xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 272d7089)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <linux/sysfs.h>
39 #include <linux/device_cgroup.h>
40 #include <drm/drm_file.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_device.h>
43 #include <drm/drm_ioctl.h>
44 #include <kgd_kfd_interface.h>
45 #include <linux/swap.h>
46 
47 #include "amd_shared.h"
48 
49 #define KFD_MAX_RING_ENTRY_SIZE	8
50 
51 #define KFD_SYSFS_FILE_MODE 0444
52 
53 /* GPU ID hash width in bits */
54 #define KFD_GPU_ID_HASH_WIDTH 16
55 
56 /* Use upper bits of mmap offset to store KFD driver specific information.
57  * BITS[63:62] - Encode MMAP type
58  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
59  * BITS[45:0]  - MMAP offset value
60  *
61  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
62  *  defines are w.r.t to PAGE_SIZE
63  */
64 #define KFD_MMAP_TYPE_SHIFT	62
65 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
66 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
67 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
68 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
70 
71 #define KFD_MMAP_GPU_ID_SHIFT 46
72 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
73 				<< KFD_MMAP_GPU_ID_SHIFT)
74 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
75 				& KFD_MMAP_GPU_ID_MASK)
76 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
77 				>> KFD_MMAP_GPU_ID_SHIFT)
78 
79 /*
80  * When working with cp scheduler we should assign the HIQ manually or via
81  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
82  * definitions for Kaveri. In Kaveri only the first ME queues participates
83  * in the cp scheduling taking that in mind we set the HIQ slot in the
84  * second ME.
85  */
86 #define KFD_CIK_HIQ_PIPE 4
87 #define KFD_CIK_HIQ_QUEUE 0
88 
89 /* Macro for allocating structures */
90 #define kfd_alloc_struct(ptr_to_struct)	\
91 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
92 
93 #define KFD_MAX_NUM_OF_PROCESSES 512
94 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
95 
96 /*
97  * Size of the per-process TBA+TMA buffer: 2 pages
98  *
99  * The first page is the TBA used for the CWSR ISA code. The second
100  * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
101  */
102 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
103 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
104 
105 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
106 	(KFD_MAX_NUM_OF_PROCESSES *			\
107 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
108 
109 #define KFD_KERNEL_QUEUE_SIZE 2048
110 
111 #define KFD_UNMAP_LATENCY_MS	(4000)
112 
113 /*
114  * 512 = 0x200
115  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
116  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
117  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
118  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
119  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
120  */
121 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
122 
123 
124 /*
125  * Kernel module parameter to specify maximum number of supported queues per
126  * device
127  */
128 extern int max_num_of_queues_per_device;
129 
130 
131 /* Kernel module parameter to specify the scheduling policy */
132 extern int sched_policy;
133 
134 /*
135  * Kernel module parameter to specify the maximum process
136  * number per HW scheduler
137  */
138 extern int hws_max_conc_proc;
139 
140 extern int cwsr_enable;
141 
142 /*
143  * Kernel module parameter to specify whether to send sigterm to HSA process on
144  * unhandled exception
145  */
146 extern int send_sigterm;
147 
148 /*
149  * This kernel module is used to simulate large bar machine on non-large bar
150  * enabled machines.
