-process TBA+TMA buffer: 2 pages
98  *
99  * The first page is the TBA used for the CWSR ISA code. The second
100  * page is used as TMA for daisy changing a user-mode trap handler.
101  */
102 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
103 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
104 
105 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
106 	(KFD_MAX_NUM_OF_PROCESSES *			\
107 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
108 
109 #define KFD_KERNEL_QUEUE_SIZE 2048
110 
111 #define KFD_UNMAP_LATENCY_MS	(4000)
112 
113 /*
114  * 512 = 0x200
115  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
116  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
117  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
118  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
119  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
120  */
121 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
122 
123 
124 /*
125  * Kernel module parameter to specify maximum number of supported queues per
126  * device
127  */
128 extern int max_num_of_queues_per_device;
129 
130 
131 /* Kernel module parameter to specify the scheduling policy */
132 extern int sched_policy;
133 
134 /*
135  * Kernel module parameter to specify the maximum process
136  * number per HW scheduler
137  */
138 extern int hws_max_conc_proc;
139 
140 extern int cwsr_enable;
141 
142 /*
143  * Kernel module parameter to specify whether to send sigterm to HSA process on
144  * unhandled exception
145  */
146 extern int send_sigterm;
147 
148 /*
149  * This kernel module is used to simulate large bar machine on non-large bar
150  * enabled machines.
151  */
152 extern int debug_largebar;
153 
154 /*
155  * Ignore CRAT table during KFD initialization, can be used to work around
156  * broken CRAT tables on some AMD systems
157  */
158 extern int ignore_crat;
159 
160 /*
161  * Set sh_mem_config.retry_disable on Vega10
162  */
163 extern int amdgpu_noretry;
164 
165 /*
166  * Halt if HWS hang is detected
167  */
168 extern int halt_if_hws_hang;
169 
170 /*
171  * Whether MEC FW support GWS barriers
172  */
173 extern bool hws_gws_support;
174 
175 /*
176  * Queue preemption timeout in ms
177  */
178 extern int queue_preemption_timeout_ms;
179 
180 enum cache_policy {
181 	cache_policy_coherent,
182 	cache_policy_noncoherent
183 };
184 
185 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
186 
187 struct kfd_event_interrupt_class {
188 	bool (*interrupt_isr)(struct kfd_dev *dev,
189 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
190 			bool *patched_flag);
191 	void (*interrupt_wq)(struct kfd_dev *dev,
192 			const uint32_t *ih_ring_entry);
193 };
194 
195 struct kfd_device_info {
196 	enum amd_asic_type asic_family;
197 	const char *asic_name;
198 	const struct kfd_event_interrupt_class *event_interrupt_class;
199 	unsigned int max_pasid_bits;
200 	unsigned int max_no_of_hqd;
201 	unsigned int doorbell_size;
202 	size_t ih_ring_entry_size;
203 	uint8_t num_of_watch_points;
204 	uint16_t mqd_size_aligned;
205 	bool supports_cwsr;
206 	bool needs_iommu_device;
207 	bool needs_pci_atomics;
208 	unsigned int num_sdma_engines;
209 	unsigned int num_xgmi_sdma_engines;
210 	unsigned int num_sdma_queues_per_engine;
211 };
212 
213 struct kfd_mem_obj {
214 	uint32_t range_start;
215 	uint32_t range_end;
216 	uint64_t gpu_addr;
217 	uint32_t *cpu_ptr;
218 	void *gtt_mem;
219 };
220 
221 struct kfd_vmid_info {
222 	uint32_t first_vmid_kfd;
223 	uint32_t last_vmid_kfd;
224 	uint32_t vmid_num_kfd;
225 };
226 
227 struct kfd_dev {
228 	struct kgd_dev *kgd;
229 
230 	const struct kfd_device_info *device_info;
231 	struct pci_dev *pdev;
232 	struct drm_device *ddev;
233 
234 	unsigned int id;		/* topology stub index */
235 
236 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
237 					 * KFD. It is aligned for mapping
238 					 * into user mode
239 					 */
240 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
241 					 * doorbell BAR to the first KFD
242 					 * doorbell in dwords. GFX reserves
243 					 * the segment before this offset.
