1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #ifndef KFD_PRIV_H_INCLUDED 24 #define KFD_PRIV_H_INCLUDED 25 26 #include <linux/hashtable.h> 27 #include <linux/mmu_notifier.h> 28 #include <linux/mutex.h> 29 #include <linux/types.h> 30 #include <linux/atomic.h> 31 #include <linux/workqueue.h> 32 #include <linux/spinlock.h> 33 #include <linux/kfd_ioctl.h> 34 #include <linux/idr.h> 35 #include <linux/kfifo.h> 36 #include <linux/seq_file.h> 37 #include <linux/kref.h> 38 #include <linux/sysfs.h> 39 #include <linux/device_cgroup.h> 40 #include <drm/drm_file.h> 41 #include <drm/drm_drv.h> 42 #include <drm/drm_device.h> 43 #include <kgd_kfd_interface.h> 44 45 #include "amd_shared.h" 46 47 #define KFD_MAX_RING_ENTRY_SIZE 8 48 49 #define KFD_SYSFS_FILE_MODE 0444 50 51 /* GPU ID hash width in bits */ 52 #define KFD_GPU_ID_HASH_WIDTH 16 53 54 /* Use upper bits of mmap offset to store KFD driver specific information. 55 * BITS[63:62] - Encode MMAP type 56 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 57 * BITS[45:0] - MMAP offset value 58 * 59 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 60 * defines are w.r.t to PAGE_SIZE 61 */ 62 #define KFD_MMAP_TYPE_SHIFT (62 - PAGE_SHIFT) 63 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 64 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 65 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 66 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 67 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 68 69 #define KFD_MMAP_GPU_ID_SHIFT (46 - PAGE_SHIFT) 70 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 71 << KFD_MMAP_GPU_ID_SHIFT) 72 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 73 & KFD_MMAP_GPU_ID_MASK) 74 #define KFD_MMAP_GPU_ID_GET(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 75 >> KFD_MMAP_GPU_ID_SHIFT) 76 77 #define KFD_MMAP_OFFSET_VALUE_MASK (0x3FFFFFFFFFFFULL >> PAGE_SHIFT) 78 #define KFD_MMAP_OFFSET_VALUE_GET(offset) (offset & KFD_MMAP_OFFSET_VALUE_MASK) 79 80 /* 81 * When working with cp scheduler we should assign the HIQ manually or via 82 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 83 * definitions for Kaveri. In Kaveri only the first ME queues participates 84 * in the cp scheduling taking that in mind we set the HIQ slot in the 85 * second ME. 86 */ 87 #define KFD_CIK_HIQ_PIPE 4 88 #define KFD_CIK_HIQ_QUEUE 0 89 90 /* Macro for allocating structures */ 91 #define kfd_alloc_struct(ptr_to_struct) \ 92 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 93 94 #define KFD_MAX_NUM_OF_PROCESSES 512 95 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 96 97 /* 98 * Size of the per-process TBA+TMA buffer: 2 pages 99 * 100 * The first page is the TBA used for the CWSR ISA code. The second 101 * page is used as TMA for daisy changing a user-mode trap handler. 102 */ 103 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 104 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 105 106 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 107 (KFD_MAX_NUM_OF_PROCESSES * \ 108 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 109 110 #define KFD_KERNEL_QUEUE_SIZE 2048 111 112 #define KFD_UNMAP_LATENCY_MS (4000) 113 114 /* 115 * 512 = 0x200 116 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 117 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 118 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 119 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 120 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 121 */ 122 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 123 124 125 /* 126 * Kernel module parameter to specify maximum number of supported queues per 127 * device 128 */ 129 extern int max_num_of_queues_per_device; 130 131 132 /* Kernel module parameter to specify the scheduling policy */ 133 extern int sched_policy; 134 135 /* 136 * Kernel module parameter to specify the maximum process 137 * number per HW scheduler 138 */ 139 extern int hws_max_conc_proc; 140 141 extern int cwsr_enable; 142 143 /* 144 * Kernel module parameter to specify whether to send sigterm to HSA process on 145 * unhandled exception 146 */ 147 extern int send_sigterm; 148 149 /* 150 * This kernel module is used to simulate large bar machine on non-large bar 151 * enabled machines. 