xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 4bb1eb3c)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <linux/sysfs.h>
39 #include <linux/device_cgroup.h>
40 #include <drm/drm_file.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_device.h>
43 #include <drm/drm_ioctl.h>
44 #include <kgd_kfd_interface.h>
45 #include <linux/swap.h>
46 
47 #include "amd_shared.h"
48 
49 #define KFD_MAX_RING_ENTRY_SIZE	8
50 
51 #define KFD_SYSFS_FILE_MODE 0444
52 
53 /* GPU ID hash width in bits */
54 #define KFD_GPU_ID_HASH_WIDTH 16
55 
56 /* Use upper bits of mmap offset to store KFD driver specific information.
57  * BITS[63:62] - Encode MMAP type
58  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
59  * BITS[45:0]  - MMAP offset value
60  *
61  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
62  *  defines are w.r.t to PAGE_SIZE
63  */
64 #define KFD_MMAP_TYPE_SHIFT	62
65 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
66 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
67 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
68 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
70 
71 #define KFD_MMAP_GPU_ID_SHIFT 46
72 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
73 				<< KFD_MMAP_GPU_ID_SHIFT)
74 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
75 				& KFD_MMAP_GPU_ID_MASK)
76 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
77 				>> KFD_MMAP_GPU_ID_SHIFT)
78 
79 /*
80  * When working with cp scheduler we should assign the HIQ manually or via
81  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
82  * definitions for Kaveri. In Kaveri only the first ME queues participates
83  * in the cp scheduling taking that in mind we set the HIQ slot in the
84  * second ME.
85  */
86 #define KFD_CIK_HIQ_PIPE 4
87 #define KFD_CIK_HIQ_QUEUE 0
88 
89 /* Macro for allocating structures */
90 #define kfd_alloc_struct(ptr_to_struct)	\
91 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
92 
93 #define KFD_MAX_NUM_OF_PROCESSES 512
94 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
95 
96 /*
97  * Size of the per-process TBA+TMA buffer: 2 pages
98  *
99  * The first page is the TBA used for the CWSR ISA code. The second
100  * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
101  */
102 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
103 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
104 
105 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
106 	(KFD_MAX_NUM_OF_PROCESSES *			\
107 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
108 
109 #define KFD_KERNEL_QUEUE_SIZE 2048
110 
111 #define KFD_UNMAP_LATENCY_MS	(4000)
112 
113 /*
114  * 512 = 0x200
115  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
116  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
117  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
118  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
119  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
120  */
121 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
122 
123 
124 /*
125  * Kernel module parameter to specify maximum number of supported queues per
126  * device
127  */
128 extern int max_num_of_queues_per_device;
129 
130 
131 /* Kernel module parameter to specify the scheduling policy */
132 extern int sched_policy;
133 
134 /*
135  * Kernel module parameter to specify the maximum process
136  * number per HW scheduler
137  */
138 extern int hws_max_conc_proc;
139 
140 extern int cwsr_enable;
141 
142 /*
143  * Kernel module parameter to specify whether to send sigterm to HSA process on
144  * unhandled exception
145  */
146 extern int send_sigterm;
147 
148 /*
149  * This kernel module is used to simulate large bar machine on non-large bar
150  * enabled machines.