244 					 */
245 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
246 					   * page used by kernel queue
247 					   */
248 
249 	struct kgd2kfd_shared_resources shared_resources;
250 	struct kfd_vmid_info vm_info;
251 
252 	const struct kfd2kgd_calls *kfd2kgd;
253 	struct mutex doorbell_mutex;
254 	DECLARE_BITMAP(doorbell_available_index,
255 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
256 
257 	void *gtt_mem;
258 	uint64_t gtt_start_gpu_addr;
259 	void *gtt_start_cpu_ptr;
260 	void *gtt_sa_bitmap;
261 	struct mutex gtt_sa_lock;
262 	unsigned int gtt_sa_chunk_size;
263 	unsigned int gtt_sa_num_of_chunks;
264 
265 	/* Interrupts */
266 	struct kfifo ih_fifo;
267 	struct workqueue_struct *ih_wq;
268 	struct work_struct interrupt_work;
269 	spinlock_t interrupt_lock;
270 
271 	/* QCM Device instance */
272 	struct device_queue_manager *dqm;
273 
274 	bool init_complete;
275 	/*
276 	 * Interrupts of interest to KFD are copied
277 	 * from the HW ring into a SW ring.
278 	 */
279 	bool interrupts_active;
280 
281 	/* Debug manager */
282 	struct kfd_dbgmgr *dbgmgr;
283 
284 	/* Firmware versions */
285 	uint16_t mec_fw_version;
286 	uint16_t mec2_fw_version;
287 	uint16_t sdma_fw_version;
288 
289 	/* Maximum process number mapped to HW scheduler */
290 	unsigned int max_proc_per_quantum;
291 
292 	/* CWSR */
293 	bool cwsr_enabled;
294 	const void *cwsr_isa;
295 	unsigned int cwsr_isa_size;
296 
297 	/* xGMI */
298 	uint64_t hive_id;
299 
300 	/* UUID */
301 	uint64_t unique_id;
302 
303 	bool pci_atomic_requested;
304 
305 	/* SRAM ECC flag */
306 	atomic_t sram_ecc_flag;
307 
308 	/* Compute Profile ref. count */
309 	atomic_t compute_profile;
310 
311 	/* Global GWS resource shared b/t processes*/
312 	void *gws;
313 };
314 
315 enum kfd_mempool {
316 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
317 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
318 	KFD_MEMPOOL_FRAMEBUFFER = 3,
319 };
320 
321 /* Character device interface */
322 int kfd_chardev_init(void);
323 void kfd_chardev_exit(void);
324 struct device *kfd_chardev(void);
325 
326 /**
327  * enum kfd_unmap_queues_filter
328  *
329  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
330  *
331  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
332  *						running queues list.
333  *
334  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
335  *						specific process.
336  *
337  */
338 enum kfd_unmap_queues_filter {
339 	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
340 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
341 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
342 	KFD_UNMAP_QUEUES_FILTER_BY_PASID
343 };
344 
345 /**
346  * enum kfd_queue_type
347  *
348  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
349  *
350  * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
351  *
352  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
353  *
354  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
355  */
356 enum kfd_queue_type  {
357 	KFD_QUEUE_TYPE_COMPUTE,
358 	KFD_QUEUE_TYPE_SDMA,
359 	KFD_QUEUE_TYPE_HIQ,
360 	KFD_QUEUE_TYPE_DIQ,
361 	KFD_QUEUE_TYPE_SDMA_XGMI
362 };
363 
364 enum kfd_queue_format {
365 	KFD_QUEUE_FORMAT_PM4,
366 	KFD_QUEUE_FORMAT_AQL
367 };
368 
369 enum KFD_QUEUE_PRIORITY {
370 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
371 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
372 };
373 
374 /**
375  * struct queue_properties
376  *
377  * @type: The queue type.
