xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 42c6c482)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <linux/sysfs.h>
39 #include <linux/device_cgroup.h>
40 #include <drm/drm_file.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_device.h>
43 #include <drm/drm_ioctl.h>
44 #include <kgd_kfd_interface.h>
45 #include <linux/swap.h>
46 
47 #include "amd_shared.h"
48 #include "amdgpu.h"
49 
50 #define KFD_MAX_RING_ENTRY_SIZE	8
51 
52 #define KFD_SYSFS_FILE_MODE 0444
53 
54 /* GPU ID hash width in bits */
55 #define KFD_GPU_ID_HASH_WIDTH 16
56 
57 /* Use upper bits of mmap offset to store KFD driver specific information.
58  * BITS[63:62] - Encode MMAP type
59  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
60  * BITS[45:0]  - MMAP offset value
61  *
62  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
63  *  defines are w.r.t to PAGE_SIZE
64  */
65 #define KFD_MMAP_TYPE_SHIFT	62
66 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
67 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
68 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
71 
72 #define KFD_MMAP_GPU_ID_SHIFT 46
73 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
74 				<< KFD_MMAP_GPU_ID_SHIFT)
75 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
76 				& KFD_MMAP_GPU_ID_MASK)
77 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
78 				>> KFD_MMAP_GPU_ID_SHIFT)
79 
80 /*
81  * When working with cp scheduler we should assign the HIQ manually or via
82  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
83  * definitions for Kaveri. In Kaveri only the first ME queues participates
84  * in the cp scheduling taking that in mind we set the HIQ slot in the
85  * second ME.
86  */
87 #define KFD_CIK_HIQ_PIPE 4
88 #define KFD_CIK_HIQ_QUEUE 0
89 
90 /* Macro for allocating structures */
91 #define kfd_alloc_struct(ptr_to_struct)	\
92 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
93 
94 #define KFD_MAX_NUM_OF_PROCESSES 512
95 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
96 
97 /*
98  * Size of the per-process TBA+TMA buffer: 2 pages
99  *
100  * The first page is the TBA used for the CWSR ISA code. The second
101  * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
102  */
103 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
104 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
105 
106 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
107 	(KFD_MAX_NUM_OF_PROCESSES *			\
108 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
109 
110 #define KFD_KERNEL_QUEUE_SIZE 2048
111 
112 #define KFD_UNMAP_LATENCY_MS	(4000)
113 
114 /*
115  * 512 = 0x200
116  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
117  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
118  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
119  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
120  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
121  */
122 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
123 
124 /**
125  * enum kfd_ioctl_flags - KFD ioctl flags
126  * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
127  * userspace can use a given ioctl.
128  */
129 enum kfd_ioctl_flags {
130 	/*
131 	 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
132 	 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
133 	 * perform privileged operations and load arbitrary data into MQDs and
134 	 * eventually HQD registers when the queue is mapped by HWS. In order to
135 	 * prevent this we should perform additional security checks.
136 	 *
137 	 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
138 	 *
139 	 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
140 	 * we also allow ioctls with SYS_ADMIN capability.
141 	 */
142 	KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
143 };
144 /*
145  * Kernel module parameter to specify maximum number of supported queues per
146  * device
147  */
148 extern int max_num_of_queues_per_device;
149 
150 
151 /* Kernel module parameter to specify the scheduling policy */
152 extern int sched_policy;
153 
154 /*
155  * Kernel module parameter to specify the maximum process
156  * number per HW scheduler
157  */
158 extern int hws_max_conc_proc;
159 
160 extern int cwsr_enable;
161 
162 /*
163  * Kernel module parameter to specify whether to send sigterm to HSA process on
164  * unhandled exception
165  */
166 extern int send_sigterm;
167 
168 /*
169  * This kernel module is used to simulate large bar machine on non-large bar
170  * enabled machines.