151  */
152 extern int debug_largebar;
153 
154 /*
155  * Ignore CRAT table during KFD initialization, can be used to work around
156  * broken CRAT tables on some AMD systems
157  */
158 extern int ignore_crat;
159 
160 /* Set sh_mem_config.retry_disable on GFX v9 */
161 extern int amdgpu_noretry;
162 
163 /* Halt if HWS hang is detected */
164 extern int halt_if_hws_hang;
165 
166 /* Whether MEC FW support GWS barriers */
167 extern bool hws_gws_support;
168 
169 /* Queue preemption timeout in ms */
170 extern int queue_preemption_timeout_ms;
171 
172 /* Enable eviction debug messages */
173 extern bool debug_evictions;
174 
175 enum cache_policy {
176 	cache_policy_coherent,
177 	cache_policy_noncoherent
178 };
179 
180 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
181 
182 struct kfd_event_interrupt_class {
183 	bool (*interrupt_isr)(struct kfd_dev *dev,
184 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
185 			bool *patched_flag);
186 	void (*interrupt_wq)(struct kfd_dev *dev,
187 			const uint32_t *ih_ring_entry);
188 };
189 
190 struct kfd_device_info {
191 	enum amd_asic_type asic_family;
192 	const char *asic_name;
193 	const struct kfd_event_interrupt_class *event_interrupt_class;
194 	unsigned int max_pasid_bits;
195 	unsigned int max_no_of_hqd;
196 	unsigned int doorbell_size;
197 	size_t ih_ring_entry_size;
198 	uint8_t num_of_watch_points;
199 	uint16_t mqd_size_aligned;
200 	bool supports_cwsr;
201 	bool needs_iommu_device;
202 	bool needs_pci_atomics;
203 	unsigned int num_sdma_engines;
204 	unsigned int num_xgmi_sdma_engines;
205 	unsigned int num_sdma_queues_per_engine;
206 };
207 
208 struct kfd_mem_obj {
209 	uint32_t range_start;
210 	uint32_t range_end;
211 	uint64_t gpu_addr;
212 	uint32_t *cpu_ptr;
213 	void *gtt_mem;
214 };
215 
216 struct kfd_vmid_info {
217 	uint32_t first_vmid_kfd;
218 	uint32_t last_vmid_kfd;
219 	uint32_t vmid_num_kfd;
220 };
221 
222 struct kfd_dev {
223 	struct kgd_dev *kgd;
224 
225 	const struct kfd_device_info *device_info;
226 	struct pci_dev *pdev;
227 	struct drm_device *ddev;
228 
229 	unsigned int id;		/* topology stub index */
230 
231 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
232 					 * KFD. It is aligned for mapping
233 					 * into user mode
234 					 */
235 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
236 					 * doorbell BAR to the first KFD
237 					 * doorbell in dwords. GFX reserves
238 					 * the segment before this offset.
239 					 */
240 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
241 					   * page used by kernel queue
242 					   */
243 
244 	struct kgd2kfd_shared_resources shared_resources;
245 	struct kfd_vmid_info vm_info;
246 
247 	const struct kfd2kgd_calls *kfd2kgd;
248 	struct mutex doorbell_mutex;
249 	DECLARE_BITMAP(doorbell_available_index,
250 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
251 
252 	void *gtt_mem;
253 	uint64_t gtt_start_gpu_addr;
254 	void *gtt_start_cpu_ptr;
255 	void *gtt_sa_bitmap;
256 	struct mutex gtt_sa_lock;
257 	unsigned int gtt_sa_chunk_size;
258 	unsigned int gtt_sa_num_of_chunks;
259 
260 	/* Interrupts */
261 	struct kfifo ih_fifo;
262 	struct workqueue_struct *ih_wq;
263 	struct work_struct interrupt_work;
264 	spinlock_t interrupt_lock;
265 
266 	/* QCM Device instance */
267 	struct device_queue_manager *dqm;
268 
269 	bool init_complete;
270 	/*
271 	 * Interrupts of interest to KFD are copied
272 	 * from the HW ring into a SW ring.
273 	 */
274 	bool interrupts_active;
275 
276 	/* Debug manager */
277 	struct kfd_dbgmgr *dbgmgr;
278 
279 	/* Firmware versions */
280 	uint16_t mec_fw_version;
281 	uint16_t mec2_fw_version;
282 	uint16_t sdma_fw_version;
283 
284 	/* Maximum process number mapped to HW scheduler */
285 	unsigned int max_proc_per_quantum;
286 
287 	/* CWSR */
288 	bool cwsr_enabled;
289 	const void *cwsr_isa;
290 	unsigned int cwsr_isa_size;
291 
292 	/* xGMI */
293 	uint64_t hive_id;
294 
295 	/* UUID */
296 	uint64_t unique_id;
297 
298 	bool pci_atomic_requested;
299 
300 	/* SRAM ECC flag */
301 	atomic_t sram_ecc_flag;
302 
303 	/* Compute Profile ref. count */
304 	atomic_t compute_profile;
305 
306 	/* Global GWS resource shared between processes */
307 	void *gws;
308 
309 	/* Clients watching SMI events */
310 	struct list_head smi_clients;
311 	spinlock_t smi_lock;
312 };
313 
314 enum kfd_mempool {
315 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
316 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
317 	KFD_MEMPOOL_FRAMEBUFFER = 3,
318 };
319 
320 /* Character device interface */
321 int kfd_chardev_init(void);
322 void kfd_chardev_exit(void);
323 struct device *kfd_chardev(void);
324 
325 /**
326  * enum kfd_unmap_queues_filter - Enum for queue filters.