378  *
379  * @queue_id: Queue identifier.
380  *
381  * @queue_address: Queue ring buffer address.
382  *
383  * @queue_size: Queue ring buffer size.
384  *
385  * @priority: Defines the queue priority relative to other queues in the
386  * process.
387  * This is just an indication and HW scheduling may override the priority as
388  * necessary while keeping the relative prioritization.
389  * the priority granularity is from 0 to f which f is the highest priority.
390  * currently all queues are initialized with the highest priority.
391  *
392  * @queue_percent: This field is partially implemented and currently a zero in
393  * this field defines that the queue is non active.
394  *
395  * @read_ptr: User space address which points to the number of dwords the
396  * cp read from the ring buffer. This field updates automatically by the H/W.
397  *
398  * @write_ptr: Defines the number of dwords written to the ring buffer.
399  *
400  * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
401  * the queue ring buffer. This field should be similar to write_ptr and the
402  * user should update this field after he updated the write_ptr.
403  *
404  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
405  *
406  * @is_interop: Defines if this is a interop queue. Interop queue means that
407  * the queue can access both graphics and compute resources.
408  *
409  * @is_evicted: Defines if the queue is evicted. Only active queues
410  * are evicted, rendering them inactive.
411  *
412  * @is_active: Defines if the queue is active or not. @is_active and
413  * @is_evicted are protected by the DQM lock.
414  *
415  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
416  * @is_gws should be protected by the DQM lock, since changing it can yield the
417  * possibility of updating DQM state on number of GWS queues.
418  *
419  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
420  * of the queue.
421  *
422  * This structure represents the queue properties for each queue no matter if
423  * it's user mode or kernel mode queue.
424  *
425  */
426 struct queue_properties {
427 	enum kfd_queue_type type;
428 	enum kfd_queue_format format;
429 	unsigned int queue_id;
430 	uint64_t queue_address;
431 	uint64_t  queue_size;
432 	uint32_t priority;
433 	uint32_t queue_percent;
434 	uint32_t *read_ptr;
435 	uint32_t *write_ptr;
436 	void __iomem *doorbell_ptr;
437 	uint32_t doorbell_off;
438 	bool is_interop;
439 	bool is_evicted;
440 	bool is_active;
441 	bool is_gws;
442 	/* Not relevant for user mode queues in cp scheduling */
443 	unsigned int vmid;
444 	/* Relevant only for sdma queues*/
445 	uint32_t sdma_engine_id;
446 	uint32_t sdma_queue_id;
447 	uint32_t sdma_vm_addr;
448 	/* Relevant only for VI */
449 	uint64_t eop_ring_buffer_address;
450 	uint32_t eop_ring_buffer_size;
451 	uint64_t ctx_save_restore_area_address;
452 	uint32_t ctx_save_restore_area_size;
453 	uint32_t ctl_stack_size;
454 	uint64_t tba_addr;
455 	uint64_t tma_addr;
456 	/* Relevant for CU */
457 	uint32_t cu_mask_count; /* Must be a multiple of 32 */
458 	uint32_t *cu_mask;
459 };
460 
461 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
462 			    (q).queue_address != 0 &&	\
463 			    (q).queue_percent > 0 &&	\
464 			    !(q).is_evicted)
465 
466 /**
467  * struct queue
468  *
469  * @list: Queue linked list.
470  *
471  * @mqd: The queue MQD.
472  *
473  * @mqd_mem_obj: The MQD local gpu memory object.
474  *
475  * @gart_mqd_addr: The MQD gart mc address.
476  *
477  * @properties: The queue properties.
478  *
479  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
480  *	 that the queue should be execute on.
481  *
482  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
483  *	  id.
484  *
485  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
486  *
487  * @process: The kfd process that created this queue.
488  *
489  * @device: The kfd device that created this queue.