151  */
152 extern int debug_largebar;
153 
154 /*
155  * Ignore CRAT table during KFD initialization, can be used to work around
156  * broken CRAT tables on some AMD systems
157  */
158 extern int ignore_crat;
159 
160 /* Set sh_mem_config.retry_disable on GFX v9 */
161 extern int amdgpu_noretry;
162 
163 /* Halt if HWS hang is detected */
164 extern int halt_if_hws_hang;
165 
166 /* Whether MEC FW support GWS barriers */
167 extern bool hws_gws_support;
168 
169 /* Queue preemption timeout in ms */
170 extern int queue_preemption_timeout_ms;
171 
172 /* Enable eviction debug messages */
173 extern bool debug_evictions;
174 
175 enum cache_policy {
176 	cache_policy_coherent,
177 	cache_policy_noncoherent
178 };
179 
180 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
181 
182 struct kfd_event_interrupt_class {
183 	bool (*interrupt_isr)(struct kfd_dev *dev,
184 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
185 			bool *patched_flag);
186 	void (*interrupt_wq)(struct kfd_dev *dev,
187 			const uint32_t *ih_ring_entry);
188 };
189 
190 struct kfd_device_info {
191 	enum amd_asic_type asic_family;
192 	const char *asic_name;
193 	const struct kfd_event_interrupt_class *event_interrupt_class;
194 	unsigned int max_pasid_bits;
195 	unsigned int max_no_of_hqd;
196 	unsigned int doorbell_size;
197 	size_t ih_ring_entry_size;
198 	uint8_t num_of_watch_points;
199 	uint16_t mqd_size_aligned;
200 	bool supports_cwsr;
201 	bool needs_iommu_device;
202 	bool needs_pci_atomics;
203 	unsigned int num_sdma_engines;
204 	unsigned int num_xgmi_sdma_engines;
205 	unsigned int num_sdma_queues_per_engine;
206 };
207 
208 struct kfd_mem_obj {
209 	uint32_t range_start;
210 	uint32_t range_end;
211 	uint64_t gpu_addr;
212 	uint32_t *cpu_ptr;
213 	void *gtt_mem;
214 };
215 
216 struct kfd_vmid_info {
217 	uint32_t first_vmid_kfd;
218 	uint32_t last_vmid_kfd;
219 	uint32_t vmid_num_kfd;
220 };
221 
222 struct kfd_dev {
223 	struct kgd_dev *kgd;
224 
225 	const struct kfd_device_info *device_info;
226 	struct pci_dev *pdev;
227 	struct drm_device *ddev;
228 
229 	unsigned int id;		/* topology stub index */
230 
231 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
232 					 * KFD. It is aligned for mapping
233 					 * into user mode
234 					 */
235 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
236 					 * doorbell BAR to the first KFD
237 					 * doorbell in dwords. GFX reserves
238 					 * the segment before this offset.
239 					 */
240 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
241 					   * page used by kernel queue
242 					   */
243 
244 	struct kgd2kfd_shared_resources shared_resources;
245 	struct kfd_vmid_info vm_info;
246 
247 	const struct kfd2kgd_calls *kfd2kgd;
248 	struct mutex doorbell_mutex;
249 	DECLARE_BITMAP(doorbell_available_index,
250 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
251 
252 	void *gtt_mem;
253 	uint64_t gtt_start_gpu_addr;
254 	void *gtt_start_cpu_ptr;
255 	void *gtt_sa_bitmap;
256 	struct mutex gtt_sa_lock;
257 	unsigned int gtt_sa_chunk_size;
258 	unsigned int gtt_sa_num_of_chunks;
259 
260 	/* Interrupts */
261 	struct kfifo ih_fifo;
262 	struct workqueue_struct *ih_wq;
263 	struct work_struct interrupt_work;
264 	spinlock_t interrupt_lock;
265 
266 	/* QCM Device instance */
267 	struct device_queue_manager *dqm;
268 
269 	bool init_complete;
270 	/*
271 	 * Interrupts of interest to KFD are copied
272 	 * from the HW ring into a SW ring.
273 	 */
274 	bool interrupts_active;
275 
276 	/* Debug manager */
277 	struct kfd_dbgmgr *dbgmgr;
278 
279 	/* Firmware versions */
280 	uint16_t mec_fw_version;
281 	uint16_t mec2_fw_version;
282 	uint16_t sdma_fw_version;
283 
284 	/* Maximum process number mapped to HW scheduler */
285 	unsigned int max_proc_per_quantum;
286 
287 	/* CWSR */
288 	bool cwsr_enabled;
289 	const void *cwsr_isa;
290 	unsigned int cwsr_isa_size;
291 
292 	/* xGMI */
293 	uint64_t hive_id;
294 
295 	/* UUID */
296 	uint64_t unique_id;
297 
298 	bool pci_atomic_requested;
299 
300 	/* Use IOMMU v2 flag */
301 	bool use_iommu_v2;
302 
303 	/* SRAM ECC flag */
304 	atomic_t sram_ecc_flag;
305 
306 	/* Compute Profile ref. count */
307 	atomic_t compute_profile;
308 
309 	/* Global GWS resource shared between processes */
310 	void *gws;
311 
312 	/* Clients watching SMI events */
313 	struct list_head smi_clients;
314 	spinlock_t smi_lock;
315 
316 	uint32_t reset_seq_num;
317 };
318 
319 enum kfd_mempool {
320 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
321 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
322 	KFD_MEMPOOL_FRAMEBUFFER = 3,
323 };
324 
325 /* Character device interface */
326 int kfd_chardev_init(void);
327 void kfd_chardev_exit(void);
328 struct device *kfd_chardev(void);
329 
330 /**
331  * enum kfd_unmap_queues_filter - Enum for queue filters.