327  *
328  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
329  *
330  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
331  *						running queues list.
332  *
333  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
334  *						specific process.
335  *
336  */
337 enum kfd_unmap_queues_filter {
338 	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
339 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
340 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
341 	KFD_UNMAP_QUEUES_FILTER_BY_PASID
342 };
343 
344 /**
345  * enum kfd_queue_type - Enum for various queue types.
346  *
347  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
348  *
349  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
350  *
351  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
352  *
353  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
354  *
355  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
356  */
357 enum kfd_queue_type  {
358 	KFD_QUEUE_TYPE_COMPUTE,
359 	KFD_QUEUE_TYPE_SDMA,
360 	KFD_QUEUE_TYPE_HIQ,
361 	KFD_QUEUE_TYPE_DIQ,
362 	KFD_QUEUE_TYPE_SDMA_XGMI
363 };
364 
365 enum kfd_queue_format {
366 	KFD_QUEUE_FORMAT_PM4,
367 	KFD_QUEUE_FORMAT_AQL
368 };
369 
370 enum KFD_QUEUE_PRIORITY {
371 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
372 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
373 };
374 
375 /**
376  * struct queue_properties
377  *
378  * @type: The queue type.
379  *
380  * @queue_id: Queue identifier.
381  *
382  * @queue_address: Queue ring buffer address.
383  *
384  * @queue_size: Queue ring buffer size.
385  *
386  * @priority: Defines the queue priority relative to other queues in the
387  * process.
388  * This is just an indication and HW scheduling may override the priority as
389  * necessary while keeping the relative prioritization.
390  * the priority granularity is from 0 to f which f is the highest priority.
391  * currently all queues are initialized with the highest priority.
392  *
393  * @queue_percent: This field is partially implemented and currently a zero in
394  * this field defines that the queue is non active.
395  *
396  * @read_ptr: User space address which points to the number of dwords the
397  * cp read from the ring buffer. This field updates automatically by the H/W.
398  *
399  * @write_ptr: Defines the number of dwords written to the ring buffer.
400  *
401  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
402  * buffer. This field should be similar to write_ptr and the user should
403  * update this field after updating the write_ptr.
404  *
405  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
406  *
407  * @is_interop: Defines if this is a interop queue. Interop queue means that
408  * the queue can access both graphics and compute resources.
409  *
410  * @is_evicted: Defines if the queue is evicted. Only active queues
411  * are evicted, rendering them inactive.
412  *
413  * @is_active: Defines if the queue is active or not. @is_active and
414  * @is_evicted are protected by the DQM lock.
415  *
416  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
417  * @is_gws should be protected by the DQM lock, since changing it can yield the
418  * possibility of updating DQM state on number of GWS queues.
419  *
420  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
421  * of the queue.
422  *
423  * This structure represents the queue properties for each queue no matter if
424  * it's user mode or kernel mode queue.
425  *
426  */
427 struct queue_properties {
428 	enum kfd_queue_type type;
429 	enum kfd_queue_format format;
430 	unsigned int queue_id;
431 	uint64_t queue_address;
432 	uint64_t  queue_size;
433 	uint32_t priority;
434 	uint32_t queue_percent;
435 	uint32_t *read_ptr;
436 	uint32_t *write_ptr;
437 	void __iomem *doorbell_ptr;
438 	uint32_t doorbell_off;
439 	bool is_interop;
440 	bool is_evicted;
441 	bool is_active;
442 	bool is_gws;
443 	/* Not relevant for user mode queues in cp scheduling */
444 	unsigned int vmid;
445 	/* Relevant only for sdma queues*/
446 	uint32_t sdma_engine_id;
447 	uint32_t sdma_queue_id;
448 	uint32_t sdma_vm_addr;
449 	/* Relevant only for VI */
450 	uint64_t eop_ring_buffer_address;
451 	uint32_t eop_ring_buffer_size;
452 	uint64_t ctx_save_restore_area_address;
453 	uint32_t ctx_save_restore_area_size;
454 	uint32_t ctl_stack_size;
455 	uint64_t tba_addr;
456 	uint64_t tma_addr;
457 	/* Relevant for CU */
458 	uint32_t cu_mask_count; /* Must be a multiple of 32 */
459 	uint32_t *cu_mask;
460 };
461 
462 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
463 			    (q).queue_address != 0 &&	\
464 			    (q).queue_percent > 0 &&	\
465 			    !(q).is_evicted)
466 
467 /**
468  * struct queue
469  *
470  * @list: Queue linked list.