152 */ 153 extern int debug_largebar; 154 155 /* 156 * Ignore CRAT table during KFD initialization, can be used to work around 157 * broken CRAT tables on some AMD systems 158 */ 159 extern int ignore_crat; 160 161 /* 162 * Set sh_mem_config.retry_disable on Vega10 163 */ 164 extern int amdgpu_noretry; 165 166 /* 167 * Halt if HWS hang is detected 168 */ 169 extern int halt_if_hws_hang; 170 171 /* 172 * Whether MEC FW support GWS barriers 173 */ 174 extern bool hws_gws_support; 175 176 /* 177 * Queue preemption timeout in ms 178 */ 179 extern int queue_preemption_timeout_ms; 180 181 enum cache_policy { 182 cache_policy_coherent, 183 cache_policy_noncoherent 184 }; 185 186 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10) 187 188 struct kfd_event_interrupt_class { 189 bool (*interrupt_isr)(struct kfd_dev *dev, 190 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 191 bool *patched_flag); 192 void (*interrupt_wq)(struct kfd_dev *dev, 193 const uint32_t *ih_ring_entry); 194 }; 195 196 struct kfd_device_info { 197 enum amd_asic_type asic_family; 198 const char *asic_name; 199 const struct kfd_event_interrupt_class *event_interrupt_class; 200 unsigned int max_pasid_bits; 201 unsigned int max_no_of_hqd; 202 unsigned int doorbell_size; 203 size_t ih_ring_entry_size; 204 uint8_t num_of_watch_points; 205 uint16_t mqd_size_aligned; 206 bool supports_cwsr; 207 bool needs_iommu_device; 208 bool needs_pci_atomics; 209 unsigned int num_sdma_engines; 210 unsigned int num_xgmi_sdma_engines; 211 unsigned int num_sdma_queues_per_engine; 212 }; 213 214 struct kfd_mem_obj { 215 uint32_t range_start; 216 uint32_t range_end; 217 uint64_t gpu_addr; 218 uint32_t *cpu_ptr; 219 void *gtt_mem; 220 }; 221 222 struct kfd_vmid_info { 223 uint32_t first_vmid_kfd; 224 uint32_t last_vmid_kfd; 225 uint32_t vmid_num_kfd; 226 }; 227 228 struct kfd_dev { 229 struct kgd_dev *kgd; 230 231 const struct kfd_device_info *device_info; 232 struct pci_dev *pdev; 233 struct drm_device *ddev; 234 235 unsigned int id; /* topology stub index */ 236 237 phys_addr_t doorbell_base; /* Start of actual doorbells used by 238 * KFD. It is aligned for mapping 239 * into user mode 240 */ 241 size_t doorbell_id_offset; /* Doorbell offset (from KFD doorbell 242 * to HW doorbell, GFX reserved some 243 * at the start) 244 */ 245 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 246 * page used by kernel queue 247 */ 248 249 struct kgd2kfd_shared_resources shared_resources; 250 struct kfd_vmid_info vm_info; 251 252 const struct kfd2kgd_calls *kfd2kgd; 253 struct mutex doorbell_mutex; 254 DECLARE_BITMAP(doorbell_available_index, 255 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 256 257 void *gtt_mem; 258 uint64_t gtt_start_gpu_addr; 259 void *gtt_start_cpu_ptr; 260 void *gtt_sa_bitmap; 261 struct mutex gtt_sa_lock; 262 unsigned int gtt_sa_chunk_size; 263 unsigned int gtt_sa_num_of_chunks; 264 265 /* Interrupts */ 266 struct kfifo ih_fifo; 267 struct workqueue_struct *ih_wq; 268 struct work_struct interrupt_work; 269 spinlock_t interrupt_lock; 270 271 /* QCM Device instance */ 272 struct device_queue_manager *dqm; 273 274 bool init_complete; 275 /* 276 * Interrupts of interest to KFD are copied 277 * from the HW ring into a SW ring. 278 */ 279 bool interrupts_active; 280 281 /* Debug manager */ 282 struct kfd_dbgmgr *dbgmgr; 283 284 /* Firmware versions */ 285 uint16_t mec_fw_version; 286 uint16_t sdma_fw_version; 287 288 /* Maximum process number mapped to HW scheduler */ 289 unsigned int max_proc_per_quantum; 290 291 /* CWSR */ 292 bool cwsr_enabled; 293 const void *cwsr_isa; 294 unsigned int cwsr_isa_size; 295 296 /* xGMI */ 297 uint64_t hive_id; 298 299 bool pci_atomic_requested; 300 301 /* SRAM ECC flag */ 302 atomic_t sram_ecc_flag; 303 304 /* Compute Profile ref. count */ 305 atomic_t compute_profile; 306 307 /* Global GWS resource shared b/t processes*/ 308 void *gws; 309 }; 310 311 enum kfd_mempool { 312 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 313 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 314 KFD_MEMPOOL_FRAMEBUFFER = 3, 315 }; 316 317 /* Character device interface */ 318 int kfd_chardev_init(void); 319 void kfd_chardev_exit(void); 320 struct device *kfd_chardev(void); 321 322 /** 323 * enum kfd_unmap_queues_filter 324 * 325 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue. 326 * 327 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 328 * running queues list. 329 * 330 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 331 * specific process. 