171  */
172 extern int debug_largebar;
173 
174 /*
175  * Ignore CRAT table during KFD initialization, can be used to work around
176  * broken CRAT tables on some AMD systems
177  */
178 extern int ignore_crat;
179 
180 /* Set sh_mem_config.retry_disable on GFX v9 */
181 extern int amdgpu_noretry;
182 
183 /* Halt if HWS hang is detected */
184 extern int halt_if_hws_hang;
185 
186 /* Whether MEC FW support GWS barriers */
187 extern bool hws_gws_support;
188 
189 /* Queue preemption timeout in ms */
190 extern int queue_preemption_timeout_ms;
191 
192 /*
193  * Don't evict process queues on vm fault
194  */
195 extern int amdgpu_no_queue_eviction_on_vm_fault;
196 
197 /* Enable eviction debug messages */
198 extern bool debug_evictions;
199 
200 enum cache_policy {
201 	cache_policy_coherent,
202 	cache_policy_noncoherent
203 };
204 
205 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0])
206 #define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
207 
208 struct kfd_event_interrupt_class {
209 	bool (*interrupt_isr)(struct kfd_dev *dev,
210 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
211 			bool *patched_flag);
212 	void (*interrupt_wq)(struct kfd_dev *dev,
213 			const uint32_t *ih_ring_entry);
214 };
215 
216 struct kfd_device_info {
217 	uint32_t gfx_target_version;
218 	const struct kfd_event_interrupt_class *event_interrupt_class;
219 	unsigned int max_pasid_bits;
220 	unsigned int max_no_of_hqd;
221 	unsigned int doorbell_size;
222 	size_t ih_ring_entry_size;
223 	uint8_t num_of_watch_points;
224 	uint16_t mqd_size_aligned;
225 	bool supports_cwsr;
226 	bool needs_iommu_device;
227 	bool needs_pci_atomics;
228 	uint32_t no_atomic_fw_version;
229 	unsigned int num_sdma_queues_per_engine;
230 };
231 
232 unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev);
233 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev);
234 
235 struct kfd_mem_obj {
236 	uint32_t range_start;
237 	uint32_t range_end;
238 	uint64_t gpu_addr;
239 	uint32_t *cpu_ptr;
240 	void *gtt_mem;
241 };
242 
243 struct kfd_vmid_info {
244 	uint32_t first_vmid_kfd;
245 	uint32_t last_vmid_kfd;
246 	uint32_t vmid_num_kfd;
247 };
248 
249 struct kfd_dev {
250 	struct amdgpu_device *adev;
251 
252 	struct kfd_device_info device_info;
253 	struct pci_dev *pdev;
254 	struct drm_device *ddev;
255 
256 	unsigned int id;		/* topology stub index */
257 
258 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
259 					 * KFD. It is aligned for mapping
260 					 * into user mode
261 					 */
262 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
263 					 * doorbell BAR to the first KFD
264 					 * doorbell in dwords. GFX reserves
265 					 * the segment before this offset.
266 					 */
267 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
268 					   * page used by kernel queue
269 					   */
270 
271 	struct kgd2kfd_shared_resources shared_resources;
272 	struct kfd_vmid_info vm_info;
273 
274 	const struct kfd2kgd_calls *kfd2kgd;
275 	struct mutex doorbell_mutex;
276 	DECLARE_BITMAP(doorbell_available_index,
277 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
278 
279 	void *gtt_mem;
280 	uint64_t gtt_start_gpu_addr;
281 	void *gtt_start_cpu_ptr;
282 	void *gtt_sa_bitmap;
283 	struct mutex gtt_sa_lock;
284 	unsigned int gtt_sa_chunk_size;
285 	unsigned int gtt_sa_num_of_chunks;
286 
287 	/* Interrupts */
288 	struct kfifo ih_fifo;
289 	struct workqueue_struct *ih_wq;
290 	struct work_struct interrupt_work;
291 	spinlock_t interrupt_lock;
292 
293 	/* QCM Device instance */
294 	struct device_queue_manager *dqm;
295 
296 	bool init_complete;
297 	/*
298 	 * Interrupts of interest to KFD are copied
299 	 * from the HW ring into a SW ring.
300 	 */
301 	bool interrupts_active;
302 
303 	/* Debug manager */
304 	struct kfd_dbgmgr *dbgmgr;
305 
306 	/* Firmware versions */
307 	uint16_t mec_fw_version;
308 	uint16_t mec2_fw_version;
309 	uint16_t sdma_fw_version;
310 
311 	/* Maximum process number mapped to HW scheduler */
312 	unsigned int max_proc_per_quantum;
313 
314 	/* CWSR */
315 	bool cwsr_enabled;
316 	const void *cwsr_isa;
317 	unsigned int cwsr_isa_size;
318 
319 	/* xGMI */
320 	uint64_t hive_id;
321 
322 	bool pci_atomic_requested;
323 
324 	/* Use IOMMU v2 flag */
325 	bool use_iommu_v2;
326 
327 	/* SRAM ECC flag */
328 	atomic_t sram_ecc_flag;
329 
330 	/* Compute Profile ref. count */
331 	atomic_t compute_profile;
332 
333 	/* Global GWS resource shared between processes */
334 	void *gws;
335 
336 	/* Clients watching SMI events */
337 	struct list_head smi_clients;
338 	spinlock_t smi_lock;
339 
340 	uint32_t reset_seq_num;
341 
342 	struct ida doorbell_ida;
343 	unsigned int max_doorbell_slices;
344 
345 	int noretry;
346 
347 	/* HMM page migration MEMORY_DEVICE_PRIVATE mapping */
348 	struct dev_pagemap pgmap;
349 };
350 
351 enum kfd_mempool {
352 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
353 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
354 	KFD_MEMPOOL_FRAMEBUFFER = 3,
355 };
356 
357 /* Character device interface */
358 int kfd_chardev_init(void);
359 void kfd_chardev_exit(void);
360 struct device *kfd_chardev(void);
361 
362 /**
363  * enum kfd_unmap_queues_filter - Enum for queue filters.
364  *
365  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
366  *
367  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
368  *						running queues list.
369  *
370  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
371  *						specific process.
372  *
373  */
374 enum kfd_unmap_queues_filter {
375 	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
376 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
377 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
378 	KFD_UNMAP_QUEUES_FILTER_BY_PASID
379 };
380 
381 /**
382  * enum kfd_queue_type - Enum for various queue types.