471  *
472  * @mqd: The queue MQD (memory queue descriptor).
473  *
474  * @mqd_mem_obj: The MQD local gpu memory object.
475  *
476  * @gart_mqd_addr: The MQD gart mc address.
477  *
478  * @properties: The queue properties.
479  *
480  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
481  *	 that the queue should be executed on.
482  *
483  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
484  *	  id.
485  *
486  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
487  *
488  * @process: The kfd process that created this queue.
489  *
490  * @device: The kfd device that created this queue.
491  *
492  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
493  * otherwise.
494  *
495  * This structure represents user mode compute queues.
496  * It contains all the necessary data to handle such queues.
497  *
498  */
499 
500 struct queue {
501 	struct list_head list;
502 	void *mqd;
503 	struct kfd_mem_obj *mqd_mem_obj;
504 	uint64_t gart_mqd_addr;
505 	struct queue_properties properties;
506 
507 	uint32_t mec;
508 	uint32_t pipe;
509 	uint32_t queue;
510 
511 	unsigned int sdma_id;
512 	unsigned int doorbell_id;
513 
514 	struct kfd_process	*process;
515 	struct kfd_dev		*device;
516 	void *gws;
517 
518 	/* procfs */
519 	struct kobject kobj;
520 };
521 
522 enum KFD_MQD_TYPE {
523 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
524 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
525 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
526 	KFD_MQD_TYPE_DIQ,		/* for diq */
527 	KFD_MQD_TYPE_MAX
528 };
529 
530 enum KFD_PIPE_PRIORITY {
531 	KFD_PIPE_PRIORITY_CS_LOW = 0,
532 	KFD_PIPE_PRIORITY_CS_MEDIUM,
533 	KFD_PIPE_PRIORITY_CS_HIGH
534 };
535 
536 struct scheduling_resources {
537 	unsigned int vmid_mask;
538 	enum kfd_queue_type type;
539 	uint64_t queue_mask;
540 	uint64_t gws_mask;
541 	uint32_t oac_mask;
542 	uint32_t gds_heap_base;
543 	uint32_t gds_heap_size;
544 };
545 
546 struct process_queue_manager {
547 	/* data */
548 	struct kfd_process	*process;
549 	struct list_head	queues;
550 	unsigned long		*queue_slot_bitmap;
551 };
552 
553 struct qcm_process_device {
554 	/* The Device Queue Manager that owns this data */
555 	struct device_queue_manager *dqm;
556 	struct process_queue_manager *pqm;
557 	/* Queues list */
558 	struct list_head queues_list;
559 	struct list_head priv_queue_list;
560 
561 	unsigned int queue_count;
562 	unsigned int vmid;
563 	bool is_debug;
564 	unsigned int evicted; /* eviction counter, 0=active */
565 
566 	/* This flag tells if we should reset all wavefronts on
567 	 * process termination
568 	 */
569 	bool reset_wavefronts;
570 
571 	/* This flag tells us if this process has a GWS-capable
572 	 * queue that will be mapped into the runlist. It's
573 	 * possible to request a GWS BO, but not have the queue
574 	 * currently mapped, and this changes how the MAP_PROCESS
575 	 * PM4 packet is configured.