332 * 333 */ 334 enum kfd_unmap_queues_filter { 335 KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE, 336 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 337 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 338 KFD_UNMAP_QUEUES_FILTER_BY_PASID 339 }; 340 341 /** 342 * enum kfd_queue_type 343 * 344 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 345 * 346 * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type. 347 * 348 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 349 * 350 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 351 */ 352 enum kfd_queue_type { 353 KFD_QUEUE_TYPE_COMPUTE, 354 KFD_QUEUE_TYPE_SDMA, 355 KFD_QUEUE_TYPE_HIQ, 356 KFD_QUEUE_TYPE_DIQ, 357 KFD_QUEUE_TYPE_SDMA_XGMI 358 }; 359 360 enum kfd_queue_format { 361 KFD_QUEUE_FORMAT_PM4, 362 KFD_QUEUE_FORMAT_AQL 363 }; 364 365 enum KFD_QUEUE_PRIORITY { 366 KFD_QUEUE_PRIORITY_MINIMUM = 0, 367 KFD_QUEUE_PRIORITY_MAXIMUM = 15 368 }; 369 370 /** 371 * struct queue_properties 372 * 373 * @type: The queue type. 374 * 375 * @queue_id: Queue identifier. 376 * 377 * @queue_address: Queue ring buffer address. 378 * 379 * @queue_size: Queue ring buffer size. 380 * 381 * @priority: Defines the queue priority relative to other queues in the 382 * process. 383 * This is just an indication and HW scheduling may override the priority as 384 * necessary while keeping the relative prioritization. 385 * the priority granularity is from 0 to f which f is the highest priority. 386 * currently all queues are initialized with the highest priority. 387 * 388 * @queue_percent: This field is partially implemented and currently a zero in 389 * this field defines that the queue is non active. 390 * 391 * @read_ptr: User space address which points to the number of dwords the 392 * cp read from the ring buffer. This field updates automatically by the H/W. 393 * 394 * @write_ptr: Defines the number of dwords written to the ring buffer. 395 * 396 * @doorbell_ptr: This field aim is to notify the H/W of new packet written to 397 * the queue ring buffer. This field should be similar to write_ptr and the 398 * user should update this field after he updated the write_ptr. 399 * 400 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 401 * 402 * @is_interop: Defines if this is a interop queue. Interop queue means that 403 * the queue can access both graphics and compute resources. 404 * 405 * @is_evicted: Defines if the queue is evicted. Only active queues 406 * are evicted, rendering them inactive. 407 * 408 * @is_active: Defines if the queue is active or not. @is_active and 409 * @is_evicted are protected by the DQM lock. 410 * 411 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 412 * of the queue. 413 * 414 * This structure represents the queue properties for each queue no matter if 415 * it's user mode or kernel mode queue. 416 * 417 */ 418 struct queue_properties { 419 enum kfd_queue_type type; 420 enum kfd_queue_format format; 421 unsigned int queue_id; 422 uint64_t queue_address; 423 uint64_t queue_size; 424 uint32_t priority; 425 uint32_t queue_percent; 426 uint32_t *read_ptr; 427 uint32_t *write_ptr; 428 void __iomem *doorbell_ptr; 429 uint32_t doorbell_off; 430 bool is_interop; 431 bool is_evicted; 432 bool is_active; 433 /* Not relevant for user mode queues in cp scheduling */ 434 unsigned int vmid; 435 /* Relevant only for sdma queues*/ 436 uint32_t sdma_engine_id; 437 uint32_t sdma_queue_id; 438 uint32_t sdma_vm_addr; 439 /* Relevant only for VI */ 440 uint64_t eop_ring_buffer_address; 441 uint32_t eop_ring_buffer_size; 442 uint64_t ctx_save_restore_area_address; 443 uint32_t ctx_save_restore_area_size; 444 uint32_t ctl_stack_size; 445 uint64_t tba_addr; 446 uint64_t tma_addr; 447 /* Relevant for CU */ 448 uint32_t cu_mask_count; /* Must be a multiple of 32 */ 449 uint32_t *cu_mask; 450 }; 451 452 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 453 (q).queue_address != 0 && \ 454 (q).queue_percent > 0 && \ 455 !