490  *
491  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
492  * otherwise.
493  *
494  * This structure represents user mode compute queues.
495  * It contains all the necessary data to handle such queues.
496  *
497  */
498 
499 struct queue {
500 	struct list_head list;
501 	void *mqd;
502 	struct kfd_mem_obj *mqd_mem_obj;
503 	uint64_t gart_mqd_addr;
504 	struct queue_properties properties;
505 
506 	uint32_t mec;
507 	uint32_t pipe;
508 	uint32_t queue;
509 
510 	unsigned int sdma_id;
511 	unsigned int doorbell_id;
512 
513 	struct kfd_process	*process;
514 	struct kfd_dev		*device;
515 	void *gws;
516 
517 	/* procfs */
518 	struct kobject kobj;
519 };
520 
521 /*
522  * Please read the kfd_mqd_manager.h description.
523  */
524 enum KFD_MQD_TYPE {
525 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
526 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
527 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
528 	KFD_MQD_TYPE_DIQ,		/* for diq */
529 	KFD_MQD_TYPE_MAX
530 };
531 
532 enum KFD_PIPE_PRIORITY {
533 	KFD_PIPE_PRIORITY_CS_LOW = 0,
534 	KFD_PIPE_PRIORITY_CS_MEDIUM,
535 	KFD_PIPE_PRIORITY_CS_HIGH
536 };
537 
538 struct scheduling_resources {
539 	unsigned int vmid_mask;
540 	enum kfd_queue_type type;
541 	uint64_t queue_mask;
542 	uint64_t gws_mask;
543 	uint32_t oac_mask;
544 	uint32_t gds_heap_base;
545 	uint32_t gds_heap_size;
546 };
547 
548 struct process_queue_manager {
549 	/* data */
550 	struct kfd_process	*process;
551 	struct list_head	queues;
552 	unsigned long		*queue_slot_bitmap;
553 };
554 
555 struct qcm_process_device {
556 	/* The Device Queue Manager that owns this data */
557 	struct device_queue_manager *dqm;
558 	struct process_queue_manager *pqm;
559 	/* Queues list */
560 	struct list_head queues_list;
561 	struct list_head priv_queue_list;
562 
563 	unsigned int queue_count;
564 	unsigned int vmid;
565 	bool is_debug;
566 	unsigned int evicted; /* eviction counter, 0=active */
567 
568 	/* This flag tells if we should reset all wavefronts on
569 	 * process termination
570 	 */
571 	bool reset_wavefronts;
572 
573 	/* This flag tells us if this process has a GWS-capable
574 	 * queue that will be mapped into the runlist. It's
575 	 * possible to request a GWS BO, but not have the queue
576 	 * currently mapped, and this changes how the MAP_PROCESS
577 	 * PM4 packet is configured.
578 	 */
579 	bool mapped_gws_queue;
580 
581 	/*
582 	 * All the memory management data should be here too
583 	 */
584 	uint64_t gds_context_area;
585 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
586 	uint64_t page_table_base;
587 	uint32_t sh_mem_config;
588 	uint32_t sh_mem_bases;
589 	uint32_t sh_mem_ape1_base;
590 	uint32_t sh_mem_ape1_limit;
591 	uint32_t gds_size;
592 	uint32_t num_gws;
593 	uint32_t num_oac;
594 	uint32_t sh_hidden_private_base;
595 
596 	/* CWSR memory */
597 	void *cwsr_kaddr;
598 	uint64_t cwsr_base;
599 	uint64_t tba_addr;
600 	uint64_t tma_addr;
601 
602 	/* IB memory */
603 	uint64_t ib_base;
604 	void *ib_kaddr;
605 
606 	/* doorbell resources per process per device */
607 	unsigned long *doorbell_bitmap;
608 };
609 
610 /* KFD Memory Eviction */
611 
612 /* Approx. wait time before attempting to restore evicted BOs */
613 #define PROCESS_RESTORE_TIME_MS 100
614 /* Approx. back off time if restore fails due to lack of memory */
615 #define PROCESS_BACK_OFF_TIME_MS 100
616 /* Approx. time before evicting the process again */
617 #define PROCESS_ACTIVE_TIME_MS 10
618 
619 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
620  * idr_handle in the least significant 4 bytes
621  */
622 #define MAKE_HANDLE(gpu_id, idr_handle) \
623 	(((uint64_t)(gpu_id) << 32) + idr_handle)
624 #define GET_GPU_ID(handle) (handle >> 32)
625 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
626 
627 enum kfd_pdd_bound {
628 	PDD_UNBOUND = 0,
629 	PDD_BOUND,
630 	PDD_BOUND_SUSPENDED,
631 };
632 
633 #define MAX_VRAM_FILENAME_LEN 11
634 
635 /* Data that is per-process-per device. */
636 struct kfd_process_device {
637 	/*
638 	 * List of all per-device data for a process.