576 	 */
577 	bool mapped_gws_queue;
578 
579 	/* All the memory management data should be here too */
580 	uint64_t gds_context_area;
581 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
582 	uint64_t page_table_base;
583 	uint32_t sh_mem_config;
584 	uint32_t sh_mem_bases;
585 	uint32_t sh_mem_ape1_base;
586 	uint32_t sh_mem_ape1_limit;
587 	uint32_t gds_size;
588 	uint32_t num_gws;
589 	uint32_t num_oac;
590 	uint32_t sh_hidden_private_base;
591 
592 	/* CWSR memory */
593 	void *cwsr_kaddr;
594 	uint64_t cwsr_base;
595 	uint64_t tba_addr;
596 	uint64_t tma_addr;
597 
598 	/* IB memory */
599 	uint64_t ib_base;
600 	void *ib_kaddr;
601 
602 	/* doorbell resources per process per device */
603 	unsigned long *doorbell_bitmap;
604 };
605 
606 /* KFD Memory Eviction */
607 
608 /* Approx. wait time before attempting to restore evicted BOs */
609 #define PROCESS_RESTORE_TIME_MS 100
610 /* Approx. back off time if restore fails due to lack of memory */
611 #define PROCESS_BACK_OFF_TIME_MS 100
612 /* Approx. time before evicting the process again */
613 #define PROCESS_ACTIVE_TIME_MS 10
614 
615 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
616  * idr_handle in the least significant 4 bytes
617  */
618 #define MAKE_HANDLE(gpu_id, idr_handle) \
619 	(((uint64_t)(gpu_id) << 32) + idr_handle)
620 #define GET_GPU_ID(handle) (handle >> 32)
621 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
622 
623 enum kfd_pdd_bound {
624 	PDD_UNBOUND = 0,
625 	PDD_BOUND,
626 	PDD_BOUND_SUSPENDED,
627 };
628 
629 #define MAX_SYSFS_FILENAME_LEN 11
630 
631 /*
632  * SDMA counter runs at 100MHz frequency.
633  * We display SDMA activity in microsecond granularity in sysfs.
634  * As a result, the divisor is 100.
635  */
636 #define SDMA_ACTIVITY_DIVISOR  100
637 
638 /* Data that is per-process-per device. */
639 struct kfd_process_device {
640 	/*
641 	 * List of all per-device data for a process.
642 	 * Starts from kfd_process.per_device_data.
643 	 */
644 	struct list_head per_device_list;
645 
646 	/* The device that owns this data. */
647 	struct kfd_dev *dev;
648 
649 	/* The process that owns this kfd_process_device. */
650 	struct kfd_process *process;
651 
652 	/* per-process-per device QCM data structure */
653 	struct qcm_process_device qpd;
654 
655 	/*Apertures*/
656 	uint64_t lds_base;
657 	uint64_t lds_limit;
658 	uint64_t gpuvm_base;
659 	uint64_t gpuvm_limit;
660 	uint64_t scratch_base;
661 	uint64_t scratch_limit;
662 
663 	/* VM context for GPUVM allocations */
664 	struct file *drm_file;
665 	void *vm;
666 
667 	/* GPUVM allocations storage */
668 	struct idr alloc_idr;
669 
670 	/* Flag used to tell the pdd has dequeued from the dqm.
671 	 * This is used to prevent dev->dqm->ops.process_termination() from
672 	 * being called twice when it is already called in IOMMU callback
673 	 * function.
674 	 */
675 	bool already_dequeued;
676 	bool runtime_inuse;
677 
678 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
679 	enum kfd_pdd_bound bound;
680 
681 	/* VRAM usage */
682 	uint64_t vram_usage;
683 	struct attribute attr_vram;
684 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
685 
686 	/* SDMA activity tracking */
687 	uint64_t sdma_past_activity_counter;
688 	struct attribute attr_sdma;
689 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
690 };
691 
692 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
693 
694 /* Process data */
695 struct kfd_process {
696 	/*
697 	 * kfd_process are stored in an mm_struct*->kfd_process*
698 	 * hash table (kfd_processes in kfd_process.c)
699 	 */
700 	struct hlist_node kfd_processes;
701 
702 	/*
703 	 * Opaque pointer to mm_struct. We don't hold a reference to
704 	 * it so it should never be dereferenced from here. This is
705 	 * only used for looking up processes by their mm.
706 	 */
707 	void *mm;
708 
709 	struct kref ref;
710 	struct work_struct release_work;
711 
712 	struct mutex mutex;
713 
714 	/*
715 	 * In any process, the thread that started main() is the lead
716 	 * thread and outlives the rest.