(q).is_evicted) 456 457 /** 458 * struct queue 459 * 460 * @list: Queue linked list. 461 * 462 * @mqd: The queue MQD. 463 * 464 * @mqd_mem_obj: The MQD local gpu memory object. 465 * 466 * @gart_mqd_addr: The MQD gart mc address. 467 * 468 * @properties: The queue properties. 469 * 470 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 471 * that the queue should be execute on. 472 * 473 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 474 * id. 475 * 476 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 477 * 478 * @process: The kfd process that created this queue. 479 * 480 * @device: The kfd device that created this queue. 481 * 482 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 483 * otherwise. 484 * 485 * This structure represents user mode compute queues. 486 * It contains all the necessary data to handle such queues. 487 * 488 */ 489 490 struct queue { 491 struct list_head list; 492 void *mqd; 493 struct kfd_mem_obj *mqd_mem_obj; 494 uint64_t gart_mqd_addr; 495 struct queue_properties properties; 496 497 uint32_t mec; 498 uint32_t pipe; 499 uint32_t queue; 500 501 unsigned int sdma_id; 502 unsigned int doorbell_id; 503 504 struct kfd_process *process; 505 struct kfd_dev *device; 506 void *gws; 507 }; 508 509 /* 510 * Please read the kfd_mqd_manager.h description. 511 */ 512 enum KFD_MQD_TYPE { 513 KFD_MQD_TYPE_COMPUTE = 0, /* for no cp scheduling */ 514 KFD_MQD_TYPE_HIQ, /* for hiq */ 515 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 516 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 517 KFD_MQD_TYPE_DIQ, /* for diq */ 518 KFD_MQD_TYPE_MAX 519 }; 520 521 enum KFD_PIPE_PRIORITY { 522 KFD_PIPE_PRIORITY_CS_LOW = 0, 523 KFD_PIPE_PRIORITY_CS_MEDIUM, 524 KFD_PIPE_PRIORITY_CS_HIGH 525 }; 526 527 struct scheduling_resources { 528 unsigned int vmid_mask; 529 enum kfd_queue_type type; 530 uint64_t queue_mask; 531 uint64_t gws_mask; 532 uint32_t oac_mask; 533 uint32_t gds_heap_base; 534 uint32_t gds_heap_size; 535 }; 536 537 struct process_queue_manager { 538 /* data */ 539 struct kfd_process *process; 540 struct list_head queues; 541 unsigned long *queue_slot_bitmap; 542 }; 543 544 struct qcm_process_device { 545 /* The Device Queue Manager that owns this data */ 546 struct device_queue_manager *dqm; 547 struct process_queue_manager *pqm; 548 /* Queues list */ 549 struct list_head queues_list; 550 struct list_head priv_queue_list; 551 552 unsigned int queue_count; 553 unsigned int vmid; 554 bool is_debug; 555 unsigned int evicted; /* eviction counter, 0=active */ 556 557 /* This flag tells if we should reset all wavefronts on 558 * process termination 559 */ 560 bool reset_wavefronts; 561 562 /* 563 * All the memory management data should be here too 564 */ 565 uint64_t gds_context_area; 566 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 567 uint64_t page_table_base; 568 uint32_t sh_mem_config; 569 uint32_t sh_mem_bases; 570 uint32_t sh_mem_ape1_base; 571 uint32_t sh_mem_ape1_limit; 572 uint32_t gds_size; 573 uint32_t num_gws; 574 uint32_t num_oac; 575 uint32_t sh_hidden_private_base; 576 577 /* CWSR memory */ 578 void *cwsr_kaddr; 579 uint64_t cwsr_base; 580 uint64_t tba_addr; 581 uint64_t tma_addr; 582 583 /* IB memory */ 584 uint64_t ib_base; 585 void *ib_kaddr; 586 587 /* doorbell resources per process per device */ 588 unsigned long *doorbell_bitmap; 589 }; 590 591 /* KFD Memory Eviction */ 592 593 /* Approx. wait time before attempting to restore evicted BOs */ 594 #define PROCESS_RESTORE_TIME_MS 100 595 /* Approx. back off time if restore fails due to lack of memory */ 596 #define PROCESS_BACK_OFF_TIME_MS 100 597 /* Approx. time before evicting the process again */ 598 #define PROCESS_ACTIVE_TIME_MS 10 599 600 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 601 * idr_handle in the least significant 4 bytes 602 */ 603 #define MAKE_HANDLE(gpu_id, idr_handle) \ 604 (((uint64_t)(gpu_id) << 32) + idr_handle) 605 #define GET_GPU_ID(handle) (handle >> 32) 606 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 607 608 enum kfd_pdd_bound { 609 PDD_UNBOUND = 0, 610 PDD_BOUND, 611 PDD_BOUND_SUSPENDED, 612 }; 613 614 /* Data that is per-process-per device. */ 615 struct kfd_process_device { 616 /* 617 * List of all per-device data for a process. 