383  *
384  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
385  *
386  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
387  *
388  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
389  *
390  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
391  *
392  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
393  */
394 enum kfd_queue_type  {
395 	KFD_QUEUE_TYPE_COMPUTE,
396 	KFD_QUEUE_TYPE_SDMA,
397 	KFD_QUEUE_TYPE_HIQ,
398 	KFD_QUEUE_TYPE_DIQ,
399 	KFD_QUEUE_TYPE_SDMA_XGMI
400 };
401 
402 enum kfd_queue_format {
403 	KFD_QUEUE_FORMAT_PM4,
404 	KFD_QUEUE_FORMAT_AQL
405 };
406 
407 enum KFD_QUEUE_PRIORITY {
408 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
409 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
410 };
411 
412 /**
413  * struct queue_properties
414  *
415  * @type: The queue type.
416  *
417  * @queue_id: Queue identifier.
418  *
419  * @queue_address: Queue ring buffer address.
420  *
421  * @queue_size: Queue ring buffer size.
422  *
423  * @priority: Defines the queue priority relative to other queues in the
424  * process.
425  * This is just an indication and HW scheduling may override the priority as
426  * necessary while keeping the relative prioritization.
427  * the priority granularity is from 0 to f which f is the highest priority.
428  * currently all queues are initialized with the highest priority.
429  *
430  * @queue_percent: This field is partially implemented and currently a zero in
431  * this field defines that the queue is non active.
432  *
433  * @read_ptr: User space address which points to the number of dwords the
434  * cp read from the ring buffer. This field updates automatically by the H/W.
435  *
436  * @write_ptr: Defines the number of dwords written to the ring buffer.
437  *
438  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
439  * buffer. This field should be similar to write_ptr and the user should
440  * update this field after updating the write_ptr.
441  *
442  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
443  *
444  * @is_interop: Defines if this is a interop queue. Interop queue means that
445  * the queue can access both graphics and compute resources.
446  *
447  * @is_evicted: Defines if the queue is evicted. Only active queues
448  * are evicted, rendering them inactive.
449  *
450  * @is_active: Defines if the queue is active or not. @is_active and
451  * @is_evicted are protected by the DQM lock.
452  *
453  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
454  * @is_gws should be protected by the DQM lock, since changing it can yield the
455  * possibility of updating DQM state on number of GWS queues.
456  *
457  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
458  * of the queue.
459  *
460  * This structure represents the queue properties for each queue no matter if
461  * it's user mode or kernel mode queue.
462  *
463  */
464 
465 struct queue_properties {
466 	enum kfd_queue_type type;
467 	enum kfd_queue_format format;
468 	unsigned int queue_id;
469 	uint64_t queue_address;
470 	uint64_t  queue_size;
471 	uint32_t priority;
472 	uint32_t queue_percent;
473 	uint32_t *read_ptr;
474 	uint32_t *write_ptr;
475 	void __iomem *doorbell_ptr;
476 	uint32_t doorbell_off;
477 	bool is_interop;
478 	bool is_evicted;
479 	bool is_active;
480 	bool is_gws;
481 	/* Not relevant for user mode queues in cp scheduling */
482 	unsigned int vmid;
483 	/* Relevant only for sdma queues*/
484 	uint32_t sdma_engine_id;
485 	uint32_t sdma_queue_id;
486 	uint32_t sdma_vm_addr;
487 	/* Relevant only for VI */
488 	uint64_t eop_ring_buffer_address;
489 	uint32_t eop_ring_buffer_size;
490 	uint64_t ctx_save_restore_area_address;
491 	uint32_t ctx_save_restore_area_size;
492 	uint32_t ctl_stack_size;
493 	uint64_t tba_addr;
494 	uint64_t tma_addr;
495 };
496 
497 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
498 			    (q).queue_address != 0 &&	\
499 			    (q).queue_percent > 0 &&	\
500 			    !(q).is_evicted)
501 
502 enum mqd_update_flag {
503 	UPDATE_FLAG_CU_MASK = 0,
504 };
505 
506 struct mqd_update_info {
507 	union {
508 		struct {
509 			uint32_t count; /* Must be a multiple of 32 */
510 			uint32_t *ptr;
511 		} cu_mask;
512 	};
513 	enum mqd_update_flag update_flag;
514 };
515 
516 /**
517  * struct queue
518  *
519  * @list: Queue linked list.
520  *
521  * @mqd: The queue MQD (memory queue descriptor).
522  *
523  * @mqd_mem_obj: The MQD local gpu memory object.
524  *
525  * @gart_mqd_addr: The MQD gart mc address.
526  *
527  * @properties: The queue properties.
528  *
529  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
530  *	 that the queue should be executed on.
531  *
532  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
533  *	  id.
534  *
535  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
536  *
537  * @process: The kfd process that created this queue.
538  *
539  * @device: The kfd device that created this queue.
540  *
541  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
542  * otherwise.
543  *
544  * This structure represents user mode compute queues.
545  * It contains all the necessary data to handle such queues.