332  *
333  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
334  *
335  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
336  *						running queues list.
337  *
338  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
339  *						specific process.
340  *
341  */
342 enum kfd_unmap_queues_filter {
343 	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
344 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
345 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
346 	KFD_UNMAP_QUEUES_FILTER_BY_PASID
347 };
348 
349 /**
350  * enum kfd_queue_type - Enum for various queue types.
351  *
352  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
353  *
354  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
355  *
356  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
357  *
358  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
359  *
360  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
361  */
362 enum kfd_queue_type  {
363 	KFD_QUEUE_TYPE_COMPUTE,
364 	KFD_QUEUE_TYPE_SDMA,
365 	KFD_QUEUE_TYPE_HIQ,
366 	KFD_QUEUE_TYPE_DIQ,
367 	KFD_QUEUE_TYPE_SDMA_XGMI
368 };
369 
370 enum kfd_queue_format {
371 	KFD_QUEUE_FORMAT_PM4,
372 	KFD_QUEUE_FORMAT_AQL
373 };
374 
375 enum KFD_QUEUE_PRIORITY {
376 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
377 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
378 };
379 
380 /**
381  * struct queue_properties
382  *
383  * @type: The queue type.
384  *
385  * @queue_id: Queue identifier.
386  *
387  * @queue_address: Queue ring buffer address.
388  *
389  * @queue_size: Queue ring buffer size.
390  *
391  * @priority: Defines the queue priority relative to other queues in the
392  * process.
393  * This is just an indication and HW scheduling may override the priority as
394  * necessary while keeping the relative prioritization.
395  * the priority granularity is from 0 to f which f is the highest priority.
396  * currently all queues are initialized with the highest priority.
397  *
398  * @queue_percent: This field is partially implemented and currently a zero in
399  * this field defines that the queue is non active.
400  *
401  * @read_ptr: User space address which points to the number of dwords the
402  * cp read from the ring buffer. This field updates automatically by the H/W.
403  *
404  * @write_ptr: Defines the number of dwords written to the ring buffer.
405  *
406  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
407  * buffer. This field should be similar to write_ptr and the user should
408  * update this field after updating the write_ptr.
409  *
410  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
411  *
412  * @is_interop: Defines if this is a interop queue. Interop queue means that
413  * the queue can access both graphics and compute resources.
414  *
415  * @is_evicted: Defines if the queue is evicted. Only active queues
416  * are evicted, rendering them inactive.
417  *
418  * @is_active: Defines if the queue is active or not. @is_active and
419  * @is_evicted are protected by the DQM lock.
420  *
421  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
422  * @is_gws should be protected by the DQM lock, since changing it can yield the
423  * possibility of updating DQM state on number of GWS queues.
424  *
425  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
426  * of the queue.
427  *
428  * This structure represents the queue properties for each queue no matter if
429  * it's user mode or kernel mode queue.
430  *
431  */
432 struct queue_properties {
433 	enum kfd_queue_type type;
434 	enum kfd_queue_format format;
435 	unsigned int queue_id;
436 	uint64_t queue_address;
437 	uint64_t  queue_size;
438 	uint32_t priority;
439 	uint32_t queue_percent;
440 	uint32_t *read_ptr;
441 	uint32_t *write_ptr;
442 	void __iomem *doorbell_ptr;
443 	uint32_t doorbell_off;
444 	bool is_interop;
445 	bool is_evicted;
446 	bool is_active;
447 	bool is_gws;
448 	/* Not relevant for user mode queues in cp scheduling */
449 	unsigned int vmid;
450 	/* Relevant only for sdma queues*/
451 	uint32_t sdma_engine_id;
452 	uint32_t sdma_queue_id;
453 	uint32_t sdma_vm_addr;
454 	/* Relevant only for VI */
455 	uint64_t eop_ring_buffer_address;
456 	uint32_t eop_ring_buffer_size;
457 	uint64_t ctx_save_restore_area_address;
458 	uint32_t ctx_save_restore_area_size;
459 	uint32_t ctl_stack_size;
460 	uint64_t tba_addr;
461 	uint64_t tma_addr;
462 	/* Relevant for CU */
463 	uint32_t cu_mask_count; /* Must be a multiple of 32 */
464 	uint32_t *cu_mask;
465 };
466 
467 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
468 			    (q).queue_address != 0 &&	\
469 			    (q).queue_percent > 0 &&	\
470 			    !(q).is_evicted)
471 
472 /**
473  * struct queue
474  *
475  * @list: Queue linked list.