618 * Starts from kfd_process.per_device_data. 619 */ 620 struct list_head per_device_list; 621 622 /* The device that owns this data. */ 623 struct kfd_dev *dev; 624 625 /* The process that owns this kfd_process_device. */ 626 struct kfd_process *process; 627 628 /* per-process-per device QCM data structure */ 629 struct qcm_process_device qpd; 630 631 /*Apertures*/ 632 uint64_t lds_base; 633 uint64_t lds_limit; 634 uint64_t gpuvm_base; 635 uint64_t gpuvm_limit; 636 uint64_t scratch_base; 637 uint64_t scratch_limit; 638 639 /* VM context for GPUVM allocations */ 640 struct file *drm_file; 641 void *vm; 642 643 /* GPUVM allocations storage */ 644 struct idr alloc_idr; 645 646 /* Flag used to tell the pdd has dequeued from the dqm. 647 * This is used to prevent dev->dqm->ops.process_termination() from 648 * being called twice when it is already called in IOMMU callback 649 * function. 650 */ 651 bool already_dequeued; 652 653 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 654 enum kfd_pdd_bound bound; 655 }; 656 657 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 658 659 /* Process data */ 660 struct kfd_process { 661 /* 662 * kfd_process are stored in an mm_struct*->kfd_process* 663 * hash table (kfd_processes in kfd_process.c) 664 */ 665 struct hlist_node kfd_processes; 666 667 /* 668 * Opaque pointer to mm_struct. We don't hold a reference to 669 * it so it should never be dereferenced from here. This is 670 * only used for looking up processes by their mm. 671 */ 672 void *mm; 673 674 struct kref ref; 675 struct work_struct release_work; 676 677 struct mutex mutex; 678 679 /* 680 * In any process, the thread that started main() is the lead 681 * thread and outlives the rest. 682 * It is here because amd_iommu_bind_pasid wants a task_struct. 683 * It can also be used for safely getting a reference to the 684 * mm_struct of the process. 685 */ 686 struct task_struct *lead_thread; 687 688 /* We want to receive a notification when the mm_struct is destroyed */ 689 struct mmu_notifier mmu_notifier; 690 691 /* Use for delayed freeing of kfd_process structure */ 692 struct rcu_head rcu; 693 694 uint16_t pasid; 695 unsigned int doorbell_index; 696 697 /* 698 * List of kfd_process_device structures, 699 * one for each device the process is using. 700 */ 701 struct list_head per_device_data; 702 703 struct process_queue_manager pqm; 704 705 /*Is the user space process 32 bit?*/ 706 bool is_32bit_user_mode; 707 708 /* Event-related data */ 709 struct mutex event_mutex; 710 /* Event ID allocator and lookup */ 711 struct idr event_idr; 712 /* Event page */ 713 struct kfd_signal_page *signal_page; 714 size_t signal_mapped_size; 715 size_t signal_event_count; 716 bool signal_event_limit_reached; 717 718 /* Information used for memory eviction */ 719 void *kgd_process_info; 720 /* Eviction fence that is attached to all the BOs of this process. The 721 * fence will be triggered during eviction and new one will be created 722 * during restore 723 */ 724 struct dma_fence *ef; 725 726 /* Work items for evicting and restoring BOs */ 727 struct delayed_work eviction_work; 728 struct delayed_work restore_work; 729 /* seqno of the last scheduled eviction */ 730 unsigned int last_eviction_seqno; 731 /* Approx. the last timestamp (in jiffies) when the process was 732 * restored after an eviction 733 */ 734 unsigned long last_restore_timestamp; 735 736 /* Kobj for our procfs */ 737 struct kobject *kobj; 738 struct attribute attr_pasid; 739 }; 740 741 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 742 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 743 extern struct srcu_struct kfd_processes_srcu; 744 745 /** 746 * Ioctl function type. 747 * 748 * \param filep pointer to file structure. 749 * \param p amdkfd process pointer. 