546  *
547  */
548 
549 struct queue {
550 	struct list_head list;
551 	void *mqd;
552 	struct kfd_mem_obj *mqd_mem_obj;
553 	uint64_t gart_mqd_addr;
554 	struct queue_properties properties;
555 
556 	uint32_t mec;
557 	uint32_t pipe;
558 	uint32_t queue;
559 
560 	unsigned int sdma_id;
561 	unsigned int doorbell_id;
562 
563 	struct kfd_process	*process;
564 	struct kfd_dev		*device;
565 	void *gws;
566 
567 	/* procfs */
568 	struct kobject kobj;
569 };
570 
571 enum KFD_MQD_TYPE {
572 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
573 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
574 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
575 	KFD_MQD_TYPE_DIQ,		/* for diq */
576 	KFD_MQD_TYPE_MAX
577 };
578 
579 enum KFD_PIPE_PRIORITY {
580 	KFD_PIPE_PRIORITY_CS_LOW = 0,
581 	KFD_PIPE_PRIORITY_CS_MEDIUM,
582 	KFD_PIPE_PRIORITY_CS_HIGH
583 };
584 
585 struct scheduling_resources {
586 	unsigned int vmid_mask;
587 	enum kfd_queue_type type;
588 	uint64_t queue_mask;
589 	uint64_t gws_mask;
590 	uint32_t oac_mask;
591 	uint32_t gds_heap_base;
592 	uint32_t gds_heap_size;
593 };
594 
595 struct process_queue_manager {
596 	/* data */
597 	struct kfd_process	*process;
598 	struct list_head	queues;
599 	unsigned long		*queue_slot_bitmap;
600 };
601 
602 struct qcm_process_device {
603 	/* The Device Queue Manager that owns this data */
604 	struct device_queue_manager *dqm;
605 	struct process_queue_manager *pqm;
606 	/* Queues list */
607 	struct list_head queues_list;
608 	struct list_head priv_queue_list;
609 
610 	unsigned int queue_count;
611 	unsigned int vmid;
612 	bool is_debug;
613 	unsigned int evicted; /* eviction counter, 0=active */
614 
615 	/* This flag tells if we should reset all wavefronts on
616 	 * process termination
617 	 */
618 	bool reset_wavefronts;
619 
620 	/* This flag tells us if this process has a GWS-capable
621 	 * queue that will be mapped into the runlist. It's
622 	 * possible to request a GWS BO, but not have the queue
623 	 * currently mapped, and this changes how the MAP_PROCESS
624 	 * PM4 packet is configured.
625 	 */
626 	bool mapped_gws_queue;
627 
628 	/* All the memory management data should be here too */
629 	uint64_t gds_context_area;
630 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
631 	uint64_t page_table_base;
632 	uint32_t sh_mem_config;
633 	uint32_t sh_mem_bases;
634 	uint32_t sh_mem_ape1_base;
635 	uint32_t sh_mem_ape1_limit;
636 	uint32_t gds_size;
637 	uint32_t num_gws;
638 	uint32_t num_oac;
639 	uint32_t sh_hidden_private_base;
640 
641 	/* CWSR memory */
642 	struct kgd_mem *cwsr_mem;
643 	void *cwsr_kaddr;
644 	uint64_t cwsr_base;
645 	uint64_t tba_addr;
646 	uint64_t tma_addr;
647 
648 	/* IB memory */
649 	struct kgd_mem *ib_mem;
650 	uint64_t ib_base;
651 	void *ib_kaddr;
652 
653 	/* doorbell resources per process per device */
654 	unsigned long *doorbell_bitmap;
655 };
656 
657 /* KFD Memory Eviction */
658 
659 /* Approx. wait time before attempting to restore evicted BOs */
660 #define PROCESS_RESTORE_TIME_MS 100
661 /* Approx. back off time if restore fails due to lack of memory */
662 #define PROCESS_BACK_OFF_TIME_MS 100
663 /* Approx. time before evicting the process again */
664 #define PROCESS_ACTIVE_TIME_MS 10
665 
666 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
667  * idr_handle in the least significant 4 bytes
668  */
669 #define MAKE_HANDLE(gpu_id, idr_handle) \
670 	(((uint64_t)(gpu_id) << 32) + idr_handle)
671 #define GET_GPU_ID(handle) (handle >> 32)
672 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
673 
674 enum kfd_pdd_bound {
675 	PDD_UNBOUND = 0,
676 	PDD_BOUND,
677 	PDD_BOUND_SUSPENDED,
678 };
679 
680 #define MAX_SYSFS_FILENAME_LEN 15
681 
682 /*
683  * SDMA counter runs at 100MHz frequency.
684  * We display SDMA activity in microsecond granularity in sysfs.
685  * As a result, the divisor is 100.