717 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
718 	 * It can also be used for safely getting a reference to the
719 	 * mm_struct of the process.
720 	 */
721 	struct task_struct *lead_thread;
722 
723 	/* We want to receive a notification when the mm_struct is destroyed */
724 	struct mmu_notifier mmu_notifier;
725 
726 	uint16_t pasid;
727 	unsigned int doorbell_index;
728 
729 	/*
730 	 * List of kfd_process_device structures,
731 	 * one for each device the process is using.
732 	 */
733 	struct list_head per_device_data;
734 
735 	struct process_queue_manager pqm;
736 
737 	/*Is the user space process 32 bit?*/
738 	bool is_32bit_user_mode;
739 
740 	/* Event-related data */
741 	struct mutex event_mutex;
742 	/* Event ID allocator and lookup */
743 	struct idr event_idr;
744 	/* Event page */
745 	struct kfd_signal_page *signal_page;
746 	size_t signal_mapped_size;
747 	size_t signal_event_count;
748 	bool signal_event_limit_reached;
749 
750 	/* Information used for memory eviction */
751 	void *kgd_process_info;
752 	/* Eviction fence that is attached to all the BOs of this process. The
753 	 * fence will be triggered during eviction and new one will be created
754 	 * during restore
755 	 */
756 	struct dma_fence *ef;
757 
758 	/* Work items for evicting and restoring BOs */
759 	struct delayed_work eviction_work;
760 	struct delayed_work restore_work;
761 	/* seqno of the last scheduled eviction */
762 	unsigned int last_eviction_seqno;
763 	/* Approx. the last timestamp (in jiffies) when the process was
764 	 * restored after an eviction
765 	 */
766 	unsigned long last_restore_timestamp;
767 
768 	/* Kobj for our procfs */
769 	struct kobject *kobj;
770 	struct kobject *kobj_queues;
771 	struct attribute attr_pasid;
772 };
773 
774 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
775 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
776 extern struct srcu_struct kfd_processes_srcu;
777 
778 /**
779  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
780  *
781  * @filep: pointer to file structure.
782  * @p: amdkfd process pointer.
783  * @data: pointer to arg that was copied from user.
784  *
785  * Return: returns ioctl completion code.
786  */
787 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
788 				void *data);
789 
790 struct amdkfd_ioctl_desc {
791 	unsigned int cmd;
792 	int flags;
793 	amdkfd_ioctl_t *func;
794 	unsigned int cmd_drv;
795 	const char *name;
796 };
797 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
798 
799 int kfd_process_create_wq(void);
800 void kfd_process_destroy_wq(void);
801 struct kfd_process *kfd_create_process(struct file *filep);
802 struct kfd_process *kfd_get_process(const struct task_struct *);
803 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
804 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
805 void kfd_unref_process(struct kfd_process *p);
806 int kfd_process_evict_queues(struct kfd_process *p);
807 int kfd_process_restore_queues(struct kfd_process *p);
808 void kfd_suspend_all_processes(void);
809 int kfd_resume_all_processes(void);
810 
811 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
812 			       struct file *drm_file);
813 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
814 						struct kfd_process *p);
815 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
816 							struct kfd_process *p);
817 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
818 							struct kfd_process *p);
819 
820 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
821 			  struct vm_area_struct *vma);
822 
823 /* KFD process API for creating and translating handles */
824 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
825 					void *mem);
826 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
827 					int handle);
828 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
829 					int handle);
830 
831 /* Process device data iterator */
832 struct kfd_process_device *kfd_get_first_process_device_data(
833 							struct kfd_process *p);
834 struct kfd_process_device *kfd_get_next_process_device_data(
835 						struct kfd_process *p,
836 						struct kfd_process_device *pdd);
837 bool kfd_has_process_device_data(struct kfd_process *p);
838 
839 /* PASIDs */
840 int kfd_pasid_init(void);
841 void kfd_pasid_exit(void);
842 bool kfd_set_pasid_limit(unsigned int new_limit);
843 unsigned int kfd_get_pasid_limit(void);
844 unsigned int kfd_pasid_alloc(void);
845 void kfd_pasid_free(unsigned int pasid);
846 
847 /* Doorbells */
848 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
849 int kfd_doorbell_init(struct kfd_dev *kfd);
850 void kfd_doorbell_fini(struct kfd_dev *kfd);
851 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
852 		      struct vm_area_struct *vma);
853 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
854 					unsigned int *doorbell_off);
855 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
856 u32 read_kernel_doorbell(u32 __iomem *db);
857 void write_kernel_doorbell(void __iomem *db, u32 value);
858 void write_kernel_doorbell64(void __iomem *db, u64 value);