750 * \param data pointer to arg that was copied from user. 751 */ 752 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 753 void *data); 754 755 struct amdkfd_ioctl_desc { 756 unsigned int cmd; 757 int flags; 758 amdkfd_ioctl_t *func; 759 unsigned int cmd_drv; 760 const char *name; 761 }; 762 bool kfd_dev_is_large_bar(struct kfd_dev *dev); 763 764 int kfd_process_create_wq(void); 765 void kfd_process_destroy_wq(void); 766 struct kfd_process *kfd_create_process(struct file *filep); 767 struct kfd_process *kfd_get_process(const struct task_struct *); 768 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid); 769 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 770 void kfd_unref_process(struct kfd_process *p); 771 int kfd_process_evict_queues(struct kfd_process *p); 772 int kfd_process_restore_queues(struct kfd_process *p); 773 void kfd_suspend_all_processes(void); 774 int kfd_resume_all_processes(void); 775 776 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 777 struct file *drm_file); 778 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 779 struct kfd_process *p); 780 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 781 struct kfd_process *p); 782 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 783 struct kfd_process *p); 784 785 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 786 struct vm_area_struct *vma); 787 788 /* KFD process API for creating and translating handles */ 789 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 790 void *mem); 791 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 792 int handle); 793 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 794 int handle); 795 796 /* Process device data iterator */ 797 struct kfd_process_device *kfd_get_first_process_device_data( 798 struct kfd_process *p); 799 struct kfd_process_device *kfd_get_next_process_device_data( 800 struct kfd_process *p, 801 struct kfd_process_device *pdd); 802 bool kfd_has_process_device_data(struct kfd_process *p); 803 804 /* PASIDs */ 805 int kfd_pasid_init(void); 806 void kfd_pasid_exit(void); 807 bool kfd_set_pasid_limit(unsigned int new_limit); 808 unsigned int kfd_get_pasid_limit(void); 809 unsigned int kfd_pasid_alloc(void); 810 void kfd_pasid_free(unsigned int pasid); 811 812 /* Doorbells */ 813 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 814 int kfd_doorbell_init(struct kfd_dev *kfd); 815 void kfd_doorbell_fini(struct kfd_dev *kfd); 816 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, 817 struct vm_area_struct *vma); 818 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 819 unsigned int *doorbell_off); 820 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 821 u32 read_kernel_doorbell(u32 __iomem *db); 822 void write_kernel_doorbell(void __iomem *db, u32 value); 823 void write_kernel_doorbell64(void __iomem *db, u64 value); 824 unsigned int kfd_doorbell_id_to_offset(struct kfd_dev *kfd, 825 struct kfd_process *process, 826 unsigned int doorbell_id); 827 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev, 828 struct kfd_process *process); 829 int kfd_alloc_process_doorbells(struct kfd_process *process); 830 void kfd_free_process_doorbells(struct kfd_process *process); 831 832 /* GTT Sub-Allocator */ 833 834 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 835 struct kfd_mem_obj **mem_obj); 836 837 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 838 839 extern struct device *kfd_device; 840 841 /* KFD's procfs */ 842 void kfd_procfs_init(void); 843 void kfd_procfs_shutdown(void); 844 845 /* Topology */ 846 int kfd_topology_init(void); 847 void kfd_topology_shutdown(void); 848 int kfd_topology_add_device(struct kfd_dev *gpu); 849 int kfd_topology_remove_device(struct kfd_dev *gpu); 850 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 851 uint32_t proximity_domain); 852 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 853 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 854 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 855 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd); 856 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); 857 int kfd_numa_node_to_apic_id(int numa_node_id); 858 859 /* Interrupts */ 860 int kfd_interrupt_init(struct kfd_dev *dev); 861 void kfd_interrupt_exit(struct kfd_dev *dev); 862 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 863 bool interrupt_is_wanted(struct kfd_dev *dev, 864 const uint32_t *ih_ring_entry, 865 uint32_t *patched_ihre, bool *flag); 866 867 /* amdkfd Apertures */ 868 int kfd_init_apertures(struct kfd_process *process); 869 870 /* Queue Context Management */ 871 int init_queue(struct queue **q, const struct queue_properties *properties); 872 void uninit_queue(struct queue *q); 873 void print_queue_properties(struct queue_properties *q); 874 void print_queue(struct queue *q); 875 876 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 877 struct kfd_dev *dev); 878 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 879 struct kfd_dev *dev); 880 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 881 struct kfd_dev *dev); 882 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 883 struct kfd_dev *dev); 884 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 885 struct kfd_dev *dev); 886 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 887 struct kfd_dev *dev); 888 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 889 void device_queue_manager_uninit(struct device_queue_manager *dqm); 890 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 891 enum kfd_queue_type type); 892 void kernel_queue_uninit(struct kernel_queue *kq); 893 int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid); 894 895 /* Process Queue Manager */ 896 struct process_queue_node { 897 struct queue *q; 898 struct kernel_queue *kq; 899 struct list_head process_queue_list; 900 }; 901 902 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 903 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 904 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 905 void pqm_uninit(struct process_queue_manager *pqm); 906 int pqm_create_queue(struct process_queue_manager *pqm, 907 struct kfd_dev *dev, 908 struct file *f, 909 struct queue_properties *properties, 910 unsigned int *qid); 911 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 912 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid, 913 struct queue_properties *p); 914 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid, 915 struct queue_properties *p); 916 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 917 void *gws); 918 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 919 unsigned int qid); 920 int pqm_get_wave_state(struct process_queue_manager *pqm, 921 unsigned int qid, 922 void __user *ctl_stack, 923 u32 *ctl_stack_used_size, 924 u32 *save_area_used_size); 925 926 int amdkfd_fence_wait_timeout(unsigned int *fence_addr, 927 unsigned int fence_value, 928 unsigned int timeout_ms); 929 930 /* Packet Manager */ 931 932 #define KFD_FENCE_COMPLETED (100) 933 #define KFD_FENCE_INIT (10) 934 935 struct packet_manager { 936 struct device_queue_manager *dqm; 937 struct kernel_queue *priv_queue; 938 struct mutex lock; 939 bool allocated; 940 struct kfd_mem_obj *ib_buffer_obj; 941 unsigned int ib_size_bytes; 942 bool is_over_subscription; 943 944 const struct packet_manager_funcs *pmf; 945 }; 946 947 struct packet_manager_funcs { 948 /* Support ASIC-specific packet formats for PM4 packets */ 949 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 950 struct qcm_process_device *qpd); 951 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 952 uint64_t ib, size_t ib_size_in_dwords, bool chain); 953 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 954 struct scheduling_resources *res); 955 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 956 struct queue *q, bool is_static); 957 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 958 enum kfd_queue_type type, 959 enum kfd_unmap_queues_filter mode, 960 uint32_t filter_param, bool reset, 961 unsigned int sdma_engine); 962 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 963 uint64_t fence_address, uint32_t fence_value); 964 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 965 966 /* Packet sizes */ 967 int map_process_size; 968 int runlist_size; 969 int set_resources_size; 970 int map_queues_size; 971 int unmap_queues_size; 972 int query_status_size; 973 int release_mem_size; 