686  */
687 #define SDMA_ACTIVITY_DIVISOR  100
688 
689 /* Data that is per-process-per device. */
690 struct kfd_process_device {
691 	/* The device that owns this data. */
692 	struct kfd_dev *dev;
693 
694 	/* The process that owns this kfd_process_device. */
695 	struct kfd_process *process;
696 
697 	/* per-process-per device QCM data structure */
698 	struct qcm_process_device qpd;
699 
700 	/*Apertures*/
701 	uint64_t lds_base;
702 	uint64_t lds_limit;
703 	uint64_t gpuvm_base;
704 	uint64_t gpuvm_limit;
705 	uint64_t scratch_base;
706 	uint64_t scratch_limit;
707 
708 	/* VM context for GPUVM allocations */
709 	struct file *drm_file;
710 	void *drm_priv;
711 
712 	/* GPUVM allocations storage */
713 	struct idr alloc_idr;
714 
715 	/* Flag used to tell the pdd has dequeued from the dqm.
716 	 * This is used to prevent dev->dqm->ops.process_termination() from
717 	 * being called twice when it is already called in IOMMU callback
718 	 * function.
719 	 */
720 	bool already_dequeued;
721 	bool runtime_inuse;
722 
723 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
724 	enum kfd_pdd_bound bound;
725 
726 	/* VRAM usage */
727 	uint64_t vram_usage;
728 	struct attribute attr_vram;
729 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
730 
731 	/* SDMA activity tracking */
732 	uint64_t sdma_past_activity_counter;
733 	struct attribute attr_sdma;
734 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
735 
736 	/* Eviction activity tracking */
737 	uint64_t last_evict_timestamp;
738 	atomic64_t evict_duration_counter;
739 	struct attribute attr_evict;
740 
741 	struct kobject *kobj_stats;
742 	unsigned int doorbell_index;
743 
744 	/*
745 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
746 	 * that is associated with device encoded by "this" struct instance. The
747 	 * value reflects CU usage by all of the waves launched by this process
748 	 * on this device. A very important property of occupancy parameter is
749 	 * that its value is a snapshot of current use.
750 	 *
751 	 * Following is to be noted regarding how this parameter is reported:
752 	 *
753 	 *  The number of waves that a CU can launch is limited by couple of
754 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
755 	 *  that is part of every device definition. For GFX9 devices this
756 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
757 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
758 	 *  when they do use scratch memory. This could change for future
759 	 *  devices and therefore this example should be considered as a guide.
760 	 *
761 	 *  All CU's of a device are available for the process. This may not be true
762 	 *  under certain conditions - e.g. CU masking.
763 	 *
764 	 *  Finally number of CU's that are occupied by a process is affected by both
765 	 *  number of CU's a device has along with number of other competing processes
766 	 */
767 	struct attribute attr_cu_occupancy;
768 
769 	/* sysfs counters for GPU retry fault and page migration tracking */
770 	struct kobject *kobj_counters;
771 	struct attribute attr_faults;
772 	struct attribute attr_page_in;
773 	struct attribute attr_page_out;
774 	uint64_t faults;
775 	uint64_t page_in;
776 	uint64_t page_out;
777 };
778 
779 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
780 
781 struct svm_range_list {
782 	struct mutex			lock;
783 	struct rb_root_cached		objects;
784 	struct list_head		list;
785 	struct work_struct		deferred_list_work;
786 	struct list_head		deferred_range_list;
787 	spinlock_t			deferred_list_lock;
788 	atomic_t			evicted_ranges;
789 	atomic_t			drain_pagefaults;
790 	struct delayed_work		restore_work;
791 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
792 	struct task_struct 		*faulting_task;
793 };
794 
795 /* Process data */
796 struct kfd_process {
797 	/*
798 	 * kfd_process are stored in an mm_struct*->kfd_process*
799 	 * hash table (kfd_processes in kfd_process.c)
800 	 */
801 	struct hlist_node kfd_processes;
802 
803 	/*
804 	 * Opaque pointer to mm_struct. We don't hold a reference to
805 	 * it so it should never be dereferenced from here. This is
806 	 * only used for looking up processes by their mm.
807 	 */
808 	void *mm;
809 
810 	struct kref ref;
811 	struct work_struct release_work;
812 
813 	struct mutex mutex;
814 
815 	/*
816 	 * In any process, the thread that started main() is the lead
817 	 * thread and outlives the rest.
818 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
819 	 * It can also be used for safely getting a reference to the
820 	 * mm_struct of the process.
821 	 */
822 	struct task_struct *lead_thread;
823 
824 	/* We want to receive a notification when the mm_struct is destroyed */
825 	struct mmu_notifier mmu_notifier;
826 
827 	u32 pasid;
828 
829 	/*
830 	 * Array of kfd_process_device pointers,
831 	 * one for each device the process is using.