639 	 * Starts from kfd_process.per_device_data.
640 	 */
641 	struct list_head per_device_list;
642 
643 	/* The device that owns this data. */
644 	struct kfd_dev *dev;
645 
646 	/* The process that owns this kfd_process_device. */
647 	struct kfd_process *process;
648 
649 	/* per-process-per device QCM data structure */
650 	struct qcm_process_device qpd;
651 
652 	/*Apertures*/
653 	uint64_t lds_base;
654 	uint64_t lds_limit;
655 	uint64_t gpuvm_base;
656 	uint64_t gpuvm_limit;
657 	uint64_t scratch_base;
658 	uint64_t scratch_limit;
659 
660 	/* VM context for GPUVM allocations */
661 	struct file *drm_file;
662 	void *vm;
663 
664 	/* GPUVM allocations storage */
665 	struct idr alloc_idr;
666 
667 	/* Flag used to tell the pdd has dequeued from the dqm.
668 	 * This is used to prevent dev->dqm->ops.process_termination() from
669 	 * being called twice when it is already called in IOMMU callback
670 	 * function.
671 	 */
672 	bool already_dequeued;
673 	bool runtime_inuse;
674 
675 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
676 	enum kfd_pdd_bound bound;
677 
678 	/* VRAM usage */
679 	uint64_t vram_usage;
680 	struct attribute attr_vram;
681 	char vram_filename[MAX_VRAM_FILENAME_LEN];
682 };
683 
684 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
685 
686 /* Process data */
687 struct kfd_process {
688 	/*
689 	 * kfd_process are stored in an mm_struct*->kfd_process*
690 	 * hash table (kfd_processes in kfd_process.c)
691 	 */
692 	struct hlist_node kfd_processes;
693 
694 	/*
695 	 * Opaque pointer to mm_struct. We don't hold a reference to
696 	 * it so it should never be dereferenced from here. This is
697 	 * only used for looking up processes by their mm.
698 	 */
699 	void *mm;
700 
701 	struct kref ref;
702 	struct work_struct release_work;
703 
704 	struct mutex mutex;
705 
706 	/*
707 	 * In any process, the thread that started main() is the lead
708 	 * thread and outlives the rest.
709 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
710 	 * It can also be used for safely getting a reference to the
711 	 * mm_struct of the process.
712 	 */
713 	struct task_struct *lead_thread;
714 
715 	/* We want to receive a notification when the mm_struct is destroyed */
716 	struct mmu_notifier mmu_notifier;
717 
718 	uint16_t pasid;
719 	unsigned int doorbell_index;
720 
721 	/*
722 	 * List of kfd_process_device structures,
723 	 * one for each device the process is using.