476  *
477  * @mqd: The queue MQD (memory queue descriptor).
478  *
479  * @mqd_mem_obj: The MQD local gpu memory object.
480  *
481  * @gart_mqd_addr: The MQD gart mc address.
482  *
483  * @properties: The queue properties.
484  *
485  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
486  *	 that the queue should be executed on.
487  *
488  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
489  *	  id.
490  *
491  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
492  *
493  * @process: The kfd process that created this queue.
494  *
495  * @device: The kfd device that created this queue.
496  *
497  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
498  * otherwise.
499  *
500  * This structure represents user mode compute queues.
501  * It contains all the necessary data to handle such queues.
502  *
503  */
504 
505 struct queue {
506 	struct list_head list;
507 	void *mqd;
508 	struct kfd_mem_obj *mqd_mem_obj;
509 	uint64_t gart_mqd_addr;
510 	struct queue_properties properties;
511 
512 	uint32_t mec;
513 	uint32_t pipe;
514 	uint32_t queue;
515 
516 	unsigned int sdma_id;
517 	unsigned int doorbell_id;
518 
519 	struct kfd_process	*process;
520 	struct kfd_dev		*device;
521 	void *gws;
522 
523 	/* procfs */
524 	struct kobject kobj;
525 };
526 
527 enum KFD_MQD_TYPE {
528 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
529 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
530 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
531 	KFD_MQD_TYPE_DIQ,		/* for diq */
532 	KFD_MQD_TYPE_MAX
533 };
534 
535 enum KFD_PIPE_PRIORITY {
536 	KFD_PIPE_PRIORITY_CS_LOW = 0,
537 	KFD_PIPE_PRIORITY_CS_MEDIUM,
538 	KFD_PIPE_PRIORITY_CS_HIGH
539 };
540 
541 struct scheduling_resources {
542 	unsigned int vmid_mask;
543 	enum kfd_queue_type type;
544 	uint64_t queue_mask;
545 	uint64_t gws_mask;
546 	uint32_t oac_mask;
547 	uint32_t gds_heap_base;
548 	uint32_t gds_heap_size;
549 };
550 
551 struct process_queue_manager {
552 	/* data */
553 	struct kfd_process	*process;
554 	struct list_head	queues;
555 	unsigned long		*queue_slot_bitmap;
556 };
557 
558 struct qcm_process_device {
559 	/* The Device Queue Manager that owns this data */
560 	struct device_queue_manager *dqm;
561 	struct process_queue_manager *pqm;
562 	/* Queues list */
563 	struct list_head queues_list;
564 	struct list_head priv_queue_list;
565 
566 	unsigned int queue_count;
567 	unsigned int vmid;
568 	bool is_debug;
569 	unsigned int evicted; /* eviction counter, 0=active */
570 
571 	/* This flag tells if we should reset all wavefronts on
572 	 * process termination
573 	 */
574 	bool reset_wavefronts;
575 
576 	/* This flag tells us if this process has a GWS-capable
577 	 * queue that will be mapped into the runlist. It's
578 	 * possible to request a GWS BO, but not have the queue
579 	 * currently mapped, and this changes how the MAP_PROCESS
580 	 * PM4 packet is configured.