832 	 */
833 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
834 	uint32_t n_pdds;
835 
836 	struct process_queue_manager pqm;
837 
838 	/*Is the user space process 32 bit?*/
839 	bool is_32bit_user_mode;
840 
841 	/* Event-related data */
842 	struct mutex event_mutex;
843 	/* Event ID allocator and lookup */
844 	struct idr event_idr;
845 	/* Event page */
846 	u64 signal_handle;
847 	struct kfd_signal_page *signal_page;
848 	size_t signal_mapped_size;
849 	size_t signal_event_count;
850 	bool signal_event_limit_reached;
851 
852 	/* Information used for memory eviction */
853 	void *kgd_process_info;
854 	/* Eviction fence that is attached to all the BOs of this process. The
855 	 * fence will be triggered during eviction and new one will be created
856 	 * during restore
857 	 */
858 	struct dma_fence *ef;
859 
860 	/* Work items for evicting and restoring BOs */
861 	struct delayed_work eviction_work;
862 	struct delayed_work restore_work;
863 	/* seqno of the last scheduled eviction */
864 	unsigned int last_eviction_seqno;
865 	/* Approx. the last timestamp (in jiffies) when the process was
866 	 * restored after an eviction
867 	 */
868 	unsigned long last_restore_timestamp;
869 
870 	/* Kobj for our procfs */
871 	struct kobject *kobj;
872 	struct kobject *kobj_queues;
873 	struct attribute attr_pasid;
874 
875 	/* shared virtual memory registered by this process */
876 	struct svm_range_list svms;
877 
878 	bool xnack_enabled;
879 
880 	atomic_t poison;
881 	/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
882 	bool queues_paused;
883 };
884 
885 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
886 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
887 extern struct srcu_struct kfd_processes_srcu;
888 
889 /**
890  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
891  *
892  * @filep: pointer to file structure.
893  * @p: amdkfd process pointer.
894  * @data: pointer to arg that was copied from user.
895  *
896  * Return: returns ioctl completion code.
897  */
898 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
899 				void *data);
900 
901 struct amdkfd_ioctl_desc {
902 	unsigned int cmd;
903 	int flags;
904 	amdkfd_ioctl_t *func;
905 	unsigned int cmd_drv;
906 	const char *name;
907 };
908 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
909 
910 int kfd_process_create_wq(void);
911 void kfd_process_destroy_wq(void);
912 struct kfd_process *kfd_create_process(struct file *filep);
913 struct kfd_process *kfd_get_process(const struct task_struct *);
914 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
915 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
916 
917 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
918 int kfd_process_gpuid_from_adev(struct kfd_process *p,
919 			       struct amdgpu_device *adev, uint32_t *gpuid,
920 			       uint32_t *gpuidx);
921 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
922 				uint32_t gpuidx, uint32_t *gpuid) {
923 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
924 }
925 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
926 				struct kfd_process *p, uint32_t gpuidx) {
927 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
928 }
929 
930 void kfd_unref_process(struct kfd_process *p);
931 int kfd_process_evict_queues(struct kfd_process *p);
932 int kfd_process_restore_queues(struct kfd_process *p);
933 void kfd_suspend_all_processes(void);
934 int kfd_resume_all_processes(void);
935 
936 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
937 			       struct file *drm_file);
938 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
939 						struct kfd_process *p);
940 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
941 							struct kfd_process *p);
942 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
943 							struct kfd_process *p);
944 
945 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
946 
947 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
948 			  struct vm_area_struct *vma);
949 
950 /* KFD process API for creating and translating handles */
951 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
952 					void *mem);
953 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
954 					int handle);
955 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
956 					int handle);
957 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
958 
959 /* PASIDs */
960 int kfd_pasid_init(void);
961 void kfd_pasid_exit(void);
962 bool kfd_set_pasid_limit(unsigned int new_limit);
963 unsigned int kfd_get_pasid_limit(void);
964 u32 kfd_pasid_alloc(void);
965 void kfd_pasid_free(u32 pasid);
966 
967 /* Doorbells */
968 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
969 int kfd_doorbell_init(struct kfd_dev *kfd);
970 void kfd_doorbell_fini(struct kfd_dev *kfd);
971 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
972 		      struct vm_area_struct *vma);
973 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
974 					unsigned int *doorbell_off);
975 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
976 u32 read_kernel_doorbell(u32 __iomem *db);
977 void write_kernel_doorbell(void __iomem *db, u32 value);
978 void write_kernel_doorbell64(void __iomem *db, u64 value);
979 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
980 					struct kfd_process_device *pdd,
981 					unsigned int doorbell_id);
982 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
983 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
984 				unsigned int *doorbell_index);
985 void kfd_free_process_doorbells(struct kfd_dev *kfd,
986 				unsigned int doorbell_index);
987 /* GTT Sub-Allocator */
988 
989 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
990 			struct kfd_mem_obj **mem_obj);
991 
992 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
993 
994 extern struct device *kfd_device;
995 
996 /* KFD's procfs */
997 void kfd_procfs_init(void);
998 void kfd_procfs_shutdown(void);
999 int kfd_procfs_add_queue(struct queue *q);
1000 void kfd_procfs_del_queue(struct queue *q);
1001 
1002 /* Topology */
1003 int kfd_topology_init(void);
1004 void kfd_topology_shutdown(void);