859 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
860 					struct kfd_process *process,
861 					unsigned int doorbell_id);
862 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
863 					struct kfd_process *process);
864 int kfd_alloc_process_doorbells(struct kfd_process *process);
865 void kfd_free_process_doorbells(struct kfd_process *process);
866 
867 /* GTT Sub-Allocator */
868 
869 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
870 			struct kfd_mem_obj **mem_obj);
871 
872 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
873 
874 extern struct device *kfd_device;
875 
876 /* KFD's procfs */
877 void kfd_procfs_init(void);
878 void kfd_procfs_shutdown(void);
879 int kfd_procfs_add_queue(struct queue *q);
880 void kfd_procfs_del_queue(struct queue *q);
881 
882 /* Topology */
883 int kfd_topology_init(void);
884 void kfd_topology_shutdown(void);
885 int kfd_topology_add_device(struct kfd_dev *gpu);
886 int kfd_topology_remove_device(struct kfd_dev *gpu);
887 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
888 						uint32_t proximity_domain);
889 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
890 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
891 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
892 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
893 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
894 int kfd_numa_node_to_apic_id(int numa_node_id);
895 
896 /* Interrupts */
897 int kfd_interrupt_init(struct kfd_dev *dev);
898 void kfd_interrupt_exit(struct kfd_dev *dev);
899 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
900 bool interrupt_is_wanted(struct kfd_dev *dev,
901 				const uint32_t *ih_ring_entry,
902 				uint32_t *patched_ihre, bool *flag);
903 
904 /* amdkfd Apertures */
905 int kfd_init_apertures(struct kfd_process *process);
906 
907 /* Queue Context Management */
908 int init_queue(struct queue **q, const struct queue_properties *properties);
909 void uninit_queue(struct queue *q);
910 void print_queue_properties(struct queue_properties *q);
911 void print_queue(struct queue *q);
912 
913 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
914 		struct kfd_dev *dev);
915 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
916 		struct kfd_dev *dev);
917 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
918 		struct kfd_dev *dev);
919 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
920 		struct kfd_dev *dev);
921 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
922 		struct kfd_dev *dev);
923 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
924 		struct kfd_dev *dev);
925 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
926 void device_queue_manager_uninit(struct device_queue_manager *dqm);
927 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
928 					enum kfd_queue_type type);
929 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
930 int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid);
931 
932 /* Process Queue Manager */
933 struct process_queue_node {
934 	struct queue *q;
935 	struct kernel_queue *kq;
936 	struct list_head process_queue_list;
937 };
938 
939 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
940 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
941 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
942 void pqm_uninit(struct process_queue_manager *pqm);
943 int pqm_create_queue(struct process_queue_manager *pqm,
944 			    struct kfd_dev *dev,
945 			    struct file *f,
946 			    struct queue_properties *properties,
947 			    unsigned int *qid,
948 			    uint32_t *p_doorbell_offset_in_process);
949 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
950 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
951 			struct queue_properties *p);
952 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
953 			struct queue_properties *p);
954 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
955 			void *gws);
956 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
957 						unsigned int qid);
958 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
959 						unsigned int qid);
960 int pqm_get_wave_state(struct process_queue_manager *pqm,
961 		       unsigned int qid,
962 		       void __user *ctl_stack,
963 		       u32 *ctl_stack_used_size,
964 		       u32 *save_area_used_size);
965 
966 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
967 			      unsigned int fence_value,
968 			      unsigned int timeout_ms);
969 
970 /* Packet Manager */
971 
972 #define KFD_FENCE_COMPLETED (100)
973 #define KFD_FENCE_INIT   (10)
974 
975 struct packet_manager {
976 	struct device_queue_manager *dqm;
977 	struct kernel_queue *priv_queue;
978 	struct mutex lock;
979 	bool allocated;
980 	struct kfd_mem_obj *ib_buffer_obj;
981 	unsigned int ib_size_bytes;
982 	bool is_over_subscription;
983 
984 	const struct packet_manager_funcs *pmf;
985 };
986 
987 struct packet_manager_funcs {
988 	/* Support ASIC-specific packet formats for PM4 packets */
989 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