974 }; 975 976 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 977 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 978 extern const struct packet_manager_funcs kfd_v10_pm_funcs; 979 980 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 981 void pm_uninit(struct packet_manager *pm); 982 int pm_send_set_resources(struct packet_manager *pm, 983 struct scheduling_resources *res); 984 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 985 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 986 uint32_t fence_value); 987 988 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type, 989 enum kfd_unmap_queues_filter mode, 990 uint32_t filter_param, bool reset, 991 unsigned int sdma_engine); 992 993 void pm_release_ib(struct packet_manager *pm); 994 995 /* Following PM funcs can be shared among VI and AI */ 996 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 997 int pm_set_resources_vi(struct packet_manager *pm, uint32_t *buffer, 998 struct scheduling_resources *res); 999 1000 1001 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1002 1003 /* Events */ 1004 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1005 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1006 1007 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1008 1009 void kfd_event_init_process(struct kfd_process *p); 1010 void kfd_event_free_process(struct kfd_process *p); 1011 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1012 int kfd_wait_on_events(struct kfd_process *p, 1013 uint32_t num_events, void __user *data, 1014 bool all, uint32_t user_timeout_ms, 1015 uint32_t *wait_result); 1016 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, 1017 uint32_t valid_id_bits); 1018 void kfd_signal_iommu_event(struct kfd_dev *dev, 1019 unsigned int pasid, unsigned long address, 1020 bool is_write_requested, bool is_execute_requested); 1021 void kfd_signal_hw_exception_event(unsigned int pasid); 1022 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1023 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1024 int kfd_event_page_set(struct kfd_process *p, void *kernel_address, 1025 uint64_t size); 1026 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1027 uint32_t event_type, bool auto_reset, uint32_t node_id, 1028 uint32_t *event_id, uint32_t *event_trigger_data, 1029 uint64_t *event_page_offset, uint32_t *event_slot_index); 1030 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1031 1032 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid, 1033 struct kfd_vm_fault_info *info); 1034 1035 void kfd_signal_reset_event(struct kfd_dev *dev); 1036 1037 void kfd_flush_tlb(struct kfd_process_device *pdd); 1038 1039 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p); 1040 1041 bool kfd_is_locked(void); 1042 1043 /* Compute profile */ 1044 void kfd_inc_compute_active(struct kfd_dev *dev); 1045 void kfd_dec_compute_active(struct kfd_dev *dev); 1046 1047 /* Cgroup Support */ 1048 /* Check with device cgroup if @kfd device is accessible */ 1049 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd) 1050 { 1051 #if defined(CONFIG_CGROUP_DEVICE) 1052 struct drm_device *ddev = kfd->ddev; 1053 1054 return devcgroup_check_permission(DEVCG_DEV_CHAR, ddev->driver->major, 1055 ddev->render->index, 1056 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1057 #else 1058 return 0; 1059 #endif 1060 } 1061 1062 /* Debugfs */ 1063 #if defined(CONFIG_DEBUG_FS) 1064 1065 void kfd_debugfs_init(void); 1066 void kfd_debugfs_fini(void); 1067 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1068 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1069 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1070 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1071 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1072 int pm_debugfs_runlist(struct seq_file *m, void *data); 1073 1074 int kfd_debugfs_hang_hws(struct kfd_dev *dev); 1075 int pm_debugfs_hang_hws(struct packet_manager *pm); 1076 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm); 1077 1078 #else 1079 1080 static inline void kfd_debugfs_init(void) {} 1081 static inline void kfd_debugfs_fini(void) {} 1082 1083 #endif 1084 1085 #endif 1086