1005 int kfd_topology_add_device(struct kfd_dev *gpu);
1006 int kfd_topology_remove_device(struct kfd_dev *gpu);
1007 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1008 						uint32_t proximity_domain);
1009 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1010 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
1011 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
1012 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev);
1013 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
1014 int kfd_numa_node_to_apic_id(int numa_node_id);
1015 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
1016 
1017 /* Interrupts */
1018 int kfd_interrupt_init(struct kfd_dev *dev);
1019 void kfd_interrupt_exit(struct kfd_dev *dev);
1020 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
1021 bool interrupt_is_wanted(struct kfd_dev *dev,
1022 				const uint32_t *ih_ring_entry,
1023 				uint32_t *patched_ihre, bool *flag);
1024 
1025 /* amdkfd Apertures */
1026 int kfd_init_apertures(struct kfd_process *process);
1027 
1028 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1029 				  uint64_t tba_addr,
1030 				  uint64_t tma_addr);
1031 
1032 /* CRIU */
1033 /*
1034  * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1035  * structures:
1036  * kfd_criu_process_priv_data
1037  * kfd_criu_device_priv_data
1038  * kfd_criu_bo_priv_data
1039  * kfd_criu_queue_priv_data
1040  * kfd_criu_event_priv_data
1041  * kfd_criu_svm_range_priv_data
1042  */
1043 
1044 #define KFD_CRIU_PRIV_VERSION 1
1045 
1046 struct kfd_criu_process_priv_data {
1047 	uint32_t version;
1048 };
1049 
1050 struct kfd_criu_device_priv_data {
1051 	/* For future use */
1052 	uint64_t reserved;
1053 };
1054 
1055 struct kfd_criu_bo_priv_data {
1056 	uint64_t user_addr;
1057 	uint32_t idr_handle;
1058 	uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1059 };
1060 
1061 /*
1062  * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1063  * kfd_criu_svm_range_priv_data is the object type
1064  */
1065 enum kfd_criu_object_type {
1066 	KFD_CRIU_OBJECT_TYPE_QUEUE,
1067 	KFD_CRIU_OBJECT_TYPE_EVENT,
1068 	KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1069 };
1070 
1071 struct kfd_criu_svm_range_priv_data {
1072 	uint32_t object_type;
1073 	uint32_t reserved;
1074 };
1075 
1076 struct kfd_criu_queue_priv_data {
1077 	uint32_t object_type;
1078 	uint64_t q_address;
1079 	uint64_t q_size;
1080 	uint64_t read_ptr_addr;
1081 	uint64_t write_ptr_addr;
1082 	uint64_t doorbell_off;
1083 	uint64_t eop_ring_buffer_address;
1084 	uint64_t ctx_save_restore_area_address;
1085 	uint32_t gpu_id;
1086 	uint32_t type;
1087 	uint32_t format;
1088 	uint32_t q_id;
1089 	uint32_t priority;
1090 	uint32_t q_percent;
1091 	uint32_t doorbell_id;
1092 	uint32_t is_gws;
1093 	uint32_t sdma_id;
1094 	uint32_t eop_ring_buffer_size;
1095 	uint32_t ctx_save_restore_area_size;
1096 	uint32_t ctl_stack_size;
1097 	uint32_t mqd_size;
1098 };
1099 
1100 struct kfd_criu_event_priv_data {
1101 	uint32_t object_type;
1102 	uint32_t reserved;
1103 };
1104 
1105 int kfd_process_get_queue_info(struct kfd_process *p,
1106 			       uint32_t *num_queues,
1107 			       uint64_t *priv_data_sizes);
1108 
1109 int kfd_criu_checkpoint_queues(struct kfd_process *p,
1110 			 uint8_t __user *user_priv_data,
1111 			 uint64_t *priv_data_offset);
1112 
1113 int kfd_criu_restore_queue(struct kfd_process *p,
1114 			   uint8_t __user *user_priv_data,
1115 			   uint64_t *priv_data_offset,
1116 			   uint64_t max_priv_data_size);
1117 /* CRIU - End */
1118 
1119 /* Queue Context Management */
1120 int init_queue(struct queue **q, const struct queue_properties *properties);
1121 void uninit_queue(struct queue *q);
1122 void print_queue_properties(struct queue_properties *q);
1123 void print_queue(struct queue *q);
1124 
1125 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1126 		struct kfd_dev *dev);
1127 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
1128 		struct kfd_dev *dev);
1129 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1130 		struct kfd_dev *dev);
1131 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1132 		struct kfd_dev *dev);
1133 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1134 		struct kfd_dev *dev);
1135 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1136 		struct kfd_dev *dev);
1137 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
1138 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1139 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
1140 					enum kfd_queue_type type);
1141 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1142 int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid);
1143 
1144 /* Process Queue Manager */
1145 struct process_queue_node {
1146 	struct queue *q;
1147 	struct kernel_queue *kq;
1148 	struct list_head process_queue_list;
1149 };
1150 
1151 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1152 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1153 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1154 void pqm_uninit(struct process_queue_manager *pqm);
1155 int pqm_create_queue(struct process_queue_manager *pqm,
1156 			    struct kfd_dev *dev,
1157 			    struct file *f,
1158 			    struct queue_properties *properties,
1159 			    unsigned int *qid,
1160 			    const struct kfd_criu_queue_priv_data *q_data,
1161 			    const void *restore_mqd,
1162 			    uint32_t *p_doorbell_offset_in_process);
1163 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1164 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1165 			struct queue_properties *p);
1166 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1167 			struct mqd_update_info *minfo);
1168 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1169 			void *gws);
1170 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1171 						unsigned int qid);
1172 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1173 						unsigned int qid);
1174 int pqm_get_wave_state(struct process_queue_manager *pqm,
1175 		       unsigned int qid,
1176 		       void __user *ctl_stack,