581 	 */
582 	bool mapped_gws_queue;
583 
584 	/* All the memory management data should be here too */
585 	uint64_t gds_context_area;
586 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
587 	uint64_t page_table_base;
588 	uint32_t sh_mem_config;
589 	uint32_t sh_mem_bases;
590 	uint32_t sh_mem_ape1_base;
591 	uint32_t sh_mem_ape1_limit;
592 	uint32_t gds_size;
593 	uint32_t num_gws;
594 	uint32_t num_oac;
595 	uint32_t sh_hidden_private_base;
596 
597 	/* CWSR memory */
598 	void *cwsr_kaddr;
599 	uint64_t cwsr_base;
600 	uint64_t tba_addr;
601 	uint64_t tma_addr;
602 
603 	/* IB memory */
604 	uint64_t ib_base;
605 	void *ib_kaddr;
606 
607 	/* doorbell resources per process per device */
608 	unsigned long *doorbell_bitmap;
609 };
610 
611 /* KFD Memory Eviction */
612 
613 /* Approx. wait time before attempting to restore evicted BOs */
614 #define PROCESS_RESTORE_TIME_MS 100
615 /* Approx. back off time if restore fails due to lack of memory */
616 #define PROCESS_BACK_OFF_TIME_MS 100
617 /* Approx. time before evicting the process again */
618 #define PROCESS_ACTIVE_TIME_MS 10
619 
620 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
621  * idr_handle in the least significant 4 bytes
622  */
623 #define MAKE_HANDLE(gpu_id, idr_handle) \
624 	(((uint64_t)(gpu_id) << 32) + idr_handle)
625 #define GET_GPU_ID(handle) (handle >> 32)
626 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
627 
628 enum kfd_pdd_bound {
629 	PDD_UNBOUND = 0,
630 	PDD_BOUND,
631 	PDD_BOUND_SUSPENDED,
632 };
633 
634 #define MAX_SYSFS_FILENAME_LEN 11
635 
636 /*
637  * SDMA counter runs at 100MHz frequency.
638  * We display SDMA activity in microsecond granularity in sysfs.
639  * As a result, the divisor is 100.
640  */
641 #define SDMA_ACTIVITY_DIVISOR  100
642 
643 /* Data that is per-process-per device. */
644 struct kfd_process_device {
645 	/*
646 	 * List of all per-device data for a process.
647 	 * Starts from kfd_process.per_device_data.
648 	 */
649 	struct list_head per_device_list;
650 
651 	/* The device that owns this data. */
652 	struct kfd_dev *dev;
653 
654 	/* The process that owns this kfd_process_device. */
655 	struct kfd_process *process;
656 
657 	/* per-process-per device QCM data structure */
658 	struct qcm_process_device qpd;
659 
660 	/*Apertures*/
661 	uint64_t lds_base;
662 	uint64_t lds_limit;
663 	uint64_t gpuvm_base;
664 	uint64_t gpuvm_limit;
665 	uint64_t scratch_base;
666 	uint64_t scratch_limit;
667 
668 	/* VM context for GPUVM allocations */
669 	struct file *drm_file;
670 	void *vm;
671 
672 	/* GPUVM allocations storage */
673 	struct idr alloc_idr;
674 
675 	/* Flag used to tell the pdd has dequeued from the dqm.
676 	 * This is used to prevent dev->dqm->ops.process_termination() from
677 	 * being called twice when it is already called in IOMMU callback
678 	 * function.
679 	 */
680 	bool already_dequeued;
681 	bool runtime_inuse;
682 
683 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
684 	enum kfd_pdd_bound bound;
685 
686 	/* VRAM usage */
687 	uint64_t vram_usage;
688 	struct attribute attr_vram;
689 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
690 
691 	/* SDMA activity tracking */
692 	uint64_t sdma_past_activity_counter;
693 	struct attribute attr_sdma;
694 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
695 };
696 
697 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
698 
699 /* Process data */
700 struct kfd_process {
701 	/*
702 	 * kfd_process are stored in an mm_struct*->kfd_process*
703 	 * hash table (kfd_processes in kfd_process.c)
704 	 */
705 	struct hlist_node kfd_processes;
706 
707 	/*
708 	 * Opaque pointer to mm_struct. We don't hold a reference to
709 	 * it so it should never be dereferenced from here. This is
710 	 * only used for looking up processes by their mm.
711 	 */
712 	void *mm;
713 
714 	struct kref ref;
715 	struct work_struct release_work;
716 
717 	struct mutex mutex;
718 
719 	/*
720 	 * In any process, the thread that started main() is the lead
721 	 * thread and outlives the rest.