724 	 */
725 	struct list_head per_device_data;
726 
727 	struct process_queue_manager pqm;
728 
729 	/*Is the user space process 32 bit?*/
730 	bool is_32bit_user_mode;
731 
732 	/* Event-related data */
733 	struct mutex event_mutex;
734 	/* Event ID allocator and lookup */
735 	struct idr event_idr;
736 	/* Event page */
737 	struct kfd_signal_page *signal_page;
738 	size_t signal_mapped_size;
739 	size_t signal_event_count;
740 	bool signal_event_limit_reached;
741 
742 	/* Information used for memory eviction */
743 	void *kgd_process_info;
744 	/* Eviction fence that is attached to all the BOs of this process. The
745 	 * fence will be triggered during eviction and new one will be created
746 	 * during restore
747 	 */
748 	struct dma_fence *ef;
749 
750 	/* Work items for evicting and restoring BOs */
751 	struct delayed_work eviction_work;
752 	struct delayed_work restore_work;
753 	/* seqno of the last scheduled eviction */
754 	unsigned int last_eviction_seqno;
755 	/* Approx. the last timestamp (in jiffies) when the process was
756 	 * restored after an eviction
757 	 */
758 	unsigned long last_restore_timestamp;
759 
760 	/* Kobj for our procfs */
761 	struct kobject *kobj;
762 	struct kobject *kobj_queues;
763 	struct attribute attr_pasid;
764 };
765 
766 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
767 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
768 extern struct srcu_struct kfd_processes_srcu;
769 
770 /**
771  * Ioctl function type.
772  *
773  * \param filep pointer to file structure.
774  * \param p amdkfd process pointer.
775  * \param data pointer to arg that was copied from user.
776  */
777 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
778 				void *data);
779 
780 struct amdkfd_ioctl_desc {
781 	unsigned int cmd;
782 	int flags;
783 	amdkfd_ioctl_t *func;
784 	unsigned int cmd_drv;
785 	const char *name;
786 };
787 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
788 
789 int kfd_process_create_wq(void);
790 void kfd_process_destroy_wq(void);
791 struct kfd_process *kfd_create_process(struct file *filep);
792 struct kfd_process *kfd_get_process(const struct task_struct *);
793 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
794 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
795 void kfd_unref_process(struct kfd_process *p);
796 int kfd_process_evict_queues(struct kfd_process *p);
797 int kfd_process_restore_queues(struct kfd_process *p);
798 void kfd_suspend_all_processes(void);
799 int kfd_resume_all_processes(void);
800 
801 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
802 			       struct file *drm_file);
803 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
804 						struct kfd_process *p);
805 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
806 							struct kfd_process *p);
807 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
808 							struct kfd_process *p);
809 
810 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
811 			  struct vm_area_struct *vma);
812 
813 /* KFD process API for creating and translating handles */
814 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
815 					void *mem);
816 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
817 					int handle);
818 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
819 					int handle);
820 
821 /* Process device data iterator */
822 struct kfd_process_device *kfd_get_first_process_device_data(
823 							struct kfd_process *p);
824 struct kfd_process_device *kfd_get_next_process_device_data(
825 						struct kfd_process *p,
826 						struct kfd_process_device *pdd);
827 bool kfd_has_process_device_data(struct kfd_process *p);
828 
829 /* PASIDs */
830 int kfd_pasid_init(void);
831 void kfd_pasid_exit(void);
832 bool kfd_set_pasid_limit(unsigned int new_limit);
833 unsigned int kfd_get_pasid_limit(void);
834 unsigned int kfd_pasid_alloc(void);
835 void kfd_pasid_free(unsigned int pasid);
836 
837 /* Doorbells */
838 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
839 int kfd_doorbell_init(struct kfd_dev *kfd);
840 void kfd_doorbell_fini(struct kfd_dev *kfd);
841 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
842 		      struct vm_area_struct *vma);
843 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
844 					unsigned int *doorbell_off);
845 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
846 u32 read_kernel_doorbell(u32 __iomem *db);
847 void write_kernel_doorbell(void __iomem *db, u32 value);
848 void write_kernel_doorbell64(void __iomem *db, u64 value);
849 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
850 					struct kfd_process *process,
851 					unsigned int doorbell_id);
852 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
853 					struct kfd_process *process);
854 int kfd_alloc_process_doorbells(struct kfd_process *process);
855 void kfd_free_process_doorbells(struct kfd_process *process);