1177 		       u32 *ctl_stack_used_size,
1178 		       u32 *save_area_used_size);
1179 
1180 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1181 			      uint64_t fence_value,
1182 			      unsigned int timeout_ms);
1183 
1184 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1185 				  unsigned int qid,
1186 				  u32 *mqd_size);
1187 
1188 /* Packet Manager */
1189 
1190 #define KFD_FENCE_COMPLETED (100)
1191 #define KFD_FENCE_INIT   (10)
1192 
1193 struct packet_manager {
1194 	struct device_queue_manager *dqm;
1195 	struct kernel_queue *priv_queue;
1196 	struct mutex lock;
1197 	bool allocated;
1198 	struct kfd_mem_obj *ib_buffer_obj;
1199 	unsigned int ib_size_bytes;
1200 	bool is_over_subscription;
1201 
1202 	const struct packet_manager_funcs *pmf;
1203 };
1204 
1205 struct packet_manager_funcs {
1206 	/* Support ASIC-specific packet formats for PM4 packets */
1207 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1208 			struct qcm_process_device *qpd);
1209 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1210 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1211 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1212 			struct scheduling_resources *res);
1213 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1214 			struct queue *q, bool is_static);
1215 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1216 			enum kfd_queue_type type,
1217 			enum kfd_unmap_queues_filter mode,
1218 			uint32_t filter_param, bool reset,
1219 			unsigned int sdma_engine);
1220 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1221 			uint64_t fence_address,	uint64_t fence_value);
1222 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1223 
1224 	/* Packet sizes */
1225 	int map_process_size;
1226 	int runlist_size;
1227 	int set_resources_size;
1228 	int map_queues_size;
1229 	int unmap_queues_size;
1230 	int query_status_size;
1231 	int release_mem_size;
1232 };
1233 
1234 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1235 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1236 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1237 
1238 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1239 void pm_uninit(struct packet_manager *pm, bool hanging);
1240 int pm_send_set_resources(struct packet_manager *pm,
1241 				struct scheduling_resources *res);
1242 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1243 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1244 				uint64_t fence_value);
1245 
1246 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1247 			enum kfd_unmap_queues_filter mode,
1248 			uint32_t filter_param, bool reset,
1249 			unsigned int sdma_engine);
1250 
1251 void pm_release_ib(struct packet_manager *pm);
1252 
1253 /* Following PM funcs can be shared among VI and AI */
1254 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1255 
1256 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1257 
1258 /* Events */
1259 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1260 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1261 
1262 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1263 
1264 void kfd_event_init_process(struct kfd_process *p);
1265 void kfd_event_free_process(struct kfd_process *p);
1266 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1267 int kfd_wait_on_events(struct kfd_process *p,
1268 		       uint32_t num_events, void __user *data,
1269 		       bool all, uint32_t user_timeout_ms,
1270 		       uint32_t *wait_result);
1271 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1272 				uint32_t valid_id_bits);
1273 void kfd_signal_iommu_event(struct kfd_dev *dev,
1274 			    u32 pasid, unsigned long address,
1275 			    bool is_write_requested, bool is_execute_requested);
1276 void kfd_signal_hw_exception_event(u32 pasid);
1277 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1278 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1279 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1280 		       uint64_t size);
1281 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1282 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1283 		     uint32_t *event_id, uint32_t *event_trigger_data,
1284 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1285 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1286 
1287 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1288 				struct kfd_vm_fault_info *info);
1289 
1290 void kfd_signal_reset_event(struct kfd_dev *dev);
1291 
1292 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid);
1293 
1294 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1295 
1296 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1297 
1298 bool kfd_is_locked(void);
1299 
1300 /* Compute profile */
1301 void kfd_inc_compute_active(struct kfd_dev *dev);
1302 void kfd_dec_compute_active(struct kfd_dev *dev);
1303 
1304 /* Cgroup Support */
1305 /* Check with device cgroup if @kfd device is accessible */
1306 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1307 {
1308 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1309 	struct drm_device *ddev = kfd->ddev;
1310 
1311 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1312 					  ddev->render->index,
1313 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1314 #else
1315 	return 0;
1316 #endif
1317 }
1318 
1319 /* Debugfs */
1320 #if defined(CONFIG_DEBUG_FS)
1321 
1322 void kfd_debugfs_init(void);
1323 void kfd_debugfs_fini(void);
1324 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1325 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1326 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1327 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1328 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1329 int pm_debugfs_runlist(struct seq_file *m, void *data);
1330 
1331 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1332 int pm_debugfs_hang_hws(struct packet_manager *pm);
1333 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1334 
1335 #else
1336 
1337 static inline void kfd_debugfs_init(void) {}
1338 static inline void kfd_debugfs_fini(void) {}
1339 
1340 #endif
1341 
1342 #endif
1343