722 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
723 	 * It can also be used for safely getting a reference to the
724 	 * mm_struct of the process.
725 	 */
726 	struct task_struct *lead_thread;
727 
728 	/* We want to receive a notification when the mm_struct is destroyed */
729 	struct mmu_notifier mmu_notifier;
730 
731 	uint16_t pasid;
732 	unsigned int doorbell_index;
733 
734 	/*
735 	 * List of kfd_process_device structures,
736 	 * one for each device the process is using.
737 	 */
738 	struct list_head per_device_data;
739 
740 	struct process_queue_manager pqm;
741 
742 	/*Is the user space process 32 bit?*/
743 	bool is_32bit_user_mode;
744 
745 	/* Event-related data */
746 	struct mutex event_mutex;
747 	/* Event ID allocator and lookup */
748 	struct idr event_idr;
749 	/* Event page */
750 	struct kfd_signal_page *signal_page;
751 	size_t signal_mapped_size;
752 	size_t signal_event_count;
753 	bool signal_event_limit_reached;
754 
755 	/* Information used for memory eviction */
756 	void *kgd_process_info;
757 	/* Eviction fence that is attached to all the BOs of this process. The
758 	 * fence will be triggered during eviction and new one will be created
759 	 * during restore
760 	 */
761 	struct dma_fence *ef;
762 
763 	/* Work items for evicting and restoring BOs */
764 	struct delayed_work eviction_work;
765 	struct delayed_work restore_work;
766 	/* seqno of the last scheduled eviction */
767 	unsigned int last_eviction_seqno;
768 	/* Approx. the last timestamp (in jiffies) when the process was
769 	 * restored after an eviction
770 	 */
771 	unsigned long last_restore_timestamp;
772 
773 	/* Kobj for our procfs */
774 	struct kobject *kobj;
775 	struct kobject *kobj_queues;
776 	struct attribute attr_pasid;
777 };
778 
779 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
780 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
781 extern struct srcu_struct kfd_processes_srcu;
782 
783 /**
784  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
785  *
786  * @filep: pointer to file structure.
787  * @p: amdkfd process pointer.
788  * @data: pointer to arg that was copied from user.
789  *
790  * Return: returns ioctl completion code.
791  */
792 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
793 				void *data);
794 
795 struct amdkfd_ioctl_desc {
796 	unsigned int cmd;
797 	int flags;
798 	amdkfd_ioctl_t *func;
799 	unsigned int cmd_drv;
800 	const char *name;
801 };
802 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
803 
804 int kfd_process_create_wq(void);
805 void kfd_process_destroy_wq(void);
806 struct kfd_process *kfd_create_process(struct file *filep);
807 struct kfd_process *kfd_get_process(const struct task_struct *);
808 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
809 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
810 void kfd_unref_process(struct kfd_process *p);
811 int kfd_process_evict_queues(struct kfd_process *p);
812 int kfd_process_restore_queues(struct kfd_process *p);
813 void kfd_suspend_all_processes(void);
814 int kfd_resume_all_processes(void);
815 
816 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
817 			       struct file *drm_file);
818 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
819 						struct kfd_process *p);
820 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
821 							struct kfd_process *p);
822 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
823 							struct kfd_process *p);
824 
825 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
826 			  struct vm_area_struct *vma);
827 
828 /* KFD process API for creating and translating handles */
829 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
830 					void *mem);
831 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
832 					int handle);
833 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
834 					int handle);
835 
836 /* Process device data iterator */
837 struct kfd_process_device *kfd_get_first_process_device_data(
838 							struct kfd_process *p);
839 struct kfd_process_device *kfd_get_next_process_device_data(
840 						struct kfd_process *p,
841 						struct kfd_process_device *pdd);
842 bool kfd_has_process_device_data(struct kfd_process *p);
843 
844 /* PASIDs */
845 int kfd_pasid_init(void);
846 void kfd_pasid_exit(void);
847 bool kfd_set_pasid_limit(unsigned int new_limit);
848 unsigned int kfd_get_pasid_limit(void);
849 unsigned int kfd_pasid_alloc(void);
850 void kfd_pasid_free(unsigned int pasid);
851 
852 /* Doorbells */
853 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
854 int kfd_doorbell_init(struct kfd_dev *kfd);
855 void kfd_doorbell_fini(struct kfd_dev *kfd);
856 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
857 		      struct vm_area_struct *vma);
858 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
859 					unsigned int *doorbell_off);
860 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
861 u32 read_kernel_doorbell(u32 __iomem *db);
862 void write_kernel_doorbell(void __iomem *db, u32 value);
863 void write_kernel_doorbell64(void __iomem *db, u64 value);