856 
857 /* GTT Sub-Allocator */
858 
859 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
860 			struct kfd_mem_obj **mem_obj);
861 
862 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
863 
864 extern struct device *kfd_device;
865 
866 /* KFD's procfs */
867 void kfd_procfs_init(void);
868 void kfd_procfs_shutdown(void);
869 int kfd_procfs_add_queue(struct queue *q);
870 void kfd_procfs_del_queue(struct queue *q);
871 
872 /* Topology */
873 int kfd_topology_init(void);
874 void kfd_topology_shutdown(void);
875 int kfd_topology_add_device(struct kfd_dev *gpu);
876 int kfd_topology_remove_device(struct kfd_dev *gpu);
877 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
878 						uint32_t proximity_domain);
879 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
880 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
881 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
882 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
883 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
884 int kfd_numa_node_to_apic_id(int numa_node_id);
885 
886 /* Interrupts */
887 int kfd_interrupt_init(struct kfd_dev *dev);
888 void kfd_interrupt_exit(struct kfd_dev *dev);
889 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
890 bool interrupt_is_wanted(struct kfd_dev *dev,
891 				const uint32_t *ih_ring_entry,
892 				uint32_t *patched_ihre, bool *flag);
893 
894 /* amdkfd Apertures */
895 int kfd_init_apertures(struct kfd_process *process);
896 
897 /* Queue Context Management */
898 int init_queue(struct queue **q, const struct queue_properties *properties);
899 void uninit_queue(struct queue *q);
900 void print_queue_properties(struct queue_properties *q);
901 void print_queue(struct queue *q);
902 
903 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
904 		struct kfd_dev *dev);
905 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
906 		struct kfd_dev *dev);
907 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
908 		struct kfd_dev *dev);
909 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
910 		struct kfd_dev *dev);
911 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
912 		struct kfd_dev *dev);
913 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
914 		struct kfd_dev *dev);
915 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
916 void device_queue_manager_uninit(struct device_queue_manager *dqm);
917 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
918 					enum kfd_queue_type type);
919 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
920 int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid);
921 
922 /* Process Queue Manager */
923 struct process_queue_node {
924 	struct queue *q;
925 	struct kernel_queue *kq;
926 	struct list_head process_queue_list;
927 };
928 
929 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
930 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
931 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
932 void pqm_uninit(struct process_queue_manager *pqm);
933 int pqm_create_queue(struct process_queue_manager *pqm,
934 			    struct kfd_dev *dev,
935 			    struct file *f,
936 			    struct queue_properties *properties,
937 			    unsigned int *qid,
938 			    uint32_t *p_doorbell_offset_in_process);
939 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
940 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
941 			struct queue_properties *p);
942 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
943 			struct queue_properties *p);
944 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
945 			void *gws);
946 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
947 						unsigned int qid);
948 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
949 						unsigned int qid);
950 int pqm_get_wave_state(struct process_queue_manager *pqm,
951 		       unsigned int qid,
952 		       void __user *ctl_stack,
953 		       u32 *ctl_stack_used_size,
954 		       u32 *save_area_used_size);
955 
956 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
957 			      unsigned int fence_value,
958 			      unsigned int timeout_ms);
959 
960 /* Packet Manager */
961 
962 #define KFD_FENCE_COMPLETED (100)
963 #define KFD_FENCE_INIT   (10)
964 
965 struct packet_manager {
966 	struct device_queue_manager *dqm;
967 	struct kernel_queue *priv_queue;
968 	struct mutex lock;
969 	bool allocated;
970 	struct kfd_mem_obj *ib_buffer_obj;
971 	unsigned int ib_size_bytes;
972 	bool is_over_subscription;
973 
974 	const struct packet_manager_funcs *pmf;
975 };
976 
977 struct packet_manager_funcs {
978 	/* Support ASIC-specific packet formats for PM4 packets */
979 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
980 			struct qcm_process_device *qpd);
981 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
982 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