990 			struct qcm_process_device *qpd);
991 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
992 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
993 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
994 			struct scheduling_resources *res);
995 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
996 			struct queue *q, bool is_static);
997 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
998 			enum kfd_queue_type type,
999 			enum kfd_unmap_queues_filter mode,
1000 			uint32_t filter_param, bool reset,
1001 			unsigned int sdma_engine);
1002 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1003 			uint64_t fence_address,	uint32_t fence_value);
1004 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1005 
1006 	/* Packet sizes */
1007 	int map_process_size;
1008 	int runlist_size;
1009 	int set_resources_size;
1010 	int map_queues_size;
1011 	int unmap_queues_size;
1012 	int query_status_size;
1013 	int release_mem_size;
1014 };
1015 
1016 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1017 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1018 
1019 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1020 void pm_uninit(struct packet_manager *pm, bool hanging);
1021 int pm_send_set_resources(struct packet_manager *pm,
1022 				struct scheduling_resources *res);
1023 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1024 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1025 				uint32_t fence_value);
1026 
1027 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1028 			enum kfd_unmap_queues_filter mode,
1029 			uint32_t filter_param, bool reset,
1030 			unsigned int sdma_engine);
1031 
1032 void pm_release_ib(struct packet_manager *pm);
1033 
1034 /* Following PM funcs can be shared among VI and AI */
1035 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1036 
1037 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1038 
1039 /* Events */
1040 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1041 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1042 
1043 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1044 
1045 void kfd_event_init_process(struct kfd_process *p);
1046 void kfd_event_free_process(struct kfd_process *p);
1047 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1048 int kfd_wait_on_events(struct kfd_process *p,
1049 		       uint32_t num_events, void __user *data,
1050 		       bool all, uint32_t user_timeout_ms,
1051 		       uint32_t *wait_result);
1052 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
1053 				uint32_t valid_id_bits);
1054 void kfd_signal_iommu_event(struct kfd_dev *dev,
1055 		unsigned int pasid, unsigned long address,
1056 		bool is_write_requested, bool is_execute_requested);
1057 void kfd_signal_hw_exception_event(unsigned int pasid);
1058 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1059 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1060 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1061 		       uint64_t size);
1062 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1063 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1064 		     uint32_t *event_id, uint32_t *event_trigger_data,
1065 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1066 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1067 
1068 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
1069 				struct kfd_vm_fault_info *info);
1070 
1071 void kfd_signal_reset_event(struct kfd_dev *dev);
1072 
1073 void kfd_flush_tlb(struct kfd_process_device *pdd);
1074 
1075 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1076 
1077 bool kfd_is_locked(void);
1078 
1079 /* Compute profile */
1080 void kfd_inc_compute_active(struct kfd_dev *dev);
1081 void kfd_dec_compute_active(struct kfd_dev *dev);
1082 
1083 /* Cgroup Support */
1084 /* Check with device cgroup if @kfd device is accessible */
1085 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1086 {
1087 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1088 	struct drm_device *ddev = kfd->ddev;
1089 
1090 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1091 					  ddev->render->index,
1092 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1093 #else
1094 	return 0;
1095 #endif
1096 }
1097 
1098 /* Debugfs */
1099 #if defined(CONFIG_DEBUG_FS)
1100 
1101 void kfd_debugfs_init(void);
1102 void kfd_debugfs_fini(void);
1103 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1104 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1105 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1106 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1107 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1108 int pm_debugfs_runlist(struct seq_file *m, void *data);
1109 
1110 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1111 int pm_debugfs_hang_hws(struct packet_manager *pm);
1112 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1113 
1114 #else
1115 
1116 static inline void kfd_debugfs_init(void) {}
1117 static inline void kfd_debugfs_fini(void) {}
1118 
1119 #endif
1120 
1121 #endif
1122