864 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
865 					struct kfd_process *process,
866 					unsigned int doorbell_id);
867 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
868 					struct kfd_process *process);
869 int kfd_alloc_process_doorbells(struct kfd_process *process);
870 void kfd_free_process_doorbells(struct kfd_process *process);
871 
872 /* GTT Sub-Allocator */
873 
874 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
875 			struct kfd_mem_obj **mem_obj);
876 
877 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
878 
879 extern struct device *kfd_device;
880 
881 /* KFD's procfs */
882 void kfd_procfs_init(void);
883 void kfd_procfs_shutdown(void);
884 int kfd_procfs_add_queue(struct queue *q);
885 void kfd_procfs_del_queue(struct queue *q);
886 
887 /* Topology */
888 int kfd_topology_init(void);
889 void kfd_topology_shutdown(void);
890 int kfd_topology_add_device(struct kfd_dev *gpu);
891 int kfd_topology_remove_device(struct kfd_dev *gpu);
892 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
893 						uint32_t proximity_domain);
894 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
895 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
896 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
897 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
898 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
899 int kfd_numa_node_to_apic_id(int numa_node_id);
900 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
901 
902 /* Interrupts */
903 int kfd_interrupt_init(struct kfd_dev *dev);
904 void kfd_interrupt_exit(struct kfd_dev *dev);
905 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
906 bool interrupt_is_wanted(struct kfd_dev *dev,
907 				const uint32_t *ih_ring_entry,
908 				uint32_t *patched_ihre, bool *flag);
909 
910 /* amdkfd Apertures */
911 int kfd_init_apertures(struct kfd_process *process);
912 
913 /* Queue Context Management */
914 int init_queue(struct queue **q, const struct queue_properties *properties);
915 void uninit_queue(struct queue *q);
916 void print_queue_properties(struct queue_properties *q);
917 void print_queue(struct queue *q);
918 
919 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
920 		struct kfd_dev *dev);
921 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
922 		struct kfd_dev *dev);
923 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
924 		struct kfd_dev *dev);
925 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
926 		struct kfd_dev *dev);
927 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
928 		struct kfd_dev *dev);
929 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
930 		struct kfd_dev *dev);
931 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
932 void device_queue_manager_uninit(struct device_queue_manager *dqm);
933 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
934 					enum kfd_queue_type type);
935 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
936 int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid);
937 
938 /* Process Queue Manager */
939 struct process_queue_node {
940 	struct queue *q;
941 	struct kernel_queue *kq;
942 	struct list_head process_queue_list;
943 };
944 
945 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
946 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
947 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
948 void pqm_uninit(struct process_queue_manager *pqm);
949 int pqm_create_queue(struct process_queue_manager *pqm,
950 			    struct kfd_dev *dev,
951 			    struct file *f,
952 			    struct queue_properties *properties,
953 			    unsigned int *qid,
954 			    uint32_t *p_doorbell_offset_in_process);
955 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
956 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
957 			struct queue_properties *p);
958 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
959 			struct queue_properties *p);
960 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
961 			void *gws);
962 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
963 						unsigned int qid);
964 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
965 						unsigned int qid);
966 int pqm_get_wave_state(struct process_queue_manager *pqm,
967 		       unsigned int qid,
968 		       void __user *ctl_stack,
969 		       u32 *ctl_stack_used_size,
970 		       u32 *save_area_used_size);
971 
972 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
973 			      unsigned int fence_value,
974 			      unsigned int timeout_ms);
975 
976 /* Packet Manager */
977 
978 #define KFD_FENCE_COMPLETED (100)
979 #define KFD_FENCE_INIT   (10)
980 
981 struct packet_manager {
982 	struct device_queue_manager *dqm;
983 	struct kernel_queue *priv_queue;
984 	struct mutex lock;
985 	bool allocated;
986 	struct kfd_mem_obj *ib_buffer_obj;
987 	unsigned int ib_size_bytes;
988 	bool is_over_subscription;
989 
990 	const struct packet_manager_funcs *pmf;
991 };
992 
993 struct packet_manager_funcs {
994 	/* Support ASIC-specific packet formats for PM4 packets */