983 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
984 			struct scheduling_resources *res);
985 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
986 			struct queue *q, bool is_static);
987 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
988 			enum kfd_queue_type type,
989 			enum kfd_unmap_queues_filter mode,
990 			uint32_t filter_param, bool reset,
991 			unsigned int sdma_engine);
992 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
993 			uint64_t fence_address,	uint32_t fence_value);
994 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
995 
996 	/* Packet sizes */
997 	int map_process_size;
998 	int runlist_size;
999 	int set_resources_size;
1000 	int map_queues_size;
1001 	int unmap_queues_size;
1002 	int query_status_size;
1003 	int release_mem_size;
1004 };
1005 
1006 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1007 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1008 
1009 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1010 void pm_uninit(struct packet_manager *pm, bool hanging);
1011 int pm_send_set_resources(struct packet_manager *pm,
1012 				struct scheduling_resources *res);
1013 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1014 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1015 				uint32_t fence_value);
1016 
1017 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1018 			enum kfd_unmap_queues_filter mode,
1019 			uint32_t filter_param, bool reset,
1020 			unsigned int sdma_engine);
1021 
1022 void pm_release_ib(struct packet_manager *pm);
1023 
1024 /* Following PM funcs can be shared among VI and AI */
1025 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1026 
1027 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1028 
1029 /* Events */
1030 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1031 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1032 
1033 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1034 
1035 void kfd_event_init_process(struct kfd_process *p);
1036 void kfd_event_free_process(struct kfd_process *p);
1037 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1038 int kfd_wait_on_events(struct kfd_process *p,
1039 		       uint32_t num_events, void __user *data,
1040 		       bool all, uint32_t user_timeout_ms,
1041 		       uint32_t *wait_result);
1042 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
1043 				uint32_t valid_id_bits);
1044 void kfd_signal_iommu_event(struct kfd_dev *dev,
1045 		unsigned int pasid, unsigned long address,
1046 		bool is_write_requested, bool is_execute_requested);
1047 void kfd_signal_hw_exception_event(unsigned int pasid);
1048 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1049 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1050 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1051 		       uint64_t size);
1052 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1053 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1054 		     uint32_t *event_id, uint32_t *event_trigger_data,
1055 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1056 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1057 
1058 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
1059 				struct kfd_vm_fault_info *info);
1060 
1061 void kfd_signal_reset_event(struct kfd_dev *dev);
1062 
1063 void kfd_flush_tlb(struct kfd_process_device *pdd);
1064 
1065 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1066 
1067 bool kfd_is_locked(void);
1068 
1069 /* Compute profile */
1070 void kfd_inc_compute_active(struct kfd_dev *dev);
1071 void kfd_dec_compute_active(struct kfd_dev *dev);
1072 
1073 /* Cgroup Support */
1074 /* Check with device cgroup if @kfd device is accessible */
1075 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1076 {
1077 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1078 	struct drm_device *ddev = kfd->ddev;
1079 
1080 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1081 					  ddev->render->index,
1082 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1083 #else
1084 	return 0;
1085 #endif
1086 }
1087 
1088 /* Debugfs */
1089 #if defined(CONFIG_DEBUG_FS)
1090 
1091 void kfd_debugfs_init(void);
1092 void kfd_debugfs_fini(void);
1093 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1094 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1095 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1096 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1097 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1098 int pm_debugfs_runlist(struct seq_file *m, void *data);
1099 
1100 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1101 int pm_debugfs_hang_hws(struct packet_manager *pm);
1102 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1103 
1104 #else
1105 
1106 static inline void kfd_debugfs_init(void) {}
1107 static inline void kfd_debugfs_fini(void) {}
1108 
1109 #endif
1110 
1111 #endif
1112