995 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
996 			struct qcm_process_device *qpd);
997 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
998 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
999 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1000 			struct scheduling_resources *res);
1001 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1002 			struct queue *q, bool is_static);
1003 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1004 			enum kfd_queue_type type,
1005 			enum kfd_unmap_queues_filter mode,
1006 			uint32_t filter_param, bool reset,
1007 			unsigned int sdma_engine);
1008 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1009 			uint64_t fence_address,	uint32_t fence_value);
1010 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1011 
1012 	/* Packet sizes */
1013 	int map_process_size;
1014 	int runlist_size;
1015 	int set_resources_size;
1016 	int map_queues_size;
1017 	int unmap_queues_size;
1018 	int query_status_size;
1019 	int release_mem_size;
1020 };
1021 
1022 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1023 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1024 
1025 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1026 void pm_uninit(struct packet_manager *pm, bool hanging);
1027 int pm_send_set_resources(struct packet_manager *pm,
1028 				struct scheduling_resources *res);
1029 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1030 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1031 				uint32_t fence_value);
1032 
1033 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1034 			enum kfd_unmap_queues_filter mode,
1035 			uint32_t filter_param, bool reset,
1036 			unsigned int sdma_engine);
1037 
1038 void pm_release_ib(struct packet_manager *pm);
1039 
1040 /* Following PM funcs can be shared among VI and AI */
1041 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1042 
1043 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1044 
1045 /* Events */
1046 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1047 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1048 
1049 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1050 
1051 void kfd_event_init_process(struct kfd_process *p);
1052 void kfd_event_free_process(struct kfd_process *p);
1053 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1054 int kfd_wait_on_events(struct kfd_process *p,
1055 		       uint32_t num_events, void __user *data,
1056 		       bool all, uint32_t user_timeout_ms,
1057 		       uint32_t *wait_result);
1058 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
1059 				uint32_t valid_id_bits);
1060 void kfd_signal_iommu_event(struct kfd_dev *dev,
1061 		unsigned int pasid, unsigned long address,
1062 		bool is_write_requested, bool is_execute_requested);
1063 void kfd_signal_hw_exception_event(unsigned int pasid);
1064 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1065 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1066 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1067 		       uint64_t size);
1068 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1069 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1070 		     uint32_t *event_id, uint32_t *event_trigger_data,
1071 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1072 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1073 
1074 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
1075 				struct kfd_vm_fault_info *info);
1076 
1077 void kfd_signal_reset_event(struct kfd_dev *dev);
1078 
1079 void kfd_flush_tlb(struct kfd_process_device *pdd);
1080 
1081 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1082 
1083 bool kfd_is_locked(void);
1084 
1085 /* Compute profile */
1086 void kfd_inc_compute_active(struct kfd_dev *dev);
1087 void kfd_dec_compute_active(struct kfd_dev *dev);
1088 
1089 /* Cgroup Support */
1090 /* Check with device cgroup if @kfd device is accessible */
1091 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1092 {
1093 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1094 	struct drm_device *ddev = kfd->ddev;
1095 
1096 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1097 					  ddev->render->index,
1098 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1099 #else
1100 	return 0;
1101 #endif
1102 }
1103 
1104 /* Debugfs */
1105 #if defined(CONFIG_DEBUG_FS)
1106 
1107 void kfd_debugfs_init(void);
1108 void kfd_debugfs_fini(void);
1109 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1110 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1111 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1112 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1113 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1114 int pm_debugfs_runlist(struct seq_file *m, void *data);
1115 
1116 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1117 int pm_debugfs_hang_hws(struct packet_manager *pm);
1118 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1119 
1120 #else
1121 
1122 static inline void kfd_debugfs_init(void) {}
1123 static inline void kfd_debugfs_fini(void) {}
1124 
1125 #endif
1126 
1127 #endif
1128